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Abstract

We introduce LLAVILA, a new approach to learning
video-language representations by leveraging Large Lan-
guage Models (LLMs). We repurpose pre-trained LLMs to
be conditioned on visual input, and finetune them to create
automatic video narrators. Our auto-generated narrations
offer a number of advantages, including dense coverage
of long videos, better temporal synchronization of the vi-
sual information and text, and much higher diversity of text.
The video-language embedding learned contrastively with
these narrations outperforms the previous state-of-the-art
on multiple first-person and third-person video tasks, both
in zero-shot and finetuned setups. Most notably, LAVILA
obtains an absolute gain of 10.1% on EGTEA classifica-
tion and 5.9% Epic-Kitchens-100 multi-instance retrieval
benchmarks. Furthermore, LAVILA trained with only half
the narrations from the Ego4D dataset outperforms models
trained on the full set, and shows positive scaling behavior
on increasing pre-training data and model size.

1. Introduction

Learning visual representation using web-scale image-
text data is a powerful tool for computer vision. Vision-
language approaches [31, 49, 80] have pushed the state-of-
the-art across a variety of tasks, including zero-shot classi-
fication [49], novel object detection [87], and even image
generation [52]. Similar approaches for videos [4, 39, 46],
however, have been limited by the small size of paired
video-text corpora compared to the billion-scale image-text
datasets [31, 49, 84]—even though access to raw video data
has exploded in the past decade. In this work, we show it
is possible to automatically generate text pairing for such
videos by leveraging Large Language Models (LLMs), thus
taking full advantage of the massive video data. Learning
video-language models with these automatically generated
annotations leads to stronger representations, and as Fig-
ure | shows, sets a new state-of-the-art on six popular first
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Figure 1. LAVILA sets a new state-of-the-art across a number
of first and third-person video understanding tasks (cf. Table 1 for
details), by learning a video-language representation using super-
vision from large language models as narrators.

Previous SOTA

and third-person video benchmarks.

Our method, called LAVILA: Language-model
augmented Video-Language pre-training, leverages pre-
trained LLMs, e.g. GPT-2 [50], which encode within
their weights a treasure trove of factual knowledge and
conversational ability. As shown in Figure 2, we repurpose
these LLMs to be “visually-conditioned narrators”, and
finetune on all accessible paired video-text clips. Once
trained, we use the model to densely annotate thousands
of hours of videos by generating rich textual descriptions.
This pseudo-supervision can thus pervade the entire video,
in between and beyond the annotated snippets. Paired
with another LLM trained to rephrase existing narrations,
LAVILA is able to create a much larger and more diverse
set of text targets for video-text contrastive learning. In
addition to setting a new state-of-the-art as noted earlier,
the stronger representation learned by LAVILA even
outperforms prior work using only half the groundtruth
annotations (Figure 5).

LAVILA’s strong performance can be attributed to a
number of factors. First, LAVILA can provide temporally
dense supervision for long-form videos, where the associ-
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Figure 2. LAVILA leverages Large Language Models (LLMs)
to densely narrate long videos, and uses those narrations to train
strong dual-encoder models. While prior work uses sparsely la-
beled text by humans, or weakly aligned text transcribed from
speech, LAVILA is able to leverage dense, diverse, and well-
aligned text generated by a LLM.

ated captions are either too sparse, or the video-level “Alt-
Text” (in the case of web videos) does not describe all the
nuanced activities happening in it. Second, the generated
text is well-aligned with the visual input. Although prior
work has leveraged automatic speech transcription on How-
To videos [45] to automatically extract clips paired with
text from the speech, such datasets have relatively poor
alignment between the visual and textual content (< 50%,
cf. [25, 45]), limiting the quality of the learned represen-
tations. Third, LAVILA can significantly expand annota-
tions when only a little is available. For instance, videos of
mundane day-to-day activities, especially from an egocen-
tric viewpoint, could be very useful for assistive and aug-
mented reality applications. Such videos, however, are rare
on the internet, and hence do not readily exist with associ-
ated web text. Recent work [24] instead opted to manually
capture and narrate such video data. These narrations how-
ever required significant manual effort: 250K hours of an-
notator time spent in narrating 3.6K hours of video. In con-
trast, LAVILA is able to automatically narrate each video
multiple times and far more densely, and hence learns much
stronger representations.

We extensively evaluate LAVILA across multiple video-
text pre-training datasets and downstream tasks to validate
its effectiveness. Specifically, after being pre-trained on
Ego4D, the largest egocentric video datasets with narra-
tions, LAVILA can re-narrate the whole dataset 10x over.
The resulting model learned on these expanded narrations
sets a new state-of-the-art on a wide range of downstream
tasks across challenging datasets, including multi-instance

video retrieval on Epic-Kitchens-100 (5.9% absolute gain
on mAP), multiple-choice question answering on Ego4D
(5.9% absolute gain on intra-video accuracy), and action
recognition on EGTEA (10.1% absolute gain on mean ac-
curacy). It obtains gains both when evaluated for zero-shot
transfer to the new dataset, as well as after fine-tuning on
that dataset. Similar gains are shown in third-person video
data. When training LAVILA after densely re-narrating
HowTo100M, we outperform prior work on downstream ac-
tion classification on UCF-101 and HMDB-51. In a case
study of semi-supervised learning, we show that our model,
which only ever sees 50% of the human-labeled data, is ca-
pable of outperforming the baseline model trained with all
the narrations. Moreover, the gains progressively increase
as we go to larger data regimes and larger backbones, sug-
gesting the scalability of our method.

2. Related Work

Vision-language representation learning maps visual and
textual embeddings into a common space using metric-
learning techniques [21, 73]. Recently, different pretext
tasks are proposed to learn a finer-grained association be-
tween visual and textual modality, e.g. masked language
modeling (MLM) [10, 41, 62] and captioning [16, 80]. An-
other line of research focuses on scaling up both mod-
els and pre-training data. For instance, CLIP [49] is
pre-trained on 400M image-text pairs with a contrastive
loss (InfoNCE [48, 59]) while CoCa [80] unifies con-
trastive and generative approaches with a single founda-
tion model. Similar trends are also witnessed in the video-
text domain [36, 64, 88]. However, collecting high-quality
video-text data is more difficult than image-text. There-
fore, efforts are made to learn from uncurated videos with
machine-generated audio transcripts via contrastive learn-
ing [44, 77, 82] or unsupervised alignment [25] while other
works focus on either adapting well-performing image-text
models to videos [32, 40, 47, 78], or curriculum learning
from a single frame to multiple frames [4]. In contrast, our
approach leverages language models to generate temporally
dense textual supervision on long-form videos.

Generative Visual Language Models (VLM) were first
used for image/video captioning using recurrent net-
works [17, 68] and Transformer-based architectures [42,
56]. More recently, generative VLMs have unified multiple
vision tasks [11, 89] by training multi-modal Transformers
on visual-text pairs [30, 81]. Meanwhile, generative VLMs
also excel at multimodal tasks via zero-shot or few-shot
prompting [1, 65, 83] by leveraging multi-billion-parameter
LLMs pre-trained on massive text corpus [7, 28, 50]. In
our work, we demonstrate that generative VLMSs can nar-
rate long videos and the resulting video-text data benefits
video-language representation learning.

Large-scale multimodal video datasets are crucial for
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video understanding tasks but are hard to collect. Conven-
tional video-text datasets [8, 53, 86] either have limited sce-
narios, e.g. cooking, or are not large enough to learn generic
video representation. Miech et al. [45] scrape over 100 mil-
lion video-text pairs via automatic audio transcription from
long-form How-To videos. However, ASR introduces tex-
tual noise and visual-text unalignment [25]. WebVid [4]
contains 10 million short videos with textual descriptions.
But it is still several orders of magnitude smaller than the
image counterparts [49, 54] and is harder to scale up since
it is sourced from stock footage sites. The recently released
Ego4D [24] dataset offers 3,600 hours of egocentric videos
in which written sentence narrations are manually annotated
every few seconds but requires significant manual effort. In
contrast, our method shows a promising alternative by au-
tomatically narrating videos using supervision from LLM.
Data augmentation techniques in NLP, including word-
level replacement based on synonyms [72, 85] or nearest-
neighbor retrieval [19, 70], improve text classification ac-
curacy. We refer readers to [20] for a comprehensive sur-
vey. In this paper, we show that sentence-level paraphras-
ing based on text-to-text models [51] is helpful for video-
language pre-training.

3. Preliminaries

A video V is a stream of moving images /. The num-
ber of frames |V| can be arbitrarily long while video mod-
els typically operate on shorter clips, which are often in the
range of a few seconds. Therefore, we skim through a long-
form video and represent it by a set of IV short clips, i.e. X.
Each clip x; is defined by a specific start and end frame
x; = {ly, -, 1.}, where 0 < t; < e¢; < |V], and is
typically associated with some annotation y;. This anno-
tation could be a class label or free-form textual descrip-
tion of the clip. We denote a video by the set of annotated
clips with their corresponding annotations, i.e. (X,)) =
{(z1,y1), -, (xn,yn)}. Note that the annotated clips of-
ten cannot densely cover the entire video due to the annota-
tion cost and visual redundancy, i.e. |J,[t;, e;] < [0,|V]].

A typical video model F(X,)) learns from these clip-
level annotations using a standard training objective such
as a cross-entropy loss when the annotations are class la-
bels with a fixed vocabulary. However, more recently, dual-
encoder-based contrastive approaches like CLIP [49, 77]
have gained popularity. They work with free-form textual
annotations which are tokenized [55] into sequences of dis-
crete symbols, i.e. y = (51,52, ,5) € {1,0}51¥E, The
model consists of a visual encoder f, : RTX3xHxW
RPv plus a projection head h, : RPv + R? and a tex-
tual encoder f; : {1,0}/5*% — RP+ plus a projection head
h¢ : RPt — R? in parallel to obtain the global visual and
textual embedding respectively:

v =he(fv(z)), u=h(fi(y)).

o C stretches the thread
with both hands.
C pulls out the yarn
with her right hand.

. . . : C wipes the counterto
(Q‘r Narration C lifts container. wiIhIz)l sponge. P

REPHRASER  C raises the container. : INARRATOR € moves the container.

Figure 3. Generated samples by NARRATOR and REPHRASER.
NARRATOR generates new descriptions of the action taking
place, potentially focusing on other objects being interacted with.
REPHRASER not only changes the word order of the human narra-
tion but also diversifies it by using related verbs or nouns.

A contrastive loss, such as InfoNCE [48], learns global em-
beddings that associate corresponding video and text em-
beddings within a batch of samples B,
1
8] > (InfoNCE(v,u) 4+ InfoNCE(u,v)). (1)
(z,y)EB

4. LAVILA

In LAVILA, we leverage large language models (LLMs)
as supervision to train the dual-encoder model, where the
LLMs serve as vision-conditioned narrators and automati-
cally generate textual descriptions from video clips. In par-
ticular, we exploit supervision from two LLMs: (1) NAR-
RATOR (§ 4.1) is a visually-conditioned LLLM that pseudo-
labels existing and new clips with narrations, generating
new annotations (X’,)’). (2) REPHRASER (§ 4.2) is a
standard LLM that paraphrases narrations in existing clips,
augmenting those annotations to (X', )"). As illustrated
in Figure 3, NARRATOR generates new descriptions of the
action taking place, potentially focusing on other objects
being interacted with. REPHRASER serves to augment the
text input, e.g., changes word order of the human narration
and additionally replaces common verbs or nouns, mak-
ing annotations more diverse. Finally, we train the dual-
encoders (§ 4.3) on all these annotations combined, i.e.

(X, V)u (X, YHux,y").
4.1. NARRATOR

Traditional LLMs, such as GPT-2 [50], are trained to
generate a sequence of text tokens (s; - --sy) from scratch
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Figure 4. Language supervision from REPHRASER and NARRATOR. REPHRASER(/eft) takes the narration as input, passes it through a
text encoder and uses a text decoder to autoregressively generate the rephrased output. NARRATOR(right) takes video frames as input and
obtains the visual embeddings through a video encoder followed by attentional pooling. Equipped with a few additional cross-attention
modules, the text decoder autoregressively generates new narrations for those new frames.

by modeling the probability of the next token given all to-
kens seen so far: p(s;|s<;). NARRATOR repurposes existing
LLMs to be conditioned on the visual input and is trained
on the original annotations (X,)). The resulting model
produces dense new annotations (X', )) on the full video.
Following the formulation of factorized probabilities in lan-
guage models [5], we model the visually conditioned text
likelihood as follows:

L
pNARRATOR(y/|m,) = Hp(52|3/<bx/)- (2)
=1

Architecture. We design NARRATOR to closely follow the
architecture of standard LLMs, with only a few additional
cross-attention modules added to provide visual condition-
ing, as illustrated in Figure 4 (right). This enables NAR-
RATOR to be initialized from pre-trained weights, which is
crucial for our task as the data we use to train NARRATOR
(narrations associated with video clips) are far smaller in
scale compared to the large text corpus typically used to
train LLMs. Moreover, video narrations are less diverse and
noisier because they are either collected by only a few an-
notators or automatically transcribed from speech. Similar
“frozen-LM” approaches have shown effectiveness in mul-
timodal few-shot adaptation in recent work [1, 65].

Specifically, we take a frozen pre-trained LLM and add
a cross-attention module before each Transformer decoder
layer so that the text input can attend to visual information.
The cross-attended output then sums with the input text fea-
ture via residual connection [26] and goes to the Trans-
former decoder layer. Each cross-attention module com-
prises a cross-attention layer, which takes textual tokens as
queries and visual embedding as keys and values, followed
by a feed-forward network (FFN). Layer Normalization [3]
is applied at the beginning of both cross-attention and FFN.
We add t anh-gating [27], with an initial value of zero, such
that the output of the new model is the same as that from the
original language model at the beginning.

While features from any video model are applicable for
conditioning, for convenience we adopt the video encoder
from F in § 3, trained contrastively on the ground-truth data

(X,)). We use features before global pooling to allow the
LLM to leverage fine-grained spatial-temporal information.
Training. We train NARRATOR on all of, or a subset of, the
ground-truth annotations (X, ). For each pair (z,y), the
captioning loss is the sum of the negative log-likelihood of
the correct word at each step,

L
L:NARRATOR(x, y) = - Z 10gp(5e|8<£, :L') 3)
=1

Inference. At inference time, we query NARRATOR by
feeding visual input = plus a special start-of-sentence to-
ken <s>. We sample from the distribution recursively, i.e.
3¢ ~ p(s|[<s>, -+ ,8¢_1],x) until an end-of-sentence to-
ken </ s> is reached. Following [29], at each step we sam-
ple from a subset of tokens that contain the vast majority of
the probability mass, which is known as nucleus sampling.

The effect of nucleus sampling is two-fold. On the one
hand, it generates more diverse, open-ended, and human-
like text than maximum-likelihood-based methods such as
beam search and its variants [67]. On the other hand, the
generated text may contain irrelevant or noisy information
due to sampling without post-processing based on sentence-
level likelihood. To address this, we repeat the sampling
process for K times on the same visual input. We later
demonstrate that the contrastive pre-training objective is ro-
bust to the noise caused by sampling, and the final perfor-
mance benefits from a more diverse set of narrations.

To sample video clips for captioning, we start by sim-
ply re-captioning the existing clips labeled in the dataset
X, resulting in expanded annotations. Furthermore, long-
form videos are typically sparsely narrated, meaning that
the temporal union of all labeled clips cannot cover the en-
tire video. Hence, we use NARRATOR to annotate the re-
mainder of the video to obtain additional annotations by
pseudo-captioning. With a simple assumption that video
is a stationary process, we uniformly sample clips from the
unlabeled intervals. The clip duration is equal to the av-
erage of all ground-truth clips, i.e. A = Zivzl(ei — ;)
while the sampling stride is computed likewise. Finally, by
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combining both re-captioned and pseudo-captioned narra-
tions, we refer to the final set of annotations generated by
NARRATOR as (X’,)).

Post-processing. Exhaustive pseudo-captioning may con-
tain some uninformative visual clips and generate text that
is not useful. Thus, we add a filtering process to elimi-
nate low-quality clips and their associated descriptions. We
use the baseline dual-encoder model F, which is trained
on the ground-truth paired clips, to compute the visual and
textual embedding of pseudo-labeled pairs and filter based
on the similarity score, i.e. Filter( fv(ar:;-)T - fu(y})), where
Filter(-) can be either top- of all generated text or a thresh-
old filtering. In the experiments, we use a threshold of 0.5.

4.2. REPHRASER

The data generated by NARRATOR is several times larger
than the ground-truth pairs. To ensure that we do not overfit
the pseudo-labeled data, we increase the number of ground-
truth narrations by paraphrasing. In particular, we use a
text-to-text LLM which models conditional text likelihood:

L
PREPHRASER (y”\y) = Hp(52/|5/</e7 y)
=1

The text-to-text model is implemented by an encoder-
decoder architecture, e.g. TS [51], to auto-regressively gen-
erate a new sentence given the original one. We observe
that REPHRASER is able to do basic manipulations such as
replacing synonyms or changing word order, which serves
as an efficient way of automatic data augmentation. The
resulting annotations are referred to as (X, )").

4.3. Training the Dual-Encoders

We train the dual-encoders as described in Algorithm 1
in Appendix E. In each iteration, we first sample a batch B
of video clips. It comprises a subset of clips B; with labeled
timestamps as well as narrations, and a subset 3, whose
clips are randomly sampled from videos without narrations.
For clip z; € B,,, we obtain the pseudo-caption y; by query-
ing the NARRATOR y; ~ pPnarrator(¥’|Z), resulting in a
set of clips with LLM-generated narrations gu. For clip
(z4,y;) € By, the text supervision is obtained from either
the REPHRASER or the NARRATOR, with a probability of
0.5. Hence, the effective number of iterations per epoch for
LAVILA is the same as that for the baseline Dual-Encoder.
We denote the resulting set of pairs to be I5; similarly. Fol-
lowing CLIP [49], we use the symmetric cross-entropy loss
over the similarity scores of samples in the batch B; U B,,.

In practice, we run REPHRASER and NARRATOR in
advance and cache the resulting video-narration pairs so
that there is no computational overhead during pre-training.
Therefore, training a dual-encoder in LAVILA is as fast as
training a standard dual-encoder contrastive model.

Datasets Task |Ego? Metrics Eval. Prot.
EK-100 [14] MIR v mAP, nDCG 7S, FT
EK-100 [14] CLS v top-1 action acc. FT
Ego4D [24] MCQ | v inter-/intra-video acc. ZS
Ego4D [24] NLQ | v Recall@N FT
EGTEA [37] CLS v top-1, mean acc. 7S, FT
CharadesEgo [58] | CLS v video-level mAP ZS,FT
UCF-101 [60] CLS X mean acc. LP
HMDB-51 [35] CLS X mean acc. LP

Table 1. Downstream datasets and metrics used for evaluation.
We evaluate LAVILA on a wide range of tasks including Multi-
Instance Retrieval (MIR), Multiple-Choice Question (MCQ), Nat-
ural Language Query (NLQ), and Action Recognition (CLS). The
evaluation protocols include zero-shot (ZS), fine-tuning (FT), and
linear-probing (LP). Please refer to Appendix C for more details.

5. Experiments

Dual-Encoder Architecture. The video-language model
follows a dual-encoder architecture as CLIP [49]. The Vi-
sual encoder is a TimeSformer (TSF) [6], whose spatial at-
tention modules are initialized from a ViT [18] which is
contrastively pre-trained on large-scale paired image-text
data as in CLIP [49]. We sample 4 frames per clip during
pre-training and 16 when finetuning on downstream tasks.
The text encoder is a 12-layer Transformer [50, 66]. We use
BPE tokenizer [55] to pre-process the full sentence corre-
sponding to the video clip and keep at most 77 tokens.
NARRATOR’s architecture is a visually conditioned auto-
regressive Language Model. The visual encoder is by de-
fault TimeSformer-L while the text decoder is a GPT-2
XL. During inference, we use nucleus sampling [29] with
p = 0.95 and return K = 10 candidate outputs.
REPHRASER. We use an open-source paraphraser [23]
based on T5-large [51]. It is pre-trained on C4 [51] and
then finetuned on a cleaned subset of ParaNMT [74]. Dur-
ing inference, we use Diverse Beam Search [67] with group
number the same as beam number (G = B = 20) and set
the diversity penalty to be 0.7. We keep 3 candidates per
sentence, remove punctuations, and do basic de-duplication.
Pre-training dataset. We train on the video-narration pairs
from Ego4D [13, 24], the largest egocentric video dataset
to date. We exclude videos that appear in the validation and
test sets of the Ego4D benchmark and determine each clip’s
interval using the same pairing strategy in [39]. This results
in around 4M video-text pairs with an average clip length of
1 second. We also experiment with third-person videos by
pre-training on HowTol100M [45] in § 5.2.

Evaluation protocols. We evaluate the learned video-text
encoders using three evaluation protocols. (1) Zero-Shot
(ZS), meaning that we apply the pre-trained video-text en-
coders directly on the downstream validation dataset to per-
form video<+text retrieval tasks, without any tuning on the
downstream dataset. Zero-shot classification is performed
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mAP nDCG EgoMCQ EgoNLQ
Method Backbone |y 1 1y Ave. [VST TV Ave. Method Acciracy (%) mIOU@O.% mloU@0.5
(ZERO-SHOT) Inter-video Intra-video| R@1 R@5 R@] R@5
EgoVLP [39] TSF-B 194 139 166 | 241 220 23.1 SlowFast [24] - - 545 10.74 3.12 6.63
EgoVLP* [39] | TSF-B | 260 206 233 |28.8 27.0 279 EgoVLP [39] 90.6 572 |10.84 18.84 6.81 13.45
LAVILA TSF-B 351 26.6 309 | 337 304 320 LAVILA (B) 93.8 59.9 10.53 19.13 6.69 13.68
LAVILA TSF-L 40.0 322 36.1 | 36.1 332 34.6 LAVILA (L) 94.5 63.1 12.05 22.38 7.43 15.44
(FINETUNED)
MME [75] TBN 43.0 340 385|501 469 485 Table 3. Ego4D EgoMCQ and EgoNLQ. LAVILA outperforms
JPoSE [75] TBN 499 381 440|555 516 535 prior work on both Multiple-Choice Questions and Natural Lan-
EgoVLP [39] TSF-B | 499 405 450 | 609 579 594 guage Questions on Ego4D, with nearly 6% absolute gain on the
LAVILA TSF-B | 552 457 50.5 )| 66.5 634 65.0 challenging intra-video MCQ task that requires reasoning over
LAVILA TSEL | 547 471 509 | 681 649 665 multiple clips from the same video to answer a question.

Table 2. EK-100 MIR. LAVILA outperforms prior work across all
settings, metrics and directions of retrieval, with larger gains when
switching to a larger model. Specifically, our best model achieves
over 10% absolute gain in the zero-shot setting and 5.9 ~ 7.1%
gain in the finetuned setting. EgoVLP* refers to our improved
version of [39], details of which are given in Appendix F.

similarly, where we compute the similarity score between
the video clip and the textual description of all possible cat-
egories. (2) Finetuned (FT), where we take the pre-trained
video-text model and perform end-to-end fine-tuning on the
training split of the target downstream dataset. (3) Linear-
Probe (LP), where we compute the video features from a
frozen encoder and train a linear SVM on top of the train-
ing split of the downstream dataset.

Downstream benchmarks. We use multiple benchmarks
across four first-person (egocentric) and two third-person
datasets, as enumerated in Table 1. We summarize them
here and refer the reader to Appendix C for details on
datasets and metrics. (1) Two tasks on Epic-Kitchens-100:
Multi-Instance Retrieval (EK-100 MIR) and Action Recog-
nition (EK-100 CLS) [14]. EK-100 is a very popular and
challenging egocentric video recognition benchmark. The
MIR task requires retrieving the text given videos (V—T)
and videos given text (T—V). The CLS task requires clas-
sifying each video into one of 97 verbs and 300 nouns each,
resulting in a combination of 3,806 action categories. (2)
Two downstream tasks of Ego4D: Multiple-Choice Ques-
tions (EgoMCQ) and Natural Language Query (EgoNLQ).
EgoMCQ requires selecting the correct textual description
from five choices given a query video clip while EgoNLQ
asks the model to output the relevant temporal intervals of
video given a text query. We select these two benchmarks
because they require reasoning about both visual and textual
information. (3) Action Recognition on EGTEA [37]. Itre-
quires classifying into 106 classes of fine-grained cooking
activities. (4) Action Recognition on CharadesEgo [58]. It
requires classification into 157 classes of daily indoor activ-
ities. Note that CharadesEgo is very different from EK-100,
Ego4D and EGTEA since its videos are captured by head-
mounted phone cameras in a crowd-sourcing way.

In all tables, we bold and underline the best and second-
best performing methods with comparable backbones archi-
tectures. We highlight the overall best performing method,
which typically uses a larger backbone, if applicable.

5.1. Main Results

EK-100. We compare LAVILA with prior works on EK-
100 MIR in Table 2. In the zero-shot setup, LAVILA re-
markably surpasses an improved version of EgoVLP [39]
under similar model complexity: we use TSF-Base+GPT-2
as the dual-encoder architecture while EgoVLP uses TSF-
Base+Distil-BERT. With a stronger video encoder, i.e. TSF-
Large, the performance improves further. In the fine-
tuned setting, LAVILA significantly outperforms all pre-
vious supervised approaches including MME, JPOSE [75]
and EgoVLP [39]. We also compare LAVILA on EK-100
CLS in Appendix E, and establish a new state-of-the-art.

Egod4D. We evaluate the pre-trained LAVILA model on
EgoMCQ and EgoNLQ tasks and compare the results in Ta-
ble 3. On EgoMCQ, our method achieves 93.8% inter-video
accuracy and 59.9% intra-video accuracy, outperforming
EgoVLP by a noticeable margin. Note that EgoVLP’s per-
formance reported in Table 3 is obtained by using EgoNCE
loss [39], a variant of InfoNCE specialized for Ego4D while
ours uses a standard InfoNCE loss. EgoVLP with InfoNCE
has lower performance (89.4% inter-video and 51.5% intra-
video accuracy). On EgoNLQ, LAVILA achieves compara-
ble results with EgoVLP with similar model complexity.

EGTEA. We evaluate the learned video representation by
finetuning the video encoder for action classification in Ta-
ble 4 on another popular egocentric dataset, EGTEA [37].
Our method surpasses the previous state-of-the-art which
takes multiple modalities including visual, auditory and tex-
tual inputs [33] by a more than 10% absolute margin on the
mean accuracy metric. Since previous methods are based
on different backbones, we experiment with a TSF-Base
(““Visual only”) model pre-trained on Kinetics [9] as a fair
baseline for LAVILA. We observe that its accuracy is com-
parable to previous methods but much lower than LAVILA,
implying the effectiveness of learning visual representation
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Method Backbone Pretrain Top-1 Acc. Mean Acc.
Li et al. [37] I3D K400 - 53.30
LSTA [63] ConvLSTM IN-1k 61.86 53.00
IPL [71] I3D K400 - 60.15
MTCN [33] SlowFast (V+A+T) | K400+VGG-Sound 73.59 65.87
Visual only TSF-B IN-21k+K400 65.58 59.32
LAVILA TSF-B WIT+Ego4D 77.45 70.12
LAVILA TSF-L WIT+Ego4D 81.75 76.00

Table 4. EGTEA Classification. LAVILA obtains significant
gains on this task, outperforming prior work with over 10% mean
accuracy. Since the backbones used are not all comparable, we
also report a comparable baseline with TSF-B (“Visual only”).

Method Backbone mAP (ZS) | mAP (FT)
ActorObserverNet [57] ResNet-152 - 20.0
SSDA [12] 13D - 25.8
Ego-Exo [38] SlowFast-R101 - 30.1
EgoVLP [39] TSF-B 25.0 32.1
LAVILA TSF-B 26.8 33.7
LAVILA TSF-L 28.9 36.1

Table 5. CharadesEgo Action Recognition. LAVILA sets new
state-of-the-art in both zero-shot (ZS) and finetuned (FT) settings.
Note that CharadesEgo videos are visually different compared to
Ego4D videos, on which LAVILA is pretrained.

on large-scale egocentric videos and using LLM as textual
supervision during pre-training.

CharadesEgo. Next, we compare LAVILA’s represen-
tation on the CharadesEgo action classification task. As
shown in Table 5, LAVILA’s representation excels on this
task as well, which is notable as CharadesEgo videos are
significantly different compared to Ego4D, being captured
by crowdsourced workers using mobile cameras.

5.2. Application to Third-Person Video Pre-training

We apply LAVILA to third-person videos by experiment-
ing with the HowTo100M [45] dataset. Specifically, we use
the temporally aligned subset provided by [25], which con-
tains 3.3M sentences from 247k videos. We evaluate the
video representation on two third-person video datasets, i.e.

Method Vis. Enc. | UCF-101 | HMDB-51
MIL-NCE [44] S3D 82.7 54.3
TAN [25] S3D 83.2 56.7
Baseline (w/o LLM) TSF-B 86.5 59.4
LAVILA TSF-B 87.4 57.2
LAVILA TSF-L 88.1 61.5
Table 6. LAVILA on third-person videos. We measure

the linear-probing action classification performance of the video
model after pre-training on HowTo100M [45].

UCF-101 [60] and HMDB-51 [35] for action classification
using the linear probing protocol. For more details, please
refer to Appendix D. From Table 6, we see that LAVILA
outperforms previous methods such as MIL-NCE [44] and
TAN [25] by a large margin. Since we use a different back-
bone, we report a baseline without LLM and show that
LAVILA indeed benefits from the language supervision.

5.3. Application to Semi-supervised Learning

While LAVILA is very effective at leveraging existing
narrations to augment them, we now show that it is also
applicable when only a limited number of narrations are
available to begin with. We first divide each long video
from Ego4D into 15-second chunks and assume only the
annotated clips within every IV chunks is available during
pre-training, leading to approximately %% of the full set,
where N € {2,5,10}. This can be considered a practi-
cal scenario when we want to annotate as many videos as
possible for diversity when the annotation budget is lim-
ited. In the remainder (1 — 132%) part that is skipped, we
uniformly sample the same number of the clips per chunk
with the same clip length as that in the seen chunks. Both
the dual-encoder model and NARRATOR are trained on the
%% available annotations.

We plot the zero-shot performance curve of pre-training
with different proportions in Figure 5. We can see that LAV-
ILA consistently outperforms the ground-truth-only base-
line at all points (10, 20, 50, and 100%). The improvement

‘—A— LAVILA —e— Baseline > SOTA [39]

29 31 -

27 30

23 28

21 27 |- *
| | | | | |

0% 20% 50%
(a) EK-100 MIR mAP.

100% 0% 20% 50%

(b) EK-100 MIR nDCG.

100%

30
28
26
24
22

0% 20% 50% 100%
(c) EGTEA mean accuracy.

0% 20% 50% 100%
(d) EgoMCQ Intra-video accuracy.

Figure 5. LAVILA is effective in a semi-supervised setting where only a limited amout of narrations are given. Comparing zero-shot
performance of pre-training, LAVILA consistently outperforms the groundtruth-only baseline when 10, 20, 50, 100% data is used. We also
achieve comparable result with state-of-the-art with only 50% of the annotated data.
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NARRATOR’s architecture

(a) Generation Quality. Using a sufficiently large language model as (b) Sampling. LAVILA benefits more (c) Scaling effect of LAVILA. Gains increase on scaling
the text decoder is crucial for good text generation quality and down- from narrations produced by nucleus the video encoder in NARRATOR. Default refers to only

stream performance.

sampling than beam search.

using the original narrations.

Table 7. Ablations of NARRATOR. We report zero-shot average mAP on EK-100 MIR for comparing downstream performance. We study
NARRATOR from the perspective of generation quality (/eff), sampling techniques (middle), and scaling effect (right).

Pseudo| EK-100 MIR EgoMCQ EGTEA
cap. | Ave mAP  Avg. nDCG | inter-video Inira-video | Mean Top-1

260 288 93.6 543 | 273 30.1

Rephr. Recap.

v 280 301 | 935 569 |29.8 308

v 271 299 | 932 592 | 268 312
VR 29.7 315 | 93.6 583 | 294 366
VR v | 299 314 | 936 59.1 | 311 360

Table 8. Contributions of different Language Supervision. We
can see that (1) using REPHRASER (“Rephr.”) and NARRATOR
(“Recap.”) improve downstream zero-shot performance comple-
mentarily, (2) dense pseudo-captioning further improves perfor-
mance on 3 out of 6 metrics.

tends to be larger when more data is available, indicating
the method’s scalability as more videos are narrated in the
future. Furthermore, we observe our method can achieve a
similar level of performance with the baseline often using
less than 50% data. We also achieve a comparable result
with the state-of-the-art using much fewer data.

5.4. Ablation Studies

Contributions of Different Language Supervisions. We
ablate different language supervisions in Table 8 on EK-
100 MIR (zero-shot), EgoMCQ and EGTEA. Using the
text-only REPHRASER (“rephr.”) or visually conditioned
NARRATOR (“recap.”) separately improves the ground-
truth baseline noticeably. Combining both REPHRASER and
NARRATOR gives an improvement of 3.5% average mAP
on EK-100 MIR. We see that dense captioning on the entire
video (“pseudo-cap.”) is also helpful. Though the gain on
EK-100 MIR is not as significant, it shows nontrivial im-
provements on EgoMCQ intra-video accuracy and EGTEA
mean accuracy. Our conjecture for this marginal gain is that
informative clips are mostly covered in Ego4D because all
videos are inspected by two annotators.

Generation Quality of NARRATOR. We study how the
NARRATOR’s configurations affect the quality of generated
text and the downstream performance. The generation qual-
ity is measured by standard unsupervised automatic metrics
including METEOR, ROUGE, and CIDEr [43]. We use a
NARRATOR with a smaller GPT-2 as the text decoder and

consider two scenarios in Table 7a: (1) LM is randomly
initialized but jointly trained with the gated cross-attention
modules, and (2) LM is initialized from the original GPT-2.
The generation quality decreases compared to GPT-2 XL in
both cases and the zero-shot retrieval result on EK-100 MIR
is worse. This indicates that the language model should be
sufficiently large and pre-trained on web text data.

Sampling. In Table 7b, we investigate different sampling
methods for text generation from NARRATOR. We see
that nucleus sampling works much better than beam search
while repetitive sampling shows marginal improvement.

Scaling effect. In Table 7c, we compare the zero-shot re-
trieval result by progressively increasing the size of NAR-
RATOR’s video encoder from TSF-B to TSF-L and TSF-
L@HR, which increases the input resolution to be narrated
from 224 to 336 while fixing the dual-encoder architec-
ture. The retrieval performance steadily increases while
NARRATOR becomes stronger. We conduct this experiment
by varying the dual-encoder architecture, namely TSF-Base
and TSF-Large, and show similar trends. Both phenomena
suggest that LAVILA can scale to larger models.

6. Conclusion and Future Work

In this paper, we proposed LAVILA, a new approach
to video-language representation learning by automatically
narrating long videos with LLMs. We achieve strong im-
provements over baselines trained with the same amount
of human-narrated videos and set new state-of-the-art on
six popular benchmark tasks across first- and third-person
video understanding benchmarks. LAVILA also shows pos-
itive scaling behavior when adding more training narrations,
using larger visual backbones, and using stronger LLMs, all
of which are promising areas for future work.
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