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Metagenome-assembled genome sequences of two 

cyanobacterial cultures from Homa Bay County, Kenya
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ABSTRACT Metagenome-assembled genomes were generated for two xenic cyanobac­

terial strains collected from aquatic sources in Kenya and sequenced by NovaSeq S4. 

Here, we report the classification and genome statistics of Microcystis panniformis WG22 

and Limnospira fusiformis LS22.
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M icrocystis spp. are cosmopolitan cyanobacteria that tolerate a wide range of 

temperature conditions, blooming at a minimum of 15°C (1). Arthrospira (Limno­

spira) spp. are primarily found in Africa, Asia, South America, and Central America, and 

occur in soda lakes in the African Rift Valley (2). In June 2022, a Microcystis strain was 

collected from the Winam Gulf offshore of Homa Bay (−0.494583, 34.444167) using 

a plankton net. Also in June 2022, a Limnospira strain was collected in Homa Bay 

County from Lake Simbi (−0.367750, 34.629833) from the shoreline. Xenic cyanobacterial 

cultures were separated through a dilution series by selectively pipetting colonies/fil­

aments from 10 µL of original sample on a microscope slide into 10 µL of BG-11 

media, repeating until single colonies/filaments were achieved. The resulting Microcystis 

colony was transferred into fresh liquid BG-11 media (https://utex.org/products/bg-11-

medium?variant=30991786868826#recipe) in a 24-well plate and incubated at 21°C and 

5 µmol/m2/s until biomass accumulated. Limnospira was grown in liquid Spirulina media 

(pH 10.4; https://utex.org/products/spirulina-medium?variant=30991737454682#recipe). 

Unialgal growth was confirmed by microscopy, and biomass was transferred into 25 mL 

of fresh media in a culturing flask.

The xenic cyanobacterial cultures were cultured at the conditions stated above and 

monitored for growth. After several months of acclimation, approximately 20 mL of 

dense culture was filtered through a Sterivex filtration unit (0.22 µm pore size, Sigma 

Aldrich, St. Louis, MO). Filters were frozen until extraction, where the membranes were 

removed from the plastic casing, and DNA was extracted using a DNeasy PowerWa­

ter Kit (Qiagen, Germantown, MD) according to manufacturer’s instructions. Eluted 

DNA was sequenced at the University of Minnesota Genomics Center. Unique Dual 

Indexed Illumina DNA libraries were prepared using Nextera DNA Flex and sequenced 

on a NovaSeq S4 to generate 150-bp paired-end metagenomic reads. Paired-end 

reads were input into the Department of Energy Systems Biology Knowledgebase 

for de novo assembly of each metagenome-assembled genome (MAG) in separate 

workflows [KBase; (3)]. Default parameters were used for all applications listed unless 

otherwise specified. Reads were imported as a paired-end library and trimmed to 

eliminate low-quality base calls and Nextera-PE sequencing adapters, also setting the 

head crop length to 15 [Trimmomatic v0.36; (4)]. After trimming, read quality was 

assessed using FastQC (v0.11.9; https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). Metagenomic reads were assembled using metaSPAdes [v3.15.3; (5)] and binned 

with MaxBin2 [v2.2.4; (6)], MetaBAT2 [v1.7; (7)], and CONCOCT [v1.1; (8)] with minimum 
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contig length of 2,000 bp prior to bin optimization using DAS-Tool [v1.1.2; (9)]. Bin 

quality was assessed with CheckM [v1.0.18; Table 1; (10)], and the bins classified to 

cyanobacteria were extracted. The quality of binned assemblies was assessed using 

QUAST [v4.4; (11)], and taxonomy was assigned to MAGs with the Genome Taxonomy 

Database (GTDB-Tk v1.7.0) and FastANI (12–17). Finally, MAGs were annotated using the 

Prokaryotic Genome Annotation Pipeline (PGAP) through National Center for Biotechnol­

ogy Information [v6.6; (18–20)]. Additional analysis using AntiSMASH v7.0 indicated that 

WG22 has a complete mcy operon that correlates with frequent detections of microcys­

tins in the Winam Gulf, while LS22 is not predicted to produce any common cyanotoxins 

(21, 22).
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TABLE 1 Summary of metagenome-assembled genomes WG22 and LS22

Characteristic Microcystis panniformis WG22 Limnospira fusiformis 

LS22

Assembly GenBank accession no. SAMN37196505 SAMN37196506

Raw reads GenBank accession no. SAMN36615257 SAMN36615258

No. of reads 408,836,714 506,895,224

MAG length (bp) 4,264,909 5,209,155

Bin completeness (%) 92.12 98.18

Bin contamination (%) 3.51 0.44

No. of reference genomes for marker sets 79 79

No. of marker genes 582 584

No. of marker sets 456 458

Marker genes identified zero times 46 10

Marker genes identified one time 517 571

Marker genes identified two times 19 3

Average GC content (%) 42.71 44.5

No. of contigs 532 407

N50 (bp) 13,379 20,557

No. of predicted genes 4,170 4,801

FastANI reference GCF_010196425.1 GCA_012516315.1

FastANI reference identity Microcystis panniformis Limnospira fusiformis

FastANI ANI (%) 95.6 99.38
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JAVSPO010000000. The raw sequence files are available as sequence read archives 
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PRJNA996591.
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