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ARTICLE INFO ABSTRACT

Keywords: With Artificial Intelligence (AI) increasingly permeating various aspects of society, including healthcare, the
Transformers adoption of the Transformers neural network architecture is rapidly changing many applications. Transformer is
Healthcare

a type of deep learning architecture initially developed to solve general-purpose Natural Language Processing
(NLP) tasks and has subsequently been adapted in many fields, including healthcare. In this survey paper, we
provide an overview of how this architecture has been adopted to analyze various forms of healthcare data,
including clinical NLP, medical imaging, structured Electronic Health Records (EHR), social media, bio-
physiological signals, biomolecular sequences. Furthermore, which have also include the articles that used the
transformer architecture for generating surgical instructions and predicting adverse outcomes after surgeries
under the umbrella of critical care. Under diverse settings, these models have been used for clinical diagnosis,
report generation, data reconstruction, and drug/protein synthesis. Finally, we also discuss the benefits and
limitations of using transformers in healthcare and examine issues such as computational cost, model inter-
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pretability, fairness, alignment with human values, ethical implications, and environmental impact.

1. Introduction

The last decade has seen an explosion in data generated by health-
care practices. Currently, healthcare data accounts for 30% of the global
data ecosystem and is expected to grow in the coming years [1]. The
increasing availability of digital patient data has enabled the develop-
ment of machine learning algorithms to support diagnosis, prognosis,
and clinical decision-making.

Transformer [2] is a type of Deep Neural Network (DNN) introduced
in 2017 for sequence modeling problems, especially in the Natural
Language Processing (NLP) domain [3]. Before the introduction of the
Transformer [2], the most popular sequential deep learning architec-
tures, such as recurrent neural networks (RNNs) [4] and their variants,
worked in a serial fashion which precluded parallelization during
training, therefore substantially increasing the training time. In contrast,
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Transformer employs parallelizable scaled dot-product attention
mechanism. This unique attention mechanism allows for large-scale
pretraining. Additionally, self-supervised pretraining on large unla-
beled datasets using approaches such as input masking enabled trans-
formers to be trained without costly annotations.

Although originally designed for the NLP [3] domain, Transformers
have witnessed adaptations in various domains such as computer vision
[5,6], remote sensing [7], time series [8], speech processing [9] and
multimodal learning [10]. Consequently, modality-specific surveys
emerged, focusing on medical imaging [11-13] and biomedical lan-
guage models [14]. However, a comprehensive review of all healthcare-
oriented literature that has employed the Transformer architecture has
not been undertaken. This paper aims to provide a comprehensive re-
view of Transformer models utilized across multiple healthcare data
modalities while focusing on notable architectural changes undergone
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by the original Transformer model through this process of evolution.
This is critical and timely because the transformer architecture is being
rapidly incorporated into almost every healthcare domain; it is critical
to understand common patterns and features in this adoption. Further-
more, we discuss pretraining strategies designed to manage the lack of
robust and/or annotated healthcare datasets. The rest of the paper is
organized as follows: Section 2 discusses our search strategy; Section 3
describes the architecture of the original transformer; Section 4 de-
scribes the two most commonly used Transformer variants: the Bidi-
rectional Encoder Representations from Transformers (BERT) and the
Vision Transformer (ViT). Section 5 describes advancements in large
language models (LLM), and Sections 6 through 12 provide a review of
Transformers in healthcare. Finally, Section 13 discusses limitations,
interpretability, environmental impact, computational costs, bias, and
fairness. This review summarizes the use of transformer-based deep
learning models in healthcare and provides a critical analysis of the
inherent deficiencies of these models and discusses possible future di-
rections for this field.

2. Search strategy and selection criteria

We used Google Scholar and PubMed search engines to search for
studies. Since Vaswani et al.’s initial Transformer network [2] was
published in 2017, we limited our search to studies published after
2017. We also limited our search to studies published before March
2023 to complete this review. The extraction process and exclusion
criteria is shown in Fig. 1. The search was divided into six categories:
clinical NLP, EHR, social media, medical imaging, biomolecules, and
bio-physical signals.

For each category, we used the terms “health” or “medical” or
“clinical” to focus the search on the healthcare domain. Finally, each
category used a precise set of keywords unique to that domain. The
keywords were combined with logical operators such as “AND” and
“OR” to enhance search fidelity. A detailed list of search queries can be
found in Table 1. We used Harzing’s Publish or Perish [15] to retrieve
studies and Covidence [16] to select relevant studies. For most medical
domains an article that was preliminarily short-listed was reviewed by

2154 studies identified,
sources: Google
Scholar, PubMed

Y

354 duplicates removed

Y

1800 articles after
duplicates removal

Articles that were not

» related to Transformer
4 model
554 after preliminary
screening
Exclusion Criteria
A 4 ¢ Not healthcare related
298 after full text ¢ Transformer model

cited but not used
e Survey papers
o Full text not available
e Duplicates
o Paywall

screening

Fig. 1. Flow diagram depicting the process for selecting relevant studies for
inclusion and exclusion.
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Table 1
Search queries used to extract relevant studies for each topic.

Topic Search query

Clinical NLP (“coreference” OR ("semantic textual similarity" OR STS) OR
(“named entity recognition” OR NER) OR “relation
extraction” OR “natural language inference” OR “question
answering” OR “entity normalization”) AND (BERT OR
Transformer) AND ("clinical" OR "medical" OR "biomedical"
OR "EHR”) from 2017

(Transformer OR BERT) AND (“deep learning” OR “machine
learning”) AND (EHR OR “electronic health records”) from
2017

(Segmentation OR registration OR “image captioning” OR
“report generation” OR “visual question answering” OR
“image synthesis” OR “classification” OR “reconstruction’™)
AND (“Transformer” OR “vision transformer””) AND
("clinical" OR "medical" OR "biomedical" OR "EHR”) from
2017

(Transformer) AND (“deep learning” OR “machine learning™)
AND (“critical care” OR “surgery” OR “surgical”) from 2017
(Transformer OR BERT) AND (“deep learning” OR “machine
learning™) AND (“social media™ OR “crowdsource” OR
“crowdsourcing” OR “twitter” OR “tweet”) from 2017
(Transformer OR BERT) AND (“deep learning” OR “machine
learning™) AND (“medical” OR “health” OR “clinical” OR
“biomedical”) AND (“signal” OR “ECG” OR “EMG” OR “EEG”
OR “human activity” OR “HAR”) from 2017

(Transformer OR BERT) AND (“deep learning” OR “machine
learning”) AND (DNA OR RNA OR gene OR genome OR
genomic OR transcriptomic OR protein OR proteomic OR
metabolite OR metabolism OR metabolomic OR chromosome
OR receptor OR mitochondria OR splicing) from 2017

Structured EHR

Medical Imaging

Critical Care

Social Media

Bio-physical Signals

Biomolecular
Sequences

one reviewer. Six reviewers worked independently on studies pertaining
to different domains. For topics which had a significantly larger number
of papers (for e.g., clinical NLP and medical imaging) three reviewers
worked together to analyze relevant articles, and only those articles
were retained which were deemed relevant by all three reviewers.

We identified the top keywords from articles included in this report
to provide an overview of key concepts, data modalities, and tasks. The
word cloud in Fig. 2 shows the 50 most common keywords across arti-
cles, with a larger font representing more papers; while Fig. 3 shows data
modalities and the corresponding tasks.

3. Background

Transformers are multilayered neural networks formed by stacking
either multiple encoder and/or decoder blocks which utilize the atten-
tion mechanism, as explained in the following section.

3.1. Attention

The attention mechanism computes similarity between individual
input tokens, such as vectors of word embeddings. In a basic Trans-
former architecture, each input embedding generally can take three
roles: (1) Query Q which is the current focus of the attention mechanism
and is being compared to all other input tokens, (2) Key K is the input
token being compared to the query, and (3) Value V is a value used to
compute the output of attention. The attention function can be consid-
ered a mapping between a query and a set of key-value pairs to produce
an output [2].

We will represent the input X € R™? as a sequence of n tokens with
an embedding dimension of d. The input sequence X is linearly trans-
formed into query Q, key K, and value V using Egs. (1), (2), and (3),
respectively.

Q=XeW, @

K=Xe W (2)
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Fig. 2. Word cloud depiction of keywords used in the surveyed literature. Abbreviations. BERT; Bidirectional Encoder Representations from Transformers, CNN;
Convolutional Neural Networks, EHR; Electronic Health Records, MRI; Magnetic Resonance Imaging, NER; Named Entity Recognition, NLP; Natural Language
Processing, STS; Semantic Textual Similarity.
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Fig. 3. Major healthcare data modalities and corresponding tasks. Abbreviations: EEG; Electroencephalography, ECG; Electrocardiogram, NER; Named Entity
Recognition, RE; Relation Extraction, STS; Semantic Textual Similarity, ICD; International Classification of Diseases, EHR; Electronic Health Record.
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V=XeW, 3)

where Wy, W, and W, are the weight matrices to obtain Q, K, and V
matrices. The Q, K, and V are then used to compute the scaled dot
product attention as shown in Equation.

Attention(Q,K, V) = softmax(aQeK") ¢ V 4

In Eq. (4), the scaled dot product operation is performed between the
query and key matrices, followed by a softmax function. Here, the scale
factor a is used to mitigate the vanishing gradient problem or numerical
instability. It is typically chosen to be 1/(1/dy), where dy is the key
dimension.

3.2. Attention mechanisms

Transformer models primarily use three types of attention: self-
attention, masked self-attention, and cross-attention.

3.2.1. Self-attention

Self-attention is when attention is computed between tokens in the
same sequence. The self-attention block is found in the Transformer
encoder. The dimensions of query, key, and value are the same in self-
attention, i.e., dy = d; = d,.

3.2.2. Masked self-attention

In sequence prediction problems, such as machine translation, the
context of previous tokens in a sequence is used to predict the subse-
quent output. A mask is typically employed to prevent the model from
attending to subsequent tokens in a sequence. The mask M is a square
upper triangular matrix with dimension n, where n is the number of
tokens in the input sequence. The mask is applied to the scaled dot
product of the query and key via element-wise addition, as in Eq. (6)

QeK'
Vi

Masked Attention(Q,K, V) = softmax( + M) 1% (6)

3.2.3. Cross-attention

Cross-attention is attention computed between tokens of one
sequence with tokens of another sequence. In Transformer, the input and
output sequences interact through cross-attention in the decoder mod-
ule. The cross-attention module receives its queries from the previous
masked self-attention layer of the decoder and its keys and values from
the last encoder. Queries correspond to the desired output sequence,
while the keys and values are generated based on the input sequence in
the encoder.

Scaled Dot-Product Attention

i

Multi-Head Attention " Matmul

=

Softmax
i
Mask
‘ Scaled Dot-Product Attention Scale

fr——r——t s
) )

Fig. 4. Multi-head attention mechanism. In the encoder and decoder, multiple
attention heads are stacked together and their outputs are concatenated.
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3.2.4. Multi-head attention

It has been shown that compared to a single attention computation,
multiple attention operations can improve the model’s performance by
capturing different similarity relationships in the sequence [2]. The
attention blocks in both the encoder and decoder are computed with h
attention heads, as shown in Fig. 4. The original Transformer model
employed h = 8 attention heads. Every attention head has three learn-
able weight matrices: W, W}, and W, where i represents a particular
attention head. The attention outputs from multiple heads (denoted by
#) are then concatenated and linearly transformed to the model
dimension with a parameter matrix W,.

3.3. Position-wise feed-forward network

The output of the attention modules is passed to a two-layered
feedforward network (FFN). The FFN performs an independent
position-wise linear transformation on each token of the sequence. Pa-
rameters of this network are shared across all positions of the sequence.

Let /7 be the output of the multi-head attention block and d be the
model dimension. The first linear layer transforms /7 from dimension d
to an intermediate dimension dy, also referred to as the feedforward
dimension. The second linear layer transforms the output of the first
linear layer from dy to the original model dimension d The FFN is given
by Eq. (9).

7(H) = RCLU(W oW, + bl) oW, + bz (9)

The intermediate dimension d; is usually set to a value larger than d.

3.4. Residual connections and layer normalization

Residual connections [17] allow gradients to skip non-linear acti-
vation functions, followed by layer normalization. Layer normalization
scales the values of all hidden layers to a similar range to avoid ex-
ploding or diminishing values obtained through a chain of multiplica-
tion operations.

3.5. Positional encodings

Because the self-attention module attends to all tokens of a sequence
in parallel, it intrinsically neglects the order of tokens in the sequence.
This necessitates using a positional encoding (PE) vector that denotes
the unique position of each token. Transformers use a combination of
sine and cosine functions of different frequencies to create PE vectors
shown in Eq. (10). PE vectors are added to the embeddings of each input
token; therefore the PE dimension is chosen to be the same as the
embedding dimension. Since sine and cosine functions have values in
the range [-1, 1], the values of the positional encoding matrix are con-
strained to a normalized range. This technique enables Transformers to
capture the relationship between items that are both close and far from
one another in a sequence.

[ sin(pos e wy), if i=2k
PEposs) = { cos(pos e wy),if i = 2k + 1 an
1 d
=—k=1,2,...,-
(U3 zk/dﬁ ) Sy )
10000

3.6. Assembling a transformer

Transformer consists of an encoder and a decoder network. The
encoder consists of identical encoder blocks stacked upon each other,
each consisting of a self-attention and an FFN layer. The decoder consists
of stacked identical decoder blocks, each consisting of a masked self-
attention layer, cross-attention layer, and FFN layer. The encoder
transforms an input sequence into encoded representations, while the
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Fig. 5. Schematic of the transformer architecture [2,18].

decoder operates upon these representations.

The original Transformer architecture (Vaswani et al., 2017) [2],
shown in Fig. 5, has six identical stacked encoders and six identical
stacked decoder blocks. Each encoder block comprise of multi-head self-
attention followed by FFN. Every decoder block consists of multi-head
masked self-attention, multi-head cross-attention, and FFN arranged
sequentially. The cross-attention layers attend to queries from the pre-
vious masked attention layers, whereas keys and values are obtained
from the output of the final encoder block. The output of the last encoder
is used to obtain the keys and values to compute the multi-head cross
attention in all the decoder layers.

3.7. Computational complexity of transformer attention

The self-attention mechanism of Transformer can attend to variable-
length input size but has O(n? e d) time complexity where n and d are the
input sequence length and the model dimension. For long input se-
quences, this attention computation becomes computationally expen-
sive. Many Transformer variants try to reduce the computational
complexity via different approaches [19].

3.8. Transformer model usage

In general, Transformer architectures can be divided into three
categories.

Encoder-Decoder: consists of multiple encoder and decoder blocks
and is typically used in sequence-to-sequence modeling tasks, such as
machine translation.

Encoder only: Only the encoder blocks are used to model the input
sequence. The output of the encoder is a contextual representation of the
input sequence. This type of architecture is used for classification or
label prediction problems (most models in this review).

Decoder only: Only decoder blocks are used. This architecture is used
for sequence generation, image captioning, and language modeling
tasks.
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4. Mainstream transformer-based architectures

In this section, we will discuss the two prominent transformer-based
architectures with significant impact on NLP and computer vision.

4.1. Bidirectional encoder representations from transformers (BERT)

BERT [20], is an encoder-only Transformer architecture that can
produce rich contextualized word and sentence embeddings for NLP.
Unlike traditional language models, which read text input sequentially
(left-to-right or right-to-left), the Transformer encoder in BERT reads the
entire sequence of words at once, thereby learning a richer representa-
tion of context and information flow in a sentence. The BERT architec-
ture uses self-supervised pretraining steps, namely Masked Language
Modeling (MLM), to create context-sensitive word embeddings, and
Next Sentence Prediction (NSP) to model sequential association between
sentences. MLM masks a fraction of the input tokens and aims to predict
them based on their context. This helps to disentangle ambiguity in the
text by using surrounding text to establish context. In NSP, a combina-
tion of two sentences is fed to the Transformer encoder. In 50% of cases,
the second sentence is the next sentence in the original text, while in the
remaining 50% of cases, the second sentence is randomly selected. The
encoder learns to distinguish scenarios where the sentences are logically
linked. When training the BERT model, MLM and NSP are trained
together to minimize the combined loss function of the two strategies.
BERT can be used for various language tasks, such as sentence classifi-
cation, Question Answering (QA), and Named Entity Recognition (NER)
with finetuning and minor modifications to the original architecture.

4.2. Vision Transformer (ViT)

ViT is a pure Transformer architecture without convolutional layers
and was proposed for image classification tasks [1]. Like BERT, ViT is
also an encoder-only Transformer model. Transformers cannot directly
process spatial data such as images; therefore, data must be converted to
a sequence. ViT splits an image into fixed-size patches, generally 16 x 16
or 32 x 32 flattened, before they are provided as an input to the trans-
former model. The flattened patches are placed in a sequence, then
transformed into a low-dimensional linear embedding. Like the original
Transformer, PEs are added to the linear embeddings to inject infor-
mation about each patch’s relative location in the image, where 1D, 2D,
and learnable positional embeddings can be used. An extra learnable
class embedding is added at the start of the sequence, used for down-
stream classification tasks. During fine-tuning, a classification head
comprised of a single hidden layer network is attached to this class
embedding.

Transformer models by design do not possess the inductive biases of
CNNs, such as limited receptive field and translational invariance
(ability to detect or recognize an object regardless of its location in an
image). In CNNs, the receptive field increases linearly with the depth of
the model. While the Transformer lacks the inductive biases of the CNN,
they are permutation invariant (not dependent on the order of elements
in a sequence), and the shallow layers of the model can attend to the
entire image.

5. Large language models (LLMS)

Foundation models are large-scale Al systems trained on vast
amounts of data to be adapted for a wide range of downstream tasks
[21]. LLMs colloquially refer to a class of foundation models with bil-
lions of parameters trained on language corpora with billions of words to
generate human-like language and solve different NLP tasks. Most LLMs
use the Transformer architecture, the current default architecture for
processing sequential data as of 2023. The success of LLMs comes from
the self-supervised pre-training paradigm, which takes advantage of
large free text data without annotation. This pre-training technique
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enabled LLMs to generate coherent and realistic language, making them
useful for various applications such as text completion, dialogue gen-
eration, and content generation. BERT style LLMs( Encoder-Decoder or
Encoder only) are pretrained using masked language modeling while
GPT style (decoder only) models are pretrained by generating next work
in a sequence. Generative Al models trained to generate text and ques-
tion answering tasks are autoregressive decoder-only language models.
Examples of autoregressive decoder-only language models include PaLM
[22], GPT-3 [23], Chinchilla, LLaMA [24], PaLM2 [25] used in BARD
chatbot, and GPT-4 [26]. These models are trained on billions of tokens
obtained from datasets such as Common Crawl, WebText2, Books1,
Books2, Wikipedia, Stack Exchange, PubMed, ArXiv, Github, Gutenberg,
and many more. Some of the domain-specific LLMs include Galactica
[27], trained on curated human scientific knowledge corpora, Bloom-
bergGPT [28], trained on proprietary financial data, and CodeX [29] for
code generation. A timeline of popular LLMs is displayed in Fig. 6.

The number of parameters in LLMs and the size of their training data
has increased rapidly, reaching up to trillions of tokens [24]. The ca-
pabilities of LLMs appear to be a function of the amount of data, pa-
rameters, and computation resources rather than architectural design
advancements [30]. The scaled-up language models develop abilities
beyond the trained outcomes called *emergent abilities,” which are not
designed but discovered after deployment [31]. For example, GPT-3
showed few-shot prompting ability; when provided few input-outputs
for a natural language task, the model can perform the task on unseen
samples without further training or gradient updates to the parameters
[23]. Parameter-efficient models such as Stanford Alpaca [32] and
efficient finetuning approaches of Quantized LLMs such as QLoRA [32]
have been introduced to address situations where computational re-
sources are limited. Despite the exceptional ability of LLMs to generate
realistic text, they can also generate false information, toxic language,
and racial stereotypes [33,34].

In the medical domain, Agrawal et al. [35] demonstrated that LLMs
can be few-shot clinical information extractors without further training
on the clinical data. They used InstructGPT [36] for this task, signifi-
cantly outperforming existing zero-shot and few-shot baselines. In
Radiology, Jeblick et al. [37] performed an exploratory case study to
evaluate ChatGPT’s ability to simplify radiology reports. Expert human
radiologists considered the simplified reports complete, factual, and
devoid of harmful text that could misguide the patient. However, in-
stances of missing key findings and incorrect statements were observed.
The PMC-LLaMA [38] model, fine-tuned on 4.8 million biomedical pa-
pers obtained from PubMed Central, demonstrated a better under-
standing of biomedical domain-specific concepts than the original
LLaMa when evaluated on biomedical QA benchmarks. GatorTron [39],
a large clinical language model with 8.9 billion parameters trained on
over 90 billion words of clinical text, was applied to clinical NLP tasks
such as clinical concept extraction. Luo et al. [40] proposed BioGPT, a
biomedical domain specific generative model pretrained on PubMed
abstract corpus to generate fluent biomedical term descriptions.

Singhal et al. [41] evaluated the 540 billion parameters PaLM [22]
and its variant FLAN-PaLM [42] on the benchmark dataset MultiMedQA.

l l

2018 2019 2020 2021

! !

GPT1
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This benchmark dataset combines multiple QA datasets, including
medical exams, consumer queries, and research. The authors also
introduced Med-PaLM, a parameter-efficient model that used prompt
instruction tuning to fix the critical Flan-PaLM gaps observed upon
human evaluation. In subsequent work, Singhal et al. proposed Med-
PalLM2 [43] to bridge the gap between the model’s answers to that of
clinicians. The model combines improvements that come with PaLM2
[25], a novel ensemble refinement prompting strategy, and domain-
specific model fine-tuning. Scaled-up models such as ChatGPT, PaLM,
PALM2, and GPT-4 have been shown to answer medical questions and
successfully pass or achieve near-passing scores on medical licensing
examinations [41,44-47]. These existing large medical foundation
models trained on broad biomedical domain corpora such as PubMed
are tested on tasks with minimal significance to the health systems [48].
The impressive advancements of foundation models have not yet
permeated into medical Al These early approaches are limited by a lack
of large, diverse medical datasets, the complex nature of medical data,
federal patient data privacy regulations, and the recency of the general-
purpose foundation models [49]. Transformers in NLP

6. Transformers in clinical NLP
6.1. Clinical word embeddings

Word embeddings map variable-length words to a fixed-length vec-
tor while preserving syntactic and semantic information. Word embed-
dings are a standard representation used in NLP. Traditional word
embedding techniques such as word2vec [50] or GLoVe [51] learn an
aggregated representation of all contexts associated with a word. Pre-
viously contextual word embedding based on models such as ELMo [52],
BERT [20], and ULMFiT [53] achieved state of the art (SOTA) perfor-
mance on NLP tasks. However, these embeddings cannot be adapted
directly to clinical or biomedical text due to differences in the linguistic
domain corpora. Lee et al. [50] introduced BioBERT, a pre-trained
language model in the biomedical domain, to overcome this difficulty.
BioBERT is initialized with BERT weights and is pre-trained on PubMed
Central full-text articles and abstracts as shown in Fig. 7. This pre-
trained model is fine-tuned on three popular biomedical NLP tasks:
Named Entity Recognition (NER), Relation Extraction (RE), and QA.
BioBERT has outperformed previous models on biomedical text mining
tasks with minimal task-specific modification.

Further specialization of BERT and BioBERT via pre-training on
specific EHR databases has proven promising. Alsentzer et al. [55] pre-
trained BERT and BioBERT on 2 million clinical notes from the MIMIC-
III database [56] to obtain clinical BERT and Bio+Clinical BERT. Si et al.
[57] explored various embedding methods such as word2vec [50],
GloVe [51], fastText [58], ELMo [52], and BERT [20] on clinical concept
extraction tasks to demonstrate the generalizability of these traditional
embedding methods. When pre-trained on a clinical domain-specific
corpus [56], all the embeddings yielded increased performance.
Huang et al. [59] pretrained BERT [20] on clinical notes from the
MIMIC-III dataset [56] to develop ClinicalBERT. ClinicalBERT achieved

l l
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Fig. 6. The timeline of popular large language models developed over the years (2018-2023).
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Fig. 7. BioBERT pre-training and finetuning overview. Source: Image adapted from [54] without modifications.

higher Pearson correlation scores than word2vec [50] and fastText [58].
All these models were pre-trained on clinical domain corpora and have
outperformed models pre-trained on general or biomedical domain
corpora in clinical NLP tasks.

6.2. Transformers for clinical information extraction (IE)

EHRs contain a wealth of patient information stored in structured
and unstructured formats, including detailed clinical notes used for
documentation. Parsing through this data is difficult due to the un-
structured nature of the free text entries recorded by clinical staff in the
EHR. Clinical IE consists of sub-tasks such as NER, coreference resolu-
tion (CR), QA, semantic textual similarity (STS), relation extraction
(RE), and entity normalization (EN). The success of Transformers
inspired researchers to adapt Transformer-based architectures for clin-
ical IE (Table 2).

6.2.1. Named entity recognition

Clinical named entity recognition (CNER) aims to identify entities,
concepts, and events such as diseases, drugs, treatments, medical con-
ditions, and symptoms from clinical narratives. CNER is challenging as
clinicians often use acronyms and abbreviations to describe complex
clinical terms without using standardized clinical ontology. Earlier ap-
proaches used the BERT model to generate clinical textual embeddings,
which were further used to train other deep learning models, such as Bi-
LSTM and conditional random fields [114-116]. Later, for biomedical
and clinical domains, domain-specific BERT-based models such as Bio-
BERT [54] and clinical BERT by Alsentzer et al. [55] established base-
lines on CNER datasets. BERT-based models have been applied to CNER
tasks in different languages, such as Chinese [117,118], Korean [119],
Italian [120], Spanish [121], and Arabic [122].

The clinical de-identification task, which removes protected health
information, was also approached as a NER problem by pretrained
BERT-based models, such as clinical-BERT [55] and UMLS-BERT [123].
These models were applied to i2b2-2006 [75] and i2b2-2014 [77] de-
identification tasks. Garcia et al. [124] and Mao et al. [125] used
BERT on the MEDDOCAN [126] Spanish de-identification corpus.

The clinical concept extraction task predicts a concept’s start and end
positions in a document. BIO tags are commonly used, where “B”, “I”,
and “O” refer to the beginning, inside, and outside of a concept. Yang
et al. [92] developed an open-source Transformers package with four
transformer-based models, BERT [20], ALBERT [96], RoBERTa [95],
and ELECTRA [97], pretrained on MIMIC-III dataset for clinical concept
extraction. Peng et al. [83] used transfer learning to fine-tune BERT [20]
for concept extraction on BC5CDR [62] and ShARe/CLEF [110] datasets.
Khan et al. [127] proposed MT-BioNER, a transformer-based model for
intent classification and slot tagging. The authors combined BERT
encoder layers with task-specific layers to train their model on NCBI-
disease [128], BC5CDR [62], and JNLPBA [89] datasets.

6.2.2. Clinical coreference resolution (CR)

The CR task aims to identify all mentions of the same entity in a text.
Trieu et al. [129] performed CR in full-text articles as part of the CRAFT
2019 shared task [130]. The authors employed a span-based end-to-
model proposed by Lee et al.[131] and replaced the LSTM layers with
BERT. Their results on the CRAFT coreference resolution task indicate
the effectiveness of BERT in capturing long-distance coreferences in
large documents. Steinkamp et al. [132] used BERT [20] to perform CR
for symptom extraction on the i2b2 2009 Medication Challenge [133]
and MIMIC-III datasets [56], showing better performance compared to
recurrent models.

6.2.3. Clinical relationship extraction (CRE)

CRE is categorized into concept relationship and temporal relation-
ship extraction. Concept relationship extraction identifies the relation-
ship between two concepts (e.g., drug and dosage), whereas temporal
relationship extraction evaluates the relationship between -clinical
events occurring at different times. Peng et al. [83] approached the CRE
task as a sentence classification problem by replacing named entity
mentions of interest with pre-defined tags using BERT [20] on DDI [86],
ChemProt [70], and i2b2 2010 [61] datasets. Wei et al. [98] fine-tuned
BERT outperformed SOTA RE models on clinical RE tasks using n2c2-
2018 [94] and i2b2-2010 [61] datasets. Zhang et al. [114] pretrained
the BERT model on Chinese clinical text and fine-tuned on the breast
cancer dataset to classify the relationship between clinical concepts and
corresponding attributes for breast cancer. Using BERT, Xue et al. [129]
used an integrated joint learning approach for NER and CRE in coronary
angiography Chinese clinical text. Lai et al. [134] proposed BERT-GT,
which combines BERT with Graph Transformer by integrating the
neighbor attention mechanism into BERT. BERT-GT was used for cross-
sentence RE on the N-ary [135] and BioCreative CDR [136] datasets. Lin
et al. [137] developed a pre-trained BERT model on the MIMIC-III
dataset and BioBERT [54] models for temporal RE on the THYME
[138] corpus. Their BioBERT model with sentence agnostic 60-token
window approach was used for the CONTAINS temporal relation
extraction task on the colon cancer test set.

6.2.4. Question answering (QA)

The QA ability of a model can serve as an indicator of its ability to
learn the medical text. Jin et al. [90] introduced the PubMedQA dataset
for biomedical research question answering, and fine-tuned BioBERT
model to establish a baseline on the dataset. Yoon et al. [106] pretrained
the BioBERT model on SQuAD [107,108] datasets and fine-tuned it for
the BioASQ [71,91] biomedical QA challenge. This model achieved
SOTA performance on factoid, list, and yes/no type questions of the
BioASQ dataset. He et al. [139] proposed a procedure for consumer
health question answering and medical language inference tasks using
models such as BERT[20], BioBERT[54], SciBERT[100], ClinicalBERT
[55], BlueBERT[83], and ALBERT[96]. Schmidt et al. [140] developed a
QA-BERT model for question answering using the PICO (Population,
Intervention, Comparator, and Outcome) framework. The PICO element
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Table 2
Transformers in clinical NLP.

Reference  Title Tasks Datasets Architecture

Lee et al. BioBERT: a pre- NER, NCBI Disease BERT[20]
[54] trained RE, [60],

biomedical QA 12b2 2010
language [61],
representation BC5CDR [62],
model for BC4CHEMD
biomedical text [631,
mining BC2GM [64],
JNLPBA [65],
LINNAEUS
[661,
Species-800
[671,
GAD [68],
EU-ADR [69],
CHEMPROT
[701,
BioASQ [71]

Alsentzer Publicly NLI, MIMIC-IIT BERT [20]

etal. available NER, [56],
[55] clinical BERT de- i2b2 2010
embeddings identification, [611,
concept i2b2 2012
extraction, [72,73],
entity MedNLI [74],
extraction i2b2 2006
[751,
i2b2 2014
[76,77]1

Si et al. Enhancing Concept i2b2 2010 BERT [20]

[571 clinical concept extraction [61],
extraction with i2b2 2012
contextual [72],
embeddings i2b2 2014

[761,
ShARe/CLEF
[78,791,
SemEval
[80-82],
MIMIC-III
[56]

Peng BlueBERT: SS, MEDSTS [84], BERT[20]
et al. Transfer NER, BIOSSES [85],
[83] Learning in RE, BC5CDR [62],

Biomedical DC, ShARe/CLEF
Natural Inference [781,
Language DDI [86],
Processing: An CHEMPROT
Evaluation of [701,

BERT and ELMo i2b2 2010
on Ten [61],
Benchmarking HoC [87],
Datasets MedNLI [74]

Gu et al. Domain- NER, NCBI Disease PubMedBERT

[88] Specific RE, [60],
Language SS, BC5CDR [62],
Model DC, BC2GM [64],
Pretraining for QA JNLPBA [89],
Biomedical CHEMPROT
Natural [701,
Language DDI [86],
Processing GAD [68],

BIOSSES [85],
HoC [87],
PubMedQA
[90]

BioASQ
[71,91]

Huang ClinicalBERT: Patient MIMIC-IIT BERT [20]
et al. Modeling readmission [56]

[59] Clinical Notes prediction

and Predicting
Hospital
Readmission

Table 2 (continued)
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Reference  Title Tasks Datasets Architecture

Yang Clinical concept ~ Concept MIMIC-III BERT [20],
et al. extraction using extraction [56], RoBERTa
[92] transformers i2b2 2010 [95],

[611, ALBERT [96],
i2b2 2012 ELECTRA
[72,73], [971

n2c2 2018

[93,94]

Wei et al. Relation RE n2c2 2018 BERT [20]

[98] Extraction from [93,94].
Clinical i2b2 2010
Narratives [61]1
Using Pre-
trained
Language
Models

Mayer Transformer- Argument MEDLINE BERT [20],
et al. Based component BioBERT
[99] Argument detection, [54],

Mining RE SciBERT

for Healthcare [100],

Applications RoBERTA
[95]

Huang Clinical XLNet: Prognosis MIMIC III XLNet [102],
et al. Modeling prediction [56] BERT [20],
[101] Sequential ClinicalBERT

Clinical Notes [59],
and Predicting

Prolonged

Mechanical

Ventilation

Yu et al. BioBERT based NER 12b2 2010 BioBERT[54]
[103] named entity [61]

recognition in
electronic
medical record

Alimova Multiple RE n2c2 2018 BERT [20],
etal. features for [93,94], BioBERT
[104] clinical relation MADE 2018 [54],

extraction: A [105] ClinicalBERT
machine [59]
learning

approach

Jin et al. PubMedQA: A QA PubMedQA BioBERT [54]
[90] dataset for [90]

biomedical
research
question
answering

Yoon Pre-trained QA SQuAD BioBERT [54]
etal language model [107,108],

[106] for biomedical BioASQ
question [71,91]
answering

Jietal. BERT-based EN ShARe/CLEF BERT [20],
[109] ranking for [110], NCBI BioBERT

biomedical [60], [54],
entity TAC2017ADR ClinicalBERT
normalization [111] [55]

Yang Measurement of ~ STS 2019 n2c2/ BERT [20],
et al. Semantic Open Health XLnet[102],
[112] Textual NLP [113] RoBERTa

Similarity in [95]

Clinical Texts:
Comparison of
Transformer-
Based Models

NER: Named Entity Recognition; SS: Sentence Similarity; RE: Relation Extrac-
tion; DC: Document Classification; NLI: Natural Language Inference; QA:
Question Answering, EN: Entity Normalization; STS: Semantic Textual

Similarity
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dataset [141] was combined with SQuAD datasets [107,108] to increase
the generalizability and flexibility of the model on all types of questions.
The proposed QA-BERT performed better than LSTM and BERT baselines
[140].

6.2.5. Biomedical entity normalization (BEN)

BEN aims to link mentions of an entity in a clinical document (e.g.,
EHR) to their corresponding concepts in a knowledge base [142]. Ji
et al. [109] fine-tuned pre-trained models such as BERT [20], BioBERT
[54], ClinicalBERT [55] on three different datasets ShARe/CLEF [110],
NCBI [60], TAC2017ADR[111] for performing BEN. Li et al. [143]
proposed the EhrBERT model, pre-trained on 1.5 million EHR notes, and
evaluated it on three entity normalization corpora, namely the MADE
corpus [105], NCBI disease corpus [60] , and CDR corpus [62]. Authors
observed that their models performed worse when the pre-training
domain and fine-tuning task were distant.

6.2.6. Semantic text similarity (STS)

STS is an NLP task that measures the similarity between two pieces of
text using a pre-defined metric. Xiong et al. [144] proposed a gated
network to fuse one hot and distributed representations obtained from
sentence-level features like inverse document frequency, sentence
length, N-gram overlaps, and similarity metrics between two input
sentences. Their fusion-gated BERT model was used on the clinical STS
task of the BioCreative/OHNLP 2018 challenge [145]. Yang et al. [112]
explored three models, BERT [20], XLnet [102], and RoBERTa [95], for
clinical STS as a part of the 2019 n2c2/Open Health NLP challenge
[113]. The models were pre-trained on a general STS dataset and fine-
tuned on the clinical STS training partition. Among these, RoOBERTa-
large achieved the highest performance.

6.2.7. Automatic international statistical classification of diseases (ICD)
coding

ICD codes are a set of alphanumeric designations to communicate
diseases, symptoms, procedures, diagnoses, and abnormal findings in a
universally accepted way among healthcare professionals. ICD coding
involves recording the ICD codes associated with a patient’s visit. This
coding process is often performed manually, which may result in
documentation errors and consume a significant amount of time. Zhang
et al. [146] proposed BERT-XML with multi-label attention to model
2292 ICD-10 codes from EHR notes [147]. Biswas et al. [148] used a
transformer-based encoder architecture TransICD with a structured self-
attention mechanism [149] to extract label-specific representations for
multi-label ICD coding. Label distribution aware margin loss [150] was
used to address the imbalance in ICD codes data. Transformer-based
automatic ICD coding was used in clinical texts of Chinese [151],
Spanish [152,153], Swedish [154], and Thai [155]. Silvestri et al. [156]
used a Transformer Cross-lingual Language Model(XLM) [157] for
automatic ICD coding by fine-tuning clinical texts in English and testing
on clinical Italian text.

6.2.8. Neural machine translation (NMT)

Automatic NMT of biomedical data is essential to make essential
healthcare information available to healthcare professionals over-
coming language barriers. Tubay et al. [158] for the low-resourced
biomedical NMT task used a Transformer model enhanced with a
multi-source translation technique capable of exploiting multiple text
inputs from the same language family. Berard et al. [159] proposed a
multilingual neural machine translation (MNMT) model to translate
biomedical text from 5 different languages (French, Spanish, German,
Italian, and Korean) to English. The MNMT model is a variant of
Transformer Big architecture with complex encoder capable of repre-
senting multiple languages. Liu et al. [160] proposed BioNMT Trans-
former model to translate domain specific biomedical vocabulary from
foreign languages. The model is capable of semantic disambiguation of
unknown words in the translation using external biomedical
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dictionaries. Wang et al. [161] used a Transformer large model with 20
encoder layers for biomedical translation shared task to translate
German, French, and Spanish to English. Subramanian et al. [162] used
a Transformer model for the same biomedical shared task at WMT to
translate text from English to German and Russian. Their transformer
model used a combination of model scaling, data augmentation with
back-translation, knowledge distillation, model ensembling, and noisy
channel re-ranking to perform the translation task.

7. Transformers for structured EHR data

Structured EHR data includes ICD codes for diagnoses, medication,
vital signs, laboratory tests and other demographics collected every time
a patient visits the hospital. These data are linked by an underlying
temporal structure representing the cycle of diagnosis, medication/
intervention, and potential patient readmissions. Furthermore, medi-
cation and diagnosis codes are derived from an ontological tree struc-
ture. Therefore, clinical tasks such as predicting future disease
diagnoses, readmissions, or mortality rely on accurately representing
the temporal and graphical structure of a patient’s EHRs. This challenge
has led to three broad NLP tasks on structured EHR content that have
been attempted in recent years using transformer networks.

7.1. Ontological structure learning

Previous studies have tried to learn the graphical structure inherent
within the EHR using novel Transformer architectures. Choi et al. pro-
posed the Graph Convolution Transformer (GCT) to jointly learn the
relationships between diagnoses and medication codes while perform-
ing diagnosis-treatment classification [163]. They used conditional
probabilities between medications and diagnoses calculated over the
entire dataset to guide the attention maps in their Transformer network.
Their model was validated on the eICU collaborative research dataset
[164]. In contrast, Shang et al., 2019 explicitly used graph neural net-
works (GNN) for learning medical ontology embeddings and used these
embeddings in a transformer to recommend future medications using
the MIMIC-III dataset [165]. To leverage the entire dataset, they pre-
trained G-BERT, a combination of GNN and BERT, on EHR data with
only one admission. Peng et al., used a graph-based attention model
(GRAM) to create ontological embeddings, which were then represented
using multi-head self-attention to learn the ontological structure of
medications within EHR [166].

7.2. Multi-modal data fusion

Previous studies have used Transformer networks to create joint
embeddings amongst multiple data modalities, such as EHR and clinical
notes. Darabi et al., used separate Transformer networks to create
different representations for the clinical codes (ICD, drug, and proced-
ure) and clinical notes and combined them into one “patient represen-
tation” [167]. They used this joint representation to predict future
diagnoses, procedures, length of stay (LOS), readmission, and mortality.
Studies have used joint-embeddings in BERT to predict rare diseases
such as chronic cough [168] or depression [169]. Xu et al., proposed the
use of multi-modal fusion architecture search (MUFASA), using an
evolutionary algorithm to jointly search for the optimal architecture to
represent subsets of EHR data and the optimal stage at which the indi-
vidual embeddings will undergo fusion [170]. In contrast, Zhang et al.,
used a contrastive learning approach to increase the mutual agreement
between different modalities for the same patient and increase the
contrast for the same modality amongst different patients while jointly
optimizing a prediction loss [171]. They showed that combining this
representation with the BERT encoder predicted mortality and length of
stay better than other baselines.
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7.3. Predicting future diagnoses using ICD codes

BEHRT, an adaptation of BERT on EHR data, was trained from
scratch using the masked language modeling task on sequential ICD
codes and age to predict future diagnoses [172]. This model was
developed primarily on the UK Clinical Practice and Research Datalink
(CPRD) [173]. Recently, BEHRT was used to predict incident heart
failure [174] and to perform causal inference [175]. The Hi-BEHRT
model extended this by incorporating self-supervised pretraining by
masking certain EHR data and certain time points in patients’ visitation
history and creating localized feature aggregator Transformer embed-
dings fused at a later stage using global attention [176]. Hi-BEHRT
performed better than BEHRT in predicting the onset of heart failure,
diabetes, chronic kidney disease, and stroke. Compared to the BEHRT-
based models, Med-BERT expanded the pretraining task to include
prediction of prolonged length of stay and used a combination of ICD-9
and ICD-10 codes to create their model, which was subsequently eval-
uated on predicting diabetes and heart failure [177]. Another model,
HiTANet [178] , explicitly included a time vector to represent the time
elapsed between consecutive visits. The time embedding was combined
with the original visit embedding and used as key values in a global
attention block to represent the most significant time points in a pa-
tient’s medical history. They tested their model efficacy in predicting
future diagnoses of three disease-specific datasets. The RAPT model
combined an explicit time-span information vector with additional pre-
training tasks such as similarity prediction and reasonability check to
address data insufficiency, incompleteness, and short sequence prob-
lems inherent in EHR data [179]. They evaluated their model for pre-
dicting pregnancy outcomes, risk period, and the diagnoses of diabetes
and hypertension during pregnancy.

8. Transformers in medical imaging
8.1. Medical image segmentation

Image segmentation is a dense pixel classification task that captures
the complex interactions between individual pixels of an image. Unlike
general-purpose image segmentation, medical image segmentation suf-
fers from a lack of large datasets, requires the context of surrounding
anatomical structures, and must account for inter-patient anatomical
variabilities. Several data modalities, such as X-ray, Ultrasound, Mag-
netic Resonance Imaging (MRI), Computed Tomography (CT), Positron
Emission Tomography (PET), and microscopy, can benefit from medical
image segmentation. Before Transformers, the U-net architecture, pro-
posed by Ronneberger et al. [180], was the prominent architecture for
medical image segmentation. The U-net model is a Convolutional Neural
Network (CNN). Convolutional layers are limited in long-range feature
modeling. This is because the receptive field of convolutional filters
increases linearly; therefore, only the deepest convolutional layers have
the global context of an image. Although incorporating dilation and
stride into convolution can address the limitations of long-range de-
pendencies to some extent, it results in an unavoidable tradeoff between
global and local information. On the contrary, the self-attention mech-
anism in Transformer layers can model the global context of images,
irrespective of layer depth. A comprehensive list of transformer-based
models for segmentation is provided in Table 3.

8.1.1. CNN-transformer hybrids

TransUNet, proposed by Chen et al. [181], is shown in Fig. 8 and was
one of the earliest examples. TransUNet uses a CNN to downsample the
input image before providing it to a Transformer encoder, creating a
global contextualized deep representation of the image. This represen-
tation is subsequently passed through a cascaded up-sampler to convert
it into the full-resolution segmented output image. The idea of using a
Transformer as a U-net encoder to learn long-range dependencies was
subsequently adapted by multiple studies such as TransClaw U-Net
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[188], BiTr-UNet [242], Bi-FPN-UNet [243], and Weaving Attention U-
Net [244]. UNet-Transformer used MHCA in skip-connections between
the encoder and the decoder to recover finer spatial features [224].
LeViT-Unet [214] integrated LeVIT [245] into the downsampling block
of U-net. TransAttUnet [218] used a novel self-aware attention module
with both Transformer self-attention and global spatial attention.

For 3D medical image segmentation, UNETR [246] used ViT-B16
[247] as the encoder instead of CNN while retaining the U-shaped
network design. TransBTS used 3D CNN blocks as an encoder to model
spatial information, a Transformer encoder to capture long-distance
dependencies, and a decoder to model volumetric data in MRI scans
[215]. CoTr concatenated CNN feature maps at different scales using
positional encoding and passed them into stacked Deformable Trans-
former encoder blocks [248]. Deformable Transformer computed
attention over a local region around reference points instead of global
self-attention, reducing computational complexity. The authors showed
that this methodology outperformed other CNN-Transformer hybrid
models on the BCV dataset [182] that covers 11 major human organs.
SpecTr [212] used adaptively sparse Transformer blocks [249] to
remove redundant/noisy bands of spectral information in the Trans-
former encoder while segmenting hyperspectral images. This study also
used 3D CNN encoders in combination with Transformer encoders in a
U-Net fashion. The nnFormer [250] is a 3D Transformer for volumetric
image segmentation that uses interleaved convolutional and local/
global self-attention operations coupled with skip attention between the
encoder and decoder to achieve better performance over other CNN-
transformer hybrid models in three datasets [182,183,233]. Tang
et al. [232] developed a new 3D Transformer-based model named Swin
UNEt Transformer (Swin UNETR) with a hierarchal encoder for self-
supervised pre-training using five public CT datasets. The model con-
tains a Swin Transformer encoder that directly utilizes 3D patches and is
connected to a CNN-based decoder via skip connections at different
resolutions. The model was fine-tuned and validated using the BCV
dataset [182] and the Medical Segmentation Decathlon (MSD) dataset
[233]. These studies reflect effective ways of combining convolutions
with attention in medical image segmentation.

8.1.2. Transformer-Only U-Nets

UTNet [191] introduced Transformer self-attention into the encoder
and decoder to capture long-range dependencies at different scales.
Swin-Unet [200] used pure Swin Transformer [251] blocks. The DS-
TransUNet model used a dual-branch Swin Transformer in the encoder
to extract feature representations at multiple scales, and Transformer
Interactive Fusion (TIF) blocks to establish global interactions between
them [207]. Valanarasu et al. [184] proposed Medical Transformer
(MedT) with a gated axial attention layer along with local and global
branches (LoGo), adapted based on position-sensitive axial attention
[252] to influence positional bias on small-scale medical datasets. Kar-
imi et al. developed a convolution-free 3D segmentation framework
using pre-trained vanilla Transformer encoder, which performed better
than CNN models on three proprietary datasets [253].

8.1.3. Non U-Net transformer models

Zhang et al. [234] developed the TiM-Net model based on M-Net
[254] with diverse attention mechanisms and weighted side output
layers for retinal vessel segmentation. The model was validated on three
public retinal image datasets: STARE [235], CHASEDBI [236], and
DRIVE [237]. Wang et al. [238] proposed an auxiliary segmentation
method for osteosarcoma detection in MRI images based on denoising
and local enhancement. For noise removal, the authors used the Eformer
[255]. Duc et al. [241] developed a network called ColonFormer for
polyp segmentation from endoscopic images on Kvasir [194], CVC-
Clinic DB [195], CVC-Colon DB [196], CVC-T [197], and ETIS-Larib
Polyp DB [198] datasets. The model uses Mix Transformer [256] as
the encoder backbone, a hierarchical Transformer encoder that can
represent both high and low-resolution features. It also includes efficient
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Drishti-GS [210],
RIM-ONE v3 [211],
Kvasir [194]

Polyp segmentation,
Brain tumor segmentation

Table 3
Transformers for medical image segmentation,
Reference Title Datasets Task Modalities
Chen et al. [181] TransUNet: Transformers Make Strong Encoders for Medical Image Synapse [182], Multi-organ segmentation, CT, MRI
Segmentation ACDC [183] Cardiac segmentation
Valanarasu et al. Medical Transformer: Gated Axial-Attention for Medical Image Segmentation ~ Brain Brain-anatomy Ultrasound,
[184] Segmentation, segmentation, Microscopy
GLAS [185], Gland segmentation,
MoNuSeg Nucleus segmentation
[186,187]
Chang et al. [188] TRANSCLAW U-NET: CLAW U-NET WITH TRANSFORMERS FOR MEDICAL Synapse [182] Multi-organ segmentation CT
IMAGE SEGMENTATION
Hatamizadeh et al. UNETR: Transformers for 3D Medical Image Segmentation BCV [182], Multi-organ segmentation CT
[189] MSD [190]
Gao et al. [191] UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation M&Ms [192] Cardiac segmentation MRI
Zhang et al. [193] TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Kvasir [194], Polyp segmentation, Colonoscopy,
CVC-Clinic [195], Skin lesion segmentation,
CVC-Colon [196], Hip segmentation.
EndoScene [197], Prostate segmentation
ETIS [198],
Xie et al. [199] CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image BCV [182] Multi-organ segmentation CT
Segmentation
Cao et al. [200] Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation Synapse [182], Multi-organ segmentation, CT
ACDC [183] Cardiac segmentation MRI
Huang et al. [201] MISSFormer: An Effective Medical Image Segmentation Transformer Synapse [182], Multi-organ segmentation, CT
ACDC [183] Cardiac segmentation MRI
Zhang et al. [202] Pyramid Medical Transformer for Medical Image Segmentation GLAS [185], Gland segmentation, Microscopic
MoNuSeg [187], Nucleus segmentation images,
HECKTOR [203] Tumor segmentation CT/PET
Ji et al. [204] Multi-Compound Transformer for Accurate Biomedical Image Segmentation =~ Pannuke[205], Cell segmentation, Pathology,
CVC-Clinic [195], Polyp segmentation, Colonoscopy,
CVC-Colon [196], Skin lesion segmentation Dermoscopy
ETIS [198],
Kvasir [194],
ISIC2018 [206]
Lin et al. [207] DS-TransUNet: Dual Swin Transformer U-Net for Medical Image CVC-Clinic [195], Polyp segmentation, Pathology,
Segmentation CVC-Colon [196], Skin lesion segmentation, Colonoscopy,
EndoScene [197], Gland segmentation, Dermoscopy
ETIS [198], Nucleus segmentation
GLAS [185],
Kvasir [194],
ISIC2018 [206]
Li et al. [208] Medical Image Segmentation Using Squeeze-and-Expansion Transformers REFUGE2020 Optic disc and cup Colonoscopy,
[209], segmentation, MRI,

Fundus images

Yun et al. [212] SpecTr: Spectral Transformer for Hyperspectral Pathology Image Choledoch [213] Pathology segmentation Pathology
Segmentation
Xu et al. [214] LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Synapse [182], Multi-organ segmentation, CT
Segmentation ACDC [183] Cardiac segmentation MRI
Wang et al. [215] Transbts: Multimodal brain tumor segmentation using transformer BraTS 2019 Brain tumor segmentation MRI
[216,217],
BraTS 2020
[216,217]
Chen et al. [218] TransAttUnet: Multi-level Attention-guided U-Net with Transformer for ISIC 2018 [206], Chest X-ray segmentation, X-ray, Histology,
Medical Image Segmentation JSRT[219], Skin lesion segmentation, CT
Montogomery Nucleus segmentation,
[220], Gland segmentation
NIH [221],
Clean-CC-CCII
[222],

GLAS [185],
Bowl [223]

Petit et al. [224] U-net transformer: self and cross attention for medical image segmentation TCIA, Abdominal organ CT
Internal dataset segmentation
Yan et al. [225] AFTer-UNet: Axial Fusion Transformer UNet for Medical Image Segmentation =~ BCV [182], Multi-organ segmentation, CT
Thorax-85 [226], Thoracic segmentation
Segthor [227]
Guo et al. [228] A Transformer-Based Network for Anisotropic 3D Medical Image MSD [190] Lung cancer segmentation CT
Segmentation
Sun et al. [229] HybridCTrm: Bridging CNN and Transformer for Multimodal Brain Image MRBrain$ [230], Brain tissue segmentation, MRI
Segmentation iSEG-2017 [231]
Tang et al. [232] Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image BTCV [182], Multi-organ abdominal CT
Analysis MSD [233] segmentation
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Table 3 (continued)
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Reference Title

Datasets Task Modalities

Zhang et al. [234]

Wang et al. [238]
Denoising and Local Enhancement
Shen et al. [239]
segmentation
Thanh Duc et al.

[241] Segmentation

TiM-Net: Transformer in M-Net for Retinal Vessel Segmentation

Auxiliary Segmentation Method of Osteosarcoma in MRI Images Based on
Dilated transformer: residual axial attention for breast ultrasound image

ColonFormer: An Efficient Transformer Based Method for Colon Polyp

STARE [235],
CHASEDBI [236],
DRIVE [237]

Retinal vessel segmentation Color images

In house dataset Osteosarcoma segmentation MRI
BUSIS [240] Breast segmentation Ultrasound
Kvasir [194], Polyp segmentation Colonoscopy

CVC-Clinic[195],
CVC-Colon [196],
CVC-T [197],
ETIS [198]

CT: Computed Tomography; MRI: Magnetic Resonance Imaging; PET: Positron Emission Tomography
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Fig. 8. Overview of TransUNet architecture. a) Schematic of Transformer encoder b) TransUNet architecture. Source: The figure was adapted from [181] without

modifications.

Self-Attention to reduce the computational complexity of self-attention
layers.

8.2. Medical image registration

Image registration is the process of transforming data from multiple
datasets into one coordinate system. Registration is essential for
comparing, analyzing, or integrating data obtained from various sour-
ces, viewpoints, times, or sensors [257]. An example of registration is
aligning CT and MRI scans of patient captured obtained from different
view points and varying patient head orientation. In image registration
task source and target images are provided as input to deep learning
model to estimate the spatial transformation parameters between the
images. Recent approaches have incorporated attention-based Trans-
former models for this task.

Chen et al. proposed one of the earliest Transformer based archi-
tectures, VIT-V-Net [258], to combine the vision Transformer (ViT)
[247] and V-Net [259], a CNN architecture. The ViT is used to extract
the features from the fixed and moving images, followed V-Net style
decoder to predict the displacement field. Wang et al. [260] developed
TUNet to incorporate ViT [261] into the U-Net [180] architecture to
extract global and local features from moving and fixed images. Mok
et al. [262] developed a fast, robust learning-based algorithm called
C2FViT for 3D affine medical image registration. C2FViT leverages
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global connectivity, the convolutional vision Transformer locality, and a
multi-resolution strategy. Both papers evaluated their models on brain
template-matching normalization and atlas-based registration using the
OASIS [263] and LPBA [264] datasets. Tulder et al. proposed pixel and
token-wise cross-view attention to integrate multiple views in
mammography and X-ray imaging [265] using CBIS-DDSM [266] and
CheXpert [267] datasets.

Chen et al. proposed TransMorph [268], a modified U-net architec-
ture that incorporates Swin Transformer [251] blocks in its down-
sampling branch for unsupervised affine and deformable image regis-
tration on the IXI [269] dataset. Transformer blocks enabled the esti-
mation of deformation uncertainty while preserving the registration
performance. Zhu et al. [270] proposed the Swin-VoxelMorph. This
unsupervised learning model applies a hierarchical Swin Transformer
[251] as the encoder to extract contextual information and a symmetric
Swin Transformer-based decoder with a patch-expanding layer to
perform up-sampling to estimate the registration fields. The authors
validated the model on ADNI [271] and PPMI [272] datasets.

8.3. Medical image captioning and report generation

Expert medical professionals typically interpret biomedical images,
documenting their findings as medical reports, a time-consuming task.
Automated medical report generation can reduce the workload and
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reduce human error. The image captioning/report generation tasks
involve generating a textual description of a provided visual input. The
input image is processed through a deep learning model to extract
relevant feature information, which is fed into a language model to a
coherent and contextually appropriate textual representation in the
form of a sequence of words.

Hou et al. [273] proposed the RATCHET model, a medical Trans-
former, to generate medical text reports from chest X-rays. The authors
used the MIMIC CXR v2.0.0 dataset [274] with over 300,000 chest
radiograph images and free-text radiology reports. Free text reports
were tokenized using the byte pair encoding approach [275]. The
RATCHET architecture follows the encoder-decoder architecture, but
the encoder is a CNN model, DenseNet-121 [276], whereas the decoder
is the vanilla Transformer decoder. The output features of the DenseNet-
121 encoder are provided as input to the second attention block of the
Transformer decoder, whereby the network learns context from the
radiography image against the input text report. Free text tokens are
shifted right and provided as input to the decoder to predict the next
token. Nicholson et al. used a pretrained ViT encoder and a pretrained
PubMedBERT decoder to solve the 2021 ImageCLEFmed Caption task
[277]. Their model was fine-tuned on the ROCO dataset [278] and
tested on PadChest [279], CheXpert [267], ChestX-rayl4 [280], and
MURA [281] datasets. Alfarghaly et al. [282] used conditioned self-
attention, where new key and value parameters were introduced to
project the encoder’s output to the decoder’s attention space. The au-
thors extracted visual and semantic features using Chexnet [283], a
Densenet121 model, and pre-trained word2vec embeddings, respec-
tively. For the training and validation of the model, they used the IU-
Xray dataset [284]. You et al. [285] developed an AlignTransformer
for chest X-ray images consisting of two modules: Align Hierarchical
Attention (AHA) and Multi-Grained Transformer (MGT). The AHA
module was used to align visual regions and disease tags. Features from
the AHA module were provided as input to the MGT module. The MGT
module adaptively exploited multi-grained disease-grounded visual
features to determine the importance of visual features for each target
word. The authors used two publicly available datasets: IU-Xray [284]
and MIMIC-CXR [286]. Pahwa et al. [287] developed a memory-driven
Transformer model called MedSkip for report generation. MedSkip
consists of the standard Transformer encoder and a relational memory
decoder. It was trained on Pathology Education Informational Resource
(PEIR) Gross dataset [288] and IU X-Ray [284] datasets. Li et al.
developed a Cross-modal clinical Graph Transformer (CGT) to incor-
porate expert knowledge into ophthalmic report generation [289]. The
model first restores a sub-graph from the clinical graph and injects
clinical relation triples into the visual features as prior knowledge. Re-
ports are predicted using the encoded cross-modal features using a
Transformer decoder. The CGT model was trained and validated on an
ophthalmic report generation dataset called FFA-IR [290].

8.4. Visual question answering (VQA)

VQA is a computer vision task where a question is posed, and the
answer must be inferred from an image. In the medical domain, VQA can
be used to extract information from medical images to assist in making a
diagnosis. Ren & Zhou, 2020 [291] developed the CGMVQA model,
which modified the original Transformer using layer normalization
before the MHSA and FCFN layers. The model was trained and validated
on the ImageCLEF 2019 VQA-Med data set [292]. The CGMVQA can
interchangeably deploy a classification or a generative mode by
changing the output layer and loss function while retaining the same
architecture. While in the classification mode, the model can predict a
yes-no modality, in the generative mode, the model uses masked an-
swers to predict the next word in a sentence. Naseem et al. [293]
introduced the TraP-VQA model to answer medical questions presented
in pathology images. This model embedded low-level visual features
extracted using a CNN, low-level language features extracted using a
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domain-specific language model, and the Transformer layer to learn the
contextualized representation between the two to solve the VQA task.
The authors used the public PathVQA dataset [294] to train and validate
their model. Sharma et al.,, 2021 v developed an attention-based
multimodal model called MedFuseNet, using BERT for question feature
extraction, which was found to be more effective than XLNet [102] and
two datasets for training: ImageCLEF 2019 MED-VQA [292] and
PathVQA datasets [294].

8.5. Image synthesis

Medical image synthesis aims to replace or bypass an imaging pro-
cedure constrained by time, cost, and labor or to prevent exposure to
harmful ionizing radiation from some imaging modalities. It involves
synthesizing medical images of a target modality from source images
such as synthesizing MRI scan from CT or vice-versa. Dalmaz et al. [295]
proposed a novel encoder-decoder-based generative adversarial
network (GAN) model RESVIT for synthesizing missing sequences in
multi-contrast MRI and pelvic CT images from source MRI images. The
network architecture consists of a CNN encoder, decoder, and aggre-
gated residual Transformer to learn global representations. RESVIT
model synergistically fuses local and global feature representations to
achieve superior image synthesis quality. Other GAN-based [296]
models, such as CycleGAN [297] and CyTran [298], have been used to
create contrast CT scans from non-contrast CT scans and vice versa. The
CyTran architecture incorporates convolutional upsampling, convolu-
tion downsampling, and a convolution Transformer block to perform the
translation. Kamran et al. [299] proposed VTGAN to combine two
generators for examining local and global features with ViT [247] in a
semi-supervised manner to synthesize Fluorescein Angiography images
[300] while predicting retinal degeneration. VTGAN successfully syn-
thesized angiograms from fundus images and proved robust on spatial
and radial transformations.

Yan et al. created MMTrans [301] using a Swin-Transformer [251] as
both a generator and registration network and a CNN as the discrimi-
nator. The generator was used to generate images with the same content
as the source modality and the same style as the target modality. In
contrast, the discriminator was used to measure the similarity between
the original target modality images and those synthesized by MMTrans.
Hu et al. proposed a double-scale graph neural network (GNN) [302]
combined with a Transformer to learn long-range dependencies from
global features, while for local features, they used CNN. It outperformed
established baselines in the IXI dataset. Liu et al. introduced a multi-
contrast multi-scale Transformer (MMT) [303], by using missing data
imputation as input and proposed a Multi-contrast Shifted Window (M-
Swin) to capture intra- and inter-contrast dependencies.

PTNet [304], proposed by Zhang et al., synthesizes infant MRI [305]
scans using a U-net [180] based architecture that incorporates a
performer [306] encoder and a decoder with linear space and time
complexity. PTNet outperformed previous CNN-based approaches and
had an execution time of 30 slices per second. Zhang et al. further
extended PTNet to 3D MRI as PTNet3D [307] and evaluated it on high-
resolution Developing Human Connectome Project (dHCP) [305] and
longitudinal Baby Connectome Project (BCP) datasets [308].

8.6. Image reconstruction

Image reconstruction aims to reconstruct high-quality medical im-
ages with minimal cost and risk to the patient.

8.6.1. Computed tomography (CT)

Low-dose computed tomography (LDCT) imaging for clinical diag-
nosis uses a reduced dose of X-ray radiation compared to conventional
CT scans. However, LDCT is prone to noise, which affects the scan
quality. Zhang et al. proposed TransCT [309] to enhance the quality of
LCDT images using the AAPM-Mayo LDCT dataset [310]. The input
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image was decomposed into low-frequency and high-frequency com-
ponents, and then the content, texture, and high-frequency embeddings
were fed to the TransCT model to obtain refined high-frequency textural
features. Luthra et al. proposed Eformer [255] by combining learnable
edge-enhancement convolutions called Sobel filters and the LeWin
transformer [311] in denoising LDCT images for detecting metastatic
liver lesions (AAPM-Mayo dataset) [310]. Wang et al. [312,313] pro-
posed convolution-free transformer-based encoder-decoder dilation
networks (TED-net) using vanilla transformer blocks for LDCT denois-
ing. Instead of an image, a few approaches used informative sinograms
generated by restoration modules from origin LDCT images for recon-
struction using Transformer-based models [314-317].

8.6.2. Magnetic resonance imaging (MRI)

Korkmaz et al. proposed an MRI reconstruction model based on a
zero-shot learned adversarial vision Transformer named SLATER [318]
to overcome the data size limitation. Inspired by Deep Image Prior (DIP)
[319], they replaced the CNN backbone of DIP with a cross-attention
Transformer and outperformed DIP on the IXI dataset [269] and
fastMRI dataset [320]. Feng et al. [321,322] introduced a multi-task
framework T2Net, to share the representations between reconstruction
and super-resolution branches. Furthermore, they extended to multi-
modalities (MTrans), aiming to learn more knowledge from MRI using
both branches. Fang et al. proposed a cross-modality high-frequency
Transformer (Cohf-T) [323] for super-resolving, low-resolution MR
images. Guo et al. proposed a lightweight recurrent Transformer model
ReconFormer [324], which includes pyramid transformer layers [325]
to capture intrinsic multiscale information and feature correlation
through the recurrent states. Li et al. proposed McMRSR [326], a
Transformer based network to model long-range dependencies between
reference and target images and aggregate multiscale matched features
to reconstruct a target MR image. Few approaches use raw K-space
signals of MRI scans instead of final MRI images as they contain learn-
able information for MRI reconstruction [320,327-330]. Hu et al.
introduced a Transformer-enhanced Residual-error AlterNative Sup-
pression Network [331], which included a regularization term to
improve the contribution of high-frequency information during infer-
ence. Fabian et al. [332] proposed HUMUS-Net, a two-level hybrid CNN
Transformer architecture for MRI reconstruction using the fastMRI
dataset [320]. Huang et al. [333] proposed a GAN [296] based on Swin-
Transformer [251] named ST-GAN, which preserved edge and texture
features. Swin-Transformer inspired shifted window attention became
the go to Transformer architecture for many studies targeting MRI
reconstruction [328,334-336].

8.6.3. Positron emission tomography (PET)

PET is an imaging technique that measures emissions from radioac-
tively labeled chemicals injected into the bloodstream. PET scans can
measure metabolic activity and other biochemical functions. Unfortu-
nately, PET suffers from a poor signal-to-noise ratio, and its recon-
struction requires denoising low-quality PET images to create high-
quality ones. Luo et al. proposed a GAN based Transformer model,
Transformer-GAN [337], for PET reconstruction with CNN(Encoder)-
Transformer-CNN(Decoder) architecture to take advantage of spatial
information and long-range dependencies from CNN and transformers,
respectively. Fu et al. extended their transGAN-SDAM [338] for fast
2.5D-based L-PET. The transGAN generates higher quality F-PET im-
ages, followed by the SDAM module, which combines spatial informa-
tion of an F-PET slice sequence to generate whole-brain F-PET images.
Jang et al. proposed Spach Transformer [339] that can leverage spatial
and channel-wise information based on local and global MHSA, which
outperformed baselines on different PET tracer datasets of 18F-FDG,
18F-ACBC, 18F-DCFPyL, and 68GaDOTATATE.
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9. Transformers for critical care
9.1. Predicting long-term adverse outcomes

Transformers have been used to predict adverse outcomes after
critical care such as recurrence or death. Yang et al., 2021 predicted a
60-day and 90-day response to targeted immunotherapy of patients with
non-small cell lung cancer (NSCLC) using asynchronous clinical time
series consisting of chest CT scans, and blood tests, and patient char-
acteristics using an attention module called Simple Temporal Attention
[340]. The model predicted which patients would have long-term du-
rable survival gains under an immunotherapy regimen. Similarly, in
2021 for colorectal cancer, Ho et al. used Transformer encoders to
extract features from sequential carcinoembryogenic antigen (CEA)
measurements. It combined CEA measurement features with deep rep-
resentations of tabular features such as tumor sites, number, dates, and
dosage of chemotherapy to predict recurrence [341]. They modified the
Transformer to incorporate 1D convolutions prior to localized self-
attention [342]. Their model outperformed commercial diagnostic
tests of colorectal cancer recurrence. Non-clinical population-level
claims data has also been modeled using multi-headed self-attention to
predict relapse after surgery [343,344]. These studies utilized the
French national health insurance database (SNIIRAM), consisting of
health-insurance claims entries of 65 million individuals [345].

9.2. Surgical instruction generation

Intra-operative surgical assistance Al systems need to solve the task
of automatic surgical instruction generation. Zhang et al., 2021 used a
Transformer-backboned encoder-decoder network combined with self-
critical reinforcement learning (RL) to jointly model surgical activity
and relationships between visual information and textual description
[346]. They used the Database for Al Surgical Instruction dataset
(DAISI) to evaluate their model [347]. The authors used a combination
of machine translation and image-captioning criteria to evaluate their
models, such as BLEU [348], Rouge-L [349], METEOR [350], and CIDEr
[351], and SPICE [352]. The combination of Transformer with RL beat
baselines comprising LSTM-based fully connected and soft-attention
models.

10. Transformers for social media data in public health

In recent years, using social media data has gained prominence in
different areas of public health [353-356]. Transformers have been
applied to social media data for addressing several public health prob-
lems, such as monitoring adverse drug reactions [357,358], monitoring
mental health [359], categorizing vaccine confidence [360], and
locating disease hotspots [361]. In this section, we present the models
and their performance on social media datasets.

10.1. Monitoring adverse drug events (ADEs)

ADEs, refers to an undesired, unpleasant, or dangerous reaction to a
medication [362], which has been found to be underreported; thus,
researchers have recently used social media to improve ADE monitoring
[363]. The main steps in monitoring ADRs using social media posts are
text classification to find ADE mentions, followed by extracting the ADE
concept and mention from the classified text. Breden et al. [357], pre-
processed the Twitter dataset from Social Media Mining for Health
(SMM4H) 2019 Competition [364] using the lexical normalization
[365] method. The best-performing model was an ensemble of fine-
tuned BERT, BioBERT [54] and ClinicalBERT [59]. Sakhovskiy et al.
[366] used a more recent dataset provided by SMM4H 2021 [367] for
taskl, classifying English tweets by concatenating the RoBERTa [95]
and ChemBERTa [368] models. For task2, Russian tweets classification
performed by concatenating the EnRuDR-BERT [369], and
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ChemRoBERTA [362] cross-attention. Hussain et al. [370] proposed an
end-to-end system based on transfer learning using one prediction head
for the text classification and another for labeling the adverse drug re-
sponses. The authors fine-tuned BERT with a modular Framework for
Adapting Representation Models (FARM) and present the FARM-BERT
framework, which outperforms competing models on TwiMed-Twitter
[371], Twitter [372], PubMed [373], and TwiMed-PubMed [371]
datasets. The framework FARM-BERT supports multitask learning by
combining multiple prediction heads, making training of the end-to-end
systems easier and computationally faster. Raval et al.[358], tackled the
same ADE classification problem; however, they framed it as a sequence-
to-sequence problem and used the pre-trained T5 model architecture
[374] on multiple datasets (SMM4H [375], CADEC [376], ADE corpus
v2 [373], WEB-RADT [377], SMM4H-French [375]). The authors
further expanded the proportional mixing and temperature scaling
training strategies described in [378] to handle multi-dataset and pre-
sent relative improvement on the F-1 score.

10.2. Monitoring depression

A large-scale depression dataset on Twitter was presented by Zhang
et al. [359], used Transformer-based models to identify users suffering
from depression using their everyday speech. The importance of psy-
chological text features was also studied when performing depression
classification. Results on the fluctuating depression levels for different
groups were also presented. Matero et al. [379] used pretrained BERT
embeddings to encode this information. Kabir et al. [380] presented a
dataset observing the severity of depression in tweets and reported
baseline results using BERT and DistilBERT [381].

10.3. Monitoring diabetes

Large-scale Twitter data concerning diabetes-related tweets have
been collected and used to identify cause-effect relationships [382].
They used a pre-trained BERTweet model [383] to detect causal sen-
tences and a combined BERT+ Random Field Generator model to extract
potential cause-effect relationships.

10.4. Categorizing vaccine confidence

Social media plays a crucial role in gauging public discourse on
topics such as vaccine effectiveness [384]. It provides a proxy to analyze
vaccination apprehensions and study the barriers to successful vacci-
nations [385]. Kummervold et al. [360] used domain-specific BERT
model to assess the social media stance towards vaccination during
pregnancy on a dataset of 2722 unique tweets. The model was able to
achieve accuracy of a trained human annotator in categorizing the
stance, outperform other models and human coders in some cases.

10.5. Locating disease hotspot

It is essential to detect disease outbreaks while simultaneously
reducing reporting lag time. This can provide another source of data to
complement traditional surveillance approaches. Alsudias et al. [361]
performed a multi-label classification task to identify tweets of infected
individuals in the Arabic-speaking world. The authors propose a com-
bination of binary relevance, classifier chains, label power set, multi-
label adapted k-nearest neighbors (MLKNN) [386], support vector
machine with naive Bayes features (NBSVM) [387], BERT and AraBERT
(transformer-based model for Arabic language understanding) [388].
The proposed model achieved an F1 score of up to 88% in the influenza
case study and 94% in the COVID-19. It is shown that including informal
terms and non-standard terminology (e.g., the slang term of influenza,
symptom, prevention, treatment, infected with) in the encodings
improved the performance by as much as 15%, with an average
improvement of 8%. The proposed geolocation detection algorithm

15

Artificial Intelligence In Medicine 154 (2024) 102900

performed moderately in predicting the location of users according to
their tweet content.

11. Monitoring bio-physical signals

Transformers have been used to model physical activity, Electroen-
cephalogram (EEG), and Electrocardiogram (ECG) signals. In the
following sections, we review these works.

11.1. Human activity recognition (HAR)

Human Activity Recognition (HAR) is a proliferating field of research
owing to the recent rise of wearables, smartphones, and Internet of
Things (IoT) devices. Some studies have used multimodal self-attention
to fuse features from various modalities [389,390]. They studied se-
quences of human movements through multimodal data (such as RGB,
depth, and skeletal data) [391-393] or modeled human activity through
accelerometers and gyroscopes [394-397]. Spatiotemporal bone and
joint sequences from skeleton data have been modeled using multi-scale
Transformers on multiple datasets [398-401]. Owing to the lack of
simple augmentation strategies of longitudinal sensor data, Ramachan-
dra et al. used Transformer-GAN to provide a speedup over existing
Recurrent-GAN [402].

11.2. Electroencephalogram (EEG)

Electroencephalogram (EEG) is a widely used noninvasive mea-
surement of brain activity. Transformers have been used to classify vi-
sual or motor imagery using EEG signals [403]. It has been shown that
extensive self-supervised pre-training using contrastive loss can help
Transformer models represent EEG data collected using different hard-
ware while performing different tasks [404]. Pretraining was conducted
using the Temple University Hospital EEG Corpus [405] and down-
stream analyses were done using a battery of smaller datasets
[406-408]. Cross-modal Transformers have been used to find contex-
tualized embeddings representing associations between auditory atten-
tion detection and EEG signals [409]. This can disentangle sources of
brain activity at different time points while the subject is attending to
multiple sound sources simultaneously. This study was conducted on the
Denmark Technical University (DTU) dataset [410,411] Finally, a 2D
Transformer was used to capture local self-similarity, and feed-forward
connections were used to capture global self-similarity to create a novel
denoising system for 1D EEG signal [412] using another publicly
available dataset [413].

11.3. Electrocardiogram (ECG)

Electrocardiogram (ECG) signals alone and combined with other
sensory information were used to predict stress in subjects using
Transformers [414,415]. The Wearable Stress and Affect Detection
(WESAD) and SWELL Knowledge Work (SWELL-KW) are publicly
available datasets used for this purpose [416,417]. A transformer
network embedded inside a CNN architecture has been used to classify
arrhythmia [418].

12. Transformers for biomolecular sequences

Biomolecular sequences can represent genomic, proteomic, and drug
data. As sequence translation models, transformers have been widely
used to model the relationships between anomalous biological se-
quences and related diseases. Moreover, drug/protein synthesis or gene
sequence alignment problems have been treated through the lens of
machine translation, where the Transformer is the model of choice.
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12.1. DNA

Gene Transformer, which consists of a multi-head self-attention
module, detects lung cancer subtype biomarkers [419]. It consists of two
1D convolutional layers before the MHSA layer to extract low and
moderate-level features. A previous study utilized RNA-sequencing
values from lung adenocarcinoma (LUAD) and lung squamous cell car-
cinoma (LUSC) datasets from the Cancer Genome Atlas project [420].
Clauwaert et al. 2020 introduced an attention method optimized for
nucleotides on top of the Transformer-XL architecture [421]. This
attention module included a 1D convolutional layer that extracted
overlapping DNA segments of length k called k-mers from the original
DNA sequences’ query, key, and value matrices. The authors solved
three problems, including a) annotating the transcription start site
(TSS), b) annotating the translation initiation site (TIS), and c) recog-
nizing 4mC methylation sites using the following datasets — RegulonDB
[422], Ensembl [423], and MethSMRT [424], respectively. A following
study utilized comparative TSS annotations from multiple datasets,
including RegulonDB [422], Etwiller, et al., 2016 (Cappable-seq) [425],
Yan et al., 2018 (SMRT-Cappable-seq) [426], and Ju et al., 2019 (SEnd-
seq) [427]. In another study, the Transformer-XL network was highly
biased toward attending to promoter regions and transcription factor
binding sites near the gene under question [428]. Another network,
DNABERT was used to predict transcription factor binding (TFB) sites,
including proximal and core promoter regions, splice sites, and genetic
variants [429]. Reference human genome GRCh38.p13 primary assem-
bly from GENCODE Release 33 [430] was used for pre-training, TATA,
and non-TATA promoter data from Eukaryotic Promoter Database
(EPDnew) [431] for promoter prediction and ENCODE 690 ChIP-seq
profiles from UCSC genome browser [432] were used for predicting
TFB sites. Enhancers are regulatory elements that activate promoter
transcription over large distances independently of orientation [433].
BERT, pre-trained with masked language modeling (MLM) and the next
sentence prediction tasks, was combined with 2D convolutions to pre-
dict transcription enhancers using a dataset describing an enhancer
sequencer from nine cell lines [434,435].

12.2. Protein

Transformers can either predict global properties of protein such as
type, function, or cellular localization or infer local properties of
selected protein residues such as 2D/3D structure or post-translation
modifications (such as phosphorylation and cleavage sites) [436]. The
recent success of AlphaFold in protein structure prediction problems
[437] has significantly changed the domain [438], although recent ad-
vances have primarily included fine-tuning pre-trained deep models for
learning with small datasets [436].

12.3. Molecular drugs

Transformer have been utilized for the prediction of molecular drugs
as follows.

12.3.1. Drug-drug synergy

One of the most useful applications of Transformer networks is in the
finding of synergistic combinations of drugs for the treatment of diseases
which cannot be cured by a single molecule. The classic example of this
is cancer. In cancer, drug combinations alleviate drug resistance and
improve therapeutic efficacy. However, the rapidly growing number of
anti-cancer drugs makes it extremely resource intensive to search the
entire space of synergistic drug combinations. This is where computa-
tional models like the Transformer are useful. The TranSynergy model
constructed a Transformer model of the cellular effect of drug combi-
nations on different gene-cell line combinations by modeling cell-line
gene dependency, gene-gene interaction, and genome-wide drug-
target interaction, thereby introducing mechanistic knowledge into the
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model [439]. The study utilized a large drug synergy score dataset [440]
and drug target profiles from DrugBank[441] and ChEMBL[442].
TranSynergy outperformed the SOTA and predicted multiple novel
synergistic drug combinations for treating ovarian cancer. Kim et.al.,
2020 used multi-task transfer learning to study drug synergy in under-
studied tissues to overcome data scarcity problems [443]. The authors
used a multi-head Transformer network to create an embedding of the
Simplified Molecular-Input Line-Entry System (SMILES) representation
of drugs. TP-DDI presents a completely end-to-end Transformer pipeline
with pretrained BioBERT weights for drug recognition and drug-drug
interaction (DDI) classification [444]. This study is conducted on the
DDI Extraction 2013 corpus [86] which consists of a list of semantically
annotated documents with sentences referring to drugs and DDIs from
the DrugBank database and MedLine abstracts.

12.3.2. Drug synthesis

Transformers have been used to convert the task of target-driven de
novo drug-synthesis into a neural machine translation task that converts
an amino acid sequence into the chemical formula of its binding drug
[445]. This method needs neither any prior information about the drug
structure nor the 3D structural information of the protein target. The
study used a dataset of binding affinity between proteins and drug-like
molecules from the BindingDB database [446]. Synthesized drugs
were evaluated on active properties like the number of hydrogen do-
nors/acceptors, molecular weight, length, total polar surface area,
number of rotatable bonds, and drug-likeness. Born et.al., 2021 studied
the synthesis feasibility of drugs for use against the SARS-Cov-2 virus
using a transformer-based retrosynthesis prediction engine [447] con-
sisting of two molecular transformers [448]. They operate on a SMILES
representation of a molecule to predict best routes for its synthesis
[449]. This information was further utilized by another Transformer
model to predict the optimal synthesis protocol using a text represen-
tation of the synthesis steps [450]. The approach incorporated varia-
tional autoencoders and reinforcement learning to automatically learn
molecules that target ACE2, a surface receptor on human epithelial cells
that allows entry of the SARS-Cov-2 virus [449].

12.3.3. Drug-target interactions

In-silico drug discovery is driven by computational models of drug-
target interactions. Huang et al. developed the Molecular Interaction
Transformer, which models the interaction space between the most
common substructures of molecules and drugs [451]. These sub-
structures were discerned using Frequent Consecutive Sub-sequence
algorithm on protein sequences from UniProt dataset [452] and drug
SMILES strings from ChEMBL [453]. In this work, a Transformer
encoder is used to create contextualized embeddings of protein and drug
substructures separately which are multiplied to capture their interac-
tion strengths. A CNN extracts higher order interactions from joint
space. Three datasets were employed to learn the transformer and CNN
weights- MINER DTI from BIOSNAP [454], BindingDB [455] and DAVIS
[456].

Manica et al., 2021 proposed an anticancer drug sensitivity model
using drug SMILES sequences, gene expression profile of tumors, and
protein-protein interaction networks.[457] In this model, an attention-
based gene expression encoder generates self-attention weights, a
contextual attention layer ingests this gene embedding together with the
SMILES encoding of a drug to compute an attention distribution over the
SMILES tokens, in the genetic context. CNNs with variable kernel
lengths were used to extract information about all possible substructures
inside the SMILES sequence. The model outperformed others on a
regression task involving prediction of drug IC50 values. Training was
done using lenient splitting which prevented cell-drug pairs in the test
data from being seen beforehand but did not prevent the model from
observing how a given cell interacted with other drugs in the dataset and
vice versa. The authors used drug sensitivity data from the publicly
available Genomics of Drug Sensitivity in Cancer (GDSC) database for
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this study [458].

Morris et.al. 2020 proposed a transformer-based machine translation
method to inform the segmentation of molecular substructures into
binding/non-binding a target protein [459]. The authors translated
SMILES encodings to IUPAC nomenclatures for a set of 83 million
compounds from PubChem [460] database and used the resultant cross-
representation attention embeddings as features to classify binding/non-
binding compartments of molecules from BindingDB [446] to important
proteins including HIV-1 protease.

12.3.4. Drug metabolism prediction

Metabolic processes in the human body can change a drug’s struc-
ture, diminishing its safety and efficacy. Therefore, investigation of the
metabolic effect of a candidate drug is crucial in drug design studies.
Litsa et al., 2020 fine-tuned a pretrained Molecular Transformer, and
used an ensemble of them with beam search to find k-likeliest metabo-
lites from every drug [461]. The Molecular Transformer [448] was
pretrained on this dataset [462] consisting of 900,000 training in-
stances. The network was further fine-tuned using a manually curated
dataset combining samples from Drug-Bank (version 5.1.5) [441],
Human Metabolome Database (HMDB) (version 4.0) [463], HumanCyc
from MetaCyc (version 23.0) [464], Recon3D (version 3.01) [465], the
biotransformation database (MetXBioDB) [466] and reaction rules from
SyGMa [467]. Their network outperformed SOTA models including the
BioTransformer [466].

13. Discussion

This paper presented an exhaustive summary of Transformer-based
applications in healthcare for tasks such as clinical report generation,
medical image segmentation and registration, molecular sequencing,
drug-drug interactions, protein synthesis, surgical augmentation, and
bio-physical signal analysis. Although relatively new, Transformers have
become remarkably successful due to several reasons such as, paral-
lelizable attention computation, ability to model long range de-
pendencies, scalability, transfer learning, ability to produce contextual
embeddings, interpretability and universal adaptability to various data
modalities beyond text data. However, the parallelizable attention
module at the heart of the Transformer network is computationally
expensive and often needs to be optimized for efficient usage. In what
follows, we highlight potential drawbacks of transformers, how to
overcome them, and new directions enabled by Transformers.

13.1. Interpretability and explainability

Most deep learning systems are considered “black box” models
because their inferences do not come with any discernable explanation.
This lack of interpretability has traditionally prevented the systemic
acceptance of Al-aided diagnostics in the medical domain. Transformers
inherently provide some transparency through visualization of their
attention weights. Trained attention weights elucidate contextual in-
formation significant for downstream inference. However, interpreting
Transformers is challenging due to the frequent use of skip-connections
and the dynamic nature of the model, which involves weight compu-
tation through matrix multiplication. Therefore, Transformer inter-
pretability, albeit being an inherent property, is not trivial. Chefer et al.
[468] show that Transformer attention is often fragmented and does not
provide a robust explanation. They also proposed a novel way to
compute relevancy based deep Taylor decomposition principle and
propagate the scores through the transformer layers. In case of vision
Transformers, Bohle et al. [469] proposed B-cos transformers, for ho-
listic explanations for their decisions while retaining the performance to
the baseline ViTs. Disease diagnosis prediction studies [470,471] have
generated attention visualizations and cosine similarity between the
learnt clinical diagnoses embeddings verified by expert clinicians to
understand whether the trained model could capture the underlying
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semantic of diagnoses codes. However, there remains a need to develop
novel techniques to improve the interpretability of Transformer models
tailored towards healthcare Al

13.2. Environmental impact

Advances in Al in recent years have come at the cost of a massive
carbon footprint. Training a large-scale deep learning model is estimated
to produce 626,000 lbs of carbon dioxide, equivalent to five automo-
biles’ lifetime emissions [472]. The number of computational resources
researchers use to create SOTA models has doubled every three to four
months [473]. Most emissions are associated with developing and
training deep learning algorithms, whereas fine-tuning and adaptation
contribute less [474]. Strubell et al. [472] suggested that researchers
report hardware-independent training time measurements, such as the
number of gigaflops required for training convergence and measuring
model sensitivity to data and hyperparameters. The last decade has seen
advancements in Al-augmented healthcare, on the one hand, and carbon
emissions caused by Al systems that are detrimental to the climate and
public health on the other. Large healthcare conglomerates and
governmental agencies around the world should target net-zero carbon
emissions. United Kingdom National Health Service has set a goal of net-
zero emissions by 2040 [475]. Goals such as this are vital to promote the
development of energy-efficient hardware and algorithms that make Al
sustainable and globally accessible.

13.3. Computational costs

The reason behind the impact of Transformers is their high para-
metric complexity, flexibility to handle unequal input lengths and model
scalability. However, Transformers’ ability to be trained on enormous
datasets comes with expensive computational training budgets. The LLM
GPT-3 [23] by OpenAl training is estimated to cost $4.6 million and 355
years of computing time using the Nvidia Tesla V100 device [476].
Google’s 530 billion parameters PaLM model is estimated to consume
103,500 KWh over 60 days [477]. Training and deploying large-scale Al
models with high-end hardware requirements in healthcare settings is
challenging. For example, for on-premise use in a hospital, a centralized
compute cluster similar to ChatGPT might need to be maintained and
interacted with using an API. However, healthcare settings typically
need lightweight models to generate real-time predictions with minimal
maintenance costs. Techniques for compressing deep learning models,
such as pruning [478], knowledge distillation [479], and quantization
[480], can be used to provide a more efficient model implementation for
deployment within practical hardware constraints.

13.3.1. Model compression

Transformer models can be efficiently compressed by discarding
some attention heads during the inference phase. Michel et al. [481]
showed that models trained on multiple heads during training time need
not require all the heads during test time. Similar redundancy has been
observed in generating attention matrices from multiple heads [482].

13.3.2. Quantization

Quantization-based approaches reduce the number of bits/unique
values required to represent model weights and intermediate layer ac-
tivations. There has been growing interest among researchers in recent
years in quantizing transformer networks. Shen et al. [483] observed
~2.3% degradation in performance with quantization down to 2 bits,
corresponding to 13X compression of network parameters and 4X
compression on embeddings and activations. It was observed that po-
sition embedding and the embedding layers are more sensitive to
quantization than other operations.

13.3.3. Knowledge distillation
The knowledge distillation approach aims to train small networks



S. Nerella et al.

(aka student) using the knowledge from the large model (teacher).
Student models are obtained by reducing encoder width, number of
heads, and number of encoders and replacing them with CNN, BiLSTM,
or a combination [484]. Dimensional incompatibility between the stu-
dent and teacher due to compact representations can be overcome by
projecting teacher or student outputs [485]. Sun et al. [479] proposed
patient knowledge distillation to compress large teacher BERT model
trained on MIMIC-III dataset into shallow student models. Student
models patiently learned from intermediate layers, which translated into
improve performance and significant training-efficiency gain.

13.3.4. State space models

Transformer self-attention is capable of handling intricate in-
teractions among sequence elements. However, this capability presents
a limitation when applied to exceedingly long sequences, particularly in
modalities like audio, video, and accelerometry where data extends
continuously over time. State space sequence models [486], on the other
hand, state space models excel in modeling long range sequences while
maintaining computational efficiency. Conceptually, state space models
can be seen as a fusion of recurrent neural networks and convolutional
neural networks, offering linear or near-linear scalability to sequence
length. A recent state space model named Mamba [487] has introduced
a selection mechanism within its architecture, allowing it to make
informed decisions about the information to propagate or discard based
on its relevance to tokens in the sequence. Mamba leverages a hardware-
efficient implementation inspired by FlashAttention [488], resulting in a
remarkable 5X faster inference speed compared to Transformers.
Mamba outperformed transformers of same size and matched the per-
formance of transformers twice its size.

13.4. Fairness and bias

A model is biased when it exhibits undesired dependence on an
attribute of the data that belongs to a specific demographic group [489],
and could lead to unfair treatment of particular patient groups. Re-
searchers have observed that bias often arises when the datasets used to
train the models under-represent certain patient populations [490-492].
Although this is a prevalent bias problem during training, other sources
of bias at all stages exist, including during problem formulation, data
collection, data preprocessing, model development and validation, and
model deployment (e.g., due to unmonitored drift) [493]. With the
increasing scale of models and amount of data available, the existing
biases and stereotypes perpetuate into the models leading to unfair and
biased outcomes [49]. Thorough validation should be done before
deploying the model to evaluate the performance of underrepresented
groups. The models should be continuously monitored and audited for
fairness and bias post-deployment.

13.5. Al alignment

The goal of Al alignment is even broader than preventing bias by
striving to design Al systems that align with human values and goals. An
Al system is considered aligned when the system behaves in ways
beneficial to humans while minimizing the risk of unintended conse-
quences and harmful outcomes [36]. LLMs sometimes confidently assert
false claims that do not reflect facts, a phenomenon termed hallucina-
tion [494]. These hallucinations by the misaligned models fail to meet
the user’s expectations of correct answers faithful to the existing sources.
Ensuring Al systems are aligned with human values and goals is chal-
lenging because predicting and designing for every potential desired and
undesired outcomes is difficult. As AI systems become more capable,
they become increasingly susceptible to the alignment problem, which
can result in unintended and harmful consequences [495]. AI alignment
is especially critical in healthcare when deploying large-scale founda-
tion models to ensure these models are ethical, responsible, respectful of
patient privacy, and, most importantly, not causing harm. Healthcare
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professionals and the Al research community need to develop a clear set
of standards and guidelines to establish ethical use of Al in health care.

13.6. Data privacy and data sharing

Preserving patient privacy is a required feature in all healthcare Al
systems. Federal regulations based on the Health Insurance Portability
and Accountability Act (HIPAA) regulate the development of AI models
that use patient information [496,497]. Nonetheless, this also adversely
impacts the development of large models such as Transformers that
require large amounts of data. Utilizing data from a few sources, such as
select public repositories, can skew the model inferences based on un-
derlying limitations in dataset collection (different equipment, protocol,
and cohort demographics), processing (specific heuristic or statistical
preprocessing), and deployment (different metadata, availability, and
maintenance). These biases can skew predictions that favor or adversely
affect certain population groups over others, leading to a degradation in
the quality and equity of healthcare for individuals from the protected
group and stymieing the research on age, sex, or race-related medical
conditions.

The Federated learning (FL) paradigm shown in Fig. 9 aims at
developing a shared training model that can leverage data from multiple
fragmented sources, such as different healthcare institutions, without
divulging sensitive patient information [498]. FL communicates be-
tween various data sources by exchanging model-specific characteristics
like parameters and gradients without exchanging patient information
directly. Recent efforts in FL have targeted digital health objectives like
determining patient clinical similarity [499,500], mortality and ICU
length-of-stay [501], brain segmentation [502], and brain-tumor seg-
mentation [503,504]. FL can perpetuate many healthcare innovations in
the future. However, there are technical challenges in building an
operational FL workflow, such as inhomogeneous data distributions,
computational hardware differences, inconsistent privacy preservation
settings, and resultant performance trade-offs [505].

14. Conclusion

Transformer models have demonstrated enormous potential in a
wide variety of healthcare applications. They possess a unique ability to
model various data modalities, including images, clinical text, bio-
physical signals, structured EHR, social media and genomic data.
From disease diagnosis to drug discovery, Transformer models exhibit
the potential to improve patient outcomes and advance medical
research. However, various challenges and limitations remain to be
addressed before they are widely accepted into regular clinical practice.
These include data limitations, biases, privacy, security, and truthful-
ness. The majority of the models currently in use are task-specific, and
there is a need to utilize robust multimodal inputs in many cases.
Nevertheless, the future of Al in healthcare is optimistic, with promising
advancements and opportunities presented by large-scale transformer
models.
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