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A B S T R A C T   

With Artificial Intelligence (AI) increasingly permeating various aspects of society, including healthcare, the 
adoption of the Transformers neural network architecture is rapidly changing many applications. Transformer is 
a type of deep learning architecture initially developed to solve general-purpose Natural Language Processing 
(NLP) tasks and has subsequently been adapted in many fields, including healthcare. In this survey paper, we 
provide an overview of how this architecture has been adopted to analyze various forms of healthcare data, 
including clinical NLP, medical imaging, structured Electronic Health Records (EHR), social media, bio- 
physiological signals, biomolecular sequences. Furthermore, which have also include the articles that used the 
transformer architecture for generating surgical instructions and predicting adverse outcomes after surgeries 
under the umbrella of critical care. Under diverse settings, these models have been used for clinical diagnosis, 
report generation, data reconstruction, and drug/protein synthesis. Finally, we also discuss the benefits and 
limitations of using transformers in healthcare and examine issues such as computational cost, model inter
pretability, fairness, alignment with human values, ethical implications, and environmental impact.   

1. Introduction 

The last decade has seen an explosion in data generated by health
care practices. Currently, healthcare data accounts for 30% of the global 
data ecosystem and is expected to grow in the coming years [1]. The 
increasing availability of digital patient data has enabled the develop
ment of machine learning algorithms to support diagnosis, prognosis, 
and clinical decision-making. 

Transformer [2] is a type of Deep Neural Network (DNN) introduced 
in 2017 for sequence modeling problems, especially in the Natural 
Language Processing (NLP) domain [3]. Before the introduction of the 
Transformer [2], the most popular sequential deep learning architec
tures, such as recurrent neural networks (RNNs) [4] and their variants, 
worked in a serial fashion which precluded parallelization during 
training, therefore substantially increasing the training time. In contrast, 

Transformer employs parallelizable scaled dot-product attention 
mechanism. This unique attention mechanism allows for large-scale 
pretraining. Additionally, self-supervised pretraining on large unla
beled datasets using approaches such as input masking enabled trans
formers to be trained without costly annotations. 

Although originally designed for the NLP [3] domain, Transformers 
have witnessed adaptations in various domains such as computer vision 
[5,6], remote sensing [7], time series [8], speech processing [9] and 
multimodal learning [10]. Consequently, modality-specific surveys 
emerged, focusing on medical imaging [11–13] and biomedical lan
guage models [14]. However, a comprehensive review of all healthcare- 
oriented literature that has employed the Transformer architecture has 
not been undertaken. This paper aims to provide a comprehensive re
view of Transformer models utilized across multiple healthcare data 
modalities while focusing on notable architectural changes undergone 
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by the original Transformer model through this process of evolution. 
This is critical and timely because the transformer architecture is being 
rapidly incorporated into almost every healthcare domain; it is critical 
to understand common patterns and features in this adoption. Further
more, we discuss pretraining strategies designed to manage the lack of 
robust and/or annotated healthcare datasets. The rest of the paper is 
organized as follows: Section 2 discusses our search strategy; Section 3 
describes the architecture of the original transformer; Section 4 de
scribes the two most commonly used Transformer variants: the Bidi
rectional Encoder Representations from Transformers (BERT) and the 
Vision Transformer (ViT). Section 5 describes advancements in large 
language models (LLM), and Sections 6 through 12 provide a review of 
Transformers in healthcare. Finally, Section 13 discusses limitations, 
interpretability, environmental impact, computational costs, bias, and 
fairness. This review summarizes the use of transformer-based deep 
learning models in healthcare and provides a critical analysis of the 
inherent deficiencies of these models and discusses possible future di
rections for this field. 

2. Search strategy and selection criteria 

We used Google Scholar and PubMed search engines to search for 
studies. Since Vaswani et al.’s initial Transformer network [2] was 
published in 2017, we limited our search to studies published after 
2017. We also limited our search to studies published before March 
2023 to complete this review. The extraction process and exclusion 
criteria is shown in Fig. 1. The search was divided into six categories: 
clinical NLP, EHR, social media, medical imaging, biomolecules, and 
bio-physical signals. 

For each category, we used the terms “health” or “medical” or 
“clinical” to focus the search on the healthcare domain. Finally, each 
category used a precise set of keywords unique to that domain. The 
keywords were combined with logical operators such as “AND” and 
“OR” to enhance search fidelity. A detailed list of search queries can be 
found in Table 1. We used Harzing’s Publish or Perish [15] to retrieve 
studies and Covidence [16] to select relevant studies. For most medical 
domains an article that was preliminarily short-listed was reviewed by 

one reviewer. Six reviewers worked independently on studies pertaining 
to different domains. For topics which had a significantly larger number 
of papers (for e.g., clinical NLP and medical imaging) three reviewers 
worked together to analyze relevant articles, and only those articles 
were retained which were deemed relevant by all three reviewers. 

We identified the top keywords from articles included in this report 
to provide an overview of key concepts, data modalities, and tasks. The 
word cloud in Fig. 2 shows the 50 most common keywords across arti
cles, with a larger font representing more papers; while Fig. 3 shows data 
modalities and the corresponding tasks. 

3. Background 

Transformers are multilayered neural networks formed by stacking 
either multiple encoder and/or decoder blocks which utilize the atten
tion mechanism, as explained in the following section. 

3.1. Attention 

The attention mechanism computes similarity between individual 
input tokens, such as vectors of word embeddings. In a basic Trans
former architecture, each input embedding generally can take three 
roles: (1) Query Q which is the current focus of the attention mechanism 
and is being compared to all other input tokens, (2) Key K is the input 
token being compared to the query, and (3) Value V is a value used to 
compute the output of attention. The attention function can be consid
ered a mapping between a query and a set of key-value pairs to produce 
an output [2]. 

We will represent the input X ∈ Rn×d as a sequence of n tokens with 
an embedding dimension of d. The input sequence X is linearly trans
formed into query Q, key K, and value V using Eqs. (1), (2), and (3), 
respectively. 

Q = X • Wq (1)  

K = X • Wk (2)  
Fig. 1. Flow diagram depicting the process for selecting relevant studies for 
inclusion and exclusion. 

Table 1 
Search queries used to extract relevant studies for each topic.  

Topic Search query 

Clinical NLP (“coreference” OR ("semantic textual similarity" OR STS) OR 
(“named entity recognition” OR NER) OR “relation 
extraction” OR “natural language inference” OR “question 
answering” OR “entity normalization”) AND (BERT OR 
Transformer) AND ("clinical" OR "medical" OR "biomedical" 
OR "EHR”) from 2017 

Structured EHR (Transformer OR BERT) AND (“deep learning” OR “machine 
learning”) AND (EHR OR “electronic health records”) from 
2017 

Medical Imaging (Segmentation OR registration OR “image captioning” OR 
“report generation” OR “visual question answering” OR 
“image synthesis” OR “classification” OR “reconstruction”) 
AND (“Transformer” OR “vision transformer”) AND 
("clinical" OR "medical" OR "biomedical" OR "EHR”) from 
2017 

Critical Care (Transformer) AND (“deep learning” OR “machine learning”) 
AND (“critical care” OR “surgery” OR “surgical”) from 2017 

Social Media (Transformer OR BERT) AND (“deep learning” OR “machine 
learning”) AND (“social media” OR “crowdsource” OR 
“crowdsourcing” OR “twitter” OR “tweet”) from 2017 

Bio-physical Signals (Transformer OR BERT) AND (“deep learning” OR “machine 
learning”) AND (“medical” OR “health” OR “clinical” OR 
“biomedical”) AND (“signal” OR “ECG” OR “EMG” OR “EEG” 
OR “human activity” OR “HAR”) from 2017 

Biomolecular 
Sequences 

(Transformer OR BERT) AND (“deep learning” OR “machine 
learning”) AND (DNA OR RNA OR gene OR genome OR 
genomic OR transcriptomic OR protein OR proteomic OR 
metabolite OR metabolism OR metabolomic OR chromosome 
OR receptor OR mitochondria OR splicing) from 2017  
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Fig. 2. Word cloud depiction of keywords used in the surveyed literature. Abbreviations. BERT; Bidirectional Encoder Representations from Transformers, CNN; 
Convolutional Neural Networks, EHR; Electronic Health Records, MRI; Magnetic Resonance Imaging, NER; Named Entity Recognition, NLP; Natural Language 
Processing, STS; Semantic Textual Similarity. 

Fig. 3. Major healthcare data modalities and corresponding tasks. Abbreviations: EEG; Electroencephalography, ECG; Electrocardiogram, NER; Named Entity 
Recognition, RE; Relation Extraction, STS; Semantic Textual Similarity, ICD; International Classification of Diseases, EHR; Electronic Health Record. 
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V = X • Wv (3)  

where Wq, Wk , and Wv are the weight matrices to obtain Q, K, and V 
matrices. The Q, K, and V are then used to compute the scaled dot 
product attention as shown in Equation. 

Attention(Q,K,V) = softmax
(
αQ • KT)

• V (4) 

In Eq. (4), the scaled dot product operation is performed between the 
query and key matrices, followed by a softmax function. Here, the scale 
factor α is used to mitigate the vanishing gradient problem or numerical 
instability. It is typically chosen to be 1/(√dk), where dk is the key 
dimension. 

3.2. Attention mechanisms 

Transformer models primarily use three types of attention: self- 
attention, masked self-attention, and cross-attention. 

3.2.1. Self-attention 
Self-attention is when attention is computed between tokens in the 

same sequence. The self-attention block is found in the Transformer 
encoder. The dimensions of query, key, and value are the same in self- 
attention, i.e., dk = dq = dv. 

3.2.2. Masked self-attention 
In sequence prediction problems, such as machine translation, the 

context of previous tokens in a sequence is used to predict the subse
quent output. A mask is typically employed to prevent the model from 
attending to subsequent tokens in a sequence. The mask M is a square 
upper triangular matrix with dimension n, where n is the number of 
tokens in the input sequence. The mask is applied to the scaled dot 
product of the query and key via element-wise addition, as in Eq. (6) 

Masked Attention(Q,K,V) = softmax
(

Q • KT
̅̅̅̅̅
dk

√ + M
)

V (6)  

3.2.3. Cross-attention 
Cross-attention is attention computed between tokens of one 

sequence with tokens of another sequence. In Transformer, the input and 
output sequences interact through cross-attention in the decoder mod
ule. The cross-attention module receives its queries from the previous 
masked self-attention layer of the decoder and its keys and values from 
the last encoder. Queries correspond to the desired output sequence, 
while the keys and values are generated based on the input sequence in 
the encoder. 

3.2.4. Multi-head attention 
It has been shown that compared to a single attention computation, 

multiple attention operations can improve the model’s performance by 
capturing different similarity relationships in the sequence [2]. The 
attention blocks in both the encoder and decoder are computed with h 
attention heads, as shown in Fig. 4. The original Transformer model 
employed h = 8 attention heads. Every attention head has three learn
able weight matrices: Wi

q, Wi
k, and Wi

v, where i represents a particular 
attention head. The attention outputs from multiple heads (denoted by 
H ) are then concatenated and linearly transformed to the model 
dimension with a parameter matrix Wo. 

3.3. Position-wise feed-forward network 

The output of the attention modules is passed to a two-layered 
feedforward network (FFN). The FFN performs an independent 
position-wise linear transformation on each token of the sequence. Pa
rameters of this network are shared across all positions of the sequence. 

Let H be the output of the multi-head attention block and d be the 
model dimension. The first linear layer transforms H from dimension d 
to an intermediate dimension df , also referred to as the feedforward 
dimension. The second linear layer transforms the output of the first 
linear layer from df to the original model dimension d. The FFN is given 
by Eq. (9). 

F (H) = ReLU(H • W1 + b1) • W2 + b2 (9) 

The intermediate dimension df is usually set to a value larger than d. 

3.4. Residual connections and layer normalization 

Residual connections [17] allow gradients to skip non-linear acti
vation functions, followed by layer normalization. Layer normalization 
scales the values of all hidden layers to a similar range to avoid ex
ploding or diminishing values obtained through a chain of multiplica
tion operations. 

3.5. Positional encodings 

Because the self-attention module attends to all tokens of a sequence 
in parallel, it intrinsically neglects the order of tokens in the sequence. 
This necessitates using a positional encoding (PE) vector that denotes 
the unique position of each token. Transformers use a combination of 
sine and cosine functions of different frequencies to create PE vectors 
shown in Eq. (10). PE vectors are added to the embeddings of each input 
token; therefore the PE dimension is chosen to be the same as the 
embedding dimension. Since sine and cosine functions have values in 
the range [-1, 1], the values of the positional encoding matrix are con
strained to a normalized range. This technique enables Transformers to 
capture the relationship between items that are both close and far from 
one another in a sequence. 

PE(pos,i) =

{
sin(pos • ωk), if i = 2k
cos(pos • ωk), if i = 2k + 1 (10)  

ωk =
1

10000
2k

/

d
, k = 1, 2,…,

d
2  

3.6. Assembling a transformer 

Transformer consists of an encoder and a decoder network. The 
encoder consists of identical encoder blocks stacked upon each other, 
each consisting of a self-attention and an FFN layer. The decoder consists 
of stacked identical decoder blocks, each consisting of a masked self- 
attention layer, cross-attention layer, and FFN layer. The encoder 
transforms an input sequence into encoded representations, while the 

Fig. 4. Multi-head attention mechanism. In the encoder and decoder, multiple 
attention heads are stacked together and their outputs are concatenated. 
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decoder operates upon these representations. 
The original Transformer architecture (Vaswani et al., 2017) [2], 

shown in Fig. 5, has six identical stacked encoders and six identical 
stacked decoder blocks. Each encoder block comprise of multi-head self- 
attention followed by FFN. Every decoder block consists of multi-head 
masked self-attention, multi-head cross-attention, and FFN arranged 
sequentially. The cross-attention layers attend to queries from the pre
vious masked attention layers, whereas keys and values are obtained 
from the output of the final encoder block. The output of the last encoder 
is used to obtain the keys and values to compute the multi-head cross 
attention in all the decoder layers. 

3.7. Computational complexity of transformer attention 

The self-attention mechanism of Transformer can attend to variable- 
length input size but has O

(
n2 • d

)
time complexity where n and d are the 

input sequence length and the model dimension. For long input se
quences, this attention computation becomes computationally expen
sive. Many Transformer variants try to reduce the computational 
complexity via different approaches [19]. 

3.8. Transformer model usage 

In general, Transformer architectures can be divided into three 
categories. 

Encoder-Decoder: consists of multiple encoder and decoder blocks 
and is typically used in sequence-to-sequence modeling tasks, such as 
machine translation. 

Encoder only: Only the encoder blocks are used to model the input 
sequence. The output of the encoder is a contextual representation of the 
input sequence. This type of architecture is used for classification or 
label prediction problems (most models in this review). 

Decoder only: Only decoder blocks are used. This architecture is used 
for sequence generation, image captioning, and language modeling 
tasks. 

4. Mainstream transformer-based architectures 

In this section, we will discuss the two prominent transformer-based 
architectures with significant impact on NLP and computer vision. 

4.1. Bidirectional encoder representations from transformers (BERT) 

BERT [20], is an encoder-only Transformer architecture that can 
produce rich contextualized word and sentence embeddings for NLP. 
Unlike traditional language models, which read text input sequentially 
(left-to-right or right-to-left), the Transformer encoder in BERT reads the 
entire sequence of words at once, thereby learning a richer representa
tion of context and information flow in a sentence. The BERT architec
ture uses self-supervised pretraining steps, namely Masked Language 
Modeling (MLM), to create context-sensitive word embeddings, and 
Next Sentence Prediction (NSP) to model sequential association between 
sentences. MLM masks a fraction of the input tokens and aims to predict 
them based on their context. This helps to disentangle ambiguity in the 
text by using surrounding text to establish context. In NSP, a combina
tion of two sentences is fed to the Transformer encoder. In 50% of cases, 
the second sentence is the next sentence in the original text, while in the 
remaining 50% of cases, the second sentence is randomly selected. The 
encoder learns to distinguish scenarios where the sentences are logically 
linked. When training the BERT model, MLM and NSP are trained 
together to minimize the combined loss function of the two strategies. 
BERT can be used for various language tasks, such as sentence classifi
cation, Question Answering (QA), and Named Entity Recognition (NER) 
with finetuning and minor modifications to the original architecture. 

4.2. Vision Transformer (ViT) 

ViT is a pure Transformer architecture without convolutional layers 
and was proposed for image classification tasks [1]. Like BERT, ViT is 
also an encoder-only Transformer model. Transformers cannot directly 
process spatial data such as images; therefore, data must be converted to 
a sequence. ViT splits an image into fixed-size patches, generally 16× 16 
or 32× 32 flattened, before they are provided as an input to the trans
former model. The flattened patches are placed in a sequence, then 
transformed into a low-dimensional linear embedding. Like the original 
Transformer, PEs are added to the linear embeddings to inject infor
mation about each patch’s relative location in the image, where 1D, 2D, 
and learnable positional embeddings can be used. An extra learnable 
class embedding is added at the start of the sequence, used for down
stream classification tasks. During fine-tuning, a classification head 
comprised of a single hidden layer network is attached to this class 
embedding. 

Transformer models by design do not possess the inductive biases of 
CNNs, such as limited receptive field and translational invariance 
(ability to detect or recognize an object regardless of its location in an 
image). In CNNs, the receptive field increases linearly with the depth of 
the model. While the Transformer lacks the inductive biases of the CNN, 
they are permutation invariant (not dependent on the order of elements 
in a sequence), and the shallow layers of the model can attend to the 
entire image. 

5. Large language models (LLMS) 

Foundation models are large-scale AI systems trained on vast 
amounts of data to be adapted for a wide range of downstream tasks 
[21]. LLMs colloquially refer to a class of foundation models with bil
lions of parameters trained on language corpora with billions of words to 
generate human-like language and solve different NLP tasks. Most LLMs 
use the Transformer architecture, the current default architecture for 
processing sequential data as of 2023. The success of LLMs comes from 
the self-supervised pre-training paradigm, which takes advantage of 
large free text data without annotation. This pre-training technique 

Fig. 5. Schematic of the transformer architecture [2,18].  

S. Nerella et al.                                                                                                                                                                                                                                  



Artificial Intelligence In Medicine 154 (2024) 102900

6

enabled LLMs to generate coherent and realistic language, making them 
useful for various applications such as text completion, dialogue gen
eration, and content generation. BERT style LLMs( Encoder-Decoder or 
Encoder only) are pretrained using masked language modeling while 
GPT style (decoder only) models are pretrained by generating next work 
in a sequence. Generative AI models trained to generate text and ques
tion answering tasks are autoregressive decoder-only language models. 
Examples of autoregressive decoder-only language models include PaLM 
[22], GPT-3 [23], Chinchilla, LLaMA [24], PaLM2 [25] used in BARD 
chatbot, and GPT-4 [26]. These models are trained on billions of tokens 
obtained from datasets such as Common Crawl, WebText2, Books1, 
Books2, Wikipedia, Stack Exchange, PubMed, ArXiv, Github, Gutenberg, 
and many more. Some of the domain-specific LLMs include Galactica 
[27], trained on curated human scientific knowledge corpora, Bloom
bergGPT [28], trained on proprietary financial data, and CodeX [29] for 
code generation. A timeline of popular LLMs is displayed in Fig. 6. 

The number of parameters in LLMs and the size of their training data 
has increased rapidly, reaching up to trillions of tokens [24]. The ca
pabilities of LLMs appear to be a function of the amount of data, pa
rameters, and computation resources rather than architectural design 
advancements [30]. The scaled-up language models develop abilities 
beyond the trained outcomes called ’emergent abilities,’ which are not 
designed but discovered after deployment [31]. For example, GPT-3 
showed few-shot prompting ability; when provided few input-outputs 
for a natural language task, the model can perform the task on unseen 
samples without further training or gradient updates to the parameters 
[23]. Parameter-efficient models such as Stanford Alpaca [32] and 
efficient finetuning approaches of Quantized LLMs such as QLoRA [32] 
have been introduced to address situations where computational re
sources are limited. Despite the exceptional ability of LLMs to generate 
realistic text, they can also generate false information, toxic language, 
and racial stereotypes [33,34]. 

In the medical domain, Agrawal et al. [35] demonstrated that LLMs 
can be few-shot clinical information extractors without further training 
on the clinical data. They used InstructGPT [36] for this task, signifi
cantly outperforming existing zero-shot and few-shot baselines. In 
Radiology, Jeblick et al. [37] performed an exploratory case study to 
evaluate ChatGPT’s ability to simplify radiology reports. Expert human 
radiologists considered the simplified reports complete, factual, and 
devoid of harmful text that could misguide the patient. However, in
stances of missing key findings and incorrect statements were observed. 
The PMC-LLaMA [38] model, fine-tuned on 4.8 million biomedical pa
pers obtained from PubMed Central, demonstrated a better under
standing of biomedical domain-specific concepts than the original 
LLaMa when evaluated on biomedical QA benchmarks. GatorTron [39], 
a large clinical language model with 8.9 billion parameters trained on 
over 90 billion words of clinical text, was applied to clinical NLP tasks 
such as clinical concept extraction. Luo et al. [40] proposed BioGPT, a 
biomedical domain specific generative model pretrained on PubMed 
abstract corpus to generate fluent biomedical term descriptions. 

Singhal et al. [41] evaluated the 540 billion parameters PaLM [22] 
and its variant FLAN-PaLM [42] on the benchmark dataset MultiMedQA. 

This benchmark dataset combines multiple QA datasets, including 
medical exams, consumer queries, and research. The authors also 
introduced Med-PaLM, a parameter-efficient model that used prompt 
instruction tuning to fix the critical Flan-PaLM gaps observed upon 
human evaluation. In subsequent work, Singhal et al. proposed Med- 
PaLM2 [43] to bridge the gap between the model’s answers to that of 
clinicians. The model combines improvements that come with PaLM2 
[25], a novel ensemble refinement prompting strategy, and domain- 
specific model fine-tuning. Scaled-up models such as ChatGPT, PaLM, 
PALM2, and GPT-4 have been shown to answer medical questions and 
successfully pass or achieve near-passing scores on medical licensing 
examinations [41,44–47]. These existing large medical foundation 
models trained on broad biomedical domain corpora such as PubMed 
are tested on tasks with minimal significance to the health systems [48]. 
The impressive advancements of foundation models have not yet 
permeated into medical AI. These early approaches are limited by a lack 
of large, diverse medical datasets, the complex nature of medical data, 
federal patient data privacy regulations, and the recency of the general- 
purpose foundation models [49]. Transformers in NLP 

6. Transformers in clinical NLP 

6.1. Clinical word embeddings 

Word embeddings map variable-length words to a fixed-length vec
tor while preserving syntactic and semantic information. Word embed
dings are a standard representation used in NLP. Traditional word 
embedding techniques such as word2vec [50] or GLoVe [51] learn an 
aggregated representation of all contexts associated with a word. Pre
viously contextual word embedding based on models such as ELMo [52], 
BERT [20], and ULMFiT [53] achieved state of the art (SOTA) perfor
mance on NLP tasks. However, these embeddings cannot be adapted 
directly to clinical or biomedical text due to differences in the linguistic 
domain corpora. Lee et al. [50] introduced BioBERT, a pre-trained 
language model in the biomedical domain, to overcome this difficulty. 
BioBERT is initialized with BERT weights and is pre-trained on PubMed 
Central full-text articles and abstracts as shown in Fig. 7. This pre- 
trained model is fine-tuned on three popular biomedical NLP tasks: 
Named Entity Recognition (NER), Relation Extraction (RE), and QA. 
BioBERT has outperformed previous models on biomedical text mining 
tasks with minimal task-specific modification. 

Further specialization of BERT and BioBERT via pre-training on 
specific EHR databases has proven promising. Alsentzer et al. [55] pre- 
trained BERT and BioBERT on 2 million clinical notes from the MIMIC- 
III database [56] to obtain clinical BERT and Bio+Clinical BERT. Si et al. 
[57] explored various embedding methods such as word2vec [50], 
GloVe [51], fastText [58], ELMo [52], and BERT [20] on clinical concept 
extraction tasks to demonstrate the generalizability of these traditional 
embedding methods. When pre-trained on a clinical domain-specific 
corpus [56], all the embeddings yielded increased performance. 
Huang et al. [59] pretrained BERT [20] on clinical notes from the 
MIMIC-III dataset [56] to develop ClinicalBERT. ClinicalBERT achieved 

Fig. 6. The timeline of popular large language models developed over the years (2018-2023).  
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higher Pearson correlation scores than word2vec [50] and fastText [58]. 
All these models were pre-trained on clinical domain corpora and have 
outperformed models pre-trained on general or biomedical domain 
corpora in clinical NLP tasks. 

6.2. Transformers for clinical information extraction (IE) 

EHRs contain a wealth of patient information stored in structured 
and unstructured formats, including detailed clinical notes used for 
documentation. Parsing through this data is difficult due to the un
structured nature of the free text entries recorded by clinical staff in the 
EHR. Clinical IE consists of sub-tasks such as NER, coreference resolu
tion (CR), QA, semantic textual similarity (STS), relation extraction 
(RE), and entity normalization (EN). The success of Transformers 
inspired researchers to adapt Transformer-based architectures for clin
ical IE (Table 2). 

6.2.1. Named entity recognition 
Clinical named entity recognition (CNER) aims to identify entities, 

concepts, and events such as diseases, drugs, treatments, medical con
ditions, and symptoms from clinical narratives. CNER is challenging as 
clinicians often use acronyms and abbreviations to describe complex 
clinical terms without using standardized clinical ontology. Earlier ap
proaches used the BERT model to generate clinical textual embeddings, 
which were further used to train other deep learning models, such as Bi- 
LSTM and conditional random fields [114–116]. Later, for biomedical 
and clinical domains, domain-specific BERT-based models such as Bio
BERT [54] and clinical BERT by Alsentzer et al. [55] established base
lines on CNER datasets. BERT-based models have been applied to CNER 
tasks in different languages, such as Chinese [117,118], Korean [119], 
Italian [120], Spanish [121], and Arabic [122]. 

The clinical de-identification task, which removes protected health 
information, was also approached as a NER problem by pretrained 
BERT-based models, such as clinical-BERT [55] and UMLS-BERT [123]. 
These models were applied to i2b2-2006 [75] and i2b2-2014 [77] de- 
identification tasks. Garcia et al. [124] and Mao et al. [125] used 
BERT on the MEDDOCAN [126] Spanish de-identification corpus. 

The clinical concept extraction task predicts a concept’s start and end 
positions in a document. BIO tags are commonly used, where “B”, “I”, 
and “O” refer to the beginning, inside, and outside of a concept. Yang 
et al. [92] developed an open-source Transformers package with four 
transformer-based models, BERT [20], ALBERT [96], RoBERTa [95], 
and ELECTRA [97], pretrained on MIMIC-III dataset for clinical concept 
extraction. Peng et al. [83] used transfer learning to fine-tune BERT [20] 
for concept extraction on BC5CDR [62] and ShARe/CLEF [110] datasets. 
Khan et al. [127] proposed MT-BioNER, a transformer-based model for 
intent classification and slot tagging. The authors combined BERT 
encoder layers with task-specific layers to train their model on NCBI- 
disease [128], BC5CDR [62], and JNLPBA [89] datasets. 

6.2.2. Clinical coreference resolution (CR) 
The CR task aims to identify all mentions of the same entity in a text. 

Trieu et al. [129] performed CR in full-text articles as part of the CRAFT 
2019 shared task [130]. The authors employed a span-based end-to- 
model proposed by Lee et al.[131] and replaced the LSTM layers with 
BERT. Their results on the CRAFT coreference resolution task indicate 
the effectiveness of BERT in capturing long-distance coreferences in 
large documents. Steinkamp et al. [132] used BERT [20] to perform CR 
for symptom extraction on the i2b2 2009 Medication Challenge [133] 
and MIMIC-III datasets [56], showing better performance compared to 
recurrent models. 

6.2.3. Clinical relationship extraction (CRE) 
CRE is categorized into concept relationship and temporal relation

ship extraction. Concept relationship extraction identifies the relation
ship between two concepts (e.g., drug and dosage), whereas temporal 
relationship extraction evaluates the relationship between clinical 
events occurring at different times. Peng et al. [83] approached the CRE 
task as a sentence classification problem by replacing named entity 
mentions of interest with pre-defined tags using BERT [20] on DDI [86], 
ChemProt [70], and i2b2 2010 [61] datasets. Wei et al. [98] fine-tuned 
BERT outperformed SOTA RE models on clinical RE tasks using n2c2- 
2018 [94] and i2b2-2010 [61] datasets. Zhang et al. [114] pretrained 
the BERT model on Chinese clinical text and fine-tuned on the breast 
cancer dataset to classify the relationship between clinical concepts and 
corresponding attributes for breast cancer. Using BERT, Xue et al. [129] 
used an integrated joint learning approach for NER and CRE in coronary 
angiography Chinese clinical text. Lai et al. [134] proposed BERT-GT, 
which combines BERT with Graph Transformer by integrating the 
neighbor attention mechanism into BERT. BERT-GT was used for cross- 
sentence RE on the N-ary [135] and BioCreative CDR [136] datasets. Lin 
et al. [137] developed a pre-trained BERT model on the MIMIC-III 
dataset and BioBERT [54] models for temporal RE on the THYME 
[138] corpus. Their BioBERT model with sentence agnostic 60-token 
window approach was used for the CONTAINS temporal relation 
extraction task on the colon cancer test set. 

6.2.4. Question answering (QA) 
The QA ability of a model can serve as an indicator of its ability to 

learn the medical text. Jin et al. [90] introduced the PubMedQA dataset 
for biomedical research question answering, and fine-tuned BioBERT 
model to establish a baseline on the dataset. Yoon et al. [106] pretrained 
the BioBERT model on SQuAD [107,108] datasets and fine-tuned it for 
the BioASQ [71,91] biomedical QA challenge. This model achieved 
SOTA performance on factoid, list, and yes/no type questions of the 
BioASQ dataset. He et al. [139] proposed a procedure for consumer 
health question answering and medical language inference tasks using 
models such as BERT[20], BioBERT[54], SciBERT[100], ClinicalBERT 
[55], BlueBERT[83], and ALBERT[96]. Schmidt et al. [140] developed a 
QA-BERT model for question answering using the PICO (Population, 
Intervention, Comparator, and Outcome) framework. The PICO element 

Fig. 7. BioBERT pre-training and finetuning overview. Source: Image adapted from [54] without modifications.  
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Table 2 
Transformers in clinical NLP.  

Reference Title Tasks Datasets Architecture 

Lee et al. 
[54] 

BioBERT: a pre- 
trained 
biomedical 
language 
representation 
model for 
biomedical text 
mining 

NER, 
RE, 
QA 

NCBI Disease 
[60], 
I2b2 2010 
[61], 
BC5CDR [62], 
BC4CHEMD 
[63], 
BC2GM [64], 
JNLPBA [65], 
LINNAEUS 
[66], 
Species-800 
[67], 
GAD [68], 
EU-ADR [69], 
CHEMPROT 
[70], 
BioASQ [71] 

BERT[20] 

Alsentzer 
et al. 
[55] 

Publicly 
available 
clinical BERT 
embeddings 

NLI, 
NER, 
de- 
identification, 
concept 
extraction, 
entity 
extraction 

MIMIC-III 
[56], 
i2b2 2010 
[61], 
i2b2 2012 
[72,73], 
MedNLI [74], 
i2b2 2006 
[75], 
i2b2 2014 
[76,77] 

BERT [20] 

Si et al. 
[57] 

Enhancing 
clinical concept 
extraction with 
contextual 
embeddings 

Concept 
extraction 

i2b2 2010 
[61], 
i2b2 2012 
[72], 
i2b2 2014 
[76], 
ShARe/CLEF 
[78,79], 
SemEval 
[80–82], 
MIMIC-III 
[56] 

BERT [20] 

Peng 
et al. 
[83] 

BlueBERT: 
Transfer 
Learning in 
Biomedical 
Natural 
Language 
Processing: An 
Evaluation of 
BERT and ELMo 
on Ten 
Benchmarking 
Datasets 

SS, 
NER, 
RE, 
DC, 
Inference 

MEDSTS [84], 
BIOSSES [85], 
BC5CDR [62], 
ShARe/CLEF 
[78], 
DDI [86], 
CHEMPROT 
[70], 
i2b2 2010 
[61], 
HoC [87], 
MedNLI [74] 

BERT[20] 

Gu et al. 
[88] 

Domain- 
Specific 
Language 
Model 
Pretraining for 
Biomedical 
Natural 
Language 
Processing 

NER, 
RE, 
SS, 
DC, 
QA 

NCBI Disease 
[60], 
BC5CDR [62], 
BC2GM [64], 
JNLPBA [89], 
CHEMPROT 
[70], 
DDI [86], 
GAD [68], 
BIOSSES [85], 
HoC [87], 
PubMedQA 
[90] 
BioASQ 
[71,91] 

PubMedBERT 

Huang 
et al. 
[59] 

ClinicalBERT: 
Modeling 
Clinical Notes 
and Predicting 
Hospital 
Readmission 

Patient 
readmission 
prediction 

MIMIC-III 
[56] 

BERT [20]  

Table 2 (continued ) 

Reference Title Tasks Datasets Architecture 

Yang 
et al. 
[92] 

Clinical concept 
extraction using 
transformers 

Concept 
extraction 

MIMIC-III 
[56], 
i2b2 2010 
[61], 
i2b2 2012 
[72,73], 
n2c2 2018 
[93,94] 

BERT [20], 
RoBERTa 
[95], 
ALBERT [96], 
ELECTRA 
[97] 

Wei et al. 
[98] 

Relation 
Extraction from 
Clinical 
Narratives 
Using Pre- 
trained 
Language 
Models 

RE n2c2 2018 
[93,94]. 
i2b2 2010 
[61] 

BERT [20] 

Mayer 
et al. 
[99] 

Transformer- 
Based 
Argument 
Mining 
for Healthcare 
Applications 

Argument 
component 
detection, 
RE 

MEDLINE BERT [20], 
BioBERT 
[54], 
SciBERT 
[100], 
RoBERTA 
[95] 

Huang 
et al. 
[101] 

Clinical XLNet: 
Modeling 
Sequential 
Clinical Notes 
and Predicting 
Prolonged 
Mechanical 
Ventilation 

Prognosis 
prediction 

MIMIC III 
[56] 

XLNet [102], 
BERT [20], 
ClinicalBERT 
[59], 

Yu et al. 
[103] 

BioBERT based 
named entity 
recognition in 
electronic 
medical record 

NER I2b2 2010 
[61] 

BioBERT[54] 

Alimova 
et al. 
[104] 

Multiple 
features for 
clinical relation 
extraction: A 
machine 
learning 
approach 

RE n2c2 2018 
[93,94], 
MADE 2018 
[105] 

BERT [20], 
BioBERT 
[54], 
ClinicalBERT 
[59] 

Jin et al. 
[90] 

PubMedQA: A 
dataset for 
biomedical 
research 
question 
answering 

QA PubMedQA 
[90] 

BioBERT [54] 

Yoon 
et al. 
[106] 

Pre-trained 
language model 
for biomedical 
question 
answering 

QA SQuAD 
[107,108], 
BioASQ 
[71,91] 

BioBERT [54] 

Ji et al. 
[109] 

BERT-based 
ranking for 
biomedical 
entity 
normalization 

EN ShARe/CLEF 
[110], NCBI 
[60], 
TAC2017ADR 
[111] 

BERT [20], 
BioBERT 
[54], 
ClinicalBERT 
[55] 

Yang 
et al. 
[112] 

Measurement of 
Semantic 
Textual 
Similarity in 
Clinical Texts: 
Comparison of 
Transformer- 
Based Models 

STS 2019 n2c2/ 
Open Health 
NLP [113] 

BERT [20], 
XLnet[102], 
RoBERTa 
[95] 

NER: Named Entity Recognition; SS: Sentence Similarity; RE: Relation Extrac
tion; DC: Document Classification; NLI: Natural Language Inference; QA: 
Question Answering, EN: Entity Normalization; STS: Semantic Textual 
Similarity 
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dataset [141] was combined with SQuAD datasets [107,108] to increase 
the generalizability and flexibility of the model on all types of questions. 
The proposed QA-BERT performed better than LSTM and BERT baselines 
[140]. 

6.2.5. Biomedical entity normalization (BEN) 
BEN aims to link mentions of an entity in a clinical document (e.g., 

EHR) to their corresponding concepts in a knowledge base [142]. Ji 
et al. [109] fine-tuned pre-trained models such as BERT [20], BioBERT 
[54], ClinicalBERT [55] on three different datasets ShARe/CLEF [110], 
NCBI [60], TAC2017ADR[111] for performing BEN. Li et al. [143] 
proposed the EhrBERT model, pre-trained on 1.5 million EHR notes, and 
evaluated it on three entity normalization corpora, namely the MADE 
corpus [105], NCBI disease corpus [60] , and CDR corpus [62]. Authors 
observed that their models performed worse when the pre-training 
domain and fine-tuning task were distant. 

6.2.6. Semantic text similarity (STS) 
STS is an NLP task that measures the similarity between two pieces of 

text using a pre-defined metric. Xiong et al. [144] proposed a gated 
network to fuse one hot and distributed representations obtained from 
sentence-level features like inverse document frequency, sentence 
length, N-gram overlaps, and similarity metrics between two input 
sentences. Their fusion-gated BERT model was used on the clinical STS 
task of the BioCreative/OHNLP 2018 challenge [145]. Yang et al. [112] 
explored three models, BERT [20], XLnet [102], and RoBERTa [95], for 
clinical STS as a part of the 2019 n2c2/Open Health NLP challenge 
[113]. The models were pre-trained on a general STS dataset and fine- 
tuned on the clinical STS training partition. Among these, RoBERTa- 
large achieved the highest performance. 

6.2.7. Automatic international statistical classification of diseases (ICD) 
coding 

ICD codes are a set of alphanumeric designations to communicate 
diseases, symptoms, procedures, diagnoses, and abnormal findings in a 
universally accepted way among healthcare professionals. ICD coding 
involves recording the ICD codes associated with a patient’s visit. This 
coding process is often performed manually, which may result in 
documentation errors and consume a significant amount of time. Zhang 
et al. [146] proposed BERT-XML with multi-label attention to model 
2292 ICD-10 codes from EHR notes [147]. Biswas et al. [148] used a 
transformer-based encoder architecture TransICD with a structured self- 
attention mechanism [149] to extract label-specific representations for 
multi-label ICD coding. Label distribution aware margin loss [150] was 
used to address the imbalance in ICD codes data. Transformer-based 
automatic ICD coding was used in clinical texts of Chinese [151], 
Spanish [152,153], Swedish [154], and Thai [155]. Silvestri et al. [156] 
used a Transformer Cross-lingual Language Model(XLM) [157] for 
automatic ICD coding by fine-tuning clinical texts in English and testing 
on clinical Italian text. 

6.2.8. Neural machine translation (NMT) 
Automatic NMT of biomedical data is essential to make essential 

healthcare information available to healthcare professionals over
coming language barriers. Tubay et al. [158] for the low-resourced 
biomedical NMT task used a Transformer model enhanced with a 
multi-source translation technique capable of exploiting multiple text 
inputs from the same language family. Berard et al. [159] proposed a 
multilingual neural machine translation (MNMT) model to translate 
biomedical text from 5 different languages (French, Spanish, German, 
Italian, and Korean) to English. The MNMT model is a variant of 
Transformer Big architecture with complex encoder capable of repre
senting multiple languages. Liu et al. [160] proposed BioNMT Trans
former model to translate domain specific biomedical vocabulary from 
foreign languages. The model is capable of semantic disambiguation of 
unknown words in the translation using external biomedical 

dictionaries. Wang et al. [161] used a Transformer large model with 20 
encoder layers for biomedical translation shared task to translate 
German, French, and Spanish to English. Subramanian et al. [162] used 
a Transformer model for the same biomedical shared task at WMT to 
translate text from English to German and Russian. Their transformer 
model used a combination of model scaling, data augmentation with 
back-translation, knowledge distillation, model ensembling, and noisy 
channel re-ranking to perform the translation task. 

7. Transformers for structured EHR data 

Structured EHR data includes ICD codes for diagnoses, medication, 
vital signs, laboratory tests and other demographics collected every time 
a patient visits the hospital. These data are linked by an underlying 
temporal structure representing the cycle of diagnosis, medication/ 
intervention, and potential patient readmissions. Furthermore, medi
cation and diagnosis codes are derived from an ontological tree struc
ture. Therefore, clinical tasks such as predicting future disease 
diagnoses, readmissions, or mortality rely on accurately representing 
the temporal and graphical structure of a patient’s EHRs. This challenge 
has led to three broad NLP tasks on structured EHR content that have 
been attempted in recent years using transformer networks. 

7.1. Ontological structure learning 

Previous studies have tried to learn the graphical structure inherent 
within the EHR using novel Transformer architectures. Choi et al. pro
posed the Graph Convolution Transformer (GCT) to jointly learn the 
relationships between diagnoses and medication codes while perform
ing diagnosis-treatment classification [163]. They used conditional 
probabilities between medications and diagnoses calculated over the 
entire dataset to guide the attention maps in their Transformer network. 
Their model was validated on the eICU collaborative research dataset 
[164]. In contrast, Shang et al., 2019 explicitly used graph neural net
works (GNN) for learning medical ontology embeddings and used these 
embeddings in a transformer to recommend future medications using 
the MIMIC-III dataset [165]. To leverage the entire dataset, they pre- 
trained G-BERT, a combination of GNN and BERT, on EHR data with 
only one admission. Peng et al., used a graph-based attention model 
(GRAM) to create ontological embeddings, which were then represented 
using multi-head self-attention to learn the ontological structure of 
medications within EHR [166]. 

7.2. Multi-modal data fusion 

Previous studies have used Transformer networks to create joint 
embeddings amongst multiple data modalities, such as EHR and clinical 
notes. Darabi et al., used separate Transformer networks to create 
different representations for the clinical codes (ICD, drug, and proced
ure) and clinical notes and combined them into one “patient represen
tation” [167]. They used this joint representation to predict future 
diagnoses, procedures, length of stay (LOS), readmission, and mortality. 
Studies have used joint-embeddings in BERT to predict rare diseases 
such as chronic cough [168] or depression [169]. Xu et al., proposed the 
use of multi-modal fusion architecture search (MUFASA), using an 
evolutionary algorithm to jointly search for the optimal architecture to 
represent subsets of EHR data and the optimal stage at which the indi
vidual embeddings will undergo fusion [170]. In contrast, Zhang et al., 
used a contrastive learning approach to increase the mutual agreement 
between different modalities for the same patient and increase the 
contrast for the same modality amongst different patients while jointly 
optimizing a prediction loss [171]. They showed that combining this 
representation with the BERT encoder predicted mortality and length of 
stay better than other baselines. 
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7.3. Predicting future diagnoses using ICD codes 

BEHRT, an adaptation of BERT on EHR data, was trained from 
scratch using the masked language modeling task on sequential ICD 
codes and age to predict future diagnoses [172]. This model was 
developed primarily on the UK Clinical Practice and Research Datalink 
(CPRD) [173]. Recently, BEHRT was used to predict incident heart 
failure [174] and to perform causal inference [175]. The Hi-BEHRT 
model extended this by incorporating self-supervised pretraining by 
masking certain EHR data and certain time points in patients’ visitation 
history and creating localized feature aggregator Transformer embed
dings fused at a later stage using global attention [176]. Hi-BEHRT 
performed better than BEHRT in predicting the onset of heart failure, 
diabetes, chronic kidney disease, and stroke. Compared to the BEHRT- 
based models, Med-BERT expanded the pretraining task to include 
prediction of prolonged length of stay and used a combination of ICD-9 
and ICD-10 codes to create their model, which was subsequently eval
uated on predicting diabetes and heart failure [177]. Another model, 
HiTANet [178] , explicitly included a time vector to represent the time 
elapsed between consecutive visits. The time embedding was combined 
with the original visit embedding and used as key values in a global 
attention block to represent the most significant time points in a pa
tient’s medical history. They tested their model efficacy in predicting 
future diagnoses of three disease-specific datasets. The RAPT model 
combined an explicit time-span information vector with additional pre- 
training tasks such as similarity prediction and reasonability check to 
address data insufficiency, incompleteness, and short sequence prob
lems inherent in EHR data [179]. They evaluated their model for pre
dicting pregnancy outcomes, risk period, and the diagnoses of diabetes 
and hypertension during pregnancy. 

8. Transformers in medical imaging 

8.1. Medical image segmentation 

Image segmentation is a dense pixel classification task that captures 
the complex interactions between individual pixels of an image. Unlike 
general-purpose image segmentation, medical image segmentation suf
fers from a lack of large datasets, requires the context of surrounding 
anatomical structures, and must account for inter-patient anatomical 
variabilities. Several data modalities, such as X-ray, Ultrasound, Mag
netic Resonance Imaging (MRI), Computed Tomography (CT), Positron 
Emission Tomography (PET), and microscopy, can benefit from medical 
image segmentation. Before Transformers, the U-net architecture, pro
posed by Ronneberger et al. [180], was the prominent architecture for 
medical image segmentation. The U-net model is a Convolutional Neural 
Network (CNN). Convolutional layers are limited in long-range feature 
modeling. This is because the receptive field of convolutional filters 
increases linearly; therefore, only the deepest convolutional layers have 
the global context of an image. Although incorporating dilation and 
stride into convolution can address the limitations of long-range de
pendencies to some extent, it results in an unavoidable tradeoff between 
global and local information. On the contrary, the self-attention mech
anism in Transformer layers can model the global context of images, 
irrespective of layer depth. A comprehensive list of transformer-based 
models for segmentation is provided in Table 3. 

8.1.1. CNN-transformer hybrids 
TransUNet, proposed by Chen et al. [181], is shown in Fig. 8 and was 

one of the earliest examples. TransUNet uses a CNN to downsample the 
input image before providing it to a Transformer encoder, creating a 
global contextualized deep representation of the image. This represen
tation is subsequently passed through a cascaded up-sampler to convert 
it into the full-resolution segmented output image. The idea of using a 
Transformer as a U-net encoder to learn long-range dependencies was 
subsequently adapted by multiple studies such as TransClaw U-Net 

[188], BiTr-UNet [242], Bi-FPN-UNet [243], and Weaving Attention U- 
Net [244]. UNet-Transformer used MHCA in skip-connections between 
the encoder and the decoder to recover finer spatial features [224]. 
LeViT-Unet [214] integrated LeVIT [245] into the downsampling block 
of U-net. TransAttUnet [218] used a novel self-aware attention module 
with both Transformer self-attention and global spatial attention. 

For 3D medical image segmentation, UNETR [246] used ViT-B16 
[247] as the encoder instead of CNN while retaining the U-shaped 
network design. TransBTS used 3D CNN blocks as an encoder to model 
spatial information, a Transformer encoder to capture long-distance 
dependencies, and a decoder to model volumetric data in MRI scans 
[215]. CoTr concatenated CNN feature maps at different scales using 
positional encoding and passed them into stacked Deformable Trans
former encoder blocks [248]. Deformable Transformer computed 
attention over a local region around reference points instead of global 
self-attention, reducing computational complexity. The authors showed 
that this methodology outperformed other CNN-Transformer hybrid 
models on the BCV dataset [182] that covers 11 major human organs. 
SpecTr [212] used adaptively sparse Transformer blocks [249] to 
remove redundant/noisy bands of spectral information in the Trans
former encoder while segmenting hyperspectral images. This study also 
used 3D CNN encoders in combination with Transformer encoders in a 
U-Net fashion. The nnFormer [250] is a 3D Transformer for volumetric 
image segmentation that uses interleaved convolutional and local/ 
global self-attention operations coupled with skip attention between the 
encoder and decoder to achieve better performance over other CNN- 
transformer hybrid models in three datasets [182,183,233]. Tang 
et al. [232] developed a new 3D Transformer-based model named Swin 
UNEt Transformer (Swin UNETR) with a hierarchal encoder for self- 
supervised pre-training using five public CT datasets. The model con
tains a Swin Transformer encoder that directly utilizes 3D patches and is 
connected to a CNN-based decoder via skip connections at different 
resolutions. The model was fine-tuned and validated using the BCV 
dataset [182] and the Medical Segmentation Decathlon (MSD) dataset 
[233]. These studies reflect effective ways of combining convolutions 
with attention in medical image segmentation. 

8.1.2. Transformer-Only U-Nets 
UTNet [191] introduced Transformer self-attention into the encoder 

and decoder to capture long-range dependencies at different scales. 
Swin-Unet [200] used pure Swin Transformer [251] blocks. The DS- 
TransUNet model used a dual-branch Swin Transformer in the encoder 
to extract feature representations at multiple scales, and Transformer 
Interactive Fusion (TIF) blocks to establish global interactions between 
them [207]. Valanarasu et al. [184] proposed Medical Transformer 
(MedT) with a gated axial attention layer along with local and global 
branches (LoGo), adapted based on position-sensitive axial attention 
[252] to influence positional bias on small-scale medical datasets. Kar
imi et al. developed a convolution-free 3D segmentation framework 
using pre-trained vanilla Transformer encoder, which performed better 
than CNN models on three proprietary datasets [253]. 

8.1.3. Non U-Net transformer models 
Zhang et al. [234] developed the TiM-Net model based on M-Net 

[254] with diverse attention mechanisms and weighted side output 
layers for retinal vessel segmentation. The model was validated on three 
public retinal image datasets: STARE [235], CHASEDBI [236], and 
DRIVE [237]. Wang et al. [238] proposed an auxiliary segmentation 
method for osteosarcoma detection in MRI images based on denoising 
and local enhancement. For noise removal, the authors used the Eformer 
[255]. Duc et al. [241] developed a network called ColonFormer for 
polyp segmentation from endoscopic images on Kvasir [194], CVC- 
Clinic DB [195], CVC-Colon DB [196], CVC-T [197], and ETIS-Larib 
Polyp DB [198] datasets. The model uses Mix Transformer [256] as 
the encoder backbone, a hierarchical Transformer encoder that can 
represent both high and low-resolution features. It also includes efficient 
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Table 3 
Transformers for medical image segmentation,  

Reference Title Datasets Task Modalities 

Chen et al. [181] TransUNet: Transformers Make Strong Encoders for Medical Image 
Segmentation 

Synapse [182], 
ACDC [183] 

Multi-organ segmentation, 
Cardiac segmentation 

CT, MRI 

Valanarasu et al. 
[184] 

Medical Transformer: Gated Axial-Attention for Medical Image Segmentation Brain 
Segmentation, 
GLAS [185], 
MoNuSeg 
[186,187] 

Brain-anatomy 
segmentation, 
Gland segmentation, 
Nucleus segmentation 

Ultrasound, 
Microscopy 

Chang et al. [188] TRANSCLAW U-NET: CLAW U-NET WITH TRANSFORMERS FOR MEDICAL 
IMAGE SEGMENTATION 

Synapse [182] Multi-organ segmentation CT 

Hatamizadeh et al. 
[189] 

UNETR: Transformers for 3D Medical Image Segmentation BCV [182], 
MSD [190] 

Multi-organ segmentation CT 

Gao et al. [191] UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation M&Ms [192] Cardiac segmentation MRI 
Zhang et al. [193] TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Kvasir [194], 

CVC-Clinic [195], 
CVC-Colon [196], 
EndoScene [197], 
ETIS [198], 

Polyp segmentation, 
Skin lesion segmentation, 
Hip segmentation. 
Prostate segmentation 

Colonoscopy, 

Xie et al. [199] CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image 
Segmentation 

BCV [182] Multi-organ segmentation CT 

Cao et al. [200] Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation Synapse [182], 
ACDC [183] 

Multi-organ segmentation, 
Cardiac segmentation 

CT 
MRI 

Huang et al. [201] MISSFormer: An Effective Medical Image Segmentation Transformer Synapse [182], 
ACDC [183] 

Multi-organ segmentation, 
Cardiac segmentation 

CT 
MRI 

Zhang et al. [202] Pyramid Medical Transformer for Medical Image Segmentation GLAS [185], 
MoNuSeg [187], 
HECKTOR [203] 

Gland segmentation, 
Nucleus segmentation 
Tumor segmentation 

Microscopic 
images, 
CT/PET 

Ji et al. [204] Multi-Compound Transformer for Accurate Biomedical Image Segmentation Pannuke[205], 
CVC-Clinic [195], 
CVC-Colon [196], 
ETIS [198], 
Kvasir [194], 
ISIC2018 [206] 

Cell segmentation, 
Polyp segmentation, 
Skin lesion segmentation 

Pathology, 
Colonoscopy, 
Dermoscopy 

Lin et al. [207] DS-TransUNet: Dual Swin Transformer U-Net for Medical Image 
Segmentation 

CVC-Clinic [195], 
CVC-Colon [196], 
EndoScene [197], 
ETIS [198], 
GLAS [185], 
Kvasir [194], 
ISIC2018 [206] 

Polyp segmentation, 
Skin lesion segmentation, 
Gland segmentation, 
Nucleus segmentation 

Pathology, 
Colonoscopy, 
Dermoscopy 

Li et al. [208] Medical Image Segmentation Using Squeeze-and-Expansion Transformers REFUGE2020 
[209], 
Drishti-GS [210], 
RIM-ONE v3 [211], 
Kvasir [194] 

Optic disc and cup 
segmentation, 
Polyp segmentation, 
Brain tumor segmentation 

Colonoscopy, 
MRI, 
Fundus images 

Yun et al. [212] SpecTr: Spectral Transformer for Hyperspectral Pathology Image 
Segmentation 

Choledoch [213] Pathology segmentation Pathology 

Xu et al. [214] LeViT-UNet: Make Faster Encoders with Transformer for Medical Image 
Segmentation 

Synapse [182], 
ACDC [183] 

Multi-organ segmentation, 
Cardiac segmentation 

CT 
MRI 

Wang et al. [215] Transbts: Multimodal brain tumor segmentation using transformer BraTS 2019 
[216,217], 
BraTS 2020 
[216,217] 

Brain tumor segmentation MRI 

Chen et al. [218] TransAttUnet: Multi-level Attention-guided U-Net with Transformer for 
Medical Image Segmentation 

ISIC 2018 [206], 
JSRT[219], 
Montogomery 
[220], 
NIH [221], 
Clean-CC-CCII 
[222], 
GLAS [185], 
Bowl [223] 

Chest X-ray segmentation, 
Skin lesion segmentation, 
Nucleus segmentation, 
Gland segmentation 

X-ray, Histology, 
CT 

Petit et al. [224] U-net transformer: self and cross attention for medical image segmentation TCIA, 
Internal dataset 

Abdominal organ 
segmentation 

CT 

Yan et al. [225] AFTer-UNet: Axial Fusion Transformer UNet for Medical Image Segmentation BCV [182], 
Thorax-85 [226], 
Segthor [227] 

Multi-organ segmentation, 
Thoracic segmentation 

CT 

Guo et al. [228] A Transformer-Based Network for Anisotropic 3D Medical Image 
Segmentation 

MSD [190] Lung cancer segmentation CT 

Sun et al. [229] HybridCTrm: Bridging CNN and Transformer for Multimodal Brain Image 
Segmentation 

MRBrainS [230], 
iSEG-2017 [231] 

Brain tissue segmentation, MRI 

Tang et al. [232] Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image 
Analysis 

BTCV [182], 
MSD [233] 

Multi-organ abdominal 
segmentation 

CT 

(continued on next page) 
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Self-Attention to reduce the computational complexity of self-attention 
layers. 

8.2. Medical image registration 

Image registration is the process of transforming data from multiple 
datasets into one coordinate system. Registration is essential for 
comparing, analyzing, or integrating data obtained from various sour
ces, viewpoints, times, or sensors [257]. An example of registration is 
aligning CT and MRI scans of patient captured obtained from different 
view points and varying patient head orientation. In image registration 
task source and target images are provided as input to deep learning 
model to estimate the spatial transformation parameters between the 
images. Recent approaches have incorporated attention-based Trans
former models for this task. 

Chen et al. proposed one of the earliest Transformer based archi
tectures, VIT-V-Net [258], to combine the vision Transformer (ViT) 
[247] and V-Net [259], a CNN architecture. The ViT is used to extract 
the features from the fixed and moving images, followed V-Net style 
decoder to predict the displacement field. Wang et al. [260] developed 
TUNet to incorporate ViT [261] into the U-Net [180] architecture to 
extract global and local features from moving and fixed images. Mok 
et al. [262] developed a fast, robust learning-based algorithm called 
C2FViT for 3D affine medical image registration. C2FViT leverages 

global connectivity, the convolutional vision Transformer locality, and a 
multi-resolution strategy. Both papers evaluated their models on brain 
template-matching normalization and atlas-based registration using the 
OASIS [263] and LPBA [264] datasets. Tulder et al. proposed pixel and 
token-wise cross-view attention to integrate multiple views in 
mammography and X-ray imaging [265] using CBIS-DDSM [266] and 
CheXpert [267] datasets. 

Chen et al. proposed TransMorph [268], a modified U-net architec
ture that incorporates Swin Transformer [251] blocks in its down- 
sampling branch for unsupervised affine and deformable image regis
tration on the IXI [269] dataset. Transformer blocks enabled the esti
mation of deformation uncertainty while preserving the registration 
performance. Zhu et al. [270] proposed the Swin-VoxelMorph. This 
unsupervised learning model applies a hierarchical Swin Transformer 
[251] as the encoder to extract contextual information and a symmetric 
Swin Transformer-based decoder with a patch-expanding layer to 
perform up-sampling to estimate the registration fields. The authors 
validated the model on ADNI [271] and PPMI [272] datasets. 

8.3. Medical image captioning and report generation 

Expert medical professionals typically interpret biomedical images, 
documenting their findings as medical reports, a time-consuming task. 
Automated medical report generation can reduce the workload and 

Table 3 (continued ) 

Reference Title Datasets Task Modalities 

Zhang et al. [234] TiM-Net: Transformer in M-Net for Retinal Vessel Segmentation STARE [235], 
CHASEDBI [236], 
DRIVE [237] 

Retinal vessel segmentation Color images 

Wang et al. [238] Auxiliary Segmentation Method of Osteosarcoma in MRI Images Based on 
Denoising and Local Enhancement 

In house dataset Osteosarcoma segmentation MRI 

Shen et al. [239] Dilated transformer: residual axial attention for breast ultrasound image 
segmentation 

BUSIS [240] Breast segmentation Ultrasound 

Thanh Duc et al. 
[241] 

ColonFormer: An Efficient Transformer Based Method for Colon Polyp 
Segmentation 

Kvasir [194], 
CVC-Clinic[195], 
CVC-Colon [196], 
CVC-T [197], 
ETIS [198] 

Polyp segmentation Colonoscopy 

CT: Computed Tomography; MRI: Magnetic Resonance Imaging; PET: Positron Emission Tomography 

Fig. 8. Overview of TransUNet architecture. a) Schematic of Transformer encoder b) TransUNet architecture. Source: The figure was adapted from [181] without 
modifications. 
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reduce human error. The image captioning/report generation tasks 
involve generating a textual description of a provided visual input. The 
input image is processed through a deep learning model to extract 
relevant feature information, which is fed into a language model to a 
coherent and contextually appropriate textual representation in the 
form of a sequence of words. 

Hou et al. [273] proposed the RATCHET model, a medical Trans
former, to generate medical text reports from chest X-rays. The authors 
used the MIMIC CXR v2.0.0 dataset [274] with over 300,000 chest 
radiograph images and free-text radiology reports. Free text reports 
were tokenized using the byte pair encoding approach [275]. The 
RATCHET architecture follows the encoder-decoder architecture, but 
the encoder is a CNN model, DenseNet-121 [276], whereas the decoder 
is the vanilla Transformer decoder. The output features of the DenseNet- 
121 encoder are provided as input to the second attention block of the 
Transformer decoder, whereby the network learns context from the 
radiography image against the input text report. Free text tokens are 
shifted right and provided as input to the decoder to predict the next 
token. Nicholson et al. used a pretrained ViT encoder and a pretrained 
PubMedBERT decoder to solve the 2021 ImageCLEFmed Caption task 
[277]. Their model was fine-tuned on the ROCO dataset [278] and 
tested on PadChest [279], CheXpert [267], ChestX-ray14 [280], and 
MURA [281] datasets. Alfarghaly et al. [282] used conditioned self- 
attention, where new key and value parameters were introduced to 
project the encoder’s output to the decoder’s attention space. The au
thors extracted visual and semantic features using Chexnet [283], a 
Densenet121 model, and pre-trained word2vec embeddings, respec
tively. For the training and validation of the model, they used the IU- 
Xray dataset [284]. You et al. [285] developed an AlignTransformer 
for chest X-ray images consisting of two modules: Align Hierarchical 
Attention (AHA) and Multi-Grained Transformer (MGT). The AHA 
module was used to align visual regions and disease tags. Features from 
the AHA module were provided as input to the MGT module. The MGT 
module adaptively exploited multi-grained disease-grounded visual 
features to determine the importance of visual features for each target 
word. The authors used two publicly available datasets: IU-Xray [284] 
and MIMIC-CXR [286]. Pahwa et al. [287] developed a memory-driven 
Transformer model called MedSkip for report generation. MedSkip 
consists of the standard Transformer encoder and a relational memory 
decoder. It was trained on Pathology Education Informational Resource 
(PEIR) Gross dataset [288] and IU X-Ray [284] datasets. Li et al. 
developed a Cross-modal clinical Graph Transformer (CGT) to incor
porate expert knowledge into ophthalmic report generation [289]. The 
model first restores a sub-graph from the clinical graph and injects 
clinical relation triples into the visual features as prior knowledge. Re
ports are predicted using the encoded cross-modal features using a 
Transformer decoder. The CGT model was trained and validated on an 
ophthalmic report generation dataset called FFA-IR [290]. 

8.4. Visual question answering (VQA) 

VQA is a computer vision task where a question is posed, and the 
answer must be inferred from an image. In the medical domain, VQA can 
be used to extract information from medical images to assist in making a 
diagnosis. Ren & Zhou, 2020 [291] developed the CGMVQA model, 
which modified the original Transformer using layer normalization 
before the MHSA and FCFN layers. The model was trained and validated 
on the ImageCLEF 2019 VQA-Med data set [292]. The CGMVQA can 
interchangeably deploy a classification or a generative mode by 
changing the output layer and loss function while retaining the same 
architecture. While in the classification mode, the model can predict a 
yes-no modality, in the generative mode, the model uses masked an
swers to predict the next word in a sentence. Naseem et al. [293] 
introduced the TraP-VQA model to answer medical questions presented 
in pathology images. This model embedded low-level visual features 
extracted using a CNN, low-level language features extracted using a 

domain-specific language model, and the Transformer layer to learn the 
contextualized representation between the two to solve the VQA task. 
The authors used the public PathVQA dataset [294] to train and validate 
their model. Sharma et al., 2021 v developed an attention-based 
multimodal model called MedFuseNet, using BERT for question feature 
extraction, which was found to be more effective than XLNet [102] and 
two datasets for training: ImageCLEF 2019 MED-VQA [292] and 
PathVQA datasets [294]. 

8.5. Image synthesis 

Medical image synthesis aims to replace or bypass an imaging pro
cedure constrained by time, cost, and labor or to prevent exposure to 
harmful ionizing radiation from some imaging modalities. It involves 
synthesizing medical images of a target modality from source images 
such as synthesizing MRI scan from CT or vice-versa. Dalmaz et al. [295] 
proposed a novel encoder-decoder-based generative adversarial 
network (GAN) model RESVIT for synthesizing missing sequences in 
multi-contrast MRI and pelvic CT images from source MRI images. The 
network architecture consists of a CNN encoder, decoder, and aggre
gated residual Transformer to learn global representations. RESVIT 
model synergistically fuses local and global feature representations to 
achieve superior image synthesis quality. Other GAN-based [296] 
models, such as CycleGAN [297] and CyTran [298], have been used to 
create contrast CT scans from non-contrast CT scans and vice versa. The 
CyTran architecture incorporates convolutional upsampling, convolu
tion downsampling, and a convolution Transformer block to perform the 
translation. Kamran et al. [299] proposed VTGAN to combine two 
generators for examining local and global features with ViT [247] in a 
semi-supervised manner to synthesize Fluorescein Angiography images 
[300] while predicting retinal degeneration. VTGAN successfully syn
thesized angiograms from fundus images and proved robust on spatial 
and radial transformations. 

Yan et al. created MMTrans [301] using a Swin-Transformer [251] as 
both a generator and registration network and a CNN as the discrimi
nator. The generator was used to generate images with the same content 
as the source modality and the same style as the target modality. In 
contrast, the discriminator was used to measure the similarity between 
the original target modality images and those synthesized by MMTrans. 
Hu et al. proposed a double-scale graph neural network (GNN) [302] 
combined with a Transformer to learn long-range dependencies from 
global features, while for local features, they used CNN. It outperformed 
established baselines in the IXI dataset. Liu et al. introduced a multi- 
contrast multi-scale Transformer (MMT) [303], by using missing data 
imputation as input and proposed a Multi-contrast Shifted Window (M- 
Swin) to capture intra- and inter-contrast dependencies. 

PTNet [304], proposed by Zhang et al., synthesizes infant MRI [305] 
scans using a U-net [180] based architecture that incorporates a 
performer [306] encoder and a decoder with linear space and time 
complexity. PTNet outperformed previous CNN-based approaches and 
had an execution time of 30 slices per second. Zhang et al. further 
extended PTNet to 3D MRI as PTNet3D [307] and evaluated it on high- 
resolution Developing Human Connectome Project (dHCP) [305] and 
longitudinal Baby Connectome Project (BCP) datasets [308]. 

8.6. Image reconstruction 

Image reconstruction aims to reconstruct high-quality medical im
ages with minimal cost and risk to the patient. 

8.6.1. Computed tomography (CT) 
Low-dose computed tomography (LDCT) imaging for clinical diag

nosis uses a reduced dose of X-ray radiation compared to conventional 
CT scans. However, LDCT is prone to noise, which affects the scan 
quality. Zhang et al. proposed TransCT [309] to enhance the quality of 
LCDT images using the AAPM-Mayo LDCT dataset [310]. The input 
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image was decomposed into low-frequency and high-frequency com
ponents, and then the content, texture, and high-frequency embeddings 
were fed to the TransCT model to obtain refined high-frequency textural 
features. Luthra et al. proposed Eformer [255] by combining learnable 
edge-enhancement convolutions called Sobel filters and the LeWin 
transformer [311] in denoising LDCT images for detecting metastatic 
liver lesions (AAPM-Mayo dataset) [310]. Wang et al. [312,313] pro
posed convolution-free transformer-based encoder-decoder dilation 
networks (TED-net) using vanilla transformer blocks for LDCT denois
ing. Instead of an image, a few approaches used informative sinograms 
generated by restoration modules from origin LDCT images for recon
struction using Transformer-based models [314–317]. 

8.6.2. Magnetic resonance imaging (MRI) 
Korkmaz et al. proposed an MRI reconstruction model based on a 

zero-shot learned adversarial vision Transformer named SLATER [318] 
to overcome the data size limitation. Inspired by Deep Image Prior (DIP) 
[319], they replaced the CNN backbone of DIP with a cross-attention 
Transformer and outperformed DIP on the IXI dataset [269] and 
fastMRI dataset [320]. Feng et al. [321,322] introduced a multi-task 
framework T2Net, to share the representations between reconstruction 
and super-resolution branches. Furthermore, they extended to multi- 
modalities (MTrans), aiming to learn more knowledge from MRI using 
both branches. Fang et al. proposed a cross-modality high-frequency 
Transformer (Cohf-T) [323] for super-resolving, low-resolution MR 
images. Guo et al. proposed a lightweight recurrent Transformer model 
ReconFormer [324], which includes pyramid transformer layers [325] 
to capture intrinsic multiscale information and feature correlation 
through the recurrent states. Li et al. proposed McMRSR [326], a 
Transformer based network to model long-range dependencies between 
reference and target images and aggregate multiscale matched features 
to reconstruct a target MR image. Few approaches use raw K-space 
signals of MRI scans instead of final MRI images as they contain learn
able information for MRI reconstruction [320,327–330]. Hu et al. 
introduced a Transformer-enhanced Residual-error AlterNative Sup
pression Network [331], which included a regularization term to 
improve the contribution of high-frequency information during infer
ence. Fabian et al. [332] proposed HUMUS-Net, a two-level hybrid CNN 
Transformer architecture for MRI reconstruction using the fastMRI 
dataset [320]. Huang et al. [333] proposed a GAN [296] based on Swin- 
Transformer [251] named ST-GAN, which preserved edge and texture 
features. Swin-Transformer inspired shifted window attention became 
the go to Transformer architecture for many studies targeting MRI 
reconstruction [328,334–336]. 

8.6.3. Positron emission tomography (PET) 
PET is an imaging technique that measures emissions from radioac

tively labeled chemicals injected into the bloodstream. PET scans can 
measure metabolic activity and other biochemical functions. Unfortu
nately, PET suffers from a poor signal-to-noise ratio, and its recon
struction requires denoising low-quality PET images to create high- 
quality ones. Luo et al. proposed a GAN based Transformer model, 
Transformer-GAN [337], for PET reconstruction with CNN(Encoder)- 
Transformer-CNN(Decoder) architecture to take advantage of spatial 
information and long-range dependencies from CNN and transformers, 
respectively. Fu et al. extended their transGAN-SDAM [338] for fast 
2.5D-based L-PET. The transGAN generates higher quality F-PET im
ages, followed by the SDAM module, which combines spatial informa
tion of an F-PET slice sequence to generate whole-brain F-PET images. 
Jang et al. proposed Spach Transformer [339] that can leverage spatial 
and channel-wise information based on local and global MHSA, which 
outperformed baselines on different PET tracer datasets of 18F-FDG, 
18F-ACBC, 18F-DCFPyL, and 68GaDOTATATE. 

9. Transformers for critical care 

9.1. Predicting long-term adverse outcomes 

Transformers have been used to predict adverse outcomes after 
critical care such as recurrence or death. Yang et al., 2021 predicted a 
60-day and 90-day response to targeted immunotherapy of patients with 
non-small cell lung cancer (NSCLC) using asynchronous clinical time 
series consisting of chest CT scans, and blood tests, and patient char
acteristics using an attention module called Simple Temporal Attention 
[340]. The model predicted which patients would have long-term du
rable survival gains under an immunotherapy regimen. Similarly, in 
2021 for colorectal cancer, Ho et al. used Transformer encoders to 
extract features from sequential carcinoembryogenic antigen (CEA) 
measurements. It combined CEA measurement features with deep rep
resentations of tabular features such as tumor sites, number, dates, and 
dosage of chemotherapy to predict recurrence [341]. They modified the 
Transformer to incorporate 1D convolutions prior to localized self- 
attention [342]. Their model outperformed commercial diagnostic 
tests of colorectal cancer recurrence. Non-clinical population-level 
claims data has also been modeled using multi-headed self-attention to 
predict relapse after surgery [343,344]. These studies utilized the 
French national health insurance database (SNIIRAM), consisting of 
health-insurance claims entries of 65 million individuals [345]. 

9.2. Surgical instruction generation 

Intra-operative surgical assistance AI systems need to solve the task 
of automatic surgical instruction generation. Zhang et al., 2021 used a 
Transformer-backboned encoder-decoder network combined with self- 
critical reinforcement learning (RL) to jointly model surgical activity 
and relationships between visual information and textual description 
[346]. They used the Database for AI Surgical Instruction dataset 
(DAISI) to evaluate their model [347]. The authors used a combination 
of machine translation and image-captioning criteria to evaluate their 
models, such as BLEU [348], Rouge-L [349], METEOR [350], and CIDEr 
[351], and SPICE [352]. The combination of Transformer with RL beat 
baselines comprising LSTM-based fully connected and soft-attention 
models. 

10. Transformers for social media data in public health 

In recent years, using social media data has gained prominence in 
different areas of public health [353–356]. Transformers have been 
applied to social media data for addressing several public health prob
lems, such as monitoring adverse drug reactions [357,358], monitoring 
mental health [359], categorizing vaccine confidence [360], and 
locating disease hotspots [361]. In this section, we present the models 
and their performance on social media datasets. 

10.1. Monitoring adverse drug events (ADEs) 

ADEs, refers to an undesired, unpleasant, or dangerous reaction to a 
medication [362], which has been found to be underreported; thus, 
researchers have recently used social media to improve ADE monitoring 
[363]. The main steps in monitoring ADRs using social media posts are 
text classification to find ADE mentions, followed by extracting the ADE 
concept and mention from the classified text. Breden et al. [357], pre
processed the Twitter dataset from Social Media Mining for Health 
(SMM4H) 2019 Competition [364] using the lexical normalization 
[365] method. The best-performing model was an ensemble of fine- 
tuned BERT, BioBERT [54] and ClinicalBERT [59]. Sakhovskiy et al. 
[366] used a more recent dataset provided by SMM4H 2021 [367] for 
task1, classifying English tweets by concatenating the RoBERTa [95] 
and ChemBERTa [368] models. For task2, Russian tweets classification 
performed by concatenating the EnRuDR-BERT [369], and 
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ChemRoBERTA [362] cross-attention. Hussain et al. [370] proposed an 
end-to-end system based on transfer learning using one prediction head 
for the text classification and another for labeling the adverse drug re
sponses. The authors fine-tuned BERT with a modular Framework for 
Adapting Representation Models (FARM) and present the FARM-BERT 
framework, which outperforms competing models on TwiMed-Twitter 
[371], Twitter [372], PubMed [373], and TwiMed-PubMed [371] 
datasets. The framework FARM-BERT supports multitask learning by 
combining multiple prediction heads, making training of the end-to-end 
systems easier and computationally faster. Raval et al.[358], tackled the 
same ADE classification problem; however, they framed it as a sequence- 
to-sequence problem and used the pre-trained T5 model architecture 
[374] on multiple datasets (SMM4H [375], CADEC [376], ADE corpus 
v2 [373], WEB-RADT [377], SMM4H-French [375]). The authors 
further expanded the proportional mixing and temperature scaling 
training strategies described in [378] to handle multi-dataset and pre
sent relative improvement on the F-1 score. 

10.2. Monitoring depression 

A large-scale depression dataset on Twitter was presented by Zhang 
et al. [359], used Transformer-based models to identify users suffering 
from depression using their everyday speech. The importance of psy
chological text features was also studied when performing depression 
classification. Results on the fluctuating depression levels for different 
groups were also presented. Matero et al. [379] used pretrained BERT 
embeddings to encode this information. Kabir et al. [380] presented a 
dataset observing the severity of depression in tweets and reported 
baseline results using BERT and DistilBERT [381]. 

10.3. Monitoring diabetes 

Large-scale Twitter data concerning diabetes-related tweets have 
been collected and used to identify cause-effect relationships [382]. 
They used a pre-trained BERTweet model [383] to detect causal sen
tences and a combined BERT+ Random Field Generator model to extract 
potential cause-effect relationships. 

10.4. Categorizing vaccine confidence 

Social media plays a crucial role in gauging public discourse on 
topics such as vaccine effectiveness [384]. It provides a proxy to analyze 
vaccination apprehensions and study the barriers to successful vacci
nations [385]. Kummervold et al. [360] used domain-specific BERT 
model to assess the social media stance towards vaccination during 
pregnancy on a dataset of 2722 unique tweets. The model was able to 
achieve accuracy of a trained human annotator in categorizing the 
stance, outperform other models and human coders in some cases. 

10.5. Locating disease hotspot 

It is essential to detect disease outbreaks while simultaneously 
reducing reporting lag time. This can provide another source of data to 
complement traditional surveillance approaches. Alsudias et al. [361] 
performed a multi-label classification task to identify tweets of infected 
individuals in the Arabic-speaking world. The authors propose a com
bination of binary relevance, classifier chains, label power set, multi
label adapted k-nearest neighbors (MLKNN) [386], support vector 
machine with naive Bayes features (NBSVM) [387], BERT and AraBERT 
(transformer-based model for Arabic language understanding) [388]. 
The proposed model achieved an F1 score of up to 88% in the influenza 
case study and 94% in the COVID-19. It is shown that including informal 
terms and non-standard terminology (e.g., the slang term of influenza, 
symptom, prevention, treatment, infected with) in the encodings 
improved the performance by as much as 15%, with an average 
improvement of 8%. The proposed geolocation detection algorithm 

performed moderately in predicting the location of users according to 
their tweet content. 

11. Monitoring bio-physical signals 

Transformers have been used to model physical activity, Electroen
cephalogram (EEG), and Electrocardiogram (ECG) signals. In the 
following sections, we review these works. 

11.1. Human activity recognition (HAR) 

Human Activity Recognition (HAR) is a proliferating field of research 
owing to the recent rise of wearables, smartphones, and Internet of 
Things (IoT) devices. Some studies have used multimodal self-attention 
to fuse features from various modalities [389,390]. They studied se
quences of human movements through multimodal data (such as RGB, 
depth, and skeletal data) [391–393] or modeled human activity through 
accelerometers and gyroscopes [394–397]. Spatiotemporal bone and 
joint sequences from skeleton data have been modeled using multi-scale 
Transformers on multiple datasets [398–401]. Owing to the lack of 
simple augmentation strategies of longitudinal sensor data, Ramachan
dra et al. used Transformer-GAN to provide a speedup over existing 
Recurrent-GAN [402]. 

11.2. Electroencephalogram (EEG) 

Electroencephalogram (EEG) is a widely used noninvasive mea
surement of brain activity. Transformers have been used to classify vi
sual or motor imagery using EEG signals [403]. It has been shown that 
extensive self-supervised pre-training using contrastive loss can help 
Transformer models represent EEG data collected using different hard
ware while performing different tasks [404]. Pretraining was conducted 
using the Temple University Hospital EEG Corpus [405] and down
stream analyses were done using a battery of smaller datasets 
[406–408]. Cross-modal Transformers have been used to find contex
tualized embeddings representing associations between auditory atten
tion detection and EEG signals [409]. This can disentangle sources of 
brain activity at different time points while the subject is attending to 
multiple sound sources simultaneously. This study was conducted on the 
Denmark Technical University (DTU) dataset [410,411] Finally, a 2D 
Transformer was used to capture local self-similarity, and feed-forward 
connections were used to capture global self-similarity to create a novel 
denoising system for 1D EEG signal [412] using another publicly 
available dataset [413]. 

11.3. Electrocardiogram (ECG) 

Electrocardiogram (ECG) signals alone and combined with other 
sensory information were used to predict stress in subjects using 
Transformers [414,415]. The Wearable Stress and Affect Detection 
(WESAD) and SWELL Knowledge Work (SWELL-KW) are publicly 
available datasets used for this purpose [416,417]. A transformer 
network embedded inside a CNN architecture has been used to classify 
arrhythmia [418]. 

12. Transformers for biomolecular sequences 

Biomolecular sequences can represent genomic, proteomic, and drug 
data. As sequence translation models, transformers have been widely 
used to model the relationships between anomalous biological se
quences and related diseases. Moreover, drug/protein synthesis or gene 
sequence alignment problems have been treated through the lens of 
machine translation, where the Transformer is the model of choice. 
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12.1. DNA 

Gene Transformer, which consists of a multi-head self-attention 
module, detects lung cancer subtype biomarkers [419]. It consists of two 
1D convolutional layers before the MHSA layer to extract low and 
moderate-level features. A previous study utilized RNA-sequencing 
values from lung adenocarcinoma (LUAD) and lung squamous cell car
cinoma (LUSC) datasets from the Cancer Genome Atlas project [420]. 
Clauwaert et al. 2020 introduced an attention method optimized for 
nucleotides on top of the Transformer-XL architecture [421]. This 
attention module included a 1D convolutional layer that extracted 
overlapping DNA segments of length k called k-mers from the original 
DNA sequences’ query, key, and value matrices. The authors solved 
three problems, including a) annotating the transcription start site 
(TSS), b) annotating the translation initiation site (TIS), and c) recog
nizing 4mC methylation sites using the following datasets – RegulonDB 
[422], Ensembl [423], and MethSMRT [424], respectively. A following 
study utilized comparative TSS annotations from multiple datasets, 
including RegulonDB [422], Etwiller, et al., 2016 (Cappable-seq) [425], 
Yan et al., 2018 (SMRT-Cappable-seq) [426], and Ju et al., 2019 (SEnd- 
seq) [427]. In another study, the Transformer-XL network was highly 
biased toward attending to promoter regions and transcription factor 
binding sites near the gene under question [428]. Another network, 
DNABERT was used to predict transcription factor binding (TFB) sites, 
including proximal and core promoter regions, splice sites, and genetic 
variants [429]. Reference human genome GRCh38.p13 primary assem
bly from GENCODE Release 33 [430] was used for pre-training, TATA, 
and non-TATA promoter data from Eukaryotic Promoter Database 
(EPDnew) [431] for promoter prediction and ENCODE 690 ChIP-seq 
profiles from UCSC genome browser [432] were used for predicting 
TFB sites. Enhancers are regulatory elements that activate promoter 
transcription over large distances independently of orientation [433]. 
BERT, pre-trained with masked language modeling (MLM) and the next 
sentence prediction tasks, was combined with 2D convolutions to pre
dict transcription enhancers using a dataset describing an enhancer 
sequencer from nine cell lines [434,435]. 

12.2. Protein 

Transformers can either predict global properties of protein such as 
type, function, or cellular localization or infer local properties of 
selected protein residues such as 2D/3D structure or post-translation 
modifications (such as phosphorylation and cleavage sites) [436]. The 
recent success of AlphaFold in protein structure prediction problems 
[437] has significantly changed the domain [438], although recent ad
vances have primarily included fine-tuning pre-trained deep models for 
learning with small datasets [436]. 

12.3. Molecular drugs 

Transformer have been utilized for the prediction of molecular drugs 
as follows. 

12.3.1. Drug-drug synergy 
One of the most useful applications of Transformer networks is in the 

finding of synergistic combinations of drugs for the treatment of diseases 
which cannot be cured by a single molecule. The classic example of this 
is cancer. In cancer, drug combinations alleviate drug resistance and 
improve therapeutic efficacy. However, the rapidly growing number of 
anti-cancer drugs makes it extremely resource intensive to search the 
entire space of synergistic drug combinations. This is where computa
tional models like the Transformer are useful. The TranSynergy model 
constructed a Transformer model of the cellular effect of drug combi
nations on different gene-cell line combinations by modeling cell-line 
gene dependency, gene-gene interaction, and genome-wide drug- 
target interaction, thereby introducing mechanistic knowledge into the 

model [439]. The study utilized a large drug synergy score dataset [440] 
and drug target profiles from DrugBank[441] and ChEMBL[442]. 
TranSynergy outperformed the SOTA and predicted multiple novel 
synergistic drug combinations for treating ovarian cancer. Kim et.al., 
2020 used multi-task transfer learning to study drug synergy in under
studied tissues to overcome data scarcity problems [443]. The authors 
used a multi-head Transformer network to create an embedding of the 
Simplified Molecular-Input Line-Entry System (SMILES) representation 
of drugs. TP-DDI presents a completely end-to-end Transformer pipeline 
with pretrained BioBERT weights for drug recognition and drug-drug 
interaction (DDI) classification [444]. This study is conducted on the 
DDI Extraction 2013 corpus [86] which consists of a list of semantically 
annotated documents with sentences referring to drugs and DDIs from 
the DrugBank database and MedLine abstracts. 

12.3.2. Drug synthesis 
Transformers have been used to convert the task of target-driven de 

novo drug-synthesis into a neural machine translation task that converts 
an amino acid sequence into the chemical formula of its binding drug 
[445]. This method needs neither any prior information about the drug 
structure nor the 3D structural information of the protein target. The 
study used a dataset of binding affinity between proteins and drug-like 
molecules from the BindingDB database [446]. Synthesized drugs 
were evaluated on active properties like the number of hydrogen do
nors/acceptors, molecular weight, length, total polar surface area, 
number of rotatable bonds, and drug-likeness. Born et.al., 2021 studied 
the synthesis feasibility of drugs for use against the SARS-Cov-2 virus 
using a transformer-based retrosynthesis prediction engine [447] con
sisting of two molecular transformers [448]. They operate on a SMILES 
representation of a molecule to predict best routes for its synthesis 
[449]. This information was further utilized by another Transformer 
model to predict the optimal synthesis protocol using a text represen
tation of the synthesis steps [450]. The approach incorporated varia
tional autoencoders and reinforcement learning to automatically learn 
molecules that target ACE2, a surface receptor on human epithelial cells 
that allows entry of the SARS-Cov-2 virus [449]. 

12.3.3. Drug-target interactions 
In-silico drug discovery is driven by computational models of drug- 

target interactions. Huang et al. developed the Molecular Interaction 
Transformer, which models the interaction space between the most 
common substructures of molecules and drugs [451]. These sub
structures were discerned using Frequent Consecutive Sub-sequence 
algorithm on protein sequences from UniProt dataset [452] and drug 
SMILES strings from ChEMBL [453]. In this work, a Transformer 
encoder is used to create contextualized embeddings of protein and drug 
substructures separately which are multiplied to capture their interac
tion strengths. A CNN extracts higher order interactions from joint 
space. Three datasets were employed to learn the transformer and CNN 
weights- MINER DTI from BIOSNAP [454], BindingDB [455] and DAVIS 
[456]. 

Manica et al., 2021 proposed an anticancer drug sensitivity model 
using drug SMILES sequences, gene expression profile of tumors, and 
protein-protein interaction networks.[457] In this model, an attention- 
based gene expression encoder generates self-attention weights, a 
contextual attention layer ingests this gene embedding together with the 
SMILES encoding of a drug to compute an attention distribution over the 
SMILES tokens, in the genetic context. CNNs with variable kernel 
lengths were used to extract information about all possible substructures 
inside the SMILES sequence. The model outperformed others on a 
regression task involving prediction of drug IC50 values. Training was 
done using lenient splitting which prevented cell-drug pairs in the test 
data from being seen beforehand but did not prevent the model from 
observing how a given cell interacted with other drugs in the dataset and 
vice versa. The authors used drug sensitivity data from the publicly 
available Genomics of Drug Sensitivity in Cancer (GDSC) database for 
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this study [458]. 
Morris et.al. 2020 proposed a transformer-based machine translation 

method to inform the segmentation of molecular substructures into 
binding/non-binding a target protein [459]. The authors translated 
SMILES encodings to IUPAC nomenclatures for a set of 83 million 
compounds from PubChem [460] database and used the resultant cross- 
representation attention embeddings as features to classify binding/non- 
binding compartments of molecules from BindingDB [446] to important 
proteins including HIV-1 protease. 

12.3.4. Drug metabolism prediction 
Metabolic processes in the human body can change a drug’s struc

ture, diminishing its safety and efficacy. Therefore, investigation of the 
metabolic effect of a candidate drug is crucial in drug design studies. 
Litsa et al., 2020 fine-tuned a pretrained Molecular Transformer, and 
used an ensemble of them with beam search to find k-likeliest metabo
lites from every drug [461]. The Molecular Transformer [448] was 
pretrained on this dataset [462] consisting of 900,000 training in
stances. The network was further fine-tuned using a manually curated 
dataset combining samples from Drug-Bank (version 5.1.5) [441], 
Human Metabolome Database (HMDB) (version 4.0) [463], HumanCyc 
from MetaCyc (version 23.0) [464], Recon3D (version 3.01) [465], the 
biotransformation database (MetXBioDB) [466] and reaction rules from 
SyGMa [467]. Their network outperformed SOTA models including the 
BioTransformer [466]. 

13. Discussion 

This paper presented an exhaustive summary of Transformer-based 
applications in healthcare for tasks such as clinical report generation, 
medical image segmentation and registration, molecular sequencing, 
drug-drug interactions, protein synthesis, surgical augmentation, and 
bio-physical signal analysis. Although relatively new, Transformers have 
become remarkably successful due to several reasons such as, paral
lelizable attention computation, ability to model long range de
pendencies, scalability, transfer learning, ability to produce contextual 
embeddings, interpretability and universal adaptability to various data 
modalities beyond text data. However, the parallelizable attention 
module at the heart of the Transformer network is computationally 
expensive and often needs to be optimized for efficient usage. In what 
follows, we highlight potential drawbacks of transformers, how to 
overcome them, and new directions enabled by Transformers. 

13.1. Interpretability and explainability 

Most deep learning systems are considered “black box” models 
because their inferences do not come with any discernable explanation. 
This lack of interpretability has traditionally prevented the systemic 
acceptance of AI-aided diagnostics in the medical domain. Transformers 
inherently provide some transparency through visualization of their 
attention weights. Trained attention weights elucidate contextual in
formation significant for downstream inference. However, interpreting 
Transformers is challenging due to the frequent use of skip-connections 
and the dynamic nature of the model, which involves weight compu
tation through matrix multiplication. Therefore, Transformer inter
pretability, albeit being an inherent property, is not trivial. Chefer et al. 
[468] show that Transformer attention is often fragmented and does not 
provide a robust explanation. They also proposed a novel way to 
compute relevancy based deep Taylor decomposition principle and 
propagate the scores through the transformer layers. In case of vision 
Transformers, Bohle et al. [469] proposed B-cos transformers, for ho
listic explanations for their decisions while retaining the performance to 
the baseline ViTs. Disease diagnosis prediction studies [470,471] have 
generated attention visualizations and cosine similarity between the 
learnt clinical diagnoses embeddings verified by expert clinicians to 
understand whether the trained model could capture the underlying 

semantic of diagnoses codes. However, there remains a need to develop 
novel techniques to improve the interpretability of Transformer models 
tailored towards healthcare AI. 

13.2. Environmental impact 

Advances in AI in recent years have come at the cost of a massive 
carbon footprint. Training a large-scale deep learning model is estimated 
to produce 626,000 lbs of carbon dioxide, equivalent to five automo
biles’ lifetime emissions [472]. The number of computational resources 
researchers use to create SOTA models has doubled every three to four 
months [473]. Most emissions are associated with developing and 
training deep learning algorithms, whereas fine-tuning and adaptation 
contribute less [474]. Strubell et al. [472] suggested that researchers 
report hardware-independent training time measurements, such as the 
number of gigaflops required for training convergence and measuring 
model sensitivity to data and hyperparameters. The last decade has seen 
advancements in AI-augmented healthcare, on the one hand, and carbon 
emissions caused by AI systems that are detrimental to the climate and 
public health on the other. Large healthcare conglomerates and 
governmental agencies around the world should target net-zero carbon 
emissions. United Kingdom National Health Service has set a goal of net- 
zero emissions by 2040 [475]. Goals such as this are vital to promote the 
development of energy-efficient hardware and algorithms that make AI 
sustainable and globally accessible. 

13.3. Computational costs 

The reason behind the impact of Transformers is their high para
metric complexity, flexibility to handle unequal input lengths and model 
scalability. However, Transformers’ ability to be trained on enormous 
datasets comes with expensive computational training budgets. The LLM 
GPT-3 [23] by OpenAI training is estimated to cost $4.6 million and 355 
years of computing time using the Nvidia Tesla V100 device [476]. 
Google’s 530 billion parameters PaLM model is estimated to consume 
103,500 KWh over 60 days [477]. Training and deploying large-scale AI 
models with high-end hardware requirements in healthcare settings is 
challenging. For example, for on-premise use in a hospital, a centralized 
compute cluster similar to ChatGPT might need to be maintained and 
interacted with using an API. However, healthcare settings typically 
need lightweight models to generate real-time predictions with minimal 
maintenance costs. Techniques for compressing deep learning models, 
such as pruning [478], knowledge distillation [479], and quantization 
[480], can be used to provide a more efficient model implementation for 
deployment within practical hardware constraints. 

13.3.1. Model compression 
Transformer models can be efficiently compressed by discarding 

some attention heads during the inference phase. Michel et al. [481] 
showed that models trained on multiple heads during training time need 
not require all the heads during test time. Similar redundancy has been 
observed in generating attention matrices from multiple heads [482]. 

13.3.2. Quantization 
Quantization-based approaches reduce the number of bits/unique 

values required to represent model weights and intermediate layer ac
tivations. There has been growing interest among researchers in recent 
years in quantizing transformer networks. Shen et al. [483] observed 
~2.3% degradation in performance with quantization down to 2 bits, 
corresponding to 13X compression of network parameters and 4X 
compression on embeddings and activations. It was observed that po
sition embedding and the embedding layers are more sensitive to 
quantization than other operations. 

13.3.3. Knowledge distillation 
The knowledge distillation approach aims to train small networks 
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(aka student) using the knowledge from the large model (teacher). 
Student models are obtained by reducing encoder width, number of 
heads, and number of encoders and replacing them with CNN, BiLSTM, 
or a combination [484]. Dimensional incompatibility between the stu
dent and teacher due to compact representations can be overcome by 
projecting teacher or student outputs [485]. Sun et al. [479] proposed 
patient knowledge distillation to compress large teacher BERT model 
trained on MIMIC-III dataset into shallow student models. Student 
models patiently learned from intermediate layers, which translated into 
improve performance and significant training-efficiency gain. 

13.3.4. State space models 
Transformer self-attention is capable of handling intricate in

teractions among sequence elements. However, this capability presents 
a limitation when applied to exceedingly long sequences, particularly in 
modalities like audio, video, and accelerometry where data extends 
continuously over time. State space sequence models [486], on the other 
hand, state space models excel in modeling long range sequences while 
maintaining computational efficiency. Conceptually, state space models 
can be seen as a fusion of recurrent neural networks and convolutional 
neural networks, offering linear or near-linear scalability to sequence 
length. A recent state space model named Mamba [487] has introduced 
a selection mechanism within its architecture, allowing it to make 
informed decisions about the information to propagate or discard based 
on its relevance to tokens in the sequence. Mamba leverages a hardware- 
efficient implementation inspired by FlashAttention [488], resulting in a 
remarkable 5X faster inference speed compared to Transformers. 
Mamba outperformed transformers of same size and matched the per
formance of transformers twice its size. 

13.4. Fairness and bias 

A model is biased when it exhibits undesired dependence on an 
attribute of the data that belongs to a specific demographic group [489], 
and could lead to unfair treatment of particular patient groups. Re
searchers have observed that bias often arises when the datasets used to 
train the models under-represent certain patient populations [490–492]. 
Although this is a prevalent bias problem during training, other sources 
of bias at all stages exist, including during problem formulation, data 
collection, data preprocessing, model development and validation, and 
model deployment (e.g., due to unmonitored drift) [493]. With the 
increasing scale of models and amount of data available, the existing 
biases and stereotypes perpetuate into the models leading to unfair and 
biased outcomes [49]. Thorough validation should be done before 
deploying the model to evaluate the performance of underrepresented 
groups. The models should be continuously monitored and audited for 
fairness and bias post-deployment. 

13.5. AI alignment 

The goal of AI alignment is even broader than preventing bias by 
striving to design AI systems that align with human values and goals. An 
AI system is considered aligned when the system behaves in ways 
beneficial to humans while minimizing the risk of unintended conse
quences and harmful outcomes [36]. LLMs sometimes confidently assert 
false claims that do not reflect facts, a phenomenon termed hallucina
tion [494]. These hallucinations by the misaligned models fail to meet 
the user’s expectations of correct answers faithful to the existing sources. 
Ensuring AI systems are aligned with human values and goals is chal
lenging because predicting and designing for every potential desired and 
undesired outcomes is difficult. As AI systems become more capable, 
they become increasingly susceptible to the alignment problem, which 
can result in unintended and harmful consequences [495]. AI alignment 
is especially critical in healthcare when deploying large-scale founda
tion models to ensure these models are ethical, responsible, respectful of 
patient privacy, and, most importantly, not causing harm. Healthcare 

professionals and the AI research community need to develop a clear set 
of standards and guidelines to establish ethical use of AI in health care. 

13.6. Data privacy and data sharing 

Preserving patient privacy is a required feature in all healthcare AI 
systems. Federal regulations based on the Health Insurance Portability 
and Accountability Act (HIPAA) regulate the development of AI models 
that use patient information [496,497]. Nonetheless, this also adversely 
impacts the development of large models such as Transformers that 
require large amounts of data. Utilizing data from a few sources, such as 
select public repositories, can skew the model inferences based on un
derlying limitations in dataset collection (different equipment, protocol, 
and cohort demographics), processing (specific heuristic or statistical 
preprocessing), and deployment (different metadata, availability, and 
maintenance). These biases can skew predictions that favor or adversely 
affect certain population groups over others, leading to a degradation in 
the quality and equity of healthcare for individuals from the protected 
group and stymieing the research on age, sex, or race-related medical 
conditions. 

The Federated learning (FL) paradigm shown in Fig. 9 aims at 
developing a shared training model that can leverage data from multiple 
fragmented sources, such as different healthcare institutions, without 
divulging sensitive patient information [498]. FL communicates be
tween various data sources by exchanging model-specific characteristics 
like parameters and gradients without exchanging patient information 
directly. Recent efforts in FL have targeted digital health objectives like 
determining patient clinical similarity [499,500], mortality and ICU 
length-of-stay [501], brain segmentation [502], and brain-tumor seg
mentation [503,504]. FL can perpetuate many healthcare innovations in 
the future. However, there are technical challenges in building an 
operational FL workflow, such as inhomogeneous data distributions, 
computational hardware differences, inconsistent privacy preservation 
settings, and resultant performance trade-offs [505]. 

14. Conclusion 

Transformer models have demonstrated enormous potential in a 
wide variety of healthcare applications. They possess a unique ability to 
model various data modalities, including images, clinical text, bio- 
physical signals, structured EHR, social media and genomic data. 
From disease diagnosis to drug discovery, Transformer models exhibit 
the potential to improve patient outcomes and advance medical 
research. However, various challenges and limitations remain to be 
addressed before they are widely accepted into regular clinical practice. 
These include data limitations, biases, privacy, security, and truthful
ness. The majority of the models currently in use are task-specific, and 
there is a need to utilize robust multimodal inputs in many cases. 
Nevertheless, the future of AI in healthcare is optimistic, with promising 
advancements and opportunities presented by large-scale transformer 
models. 
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