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Exactly Tight Information-Theoretic Generalization
Error Bound for the Quadratic Gaussian Problem

Ruida Zhou~', Member, IEEE, Chao Tian

Abstract—We provide a new information-theoretic general-
ization error bound that is exactly tight (i.e., matching even
the constant) for the canonical quadratic Gaussian (location)
problem. Most existing bounds are order-wise loose in this setting,
which has raised concerns about the fundamental capability
of information-theoretic bounds in reasoning the generalization
behavior for machine learning. The proposed new bound adopts
the individual-sample-based approach proposed by Bu et al., but
also has several key new ingredients. Firstly, instead of applying
the change of measure inequality on the loss function, we apply it
to the generalization error function itself; secondly, the bound is
derived in a conditional manner; lastly, a reference distribution
is introduced. The combination of these components produces a
KL-divergence-based generalization error bound. We show that
although the latter two new ingredients can help make the bound
exactly tight, removing them does not significantly degrade the
bound, leading to an asymptotically tight mutual-information-
based bound. We further consider the vector Gaussian setting,
where a direct application of the proposed bound again does not
lead to tight bounds except in special cases. A refined bound is
then proposed by a decomposition of loss functions, leading to a
tight bound for the vector setting.

Index Terms—Information theory, machine learning.

I. INTRODUCTION

NDERSTANDING the generalization behavior and

bounding the generalization error of learning algorithms
are important subjects of study in machine learning theory.
Recently, information-theoretic approaches to bound gener-
alization errors have drawn considerable attention in both
the information theory community and the machine learning
community [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26]. These bounds can provide intuitions
by relating to information-theoretic quantities, leading to
novel reasoning and revealing deep connections to existing
results such as the classic VC-dimension and Rademacher
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complexity [27]. Information-theoretic bounds can take into
account both data distribution and the dependence between
data and algorithm output, which cannot be fully captured by
the conventional complexity-based bounds.

In classic information theory research, the study of
complex communication systems usually starts from the sim-
plest canonical settings. Particularly, the canonical quadratic
Gaussian settings have played tremendous roles in the study
of both channel coding and source coding [28]. The study
of Additive White Gaussian Noise (AWGN) channel under
the average power constraint can be traced back to the
original paper by Shannon [29] and led to many subsequent
developments in wireless communications [30]. Similarly, the
Gaussian source compression under the quadratic distortion
measure has been studied extensively [31], [32], which led to
many well-used designs of data compression and quantization
methods. The motivation to study the Gaussian settings can
perhaps be explained as follows. Mathematically, the simplic-
ity of the Gaussian settings, the statistic properties of Gaussian
distributions (e.g., the central limit theorem guarantees that
aggregation of small independent noises will lead approxi-
mately to a Gaussian distribution), the optimality of linear
estimators, and the connection to information measures (e.g.,
differential entropy and entropy power inequality) allow the
derivation of precise results and exact tight bounds, which
can serve as a running ramp for more complex settings.
Practically, Gaussian noises and Gaussian sources can be good
approximations to random quantities encountered in many
applications, further strengthening the motivation to study the
Gaussian settings.

In sharp contrast to the classical information theory
research, in the study of generalization error bounds,
although various more sophisticated settings such as meta-
learning [7], [22] and iterative stochastic algorithms [4], [15]
have been considered, our understanding of the canonical
quadratic Gaussian problem is in fact quite limited. In this
problem setting, independent Gaussian samples are observed,
and the learning algorithm chooses the sample average as
the hypothesis parameter to locate the mean value. The
loss function is the squared difference between the sam-
ples and this hypothesis parameter. It turns out that earlier
information-theoretic bounds are either vacuous [2] or order-
wise loose [9], [10], [12], [14]. The only approaches that
provide order-wise tight bounds in this setting either only
hold asymptotically [13], or have a loose constant and
require a careful construction of certain auxiliary probability
structure [16].
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In this work, we provide a new information-theoretic
bound that is exactly tight (i.e., matching even the con-
stant) for the canonical quadratic Gaussian (location) problem.
The proposed new bound adopts the individual-sample-based
approach proposed by Bu et al. [9], but also has several key
new ingredients. Firstly, instead of applying the change of
measure inequality on the loss function, we apply it to the
generalization error function itself; secondly, the bound is
derived in a conditional manner; lastly, a reference distribution,
which bears a certain similarity to the prior distribution
in the Bayesian setting, is introduced. The combination of
these components produces a general KL-divergence-based
generalization error bound. We also show that although the
conditional bounding and the reference distribution can make
the bound exactly tight, removing them does not significantly
degrade the bound, which results in a mutual-information-
based bound that is also asymptotically tight in this setting.

In order to further understand the proposed generalization
error bound, we consider the vector version of the Gaussian
location problem. The samples here are independent Gaussian
vectors, and the algorithm is again the sample mean, but the
loss function is a general squared matrix norm. We show
that a direct application of the proposed bound is no longer
tight in this setting except in certain special cases. However,
a refined information-theoretic bound that takes advantage of
the decomposition of the matrix norm can indeed lead to a
tight bound.

The rest of the paper is organized as follows. In Section II
we provide the preliminaries and some relevant previous
results. The new generalization error bound is provided in
Section III, and then applied on the canonical quadratic
Gaussian problem in Section IV. The generalized vector set-
ting is considered in Section V. Finally, Section VI concludes
the paper, and a few technical proofs are included in the
Appendix.

II. PRELIMINARIES
A. Generalization Error

Denote the data domain as Z, e.g., in the supervised
learning setting Z = X x ), where A is the feature domain
and Y is the label set. The parametric hypothesis class is
denoted as Hyy = {hw : W € W), where W is the parameter
space. During training, the learning algorithm has access
to a sequence of training samples Zy, = (Z1,22,...,2Z,),
where each Z; is drawn independently from Z following
some unknown probability distribution &. The learner can
be represented by Pw)z,;, which is a kernel (channel) that
(potentially randomly) maps Z" to W.

The learner wishes to choose a hypothesis w € W to
minimize the following population loss, under a given loss
function £ : W x Z — R,

Lg(w) =Bz, [¢(w, Z)]. (1)
The empirical loss of w is
I n
Ly W) = — 3 £W,Z). 2)
i=1

The expected generalization error of the learner Pz, is

gen(g" P W|Z{n]) = EP[LS W) — LZ[N!(W)]' 3)

where the expectation is taken over the distribution Pw z,
as the joint distribution implied by the kernel Pz, and the
marginal Pz, = £".

Assume another distribution Qw, z;,;, where W and Zj,) are
independent and the marginal O, is the same as Pz, ie.,
Ow.z,; = OwQz,, = OwPz, . The marginal distribution Qw
can be viewed as a prior distribution in this case.! For such
Q’s, apparently, we have

gen(£, Qwiz,) £ Eg[Le (W) — Lz,,(W)]| =0,  (4)

where the equality is because Qw z, = OwPz,- In other
words, when the algorithm does not learn from the data, its
generalization error is zero. This fact will be used during the
bounding of generalization error, when we apply the change of
measure inequality to the generalization error function itself,
instead of on the loss function.

B. Variational Representation of the KL Divergence

The Donsker-Varadhan variational representation of KL
divergence for a random scalar-valued random function F =
f(X) on a random variable X is given by

KL(P||Q) = sup{AEp[F] — InEg[e*]}, (5)
f

where the equality is achieved when AF* = In % + C and %

is the Radon-Nikodym derivative, or in the inequality form

(6)

This inequality is sometimes also referred to as the change
of measure inequality [33]. P and Q can be the distributions
of the underlying random variable X, or more directly, the
distributions of F. In the context of bounding generalization
error, examples are F = £(W,Z) or F = Lg(W) — (W, Z).
We remark here that in the variational representation (5), the
supremum is taken over the functions f, whereas when we
apply the change of measure inequality (6), the function f is
usually already fixed, but the distribution Q can be optimized
to make the bound tighter.

The centered cumulant generating function of a random
variable F is

AEp[F] < KL(P||Q) + InEg[¢*"], VreR.

Ar,0(A) = InEg[e*f] — AEq[F]. @)
Combining it with the inequality above gives
KL(P||Q) + Ar,o(A) = AEp[F] — AEg[F], AeR. (8)

Now if we choose F = f(W,Z), then for any Z = 7z the
conditional version of the above inequality is

KL(Pwiz=:|1Qwiz=:) + AFiz=z.0wz_. (M)

> AEpIFIZ =2] — AEgIFIZ =z], AR, (9)

UIn the Bayesian setting, the distribution P is usually used to denote the
prior distribution and @ as the posterior (data dependent) distribution. This
is reversed from ours, which follows the convention in information-theoretic
literature.
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where

AF|Z=Z.QW|Z:Z 2
=In EQWIZ:z [EAFEZ = Z] = AEQWIZ:: [FEZ — Z]- (10)
We will simply replace Z = z in the condition with Z when

the exact conditional value realization is not specified.
With a positive A, we obtain

[ KL(P||Q) + AF,0(X)

A
where equality is achieved if and only if

EplF] — EglF] < ){r;l(;

]= (an

ln%e{lF—i—b:letheR]. (12)

The equality condition can also be interpreted as requiring
us to choose dQ oc exp(—AF) dP. When P is the joint
distribution of underlying random variables, and Q is the
product distribution of their marginals, then KL(P||Q) reduces
to a mutual information term.

To be consistent with past results in the literature, we will
sometimes use the following definition. The Legendre dual
function on the interval [0, b) for some 0 < b < o0 is

A*(x) £ sup (Ax— A(R)).
1€[0,b)

A(}) is convex and A(0) = A’(0) = 0. It can be shown that
the inverse dual function is

4 . y+ AL
A* Y= inf [Z—2 .
o=, i (B52)

C. The Scalar Quadratic Gaussian Location Problem

(13)

(14)

In the Gaussian location probler_n_ introduced by Bu et al. [9],
data samples are Z1,7, ..., Z, e £ = N(u,c?) and the
sample-average algorithm chooses the following hypothesis
ﬁZ?:l Z;. The loss function is the quadratic function
givenas £(w, ;) = (w—z;)2, and the sample-average algorithm
is in fact empirical risk minimization for this quadratic loss.
Note that this problem setting is not a traditional super-
vised learning setting, therefore, the data point Z does not
decompose into the feature X and the label ¥. The expected
generalization error is

s, Pu) = E| (2 W)’ 1 S~
i=1

- EB Z":[(z,- W)Y — - W)z]]

i=1

I zﬂ:]E[Zf -7 +2(z - Z)W]

i=1
S E(o? +12 2 42— W),
i=1
(1s)

where 2[,,] are n i.i.d. testing samples, independent of every-
thing else, and the expectation is with respect to distribution
P35Pzn w, where the joint distribution Pz w is induced by the

n
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algorithm W = %ZLI Z;. It is straightforward to show that
the true generalization error is in fact 202 /n.

In this work, we shall consider a slightly more general
version of the sample-average algorithm that W = )7 | a;Z;+
N, where N is a Gaussian noise ~ N'(0, Jﬁ,), independent of
Zin). and o;’s are nonnegative weights such that ) 7 a; = 1.
It can be shown that the true generalization error is also 252 /n
(see the Appendix).

D. Existing Generalization Error Bounds

Xu and Raginsky, motivated by a previous work by Russo
and Zou [1], provided a mutual information (MI) based bound
on the expected generalization error [2]. Assuming £(w, Z) is
o-sub-Gaussian? under & for all w € W, then the bound is

2q2
gen(£, Pwiz,) < T,'(W; Ziny)- (16)
One issue with this bound is that it can be vacuous, i.e.,
the mutual information term can be bounded. Indeed, for
the quadratic Gaussian case, it is vacuous when N = 0.
Bu et al. [9] noticed that the generalization error can be written
as

L 5
gen(£, Pwz,) EZH}:[(:B('.V,Z,-)—f.(w, zZy)] an
i=1

1 n
= ; E[(Ls (W) — £(W,Z))].  (18)

where Z’s are independent testing data samples that are
independent of W. The following bound can then be obtained
by bounding each summand

I n
gen(§, Pwiz) < ~ > V202U(W; Z),
i=1

(19)

assuming £(W,Z) is o-sub-Gaussian, where W and Z are
independent but have the same marginal distribution as that in
PW,_Z[,,]- This bound improves upon the bound in [2], and it is
in general not vacuous. However, for the quadratic Gaussian
problem, it leads to an order O(1/./n) bound, which is order-
wise loose.

Steinke and Zakynthinou [10] introduced a conditional-
mutual-information-based generalization error bound. We will
not provide the precise bound here, but it can be shown
straightforwardly that their bound leads to an order O(1)
bound, which is order-wise loose. Different improvements
on this conditional mutual information bound have been
proposed [11], [14], [15], however, in the quadratic Gaussian
problem, they led to either O(1) or O(1/./n) bounds, thus
also order-wise loose. Details can be found in [14].

Zhou et al. [16] proposed a chaining technique to tighten the
generalization error bound, and showed that with a specially
constructed chain in the quadratic Gaussian problem, the
bound in [9] can be tightened to the order O(1/m), but
with a loose constant factor. In a more recent work [13],

2We call a distribution ¢-sub-Gaussian if it has a variance proxy of ol
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Wu et al. proposed a new bound assuming the function
r(W,Z) = &(W, Z) — £(w*, Z) is o%-sub-Gaussian, where w*
is the optimal solution of the true risk. For the quadratic
Gaussian problem, this bound is asymptotically optimal,? but
not optimal for finite n. Moreover, the function r(W, Z) relies
on the optimal solution w*. A more detailed summary of the
quadratic Gaussian location problem can be found in [34].

III. A NEw INFORMATION-THEORETIC GENERALIZATION
ERROR BOUND

The new information-theoretic generalization error bound is
summarized in the following theorem.
Theorem 1: Let F; = Lg(W) — £(W, Z;), then we have

gen(&, Pwiz,)

g, B KL(Pwiz QW) + Ap.iz. 00 ()
e ZEPZ. it ( ) | QW
n 1 i 20 A

1 ;
=52 (8500, KLPwZIOW)].  @0)
for any QY , = QyPz.i=1,2,....n, ie. adistribution Q'
where W is independent of Z;.

The reference distribution Q can in fact be optimized,
which would provide the tightest bound for a fixed learning
algorithm. This bears certain resemblance to those used in [35]
which considers the computation of tight generalization bound
using the PAC-Bayesian approach.

Proof: We start from (18), and consider each summand on
the right-hand side

Epy 7, [Le (W) — £(W, Z))]
— EPZl- [Epwgzj ((L§ (W) — (W, Z,)iz,)]
KL(Pwz11Q) + Apyz.0i, M)

<E inf
- PZ" [;>0 A
Z,')]

+Eg;, ((Lg (W) — £(W. Z)
KL(Pwz]|0; Apyz o
= Ep, [inf ol + FIIZNQIW(D]’ (1)
Tl A=0 A

where the first equality is by the tower rule, the inequality is
by (9), and the second equality is due to (11). Summing over
i gives the bound stated in the theorem. |
As will be shown in the next section, this bound is exactly
tight for the quadratic Gaussian problem, and therefore, it can
be viewed as a tight bound in the sense that it cannot be
strictly improved in a uniform manner, either in terms of the
constant or in the scaling. The proposed bound has operations
in the order of infimum, expectation, and summation, where
the summation and the expectation are exchangeable without
hurting the tightness. We believe that taking the infimum inside

3The bound is only asymptotically optimal, (in fact, only asymptotically
valid) since one of the inequalities is replaced by an approximation that only
holds in an asymptotic manner to yield the bound. Strictly speaking, their
bound can be stated as follows: for any € > 0, for sufficiently large n, the
generalization error < 2(1 + G)U'Zﬂ‘t in this quadratic Gaussian problem.

is the key to the tight bound, since it allows the bound to fully
leverage the flexibility of optimizing A. To make this explicit,
we give the following corollaries.

Corollary 1: Let F; = Lg(W) — £&(W, Z;), then we have

gen(£, Pwiz,)
 of E[KL(Pwm—liin) + Ar, 0, m]

S i
T =0 A
1. [KL(PwizllQy) + A, g, M)
= ;zﬁ[; ZE[ 2 o

for any Q ;. = QyPz. i=1,2,....n.

The first inequality is obtained by exchanging expectation
and infimum, and the second is obtained by exchanging
summation and infimum.

Corollary 2: Let F; = Lg(W) — £(W, Z;), then we have

gen(€, Pwiz,)
[1 5 [KL(PIHZ,- QW) + AF,—,Q{._,(D]]

< E inf
A=0

=% .

i=1

1 [KL(Pwiz Q) + A oi (M)

T =0 n 4 A
i=1
for any Qy , = QyPz. i=12,...,n.

The first inequality is obtained by exchanging expectation
and summation, and the second by exchanging infimum and
expectation. The second bounds in Corollaries 1 and 2 are the
same, while the first bounds are not directly comparable.

Notice that when in‘ z= Pw ®Pgz, ie., th_e product of the
marginals of Py z, we have E[KL(Pwz[Qy)] = I(W; Z;).
This leads to the following corollary.

Corollary 3: Let F; = Le(W) — &(W, Z;), then we have

1~ [IW;Z) +EAf,py(3)
= ng;z‘a[ 3 ]

gen(&, Pwiz,)

[A
|
B

f[I(W: Z) + AF; pypy, (M]
A- : ]

S
== AL pyr, AW; Z) (24)
i=1
where the second inequality is due to the concavity of the In(-)
function.

By exchanging the infimum and the summation, we straight-
forwardly obtain further that

| 1 _[I(W; Z) + EAF, py (V)
gen(§, Pwiz,) < o [_ ZI: ]]

=0| n 4 A
i=1

1 <~[I(W: Z;) + AF; pypz (X)
< inf [— Z[ L ]]
A>0| n = A

1

(25)

The second bound in (24) is in fact quite similar to the
main theorem in [9]. However, there is a major difference even
when we assume the reference distribution Q is the same as
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the product of the marginals in P: the function F we choose
to bound is different. Specifically, the bound proposed by
Bu et al. has the exact same form as (24), however with the
function F; being the loss function £(W,Z;), while we use
the generalization error as the function, i.e., Fj = Lg(W) —
LW, Z)).

When the function F is conditional oz,-sub-Gaussian with
respect to the distribution Qw, we have as a consequence
A Fi. 0 L = oézi_lz. The following corollary is then
immediate.

Corollary 4: Let F; = Le (W)—£(W, Z;). If F; is conditional
og,,-sub-Gaussian for each Z; = z; with respective to Q}y then

gen(&, Pwizy) < — ZE‘/KL Pw\z; IIQW)

‘Z\/

for any Q{V such that W is independent of Z; for i
L 2o

szaniv)aézi]. (26)

IV. THE CANONICAL QUADRATIC GAUSSIAN PROBLEM
REVISITED

With the new generalization error bounds derived in the
previous section, we are now ready to revisit the canonical
quadratic Gaussian (location) problem.

A. Exactly Tight Bounds for the Quadratic Gaussian
Problem

The expected generalization error of interest in the quadratic
Gaussian problem is

gen(§, Pwiz,)
L - 2, .22 L ,
- ]El|:n Z}E[a + -2+ 2z ,u)wgz,]]. @7

i=1

For any fixed i, define

Fi=fz(W) 20 +p> —Z} +2Zi—wW.  (28)
Note the conditional distribution
P
WIZi~ N | +eiZi—w), ) ofo’ +oy|. (29
#i
We will choose the reference distribution Q% as
W%’N Zazaz—i—az (30)
Hs f N

J#
which is indeed independent of Z;.

Remark. In the reference distribution Qi,,,_ z W and Z; are
independent, and the marginal distribution Q‘;,., is not the same
as that marginalized from Pw, z, . More specifically, the latter
is in fact

n
Py ~N(,u, ) _efa’ +a£f)=
i=1

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 5, 2024

which can be compared with (30).
With these conditional distributions, we can derive that (see
the Appendix)

KL(Pwiz|Qiz ) = KL(Pwiz|Qly)
= o} (Zi — w)?

Givg, @ = A g1, )

1
2 jsi0f0? + 205

= ZAZ(Z; = ,u)z Z cejzo‘z + crf,
J#

. (31)

Therefore

. 1
E[KL(Pwiz1Q)] = ¢?o

2)siat0l + ZJN

E[Ar, 0, 3] =28%[ Y ofo? +oF
J#
Applying the first bound in Corollary 1, we obtain

(32)

gen(§, Pwiz,) .
n _nf E[KL(PwmIIQM +Arg W ]
n “~ x>0

Zm i 5
i=1

Ry nf[E[KL(PwmIIin)]+E[AF;.Q{V(")]]

= - i
ﬂ_]l>0 A

=
242
=— (33)
n

where the last equality is by choosing the minimizer A} as
Qj

Af = :

I

(34)

Therefore, the first bound in Corollary 1 leads to a tight
generalization error bound for this setting.

Remark. Recall the equality condition in (12). With the
given Pyz and Qj, we have that

dP

2P _ 20Zi— — W — o} (Z; — p)? — 2pai(Z; — W
aQ

2) 0ol + 205

(35)

With (28), it is seen that the condition given in (12) is indeed
satisfied, with
o
2Ysiafo? +205
_@i— )’ +2paiZi— )
2) 00l + 205

A= (36)

(37)

This choice of A is in fact exactly the optimizing solution
in (34). Conversely, the distribution Q we chose can be viewed
as obtained through the condition (12) (or equivalently dQ o<
exp(—Af) dP), with the parameter A chosen to maintain the
independence between W and Z; as required in Theorem 1.
In contrast to the tight bound derived from the first bound
in Corollary 1, the second bound in Corollary 1 and the first
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bound in Corollary 2 are not tight for general assignments of
@;'s, due to the fact that the optimal A} is index-dependent.
In the extreme case, consider setting oy = 1 and a; = 0 for
i=2,3,...,n Then the second bound in Corollary 1 gives

gen(§, PW|z[,.1)

. Ez%—%“l—l)a 2(0? + 0§)A% + 2020322
=—1i
na=0 A

2(n— 1)(02 +0f) + UN a8
on 207
which is of order O(1/ \/E). However, when a; = 1/n, this
dependence disappears and the loosened bounds also become
tight. Indeed, consider the second bound in Corollary 1 for
this case, we have

gen(&, Pwiz,;)
L[ (B P 103)] +E[As g, ®)])

= —in
n =0 A
202
=—, (39)
n
where the last step is obtained by choosing
¥ _ o n
A . (40)

C2Y 00 + 207 " 21— 1)o? + 20}

Remark. The additive noise N in the algorithm W =
ZLI a;Z; + N makes it a randomized algorithm, but it does
not cause any essential difference in our bound. We included
the noise here mostly to enlarge the set of problems that
the proposed generalization error bound is tight. In other
words, the proposed bound is not only tight for one particular
algorithm of @; = 1/n and o = 0, but also a class of

algorithms with different o;’s and o3

B. Looseness of Mutual Information Based Bounds

One remaining question in the quadratic Gaussian problem
is whether we can obtain tight or asymptotically tight general-
ization error bounds using mutual-information-based bounds.
To understand this issue, we consider the bounds in Corollary 3
assuming the coefficients o; = 1/n for i = 1,2, ..., n. Note
that in this case, the choice of the reference distribution Qi‘,
is fixed as the marginal of Py.

The various terms we need when applying Corollary 3 in
this setting can be shown to be (see the Appendix)

TOWE 22— i
v = B T

_ 200n—1) ,
EAf, g, () = Z——1

1 232t
AF&.Q‘WZJ. (A) = Ao 3 log[] 2( = Ao )]

With these quantities, it follows that the first bound in
Corollary 3 is

2 2
gen(§, Pwiz,) < %‘/(l 2 j 1)(" —13 @)

The bound is of order O(1/n); in fact it is asymptotically
optimal in the sense that it approaches =——. Therefore, the first
mutual-information-based bound in Corollary 3 does not lose
the tightness in a significant manner compared to the K1.-based
bound of those in Corollaries 1 and 2.

The second bound in Corollary 3 has the form

gen(&, Pwiz,) <o’

pt] o P Ll o3
inf | — log —— — —log| 1 — — Ao ;
0|20 Ba—d 2% E n

(42)

for any § € (0,1/2], and any € > 0, by choosing A =
l,r’(2n502), it can be seen that for sufficiently large n, we have
gen(‘g’,Pv,qz{n]) < (1+ e)n%%zg. Therefore, the bound can be
also viewed as asymptotically optimal.

Similarly, we can apply the bounds in (25). Since in this
case, the optimal choice of A does not depend on the index-i,
they are also asymptotically optimal. It should be noted that
when the weight coefficients ¢;’s are not chosen to be uniform,
then the optimal A becomes dependent on the index i, and the
bounds in (25) will be looser, in a similar manner as that for
the KL-based bounds.

From the discussion on both the KL-based bound and the
mutual-information-based bounds, it appears that the order-
wise looseness of the existing bounds mainly stems from
the choice of the function to apply the change of measure
inequality, i.e., &(W,Z;) or &(W, Z) — LW, Z). It is seen
that the second quality is intuitively more centered, and
therefore, the variance proxy is considerably lower than the
former, assuming that they are both sub-Gaussian. In the
canonical Gaussian setting, this difference is critical to make
the information-theoretic bounds tight or asymptotically tight.
We expect the same effect will manifest in other problem
settings, though without the ground truth and the statistical
models, this conjecture is difficult to verify precisely.

V. THE VECTOR QUADRATIC GAUSSIAN
LocATION PROBLEM

Let us consider the vector version of the quadratic Gaussian
location problem. Let the data samples be Z;, 2, ...,Z, i s
& = N(u,X), ie., each Z; is a d-dimensional random
Gaussian vector. The sample-average algorithm again chooses
the following hypothesis W = ) i a;Z; + N, where a;’s
are nonnegative weights such that ) ¢ ,a; = 1, and N is a
Gaussian noise vector ~ N (0, crf,l). Instead of considering
the standard mean squared error, let us consider a more
general quadratic distortion measure ||x||3 = x”Ax, based on
a symmetric positive definite matrix A, for which we have

sl P) = 2 (2 a2 - )
| s ‘ ——
- E,(Z. -W)TA@Z - W)]

= % i[Tr(A(E 7] ,upLT))

~E(Z[ AZ; — 2(Z; — )"AW)].  (43)
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It can be shown that the generalization error of this setting is

2Tr(AX)

6ne would expect that the result on the scalar setting could
be generalized to this setting to obtain tight bounds, however,
we shall illustrate the critical condition (12) is in fact rather
stringent. To obtain tight results in this setting, one has to
apply the bound in a different manner and the tightness is
dependent on the decomposition of the loss function.

A. Generalization Error Bounds via Theorem 1

Let us follow the footsteps of the scalar case, and define
Fi=Ti(A(S + pp')) — (Z7AZ — 2(Zi — w"AW). (44)

The conditional distribution is

P
W|Z; ~ N ,tL—i—a,-(Z,-—,u),za?E + 0Pl (45)
J#i
We will choose the reference distribution Q% as
O 2 2
w ,LL,ZQJ-E—!—O'NI , (46)

J#
which is independent of Z;.

With these conditional distributions, we can derive (see
appendix) that

KL(Pwz||Q%)
o
2
=Ll @-w' |y as+ofl| @-w| @D
J#i
AFI"Q{V A)

=22z, — w)TA Zafz + o2 |A(Z; — ). (48)

i
Therefore
5 =)
E[KL(PwizlIQw)] = 5 Tr| | o ofE+ojl| =
i#i
E[Ar g, 0] =22Te| 4| Y a?T +o31 JAT |. (49)

J#

At this point, it is clear that the bounds can not be further
simplified under general choices of «;’s, A, and O}%r. Next, we
consider three special cases:

e 02 =0and A = In this case, we have

; do?
E[KL(Pwiz1IQw)] = F
j#i O

E[Arg,®] =22 Yo |T[z?] 0
J#
Applying the first bound in Corollary 1, we obtain

2
gen(§, Pwiz,) < 7V dTr[22].

(51)
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As a reference, the true generalization error in this setting
is in fact %Tr[E], i.e., the bound is loose using this
bounding approach.

e 02 =0and A= X~!: In this case, we have

BKL(Pwz 104)] = 5o
WizllCw)| = ;= 72°
25k
E[Ap, g, )] = 2402 Y2 (52)
J#
Applying the first bound in Corollary 1, we obtain
2d
gen(&, Pwz,) < = (53)

For this case, the true generalization error is indeed fact
%, i.e., the bound is tight using this bounding approach.
This setting is however a trivial setting, where the loss
function essentially decomposes the vector into i.i.d.
components.

e A=1,and ¥ = o1: In this case, we have
dato?

E[KL(Pwiz]IQ})] = 25 alo? 12T
R

E[AFi.Q%V(JL)] =222 Y o2o® +of |do?. (54)
J#
Applying the first bound in Corollary 1, we obtain

2 2
gen(§, Pwizy) < —do”. (55)

The true generalization error in this setting is indeed the
same, i.e., the bound is also tight for this special case.
It is seen that in general the bounds derived from the
proposed bounds given in Theorem 1 are not tight, but can
yield tight bounds for certain special cases.
Remark. Recall the equality condition in (12). With the
given Py,z and Qi we have that
=]

2 2
E a; X + oyl
JF
W —p —ai(Zi — p))
RS

S5 — (W — p— i@ — )"
HE‘— H—aildi — [

+W - D B +ogl| (W—p)
#i
—1
= 2a0;(Z —p)T Zafz +oRl| (W—p).
#i
(56)

With (28), it is seen that the condition given in (12) can be

satisfied when
-1

Yo% + oyl
J#
which indeed holds for the latter two cases discussed above.
However, this relation does not hold under general X, o}%, and
A choices, and bounds derived from Theorem 1 will in general
be loose.

A, (57)
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B. Generalization Error Bounds via Loss Function
Decomposition

Recall the loss function in general has the form £ : WxZ —
R. We say the functions ¢, : Wx Z2 - R, j=1,2,....d,

and the functions ¢; : W — W, j = 1,2,....d form a
decomposition of the loss function £, if
d
Lw,2) =Y £i(pjw).2), (58)

=1

for any (w,z) € W x Z. Clearly, the loss function we
have adopted for the vector Gaussian location problem has a
decomposition with

Gw, Z;) = (W — Z,')T[)G{,GT(W —7Z)
i
= (x/?TjU}’W = \/;Tj{{,?"z,-) (\/A_jq?"w _ \/’TJDGTZf)s (59)

where UDUT is the eigenvalue decomposition of A, Aj is the
Jj-th diagonal item of D, U; is the j-th column of U, and ¢; =
\/;Tj(,;?"w.

For a decomposition of the loss function, we have the
following generalization of Theorem 1.

Theorem 2: Let F;j = L; ¢ (¢j(W)) —£;(¢;(W), Z;), then we
have

gen(€, Pwiz)
KL(Pooniz 1 @) )

1 n d
EHZZE”ZI' inf Py

i=1 j=I

+AF;IZI 0, M)
)

—c Z ZEPZ (A5t (KL(PowizCyan) ) |

=1 j=I
(60)

for Q% w),z; = QgwyPz» 1= 1,2, n, that is induced by
any in.z; = QwPz,i=1,2,...,n, ie., a distribution Q'
where W is independent of Z;.

We omit its proof since it is almost identical to that of
Theorem 1. It should be noted that the variational represen-
tation inequality is applied on the marginalized distribution
Pgiw)\z; and Q‘ , however since Q‘ 8i(W) is induced by Q‘W
we have AF i\, QW(A) AFIlei (). We provide the
following coro]lary in order to tacﬁe the vector Gaussian
setting. A corollary similar to Corollary 2 can also be written,
but it is omitted here for conciseness.

Corollary 5: Let Fi; = L;¢(¢j(W)) — £;(¢;(W), Z;), then
we have

gen(§, P WIZ{nl)

SN

=1 =1

[ (Poyomiz I )
X

+AFU g (A)i|
x

A

A qi (A
+—F'""f“’{ )]] (61)

, 1, that is induced by

- 1 n d KL(P¢,(W')IZ:||Q:MV0)
< inf [;Z E[

for Q&, Wz = Q@{W)sz =il O
any sz’ QWPZ,,I_I 2.

Equipped with the new bounds above, let us revisit the
vector setting. This time, let us define
Fij = 5Te(UUT (2 + na”))
- %(A YUz - 2@ - WU W) (62)
The conditional distribution Pg;(w)|z; is given as

=N (\/T;%Tu + oMU (Zi — )

Pyiowyiz;

A ) o?UTsU;+ xjaf,) . (63)
i#i

We will choose the reference distribution Q@(w)
as

Q\/_ Ur'w

78 iy 2T 2
VRUTW~ N EGUT 3 " o UT2U; + djogy |, (64)
j#i

The divergence term KL(P¢j(m|Z,-||Q;}.(w)) is therefore

LT[ UUF @ - @ - wT |
= ! (65)

By substituting A = U;U7 in (48), we can obtain that

AFE,;'.Q‘W *)

=272%(Z — W' UUT | Dol + oyl
i#i

-UU; (Zi — p)

2,2 25T 2
=227 ) Ul 2U; + o
i
T 7 if
T YU @ — @ - | (66)
Therefore
a,?Tr[L;-qTE]

E[KL(P@-(W}IZEHQ;{W))] i

]E[A - (x)]

242 25T 2 T
=222 3" PUTBU; + 0 Tr[UjUj z|.
i

(67)
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Applying the first bound in Corollary 5, we obtain

gen(&, Pwz,)

KL( Py wyiz 10 )
<= ) infE ( E .
n A=0 A
i=1 j=1
_’_AF;'\;‘Q{V(M
A
1 n d
T
= - 3 200 T UU] 2]
i=1 j=1
- EiA-T UUTs
= L I U;u;
=1
2 |& 2
= AwUUTE | = ZTrAS 68
~Tr Z] jUUj ~TrAX], (68)
J:

which is indeed the true generalization error.

Remark: The decompositions of loss functions are not
unique, and clearly certain decomposition can lead to better
generalization bounds. A naive decomposition is £;(w, 2)
éﬁ(w, 7) and ¢;(w) w, which does not provide any
gain for the vector Gaussian location problem, yet the
proposed decomposition can indeed be utilized to yield a tight
information-theoretic generalization bound, as shown above.
In a sense, decomposition allows us to utilize the probability
distribution of a random variable after further processing, and
by the data-processing inequality of KL divergence [36], such
processing will reduce the KL divergence and potentially yield
tighter bounds.

VI. CONCLUSION

We studied the information-theoretic generalization error
bounds, and in particular, focused on the quadratic Gaussian
problem. The proposed new bound is shown to be exactly
tight for this setting. The most important change from the
previous work appears to be the function that we choose to
bound, however, the additional introduction of a reference
distribution, and the conditional application of the change
of measure inequality also contribute to the tightness of the
bound. A generalized vector version of the problem is further
studied, which inspired a new and refined generalization error
bound that relies on the decomposition of the loss functions.

Though we have focused on the quadratic Gaussian setting
exclusively in this work, the technique can be applied to the
study of noisy and iterative algorithms such as stochastic gra-
dient Langevin dynamics (SGLD), as previously studied in [4],
[9]1, [11], [15]. The key difference from the previous result is
that due to the application of the change of measure inequality,
our bound relies on the cumulant generating function of a
different quantity, or a different sub-Gaussian variance proxy,
that likely has a lower value, and therefore the resultant bound
is also potentially tighter in that setting. However, due to the
more complex statistical dependence induced by the algorithm,
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it is not clear whether this can drive order-wise gains, and we
leave this to a future study.

Gaussian models have had many successes in machine
learning research, particularly in the context of Gaussian
process [37] and the recent development of Gaussian diffusion
models [6], [38], [39], [40]. [41]. Therefore, we beliecve
studying the Gaussian settings in the context of machine
learning is indeed well-motivated, and will lead to important
engineering insights in the future.

APPENDIX

We can write as follows to derive the exact generalization
error for the canonical quadratic Gaussian problem without
utilizing the information-theoretical bounds as follows:

E[(z W) -2 Y @ - W}Z]

i=1

gen(.‘; s Pwizi)

% > E(o? +u -7} +2Zi - wW)

i=1

:%ZE Z-mw|D ezi+N
i=1 j=1

:%ZE (Zi — ) Zaj(%i—#)+N
i=1 =1

N ()

i=1 j=1

P 202
= gaiE[(zi —w?| = —. (69)

This gives the exact generalization error for this setting.
First, notice that

Eg,, [F1=Eg, . [(0‘2 +pl— Z,?) +2(Zi — JU-)W[Z:']
= (o2 + 12— 27) + 20z — ), (70)

since under Q"W|Zg, W and Z; are independent, and W has
mean p. Then we can write

; 2 2_ 72 - .
E i exp[l (ar +ul—Z ) LZ; ,u,)W[z,]
_ exp[l(az +ul— z?)]IEQ,m [exp@A(Zi — p)W)IZ]
= exp[l(az ud— z,?)] expl2An(Z; — w)l
-exp 2&2(2;- — ,u.)2 Za}az + arf; .
J#Fi
where the second equality is by the moment generating

function of Gaussian random variable W distributed according
to Q. It follows then

(71)

Ar, 0y, W) =InEg  [exp(F)] — AEIF]

=203Z —p?| ) ofo? +of (72)

JF
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First, notice that Ep,p, [Fi] = 0. Then
Epy ey, exp(l (ar2 rul— z,?) +20Z — m)W)
ol ]E[]E[exp(l (0‘2 o2 z,?) 3 20(Z — ,u)w) |z,-]]
= ]E[exp(l(o‘z 4 i ZE)) : exp(ZA(Z,' —wn
+202(Z; — wPo?/n) 7], (73)

where the first equality is by the tower rule, and the second
step is by using the moment generating function of the
Gaussian random variable W. Rearranging the terms gives

Epyey, exp(}L (0‘2 tul— z,?) +20Z — )W)

2.2
exp(larz)]E exp[(nﬂa — A) (Zi — ,u,)z:l

22262 Ea
exp(larz)(l—2( no —k)dz) ,

where the last equality is by the moment generating function

of the x2 random variable of degree one. Taking the logarithm

on the right-hand side gives the expression for AFI-.PWPZ‘_ (A).
Similar to the scalar case, notice that

L
=Ey  [Tr(A(Z + nu'))
—(2] AZ: — 2Zi — )" AW)|Z]
= (Te(A(Z + pp")) — 2T AZ) + 2(Zi — W' Ap. (75)

We can then write the exponential term in AFf"QI'I-VEZ- (A)

I

I

(74)

]EQ’iwz; exp[ATr(A(Z + PL-U‘T))
—M2ZFAZ; — 2Z; — " AW)|1Z]
= exp[ATr(A(Z + pp’)) — 227 AZ]
Eoi,,, [XP(22Zi — 1 )TAW)|Zi]
= exp[ATr(A(T + pup’)) — 227 AZ]
-exp[2A(Zi — )" Au]

cexp| 222(Z: — w'A Z(afz) + 021 |AT(Z; — p)
J#
(76)
where the second equality follows standard manipulation of
Gaussian integration. It follows then

Af, g, W) =1n EQlyz[exp(AFi)] — AEIF;]

=222 - w'A| Y (%) +of1 |AT @ — ). (77)
J#F
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