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Abstract Precipitation plays an important role in cloud and aerosol processes over the Southern Ocean
(SO). The main objective of this study is to characterize SO precipitation properties associated with SO
stratocumulus clouds. We use data from the Southern Ocean Clouds Radiation Aerosol Transport Experimental
Study (SOCRATES), and leverage observations from airborne radar, lidar, and in situ probes. We find that for
the cold‐topped clouds (cloud‐top‐temperature <0°C), the phase of precipitation with reflectivity >0 dBZ is
predominantly ice, while reflectivity < − 10 dBZ is predominantly liquid. Liquid‐phase precipitation properties
are retrieved where radar and lidar are zenith‐pointing. Power‐law relationships between reflectivity (Z) and
rain rate (R) are developed, and the derived Z–R relationships show vertical dependence and sensitivity to the
presence of droplets with diameters between 10 and 40 μm. Using derived Z–R relationships, a reflectivity‐
velocity (ZV) retrieval method, and a radar‐lidar retrieval method, we derive rain rate and other precipitation
properties. The retrieved rain rate from all three methods shows good agreement with in‐situ aircraft estimates,
with rain rates typically being quite light (<0.1 mm hr− 1). We examine the vertical distribution of precipitation
properties, and find that rain rate, precipitation number concentration, and precipitation liquid water all decrease
as one gets closer to the surface, while precipitation size and distribution width increases. We also examine how
cloud base rain rate (RCB) depends on cloud depth (H) and aerosol concentration (Na) for particles with a
diameter greater than 70 nm, and find that RCB is proportional to H3.1 N− 0.8

a .

Plain Language Summary Precipitation plays an important role over the Southern Ocean (SO), such
as transferring water from the atmosphere to the ocean, and affecting clouds and aerosols (tiny airborne
particles). This study aims to characterize SO precipitation properties using aircraft data that can count the
number and size of cloud and precipitation droplets, as well as lidar and radar that measure light and microwaves
respectively reflected by droplets. Using information from lidar, we can distinguish the precipitation phase, and
we find that ice precipitation is more frequent when the amount of reflected energy measured by the radar (radar
reflectivity) is larger than a certain threshold. We derived relationships between rain rate and radar reflectivity.
We also find the precipitation properties inferred from radar and lidar data compare well with direct
measurements from the aircraft, and the precipitation tends to be very light. We study how precipitation
properties vary vertically, and find that as one gets closer to the surface, there is a decrease in precipitation
droplet number and water, while there is an increase in the average size of droplets. We also find that rain rate
depends on how thick the clouds are and the number of aerosols, consistent with theoretical expectations.

1. Introduction
Surrounding Antarctica, the Southern Ocean (SO) is the second smallest of the five ocean basins, yet it plays an
outsized role in the climate system. The SO is estimated to account for about 75% of the oceanic heat uptake and
about 30%–40% of the carbon uptake (Frölicher et al., 2015; Khatiwala et al., 2009), and thus act as a strong buffer
against climate change. Due to the lack of anthropogenic aerosols, the SO is also a pristine environment, and it has
been argued that SO observations can be used as a present‐day proxy for pre‐industrial conditions as regards
trying to constrain anthropogenic aerosol effects (Hamilton et al., 2014; McCoy et al., 2020), which remain a large
source of uncertainty in the climate projections (Bellouin et al., 2020; Lee et al., 2016). More generally, SO
clouds, especially low clouds, also have attracted much research interest in recent years because of their
importance to the global radiative energy budget (Bodas‐Salcedo et al., 2016; Cesana et al., 2022; Trenberth &
Fasullo, 2010) as well as cloud feedbacks and climate sensitivity (Mülmenstädt et al., 2021; Tan et al., 2016;
Zelinka et al., 2020).
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Precipitation impacts stratocumulus behavior via complex feedbacks that operate on both macrophysical and
microphysical scales (Wood, 2012), and has been found to be a key player in the transition of stratocumulus
regimes, from closed cells to open cells, and the maintenance of open cells, at least in subtropical stratocumulus
(Smalley et al., 2022; Wang & Feingold, 2009; Yamaguchi & Feingold, 2015). Moreover, recent studies highlight
the importance of precipitation formation as a dominant sink of cloud condensation nuclei and its control on the
cloud droplet number over the SO (Kang et al., 2022; McCoy et al., 2020). Despite the importance of precipitation
in low clouds, many climate models and reanalysis data struggle to accurately represent precipitation, including
over the SO (Zhou et al., 2021). Mülmenstädt et al. (2021) point out that precipitation biases persist in CMIP6
models, with warm clouds precipitating too frequently, thus shortening the cloud lifetime and underestimating
their cooling effect. This problem is especially pernicious for the SO because the error grows in importance, with
a reduction in mixed‐phase clouds as the climate warms (Bjordal et al., 2020).

Due to the remoteness of SO and a general lack of surface and in situ observations, satellite observations have
long been an indispensable tool to study SO precipitation. Arguably the best available source of satellite data on
SO precipitation rates is provided by CloudSat (W‐band radar), which has greater sensitivity to light precipitation
than passive sensors (Eastman et al., 2019; Tansey et al., 2022). CloudSat has provided an unprecedentedly broad
picture of SO precipitation: Ellis et al. (2009) showed that the precipitation occurrence frequency peaks around
50°–60°S; Mitrescu et al. (2010) found that the SO has a high occurrence of very light precipitation with rain rates
smaller than 1 mm hr− 1 having a frequency of 15%; Mace and Avey (2017) using both CloudSat and Moderate
Resolution Imaging Spectroradiometer (MODIS) data found that precipitation processes in SO warm clouds vary
seasonally with a stronger precipitation susceptibility to cloud droplet number in winter. Although compared to
other satellite measurements, CloudSat better detects light precipitation and is better able to determine the rain
rate, CloudSat is nonetheless affected by ground clutter which severely corrupts the reflectivity measurements
within about 750 m of the surface (Marchand et al., 2008). CloudSat precipitation retrievals are also largely
limited to situations where the measured near‐surface (750–1,000 m) reflectivity is larger than − 15 dBZ (Haynes
et al., 2009), although the precipitation is often observed falling from SO clouds with reflectivity factors less than
− 15 dBZ (e.g., Mace & Protat, 2018). As shown by Tansey et al. (2022), who evaluated CloudSat retrievals using
surface precipitation measurements during the Macquarie Island Cloud Radiation Experiment (MICRE), the
CloudSat 2C‐Precip‐Column product misses most precipitation with a precipitation rate less than 0.5 mm hr− 1. In
addition, CloudSat radar reflectivity measurements provide very limited information regarding the phase of the
precipitation. The current operational CloudSat precipitation products categorize precipitation into liquid, snow,
or mixed phase based largely on temperature profiles extracted from ECMWF analysis and identifying melting
layers, rather than any directly measured quantity.

In the face of biases and uncertainty in satellite retrievals and modeling, precipitation observations from multiple
sources such as islands, ships, and aircraft provide us with an important opportunity to obtain a more detailed view
of SO precipitation. Such precipitation observations were made in several recent collaborative field campaigns
(McFarquhar et al., 2021), including the aforementioned MICRE during 2016–2018, the Clouds Aerosols Pre-
cipitation Radiation and atmospheric Composition over the Southern Ocean (CAPRICORN) campaign in 2016
and 2018, the Measurements of Aerosol, Radiation, and Clouds over the Southern Ocean (MARCUS) campaign
during 2017–2018, and the Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study
(SOCRATES) during Jan–Feb 2018. For example, Tansey et al. (2022) created a 1‐year “blended” surface
precipitation dataset (which combines W‐band radar, tipping buck and disdrometer data) for MICRE and used
these data to study the diurnal, synoptic, and seasonal variability of near‐surface precipitation. These authors
found that total accumulation was comprised of about 74% rain, 16% ice or mixed phase precipitation, and 10%
small particle precipitation (whose phase could not be determined). In a study based on the CAPRICORN
datasets, Montoya Duque et al. (2022), applied a K‐means clustering technique to radiosonde data to classify the
atmosphere into seven thermodynamic clusters, and found that the highest occurrence of surface precipitation was
associated with warm frontal clusters and high‐latitude cyclone clusters (poleward of the polar front near cy-
clones), with warm rain dominating in the former and the largest fraction of snow in the latter. Shipborne pre-
cipitation observations from CAPRICORN have also been included along with observations from other research
vessels in the Ocean Rain and Ice‐Phase Precipitation Measurement Network (OceanRAIN), the first global and
comprehensive along‐track in‐situ water cycle surface reference dataset (Klepp et al., 2018). Protat et al. (2019)
used OceanRAIN data to investigate discrepancies among satellite products at high latitudes and found large
latitudinal and convective‐stratiform variability in the drop size distribution (DSD). Protat et al. (2019) pointed
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out that the Southern hemisphere’s high latitudes stood out as regions with a systematically higher frequency of
occurrence of light precipitation with rates <1 mm hr− 1 Protat et al. (2019) also noted that the shape parameter μ
for the precipitation drop size distribution (DSD) in high latitudes and midlatitudes ranges from − 1 to 1, which is
lower than the assumed μ of two or three in the Global Precipitation Measurement Mission (GPM) rainfall al-
gorithms (Grecu et al., 2016; Seto et al., 2013). Protat et al. (2019) found that the Southern Hemisphere high
latitude (− 67.5°S to − 45°S), along with Northern Hemisphere polar latitude bands, stood out with a funda-
mentally different relationship between radar observables and rainfall properties, such as radar reflectivity to rain
rate (Z–R) relationship, mainly because of much lower rain rates over the SO, suggesting that specific re-
lationships are needed for these regions.

In this study, we use data collected during SOCRATES to study the precipitation properties of austral sum-
mertime SO stratocumulus, leveraging observations from airborne W‐band HIAPER Cloud Radar (HCR), High
Spectral Resolution Lidar (HSRL), and in situ probes. In particular, we examine the occurrence of liquid and ice
phase precipitation, and for liquid precipitation we derived precipitation properties such as rain rate, using a
hierarchy of retrieval methods from simple Z–R relationships to a more complex radar reflectivity‐velocity
retrieval (ZV retrieval) and radar‐lidar retrieval. We also apply the precipitation observations and retrievals to
study the in‐and‐below cloud precipitation properties and rain rate dependence on cloud depth and aerosol
concentration.

This paper is organized as follows: Section 2 introduces the datasets, instruments, as well as the analysis and
retrieval methods used in this study. Section 3 provides a campaign overview and discusses phase partitioning.
Section 4 examines Z–R relationships and liquid precipitation retrievals and compares these remote sensing data
to in situ measurements. Section 5 provides a statistical summary of the liquid precipitation properties, and
Section 6 explores the relationship of stratocumulus rain rate with cloud depth and aerosol concentration, ending
with conclusions in Section 7.

2. Data and Methods
In this section, we introduce the data and methods that we use to characterize in‐and‐below cloud precipitation
properties. Section 2.1 describes the SOCRATES campaign sampling strategies, remote sensors (W‐band Cloud
Radar, HCR, and High Spectral Resolution Lidar, HSRL), and in situ instruments. Section 2.2 describes how we
use in situ data to analyze in‐cloud and below‐cloud precipitation properties, as well as how we estimate Z–R
relationships. In Section 2.3, we describe reflectivity‐velocity (ZV) and radar‐lidar retrievals.

2.1. Instrumentation and Data

In this study, we use data collected during the SOCRATES campaign to study the precipitation properties of
stratocumulus. The SOCRATES campaign happened in January–February 2018 (McFarquhar et al., 2021), when
the NSF/NCAR Gulfstream GV aircraft conducted 15 research flights over the SO. After taking off from Hobart
(Tasmania), the aircraft typically flew south at high altitude and then descended to just above cloud top for several
10’s of minutes, before heading back toward Hobart. On the return, the aircraft would descend into low clouds and
sample aerosols, clouds, and precipitation with a repeating series of activities that included in‐, below‐, and
above‐cloud level legs (where the aircraft flew at a nearly fixed altitude), as well as sawtooth legs (where the
aircraft ascended or descended through the cloud layer). Figure S1 in Supporting Information S1 shows a
schematic of the typical flight, as well as the 15 flight tracks flown during SOCRATES.

To characterize in‐and‐below cloud precipitation properties, we use observations from both in situ probes and
remote sensors. Table 1 gives a summary of the instruments and data we use in this study, along with a primary
reference. We describe how these in situ data are used in Section 2.2.

Remote sensors include a 94‐GHz W‐band HIAPER Cloud Radar (HCR) (Vivekanandan et al., 2015) and a 532‐
nm High Spectral Resolution Lidar (HSRL) (Eloranta, 2005). Based on radar and lidar moments data, we use
retrieval techniques to derive precipitation properties, as detailed in Section 2.3. HCR and HSRL were deployed
in previous campaigns, such as CSET (e.g., Schwartz et al., 2019). The radar and lidar data were processed by
NCAR/EOL at 2 Hz (0.5 s) temporal resolution and have 19 m vertical range resolution. A description of the
NCAR/EOL data processing and corrections are given in readme files that are distributed with the data (with the
link in the Data Avalibility Statement). This includes a correction of radial velocity for platform motion following
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Romatschke et al. (2021), in which corrections are applied to the nadir and zenith pointing data separately. For
nadir pointing data, radial velocity was corrected following Ellis et al. (2019), where the radial velocity of the
surface (assumed to be 0 m/s) is used as a reference to correct the data with a running 3rd‐degree polynomial filter.
A similar method is applied to the zenith‐pointing data, which is the focus of this paper. But for the zenith pointing
data, instead of assuming zero velocity of surface, it is assumed that the cloud top velocities from zenith pointing
times are similar to those of the neighboring nadir pointing times. Specifically, cloud top velocities are first
calculated for both the nadir pointing data and zenith pointing data, then the difference between the two is used to
correct the bias in the zenith pointing velocity data. Figure S2 in Supporting Information S1 shows an example of
the zenith‐pointing velocity fields before and after the correction. Figure S3 in Supporting Information S1 shows
the averaged nadir pointing and zenith pointing velocity profiles from RF13, demonstrating that correction has
removed the offset in zenith pointing velocity profiles and resulted in a similar velocity profile between nadir
pointing data and zenith pointing times with cloud top velocities around 0 m/s and similar vertical variations.

2.2. In Situ Measurements

2.2.1. Droplet Size Distribution and Phase

This study uses in situ measurements mainly from two particle‐sizing‐instruments: a Cloud Droplet Probe (CDP)
and a Two‐Dimensional Stereo probe (2DS) as listed in Table 1. We focus on in situ measurement from these legs
(as marked in Figure S1 in Supporting Information S1): below‐cloud level legs, in‐cloud level legs, and sawtooth
legs (which are further divided into top‐half of the cloud, bottom‐half of the cloud, and the below‐cloud portion as
described below). These in situ measurements will be used to derive reflectivity to rain rate relationships (Z–R)
relationships (Section 4.1), to validate the liquid precipitation retrievals (Section 4.3), and to study in‐and‐below
cloud liquid precipitation properties (Section 5). In our analysis, we only consider the DSD when the in situ phase
identification is liquid only by using the 1 Hz SOCRATES Cloud Phase Product developed by D’Alessandro
et al. (2021, 2022). The details of the phase classification are described in D’Alessandro et al. (2021), and is based
on measurements from 2DS, CDP, and Rosemount Icing Detector (RICE) instruments. In brief, a multinomial
logistic regression is used to identify periods when non‐spherical particles (indicative of ice) are present in the

Table 1
Instruments and Data

Instruments Data References

Cloud Droplet Probe (CDP) Size and concentration of hydrometeors with a diameter
between 2 and 50 µm

Lance et al.
(2010) https://data.eol.ucar.edu/
dataset/552.002

Two‐Dimensional Stereo probe (2DS) Size and concentration of hydrometeors with a dimension
between 10 and 1,280 μm.

Wu and McFarquhar
(2019) https://data.eol.ucar.edu/
dataset/552.047

Ultra‐High‐Sensitivity Aerosol Spectrometer
(UHSAS)

Aerosols with dry diameters between 60 and 1,000 nm DMT (2013); Sanchez et al.
(2021) https://data.eol.ucar.edu/
dataset/552.002

CDP, 2DS, Two‐Dimensional OpticalArray
Cloud Probe (2DC), and Rosemount Icing
Detector (RICE)

Cloud Phase Product D’Alessandro et al.
(2022) https://data.eol.ucar.edu/
dataset/552.142

HIAPER Cloud Radar (HCR) Reflectivity, Doppler velocity, Spectral width, Signal‐to‐noise ratio, etc. Vivekanandan et al.
(2015) https://data.eol.ucar.edu/
dataset/552.034

High Spectral Resolution Lidar (HSRL) Backscatter coefficient, Particle Linear Depolarization
Ratio, Extinction coefficient, etc.

Eloranta
(2005) https://data.eol.ucar.edu/
dataset/552.034

Note. For both CDP and 2DS data are available at 1 Hz temporal resolution. CDP data can be found in SOCRATES Navigation, State Parameter, and Microphysics
Flight‐Level Data. This study uses version 1.4 of this dataset. This study uses version 1.1 of the 2DS dataset, where the raw image data were processed to determine the
shape/habit of each particle by the Holroyd scheme in the University of Illinois/Oklahoma Optical Probe Processing Software (UIOOPS, McFarquhar et al., 2018).
Cloud Phase Product version 1.0 is also available at 1 Hz temporal resolution. The radar and lidar moments data version 3.1 were processed by NCAR/EOL and 2 Hz
(0.5 s) temporal resolution and 19 m range vertical resolution. The operational specifications of HCR and HSRL are available at https://data.eol.ucar.edu/dataset/
552.034.
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2DS images, and periods with low cloud droplet number concentrations from the CDP that contains no indication
of icing (due to supercooled liquid) from the RICE are likewise identified as containing ice.

We combine measurements from CDP and 2DS to create a combined droplet size distribution (DSD) by using
CDP measurements for bins <25 μm and 2DS for bins >50 μm. For drops in the intermediate size range (25–
50 μm), we take the larger values of the two probes. After combining the DSD from two probes, we further
averaged the DSD for different regions and flight segments. Specifically, we examine the top half of the cloud
layer from sawtooth legs; the bottom half of the cloud layer from sawtooth legs; the below‐cloud portion of the
sawtooth legs; the below‐cloud level legs in 20s intervals; and in‐cloud level legs in 10s intervals. For the purpose
of averaging the in‐situ data into these categories, we define the aircraft as in‐cloud when the liquid water content
was greater than 0.03 g m− 3 (Kang et al., 2021; Wood et al., 2011). Because of the limited sampling volumes of
the probes, even with averaging, there can be gaps (and large variability) in the DSD distribution for large
particles (where the concentrations are sufficiently low that the probes become increasingly unlikely to observe
these particles in a given 10 or 20s period). As needed, we fill gaps in the DSD by fitting an exponential curve
following Comstock et al. (2004) and extrapolate DSD (out to a diameter of 2,000 μm) to account for the
contribution from larger particles.

The DSDmeasurements from CDP and 2DS exhibit various sources of uncertainty as regards particle droplet size
and concentration, and these uncertainties propagate, influencing the accuracy of higher moments derived from
the DSD (e.g., liquid water content, LWC). For CDP, common issues include undercounting errors and oversizing
errors due to coincidence (Lance et al., 2010). Faber et al. (2018) demonstrated that CDP may overestimate the
median diameter by 5%–15%, with errors in higher‐order moments generally below 10%. Faber et al. (2018) also
compared CDP‐derived LWC with the Nevzorov hot‐wire probe and found that LWCCDP is greater by about
20% larger than that from the Nevzorov hot‐wire. Wang et al. (2020) conducted a comparison of LWC mea-
surements between CDP and the independent King probe (a hot‐wire probe) during SOCRATES, and found that
LWC from two probes is broadly consistent, with a root mean square error of 0.057 g m− 3 and correlation co-
efficient of 0.96. On the other hand, 2DS has large uncertainty related to the depth of field for droplets smaller
than 50 μm (D’Alessandro et al., 2021). In our analysis, we primarily rely on CDP measurements for particles
smaller than 50 μm when combining the DSD data from 2DS and CDP, as described earlier in this section. While
the merging does introduce an uncertainty in the effective radius of about 0.5 microns (see Kang et al., 2021), the
LWC is dominated by the small droplets measured by the CDP droplets, and the uncertainty in the LWC is
likewise dominated by the uncertainty in the CDP. Another potential issue highlighted by O’Shea et al. (2016) is
the limited sampling volume of the 2DS probe when operating at low concentrations. To address this, we mitigate
the concern by averaging over 10s or 20s periods, as mentioned above.

2.2.2. Liquid Precipitation Properties

Liquid precipitation properties are derived using the DSD. For different segments, we calculated the rain rate
(liquid water flux) as:

R = 3,600 ∗
π
6

ρw∫

∞

Dmin

n(D) D3 v f (D) dD (1)

where ρw is the density of liquid water (1,000 kg m
− 3), D is the diameter in m, the 3,600 (units of second/hour) is a

scaling factor to convert the units of rain rate from kg m− 2 s− 1 to mm hr− 1, and vf(D) is the terminal fall velocity
(units of m s− 1) of droplets in the range from D to D + dD, and n(D) is the drop size distribution (units of
m− 3 mm− 1). We use the terminal fall velocity model of Beard (1976) for vf(D) term.Dmin is the lower limit for the
integration, and except where stated otherwise is set to 40 μm. In Section 4.1, we test the importance of smaller
droplets with diameter smaller than 40 μm on the total liquid water flux (LWFtotal).

Similarly, precipitation number (Nprecip) is calculated as:

Nprecip = ∫

∞

Dmin

n(D) dD (2)

Precipitation liquid water content (LWCprecip) is calculated as:
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LWCprecip =
π
6

ρw∫

∞

Dmin

n(D) D3dD (3)

Precipitation liquid water content weighted mean diameter (Dprecip), which can be thought of as diameter at which
half of LWCprecip is below and half is above, is calculated as:

Dprecip =
∫ ∞

Dmin
n(D) D4dD

∫ ∞
Dmin

n(D) D3dD
(4)

Precipitation liquid water content weighted width (σprecip) is calculated as:

σprecip =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∫ ∞
Dmin

n(D) D3(D − Dprecip)
2dD

∫ ∞
Dmin

n(D) D3dD

√
√
√
√ (5)

2.2.3. Z–R Relationships

To estimate the Z–R relationships from in situ measurements, we calculated radar reflectivity Z and rain rate R,
respectively from the in situ droplet size distributions (DSD). Rain rate is calculated as Equation 1. Reflectivity is
proportional to the sixth moment of the DSD:

Z = ∫

∞

Dmin

n(D) D6 γ f (D) dD (6)

where n(D)dD gives number concentrations from diameter D toD + dD, γf(D) is the Mie‐to‐Rayleigh backscatter
ratio (shown in Figure S4 in Supporting Information S1, which is the ratio of the backscatter efficiency of Mie
scattering for W‐band (94‐GHz), calculated using the miepython package (Prahl, 2023) based on Wis-
combe (1979), and backscatter efficiency of Rayleigh scattering (Bohren & Huffman, 1983). With calculated
reflectivity and rain rate from the in situ DSD, the Z–R relationship assumes a traditional power‐law of the form:

Z = aRb (7)

where a and b are coefficients, and Z is the independent variable. Equation 7 can also be rearranged as R = (Z/a)1/
b, which can be used to derive R based on Z observations. Coefficients a and b can be estimated using the least‐
squares regression in log space following Comstock et al. (2004):

logR =
1
b

(− log a + log Z) (8)

We estimated the uncertainty in estimated exponents b and intercepts a that are based on in situ data using
bootstrapping. Note that in Section 4.1, we also estimated Z–R relationship based on radar observed reflectivity
factor and rain rate from radar‐lidar retrieval (more details in Section 2.3.3), where we use a moving blocks
bootstrapping method following Wilks (1997) to estimate the uncertainty in a and b coefficients, with a block
length that is close to the e‐folding length.

2.3. Precipitation Retrievals Based on Remote Sensors

Precipitation retrievals described in this section use the zenith‐pointing data collected when the aircraft was flying
level‐legs below the cloud. To illustrate, Figure 1a shows the flight track altitude and measured radar reflectivity
for research flight 13 (RF13). In panel (a), the potions of the flight track which feature below‐cloud‐level legs are
colored blue. Figures 1b–1f shows the radar and lidar data in more detail, for the below‐cloud level leg starting
from 03:40 UTC, which is marked by the gray shading in Figure 1a. In general, retrievals undertaken for below‐
cloud level legs have the advantage that the zenith pointing lidar data allows one to determine the position of cloud
base, as well as providing measurements of the backscatter (Figure 1c) and depolarization ratio (Figure 1d) of the
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Figure 1. Example radar and lidar data collected during the SOCRATES. Panel a shows the flight tracks and reflectivity fields from research flight 13 (RF13), with
different segments color‐coded as in Figure S1 in Supporting Information S1. The gray shading in panel a marks a portion of one below‐cloud level leg, and a zoom‐in
view of the radar and lidar fields for this segment are shown in panels (b)–(f): (b) radar reflectivity; (c) lidar backscatter coefficient; (d) lidar particle linear
depolarization ratio; (e) radar spectral width; (f) radar doppler velocity. The gray lines show the estimated cloud top, the black lines show the estimated cloud base, and
the blue lines show the location of the aircraft for below‐cloud level legs.
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precipitation that has fallen from the cloud and can be used to determine the precipitation phase. We describe the
retrieval process in the three subsections that follow: (a) determine the cloud boundaries; (b) determine the phase
of precipitation; (c) determine the liquid precipitation microphysical properties (such as the rain rate).

2.3.1. Determine the Cloud Boundaries

To determine the cloud base, we use the lidar backscatter coefficient β (e.g., Figure 1c) and define the cloud base
as the altitude where β first exceeds a threshold of 0.0001 m− 1 sr− 1. The black dots in Figure 1c show the cloud
base identified using this threshold. Cloud top for our analysis is based on the radar reflectivity data, which have
already been masked for significant detections (above the instrument noise floor). The cloud top is taken simply as
the maximum height with a valid reflectivity echo (i.e., above the instrument noise floor) below 3 km, as marked
by gray dots in Figures 1b–1f.

2.3.2. Determine the Phase of Precipitation Below Cloud Base

With the cloud boundaries identified, the next step is to determine the phase of the precipitation falling from the
clouds. Following Mace and Protat (2018), we determine the precipitation phase using the lidar particle linear
depolarization ratio (PLDR) (e.g., Figure 1d). The basic concept is that the lidar emits linearly polarized light, and
scattering by spherical particles (e.g., liquid drops) does not change the polarization state of the light and thus
generates little PLDR, while scattering from non‐spherical particles (e.g., ice particles) creates significant de-
polarization and thus generates measurable increase in PLDR. In this study, for each lidar column, we examined
the median of the PLDR over the vertical interval between cloud base to the first useable lidar range gate. For
clouds with a cloud top temperature greater than 0°C, that is for warm clouds whose precipitation must be liquid,
we find the below‐cloud base PLDR values to be less than 0.03 about 90% of the time, and to be above 0.05 less
than 1% of the time (see Figure S5 in Supporting Information S1 for overall statistics and Figure S6 in Supporting
Information S1 for an example case). Thus, for cooler cold‐topped clouds (which might precipitate ice), we define
the precipitation to be liquid phase when the median PLDR <0.03; ice precipitation when PLDR >0.05; and
ambiguous phase with PLDR values in between. The thresholds we use are broadly similar to Tansey et al. (2023)
and Mace and Protat (2018). In Tansey et al. (2023), the liquid phase is defined with a depolarization ratio less
than 0.05, and the ice phase with a value greater than 0.1. Mace and Protat (2018) defined the liquid phase with a
depolarization ratio less than 0.02, and the ice phase with a value greater than 0.03. These thresholds differ
somewhat because of differences in the field‐of‐view of the lidars used in each study, but they also represent
different subjective choices for the degree of confidence desired. Our thresholds allow for little chance of a false
detection of ice (nominally <1%), but consequently, some unknown fraction of ice will be identified as
ambiguous. Somewhat similarly, we can expect that 10% of the cases identified as ambiguous are likely to be
liquid phase. Consequently, ambiguous phase does not necessitate mixed phase (meaning both liquid and ice are
present), though as we will see later, the occurrence of ambiguous phase is significantly larger than the expected
10% of failed‐detection for liquid phase clouds and it is likely that many of the ambiguous cases do contain some
ice phase precipitation.

We restrict our focus to the precipitation phase below‐cloud, because the lidar signal becomes quickly attenuated
in‐cloud, and equally problematic, the depolarization ratio increases substantially in‐cloud because of multiple
scattering. A characterization of the phase at cloud base that accounts for multiple scattering is possible (e.g.,
Mace et al., 2020), as indeed is estimating vertical phase profiles using a combination of radar and lidar (e.g.,
Schima et al., 2022), albeit with larger inherent uncertainties.

2.3.3. Liquid Precipitation Retrieval

After determining the cloud base and precipitation phase, we can use a hierarchy of retrieval methods with
increasing complexity to derive the precipitation properties, starting from (1) a simple Z–R relationship approach
where only one variable, the radar reflectivity, Z, is available to derive the rain rate, to (2) a ZV retrieval following
Mace et al. (2002) and Marchand et al. (2007), where radar reflectivity, Z, and mean Doppler velocity, V, are
known, to (3) a radar‐lidar retrieval following O’Connor et al. (2005) based on three observables: radar reflec-
tivity Z, radar Doppler spectral width σd, and lidar backscatter β. We briefly describe the radar‐lidar and the ZV
retrieval in this section, and present retrieval results and evaluate the retrievals using in situ observations in
Section 4.
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The radar‐lidar retrieval technique uses three input variables radar reflectivity, Z (Figure 1b), doppler spectral
width, σd (Figure 1e), and lidar backscatter, β (Figure 1c), to solve for three parameters in an assumed modified
gamma distribution (Equation 9) for the precipitation drop size distribution (Illingworth & Blackman, 2002; Petty
& Huang, 2011; Ulbrich, 1983). The three parameters are the shape factor μ, the median equivolumetric diameter
D0, and the normalized droplet concentration Nw:

n(D) = Nw f (μ) (
D
D0
)

μ

e
[− (3.67+μ)D

D0
]

(9)

where D is diameter, and f(μ) is a function of μ

f (μ) =
6

3.674
(3.67 + μ)

4

Γ(μ + 4)
(10)

where Γ is the gamma function. Integration of the droplet size distribution in Equation 9 will yield the precipi-
tation droplet number concentration, Nprecip, as in Equation 2.

Following O’Connor et al. (2005), one can show that for a fixed value of the shape factor, μ, the ratio of the
radar reflectivity to lidar backscatter is proportional to the fourth power of the mean drop size, and the
combination of radar reflectivity and lidar backscatter can therefore be used to calculate D0 and Nw. In the
retrieval algorithm, this is done assuming an initial value of μ = 0. The Doppler spectral width is then forward
calculated and μ is increased or decreased in order to match the observed Doppler spectral width (after applying
turbulence corrections as described below). In the retrieval algorithm, we restrict μ to range from − 1 to 10
following O’Connor et al. (2005). The algorithm adjusts μ and recomputes D0 until convergence (with more
details given in O’Connor et al., 2005). The forward calculations require a model for the hydrometeor terminal
fall velocity, for which we use the model of Beard (1976). Once the three distribution parameters are known, it
is straightforward to calculate the rain rate, rain liquid water content, and mean rain drop size, etc. using the fall
velocity and Equation 9. This retrieval technique has been widely used in retrieving drizzle properties (e.g.,
Ghate & Cadeddu, 2019; Yang et al., 2018), including the CSET campaign with airborne radar and lidar
(Sarkar et al., 2021; Schwartz et al., 2019). Our implementation largely follows O’Connor et al. (2005), except
for the estimation of the contribution from air turbulence to the observed spectral width. Instead of using the
horizontal wind speed to estimate the length scale, we use the aircraft speed (we note O’Connor et al. (2005)
originally developed the retrieval for vertically pointing ground‐based radar and lidar). Note that spectral
broadening caused by aircraft motion was already corrected in the HCR data provided by NCAR/EOL, as
described in Romatschke et al. (2021).

In addition to the radar‐lidar retrieval technique, we also use a reflectivity‐velocity (ZV) retrieval technique
(Frisch et al., 1995; Mace et al., 2002; Marchand et al., 2007). The first step in this retrieval is to estimate the
precipitation fall velocity from radar measured Doppler velocity, which includes the effect of vertical air
motions (i.e., updrafts/downdrafts). We do this following Orr and Kropfli (1999) and partition the measured
Doppler velocities into a set of height and reflectivity bins (for each below‐cloud zenith‐pointing segment)
and average the partitioned Doppler velocity as an estimate for the fall velocity (as a function of height and
radar reflectivity). The underlying idea is that at a given altitude and reflectivity, there is a characteristic size
distribution (with a characteristic fall velocity) and by averaging the Doppler velocities over a narrow range of
reflectivity values, one averages out the effect of the updrafts and downdrafts leaving only the mean fall
velocity. In this study we use reflectivity bins are that 2 dBZ wide, and use 200 m vertical bins with 100 m
overlap. The results are not particularly sensitive to these choices, as long as there is a healthy number of
samples available in each bin (at least 10 samples). Following Frisch et al. (1995), it is straightforward to
obtain analytical expressions for distribution parameters D0 and Nw given the derived fall velocity, measured
reflectivity, and an assumed shape factor μ. Except where we state otherwise, we assume the shape factor to
be 0. One can show that the modified gamma distribution (Equation 9) reduces to the exponential distribution
when the shape factor is zero. In the radar‐lidar retrieval, we find the retrieved shape factor is often quite
small and we will examine and discuss the sensitivity of the ZV retrieval to assumed shape factor values in
Section 4.2.
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3. Campaign Overview and Phase Partitioning
To get a general sense of the hydrometers (clouds and precipitation) sampled by the airborneW‐band radar during
the SOCRATES, Figure 2a shows the joint histogram of radar reflectivity with height observed during below‐
cloud, zenith‐pointing periods. Here the histogram is normalized by the number of radar columns, such that
the value in each bin indicates how often hydrometers have a reflectivity (with ± 1 dBZ of the given value) in the
given altitude/height range; and the sum at each height (row) will give the hydrometer fraction (Figure 2b).

Note that there are no data to the left of the red line in panel a. This is because of the limited radar sensitivity, and
as distance increases, the minimum detectable reflectivity factor increases. Likewise, there are no data from 0 to
200 m altitude because the aircraft’s lowest legs were typically flown at around 100–150 m altitude, and the radar
blanking interrupt (the region corresponding to the time when the radar outgoing pulse is being, or has just been,
transmitted and the radar system has not yet begun measuring the return power) typically extends about 203 m
above this (Schwartz et al., 2019).

The maximum frequency of hydrometers observed by the radar occurred between 700 and 1,200 m, with a hy-
drometer fraction over 50% (Note this is not the projected area or the fraction of radar columns with a significant
echo at any altitude, that value is near 90%). Reflectivity factors larger than − 10 dBZ are relatively rare and the
peak or most likely reflectivity factor is between − 30 to − 20 dBZ. Reflectivity factors larger than − 10 dBZ are
common over the Southern Ocean (see for example Mace & Protat, 2018), but such factors are associated with
fronts or convection (including the shallow convection sometimes associated with vigorous open cells) and not
typical of the shallow (cloud tops<2 km) and largely overcast stratocumulus sampled during SOCRATES. Rather
there is a single mode or continuum of reflectivity that spans reflectivity factors from about − 40 dBZ (where rain
rate is very light on the order of 10− 4 mm hr− 1) to values around − 10 dBZ (where precipitation is still light but
with a rain rate near 1 mm hr− 1), and a peak below − 20 dBZ.We stress that rain rates near 1 mm hr− 1 are light but
have a substantial impact on cloud condensation nuclei and cloud lifetime (Kang et al., 2022). Most of this
stratocumulus are supercooled. Overall, we find that about 80% of the stratocumulus sampled during SOCRATES
had a cloud top temperature <0°C and cloud depth <600 m (figure not shown), and about 62% of the strato-
cumulus were precipitating, defined as having three consecutive radar bins (about 60 m) below cloud base with a

Figure 2. (a) Joint histogram of the hydrometer (cloud & precipitation) radar reflectivity with height observed by the airborne
W‐band radar during below‐cloud, zenith‐pointing periods (i.e., when aircraft is flying below the cloud, as illustrated in
Figure S1 in Supporting Information S1). The histogram is normalized by the total number of radar “columns” such that the
histogram values are the fractional occurrence (see text). (b) hydrometer fraction [%] at each height of all radar “columns”.
The red line on panel a illustrates the minimum detectable reflectivity values by HCR as a function of height.
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reflectivity greater than − 40 dBZ. This occurrence of precipitation drops to
34% if a reflectivity threshold of − 20 dBZ is applied (rather than − 40 dBZ),
indicative of the very light nature of much of the precipitation.

What is the phase of the precipitation sampled during the SOCRATES? As
described in Section 2.3.2, we determine the precipitation phase using the
lidar particle linear depolarization ratio PLDR (Figure 1d), and interpret the
precipitation as liquid phase when PLDR < 0.03; ice phase when
PLDR > 0.05; and ambiguous for PLDR values in between. Figure 3a shows
that around 60% of the precipitation from the zenith‐pointing segments are
liquid phase and about 20% of the precipitation are ice phase, with the
remaining 20% being ambiguous phase. How does precipitation phase relate
to the cloud top temperature? Figure 3b shows the relative occurrence of
precipitation in different phases as a function of cloud top temperature (CTT).
For the warm‐topped clouds (CTT > 0°C), we expect that all the precipitation
should be liquid phase. Temperature is not used in the phase retrieval, and
consistent with the discussion in Section 2, the low occurrence of ambiguous
or ice phase precipitation with CTT > 0°C is indicative of the low retrieval
error. For the cold‐topped clouds (CTT < 0°C), liquid precipitation still
dominates for clouds with CTT between 0 and − 10°C, with the ice fraction
increasing as temperature decreases. But it is not until about a CTT of − 15°C
that ice phase appears to dominate.

An interesting question related to phase is whether or not precipitation phase
is related to radar reflectivity. Zhang et al. (2017) have shown that lidar de-
polarization ratios are correlated with radar reflectivity, and for the SO in
particular, Mace and Protat (2018) show that W‐band radar reflectivity
greater than − 10 dBZ is associated with ice‐phase hydrometeors (based on
CAPRICORN observations). Figure 3c shows the occurrence of the different
precipitation phases for cold‐topped clouds as a function of reflectivity.
Overall, it shows that reflectivity factors less than about − 10 dBZ are pre-
dominantly liquid, while reflectivity factors greater than 0 dBZ are pre-
dominantly ice. We will discuss this result in more detail in the conclusions.

4. Liquid Precipitation Retrievals
In this section, we will explore a hierarchy of retrieval methods based on
complexity, from (1) the simplest Z–R relationship approach where only one

variable reflectivity Z is known, to (2) a ZV retrieval using two variables (reflectivity Z and Doppler velocity V),
to (3) a radar‐lidar retrieval based on three variables (reflectivity radar reflectivity Z, doppler spectral width σd,
and lidar backscatter β). In Section 4.1, we will develop Z–R relationships based on in situ data. In Section 4.2, we
will demonstrate the results from ZV and radar‐lidar liquid precipitation retrievals using a case example, and in
Section 4.3, we evaluate these retrievals using in‐situ aircraft observations from all the segments where retrievals
were performed.

4.1. Reflectivity to Rain Rate (Z–R) Relationships

One objective of this study is to estimate Z–R relationships of the form Z = aRb. Z–R relationships are useful and
convenient, requiring only one independent variable (reflectivity Z) to estimate rain rate R. Such relationships
have a long history in atmospheric science, and as concerns stratocumulus in particular, relationships have been
derived in past studies for stratocumulus over the Eastern Pacific (Comstock et al., 2004), over the north‐east
Atlantic and in U.K. coastal waters (Wood, 2005), and for nocturnal stratocumulus clouds off the California
Coast (van Zanten et al., 2005). More recently, Protat et al. (2019) estimated Z–R relationships at the surface over
the global ocean, including the Southern Ocean, based on surface disdrometer measurements. In this section, we
will derive Z–R relationships using SOCRATES aircraft observations following the method presented in Sec-
tion 2.2.3 and compare our results with previous studies.

Figure 3. (a) Probability and cumulative density functions for lidar particle
linear depolarization ratio (PLDR) for below‐cloud precipitation, (b) The
fraction of liquid, ice, and ambiguous precipitation as a function of cloud top
temperature, (c) The fraction of liquid, ice, and ambiguous precipitation as a
function of radar reflectivity. To distinguish different precipitation types,
liquid precipitation is marked as blue, ice precipitation is marked as red, and
ambiguous precipitation is marked as orange.
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Figure 4 shows the Z–R relationships derived using in situ data taken at different locations relative to the cloud
layer and surface (see Figure S1 in Supporting Information S1 for a schematic). Table 2 lists the corresponding a
and b coefficients. In Figure 4a, we only consider droplets with a diameter larger than 40 μm following Comstock
et al. (2004), while in Figure 4b, we include all droplets including those droplets with a diameter smaller than
40 μm. We will focus on Figure 4a first. Figure 4a shows that estimated Z–R relationships do have a vertical
dependence. The intercept controlled by coefficient a increases as one moves from the cloud layer to the surface,
while the slope controlled by exponent b remains largely unchanged. The vertical dependence of Z–R was also
noticed in previous studies (e.g., Comstock et al., 2004; van Zanten et al., 2005). The exponent b estimated in
Figure 4a ranges from 1.19 to 1.41, with a one‐sigma uncertainty that ranges from 0.04 to about 0.07, based on a
bootstrap resampling technique (uncertainties are listed in Table 2). Note the uncertainties in the a and b co-
efficients are not independent, but rather are positively correlated such that a larger estimate for the a‐value is
associated with a larger estimate for the b‐values. It is worth also noting that uncertainty estimated by the
bootstrapping does not account for the uncertainty in the measurements (Section 2.2.1). It only accounts for the
uncertainty in the relationship given the finite sample size. As described in Section 2.2.1, this analysis includes
only periods identified as liquid phase using the D’Alessandro phase product. Relaxing this restriction has no
significant effect on the below‐cloud values, but does result in a slight increase in the b coefficient by 0.1–0.2 and
a decrease in the a coefficient by about 50% for the in‐cloud relationships (given in the top three rows). Table 2
also lists some Z–R relationships estimated from other studies mentioned above. Overall, we find the exponent b
to be similar to that from Comstock et al. (2004), van Zanten et al. (2005) and many other earlier studies sum-
marized in Rosenfeld and Ulbrich (2003) over other regions and other cloud types. Later in this section, we will
compare the rain rate derived from Z–R relationships with rain rate derived from two other retrieval methods.

The above analysis is based on the idea that only droplets larger than 40 μm are considered precipitation. But
droplets smaller than 40 μm can and do contribute to the flux of liquid water (Nicholls, 1984). What happens if
small droplets with a diameter smaller than 40 μm are included when calculating Z and R from in situ DSDs? The
results are shown in Figure 4b. Comparing Figures 4a and 4b, one can see that the estimated Z–R relationships are
very sensitive to whether one excludes smaller drops, especially for the data collected in the cloud. Differences in
the estimated Z–R are less dramatic when using in situ data outside of the cloud (i.e., below‐cloud portion of the
sawtooth leg and below‐cloud level legs).

To explore the importance of the smaller droplets, Figure 5a shows an example of DSDs measured near the top of
a cloud, near the bottom of the cloud, and below cloud during one sawtooth leg, as well as a nearby below‐cloud

Figure 4. Z–R relationships derived using in situ data and retrievals. Diameter >40 μm cutoff for the in situ measurements is imposed in panel (a), while panel (b) does
not apply any cutoff, and considers all droplet sizes for in situ data.
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Table 2
Z–R Relationship of the Form Z = aRb

Equation Location Remarks Reference

Z = (3.0 ± 1.3)R(1.22 ± 0.07)

[Z = (7.3 ± 6.7)R(1.85
± 0.19)]

the top half of the cloud layer
from the sawtooth leg

Estimated using SOCRATES aircraft in situ measurements
with and without the 40 μm cutoff [without given in brackets]

This study

Z= (3.6 ± 0.9)R(1.19 ± 0.04)

[Z = (4.7 ± 1.7)R(1.57
± 0.08)]

in‐cloud level legs

Z = (7.9 ± 2.3)R(1.28 ± 0.04)

[Z = (19.9 ± 11.6)R(1.76
± 0.09)]

bottom half of the cloud layer
from the sawtooth leg

Z = (55.6 ± 24.6)R(1.41 ± 0.05)

[Z = (193.9 ± 183.0)
R(1.67±0.09)]

the below‐cloud portion of the
sawtooth leg

Z = (56.0 ± 45.1)R(1.29±0.05)

[Z = (133.1 ± 250.0)
R(1.45±0.1)]

below‐cloud level legs.

Z = (31.6 ± 1.4)R(1.41±0.007) Cloud base Estimated using SOCRATES W‐band radar measured
reflectivity and radar‐lidar retrieved rain rate just below cloud base

Z = 25 R1.3 Cloud base Estimated for stratocumulus over Eastern Pacific Comstock
et al. (2004)

Z = 12.92 R1.47 Cloud base Estimated using aircraft in situ DSD measurements for nocturnal stratocumulus clouds
over California Coast

van Zanten
et al. (2005)

Z = 12.5 R1.18 All in‐cloud levels Estimated using aircraft in situ DSD measurements for stratocumulus over the north‐
east Atlantic and in U.K. coastal waters

Wood (2005)

Note. Here uncertainty is estimated using either bootstrapping (rows 1–5) or moving block bootstrapping (row 6) with the one‐sigma uncertainty given after the
plus‐minus sign. For the Z–R relationship that is estimated using in situ measurements, the Z–R relationship estimated using only larger droplets, with a diameter greater
than 40 μm, is listed first, followed by the Z–R relationship estimated using all droplets included those droplets with a diameter smaller than 40 μm. For the equations
above, the reflectivity Z is in the unit of mm6 mm− 3, and the rain rate is in the unit of mm hr− 1. For the equations in the past studies with the form of R = cZd or have
different units, we rearranged the equation and converted the units to keep the consistency and make it easier to compare. Unless noted, the default band for reflectivity is
W‐band.

Figure 5. Example case to show the contributions of droplets in different size ranges with in situ measurements taken from different segments: (a) average droplet size
distribution; (b) product of diameter cubed, droplet size distribution and terminal fall velocity; (c) product of diameter to the power of six and droplet size distribution;
(d) reflectivity field and flight track for this example, the color‐coded lines marked the locations of different segments showing in panel (a)–(c). The vertical dashed line
in panels (a)–(c) is the reference line for 10 and 40 μm. The percentages on panels (a), (b), and (c) show the contributions from different size ranges to droplet number
concentration, to rain rate, and to reflectivity, respectively.
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level leg (depicted in the bottom panel). The associated liquid water flux distribution D3N(D)V(D) is shown in
Figure 5b, and the reflectivity distribution D6N(D) in Figure 5c. Note as in the microphysical retrievals, here we
use the terminal fall velocity model of Beard (1976) for V(D). Below cloud, small droplets evaporate much more
quickly than larger droplets, and most of the contributions to the liquid water flux comes from larger droplets,
such that the effect of small droplets on liquid water flux and reflectivity can be largely neglected. We hasten to
add, however, this is not true for the total number concentration (Figure 5a); where small droplets remain more
numerous (than droplets above 40 μm), and include many particles with sizes smaller than 5 μm, which one might
consider haze‐particles or hydrated‐aerosols rather than cloud droplets. Within the cloud layer, small droplets
make a large contribution to the liquid water flux, though they still only contribute slightly to the reflectivity.
Droplets in the diameter range of 10–40 μm contribute 78% of the liquid water flux in the top half of the cloud, and
still comprise about half of the water flux in the bottom half of the cloud. Contributions to the reflectivity from
droplets in the range of 10–40 μm are smaller than those of larger droplets, but do make a non‐trivial contribution.

In short, as Figure 5 and the differences in estimated Z–R in Figures 4a and 4b highlight, the sedimentation of
small droplets is (or can be) a significant component of the total liquid water flux in cloud and applying the Z–R
relationship derived from only larger particles or from below‐cloud measurements effectively ignores the
contribution from small particles (and below‐cloud Z–R equations should be applied with caution to in‐cloud
reflectivity measurements and should be expected to underestimate the total liquid water flux).

It is perhaps worth noting that even below cloud, the DSD is not a simple gamma function, as assumed in the radar
ZV or radar‐lidar retrievals. However, as is the case in Figure 5, there is often a clear mode associated with drops
larger than 40 μm below‐cloud and generally the liquid water flux and radar reflectivity (as well as the radar
Doppler velocity and lidar backscatter ‐ not shown) are controlled by these precipitation‐sized drops and the
gamma distribution assumption does not cause a major problem. In effect, below cloud, the gamma function only
needs to represent the larger droplets. For the radar‐lidar retrieval, however, this assumption is a major problem in
cloud or even close to cloud base, where the lidar backscatter is substantially impacted by the cloud droplets – and
ultimately, this is why we only apply the radar‐lidar retrieval below cloud.

4.2. ZV Retrieval and Radar‐Lidar Retrieval

In this subsection, we examine both the ZV retrieval and radar‐lidar retrieval using the zenith‐pointing remote
sensing data collected when the aircraft was flying level‐legs below the cloud. We will begin with one case study,
compare results from different retrieval methods, and then examine the sensitivity of ZV retrieval results to the
assumed shape factor μ. The overall retrieval performance will be evaluated in Section 4.3.

Applying the ZV retrieval (described in Section 2.3.3) to the example presented in Figure 1, the parameters D0 and
Nprecip can be derived from measured reflectivity Z, assumed shape factor μ, and derived terminal fall velocity.
Figure 6a shows the reflectivity‐weighted terminal fall velocity, vt, derived following Orr and Kropfli (1999).
Here we see generally larger vt toward the bottom of the cloud, and in precipitation shafts (regions of relatively
high reflectivity extending below cloud base). Figures 6b and 6c show the derived median equivolumetric
diameter D0, and precipitation concentration Nprecip, assuming μ = 0. Not surprisingly, Figure 6b shows that D0 is
larger where vt is larger, and is about 100–200 μ m below cloud base. Figure 6c shows Nprecip below cloud base is
in the order of 103–105 m− 3.

Applying the radar‐lidar retrieval technique to the example presented in Figure 1, with three input variables (radar
reflectivity Z, doppler spectral with σd, and backscatter coefficient β), we can also solve for shape factor μ, median
equivolumetric diameter D0, and precipitation number concentration Nprecip, as shown in Figure 7. The shape
factor μ describes the shape of the DSD (Equation 9), where a larger μ implies a narrower distribution. As in
O’Connor et al. (2005), we find large areas with broad DSDs (small μ). Narrow DSDs implied by large μ are
typically found underneath the thicker portion of the clouds (and as we will see later have larger rain rates). The
median equivolumetric diameter D0 is mostly between 50 and 250 μ m, with larger sizes occurring where μ is
larger. Again, this is similar to what O’Connor et al. (2005) observed and appears to be quite typical for drizzling
stratocumulus. Comparing the two retrieval methods, D0 from ZV retrieval (Figure 6) tends to be more spatially
homogeneous below cloud base than that from radar‐lidar retrieval (Figure 7), and the D0 from ZV retrieval tends
to be smaller than that from radar‐lidar retrieval in the precipitation shafts (where the assumption of a small value
for the shape factor appears problematic, more on this below).

Journal of Geophysical Research: Atmospheres 10.1029/2023JD039831

KANG ET AL. 14 of 26

 21698996, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

039831, W
iley O

nline L
ibrary on [26/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Once the parameters that determine the DSDs are derived, it is straightforward to calculate other precipitation
properties such as rain rate. Figures 8b and 8c show the ZV retrieved the rain rate (assuming μ = 0) and radar‐lidar
retrieval retrieved the rain rate. Overall, the two retrieval methods give similar results (at cloud base, the mean rain
rate from the ZV retrieval is 0.008 mm hr− 1, and the mean rain rate from the radar‐lidar retrieval is
0.007 mm hr− 1). With derived Z–R relationships from Section 4.1, one can also derive rain rate by applying them
to the radar reflectivity fields, as shown in Figure 8a, where we have applied three Z–R relationships: the
sawtooth‐top relationship to the top half of the cloud, the sawtooth‐bottom relationship to the bottom half of the
cloud, and the sawtooth‐below relationship to the area below the cloud base. The discontinuity in the rain rate
fields in Figure 8a is because three different Z–R relationships are applied to different regions. The difference in
Z–R relationships (i.e., with or without D > 40 μm cutoff) also results in differences in the derived rain rate
(Figure S7 in Supporting Information S1), especially for the in‐cloud portion. Overall, regardless of the retrieval
approaches, it can also be seen that higher rain rates tend to occur below the geometrically thicker portion of the
clouds, and we will explore the scaling between rain rate and cloud depth further in Section 6.

In Figures 6 and 8b, we assume μ = 0 in the ZV retrieval, while the retrieved μ from radar‐lidar retrieval clearly
shows spatial variations (Figure 7a). How does the ZV‐retrieved D0, Nprecip, and rain rate vary with assumed μ?
Figure S8 in Supporting Information S1 shows that the derived D0 increases with increasing μ values such that the
mean D0 just below cloud base is 102 μm when μ = 0, and is 156 μm when μ = 10. When using radar‐lidar
retrieved μ as input for ZV retrieval, the spatial variations in retrieved D0 (Figure S8f in Supporting Informa-
tion S1) are similar to radar‐lidar retrieved D0 (Figure 7b). In contrast, as shown in Figure S9 in Supporting
Information S1, the derived Nprecip decreases significantly with increasing μ values, with mean Nprecip at cloud

Figure 6. A time‐height plot of the ZV method retrieved precipitation properties assuming a shape factor of zero for the example segment is shown in Figure 1:
(a) reflectivity‐weighted the terminal fall velocity vt, (b) median equivolumetric diameter D0, and (c) precipitation number concentration Nprecip. The gray lines show the
estimated cloud top, the black lines show the estimated cloud base.
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base being about 1.3 × 105 m− 3 when μ = 0, and about 1.2 × 103 m− 3 when μ = 10. On the other hand, the derived
rain rate (Figure S10 in Supporting Information S1) shows relatively little dependence on assumed μ, with the rain
rate at cloud base decreasing slightly from about 0.008 mm hr− 1 (μ = 0) to about 0.007 mm hr− 1 (μ = 10). The
small sensitivity in rain rate ultimately arises because the liquid water flux is to first order given by the velocity
(which is input to the retrieval) times the liquid water content (which is strongly constrained by the reflectivity
that is likewise input to the retrieval).

4.3. Retrieval Validation

How good are the rain rate retrievals? One would think a simple comparison between the retrieved rain rate with
in situ measurements from the aircraft could answer this question. But there are a few challenges that need to be
overcome.

The first challenge is that retrieved rain rates that are closest to the aircraft level marked as a dashed line around
200 m in Figure 8) are still at least 150 m away, making it difficult to make a direct comparison. This is because
there is a blanking interrupt, a brief period where one needs to wait for the outgoing pulse to exit the radar (or
lidar) system and for the effect of strong scattering from nearby objects (clutter) to dissipate. To overcome this
difficulty, we extrapolate the retrieved rain rate downwards to the aircraft level by fitting an exponential function
to each radar column. The assumption is that the rain rate varies with distance below the cloud base exponentially
due to evaporation (Comstock et al., 2004; Wood, 2005). Figure S11 in Supporting Information S1 shows an
example of rain rate derived from the exponential fit, and demonstrates that the exponentially fitted rain rate
shows reasonable agreement with the retrieved rain rate where such is retrieved. Figure 8d compares the

Figure 7. A time‐height plot of radar‐lidar retrieved precipitation properties for the example segment is shown in Figure 1. Radar‐lidar retrieval method derived
parameters for modified gamma distribution: (a) shape factor μ, (b) median equivolumetric diameter D0, and (c) precipitation number concentration Nprecip. The gray
lines show the estimated cloud top, and the black lines show the estimated cloud base.
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extrapolated rain rate from the Z–R relationship (gray line), the extrapolated rain rate from ZV retrieval (orange
line), and the extrapolated rain rate from radar‐lidar retrieval (blue line). To further increase our confidence, we
only compare the extrapolated rain rate from those periods where the original retrieved rain rate extends to within
200 m of the aircraft (i.e., when the rain extends down to dotted reference line). Another challenge is the limited
sampling volume of the in situ probes. To overcome this difficulty, we average the in situ DSD over a 20s period
when calculating the rain rate, marked as black squares in Figure 8d. We also calculate median of the corre-
sponding retrievals over the same 20s time window, marked by the gray, orange and blue dots. It can be seen that
the retrieved rain rate shows reasonable agreement with in situ data for this case.

Figure 8. Retrieved rain rate for example case using (a) Z–R relationships (D > 40 μm), (b) ZV retrieval technique, (c) radar‐lidar retrieval technique, and (d) their
comparisons with in situ estimates. In panels (a)–(c), the dashed gray line shows the location of the aircraft, while the dotted line is a reference line to show 200 m above
the aircraft’s location. In panel d the retrieved rain rates were extrapolated to the aircraft level to compare with the in situ data. The gray line shows the rain rate retrieved
with Z–R relationships, the orange line shows the rain rate retrieved with the ZV retrieval technique, and the blue line shows the rain rate retrieved with the radar‐lidar
retrieval technique. The black squares represent the rain rate estimated with in situ measurements, where rain rates are derived from averaged droplet size distribution
(merged CDP and 2DS) over 20 s. Over that same time window, the median value of the retrieved rain rate time series was taken, denoted as gray dots (Z–R
relationship), orange dots (ZV retrieval), and blue dots (radar‐lidar retrieval).
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We repeated this analysis for the liquid‐precipitation retrievals for all the SOCRATES flights and summarized the
results in Figure 9. Overall, the Z–R, ZV, and radar‐lidar retrievals compare well with the in situ, with Pearson
correlation coefficient of 0.88, 0.88 and 0.89, respectively. Despite the simplicity of the approach, even the rain
rate derived from Z–R relationship shows skill in determining the rain rate as compared to the in situ values. The
fractional difference in mean rain rate (difference in 20s mean/average of 20s mean) between the Z–R retrieval
and in situ data is − 12.5%. We can estimate the uncertainty in the retrieved rain rate via error propagation. If we
estimated the uncertainty in reflectivity as 1.5 dB for reflectivity (following O’Connor et al., 2005) and 10% for
lidar backscatter (e.g., Schwartz et al., 2019), we estimate the uncertainty in the radar‐lidar retrieved rain rate
would be 18%. Similarly, with an uncertainty of 1.5 dB for reflectivity, and 10% uncertainty for terminal fall
velocity (see Tansey et al., 2022), we estimate the uncertainty in the ZV retrieved rain rate to be 44%. As for the
Z–R relationship, using the uncertainties below‐cloud sawtooth leg relationship from Table 2, the estimated
uncertainty in rain rate is 42%. Relative to the expected uncertainties due simply to uncertainties in the inputs, all
three retrievals compare well with the in situ data.

5. Vertical Distribution of Precipitation Properties
In this section, we will apply the precipitation observations and retrievals to study the vertical distribution of
precipitation properties.

Figure 10 shows a violin plot of in situ measured precipitation properties at different altitudes and retrieved
precipitation properties below the lidar‐inferred cloud base. For each dataset, the white dot represents the median
value, while the black bar represents the interquartile range. Perhaps surprisingly rain rate decreases going
downward from the top half of the cloud (i.e., the largest rain rates are in the upper portion of the cloud). Medians
of rain rate at the cloud top half, cloud bottom half, and below the cloud are 0.022 mm hr− 1, 0.007 mm hr− 1, and
0.001 mm hr− 1. Similar to rain rate, there is also a decrease in precipitation number concentration (Nprecip) and
precipitation liquid water content (LWCprecip) moving downward from the top half of the cloud. In contrast,
Dprecip and σprecip increase moving downward, that is bigger particles in the bottom half, and (just) below cloud.
Overall, the retrieved precipitation properties (below the cloud base) compare well with the in situ estimates from
the sawtooth below‐cloud segments.

How do precipitation properties vary below cloud base? Figure 11 provides a more detailed view of the vertical
distribution of precipitation properties below cloud base. Here, the column shows rain rate, Nprecip, LWCprecip,
Dprecip, and σprecip, respectively. The first two rows are histograms for radar‐lidar and ZV retrievals, respectively.
The last row is a box plot that summarizes both retrievals by binning the data vertically every 100 m. Here, we
only consider data in those radar columns where rain extends at least 400 m below cloud base. Overall, both the
rain rate and LWCprecip decrease exponentially with distance (as the change in the position of the distribution peak
is roughly linear with distance on a log scale). Both retrievals have similar values and rates of decrease (panel (k)
and panel (m)). The e‐folding distance over which the rain rate decreases to 1/e (37%) of its initial value is about

Figure 9. Comparison of in situ estimates with (a) Z–R retrieval, (b) ZV retrieval, and (c) radar‐lidar retrieval for the entire campaign. The retrieved rain rates plotted
here were extrapolated to the aircraft level (see Figure 8 and Figure S11 in Supporting Information S1) to compare with the in situ data. The fractional difference is
calculated as the difference between the retrieved and in situ mean values divided by the average of the means.
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260 m for radar‐lidar retrieval and 340 m for ZV retrieval. Nprecip also decreases with distance, but we find the
radar‐lidar retrieval decreases more rapidly within 200 m below the cloud base, and the ZV retrieval shows higher
Nprecip than radar‐lidar retrieval at different levels. This is consistent with (a result of) assuming a shape factor of
zero in the ZV retrievals. The mean Dprecip and σprecip both increase with distance. Compared to radar‐lidar
retrieved Dprecip, ZV retrieved Dprecip is smaller overall (again consistent with the assumed shape factor), and
has much less spread (variation) at any given altitude. Figure 10d shows that radar‐lidar retrieved Dprecip compares
better with the in situ estimated Dprecip from the below‐cloud portion of the sawtooth legs than the ZV retrieved
Dprecip.

6. Rain Rate Dependence on Cloud Depth and Aerosol Concentration
In this section, we examine the degree to which precipitation can be diagnosed from cloud depth and cloud droplet
or aerosol number concentration in the form (e.g., Comstock et al., 2004; Terai et al., 2012; Mann et al., 2014)

Figure 10. Violin plot for in situ measured precipitation properties at different altitudes and retrieved precipitation properties
below cloud base: (a) rain rate (or precipitation liquid water flux), (b) precipitation number concentration Nprecip,
(c) precipitation liquid water content LWCprecip, (d) precipitation liquid water content weighted mean diameter Dprecip,
(e) precipitation liquid water content weighted width σprecip. A violin plot can be regarded as a hybrid of a box plot and a
kernel density plot. For each dataset, the white dot represents the median value, while the black bar represents the
interquartile range, and the outer shape is the kernel density estimation to show the distribution of the data. In situ measured
precipitation properties are from these legs (as marked in Figure S1 in Supporting Information S1): the top half of the cloud
layer from sawtooth legs (sawtooth top); the bottom half of the cloud layer from sawtooth legs (sawtooth bottom); the below‐
cloud portion of the sawtooth legs (sawtooth below‐cloud); and in‐cloud level legs.
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RCB = k Hα Nβ (11)

where N is usually the cloud droplet (Nd) or aerosol number concentrations (Na), H is cloud depth or liquid water
path, and RCB is rain rate at cloud base. To our knowledge, such a relationship has not been examined over the SO,
except byMace and Avey (2017) who used satellite retrievals. To examine this relationship over the SO, we focus
on the below‐cloud level legs (as marked in Figure S1 in Supporting Information S1) where variables can be
obtained simultaneously and use the radar‐lidar retrieved rain rate for RCB, use the difference between cloud top
and cloud base for H, and the accumulation mode aerosol concentrations with diameters larger than 70 nm from
UHSAS for Na. UHSAS essentially measures the dry particle size, as the collected aerosol particles were sub-
jected to drying using a de‐icing system, which modulates the temperature and pressure of the sampled air to
prevent the formation of ice in the inlet (McCoy et al., 2021; Sanchez et al., 2021). To ensure that aerosol
measurements from UHSAS were not contaminated by clouds or precipitation, we applied screening to the
UHSAS data using both CDP and 2DS probes, following the method described by McCoy et al. (2021). We
discarded data when the CDP liquid water content exceeded 0.01 g m− 3 or the 2DS measured particle concen-
tration exceeded 0.001 cm− 3. Once these thresholds were exceeded, samples within the following 10 s were also
removed as an extra precaution.

First, we broadly examine the rain rate dependence on either cloud depth or aerosol concentration, individually.
Figure 12a shows a joint histogram of rain rate at cloud base and cloud depth. The histogram shows that rain rate

Figure 11. Vertical distributions of below‐cloud‐base liquid precipitation properties from retrievals (each column is rain rate, Nprecip, LWCprecip. Dprecip, σprecip
respectively). The first and second row is the histogram of retrieved precipitation properties below‐cloud‐base (data are normalized at each level), and y axis is the
distance away from the cloud‐base. The first row is the results from radar‐lidar retrievals, the second row is the results from ZV retrievals. The last row is the box plot
that summarizes the data in the first two rows by binning the data vertically every 100 m, where blue boxes are from radar‐lidar retrievals, and orange boxes are from ZV
retrievals.
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(at cloud base) scales with cloud depth, such that thicker clouds are associated with higher rain rates. This is
consistent with previous studies (e.g., van Zanten et al., 2005; Pawlowska & Brenguier, 2003; Geoffroy
et al., 2008). And to demonstrate the rain rate dependence on aerosol concentration, Figure 12b shows the
probability density function of rain rate partitioned for conditions with low aerosol concentrations (lower than the
first quartile, marked as blue) and high aerosol concentrations (higher than the third quartile, marked as red).
Figure 12b shows that overall higher aerosol concentrations are associated with lower rain rates, consistent with
aerosol suppression of precipitation.

How does rain rate relate to both cloud depth and aerosol concentration? To derive the coefficients in Equation 11,
we divided cloud depth (H) up to 600 m into 6 bins, and divided aerosol concentrations (Na) into 4 bins, and
calculated the median rain rate for each H and Na pair. Then we performed a linear least squares regression on the
natural logarithms of data from these 24 bins (Figure 12c). The derived relationship is
RCB = 1.41 × 10− 9 H3.1 N− 0.8

a , with H in m, Na in cm
− 3, and RCB in mm hr− 1. Using a bootstrap resampling

technique, we estimate that the one‐sigma uncertainty range for the exponent α (for H) ranges from 2.8 to 3.4,
while the range for exponent β (for Na)ranges from − 1.0 to − 0.7. The relationship we derive here is broadly
similar to previous studies for stratocumulus in other regions. Specifically, the exponent α for cloud depth
typically is about 3 (van Zanten et al., 2005; Pawlowska & Brenguier, 2003; Lu et al., 2009), and the exponent β
for number concentration (cloud droplet concentration or cloud condensation nuclei) typically ranges between
− 1.75 and − 0.66 (van Zanten et al., 2005; Mann et al., 2014; Lu et al., 2009; Comstock et al., 2004). The exponent
β of − 0.8 for aerosol concentration we derived here is smaller than exponent β of − 0.32 in Mace and Avey (2017,
hereafter M17), estimated using satellite‐estimated cloud droplet number concentration, liquid water path, and
rain rate for the SO. We will discuss this difference further in the next section.

7. Conclusions
In this study, we examine in‐and‐below‐cloud precipitation properties for stratocumulus over the Southern Ocean
(SO), using data collected from airborne W‐band Cloud Radar (HCR), High Spectral Resolution Lidar (HSRL),
and various in situ probes during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study
(SOCRATES) in January–February 2018.

Overall, we find that about 60% of the stratocumulus were precipitating, and about 80% of the stratocumulus were
cold‐topped (with a cloud top temperature <0°C) based on periods where the aircraft were flying below cloud and
the radar and lidar pointing toward the zenith. We determine the precipitation phase using the lidar particle linear
depolarization ratio PLDR and find that about 60% of the precipitation is liquid phase, and about 20% of the
precipitation is ice phase, with the remaining 20% being ambiguous. While we cannot rule out the possibility that
any individual ambiguous case is pure liquid, most of such cases are likely to have ice or mixed‐phase

Figure 12. (a) Histogram of rain rate plotted as a function of cloud depth. (b) The probability density function of rain rate for conditions with low aerosol concentrations
(lower than the first quartile, marked as blue) and high aerosol concentrations (higher than the third quartile, marked as red). (c) The rain rate at the cloud base is plotted
as a function of the cloud depth, H, and aerosol concentration, Na. Here H and Na are the middle points for each cloud depth and aerosol concentration bin, while the rain
rate at the cloud base is taken as the median value of rain rates in each cloud depth and aerosol concentration bin. The solid line shows the parametrization described in
the main text.
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precipitation present. Further, for cold‐topped clouds, we find that when the reflectivity factor is less than about
− 10 dBZ, the precipitation is predominantly liquid, while for reflectivity factors greater than 0 dBZ, precipitation
is predominantly ice. These results are similar to what was found by Mace and Protat (2018) based on
CAPRICORN data during March–April 2016, as well as a recent study by Tansey et al. (2023) based on surface
data collected at Macquarie Island (54.5°S) betweenMarch and November 2016. The SOCRATES data, collected
in the Southern Hemisphere Summer, in January and February 2018, suggests this relationship is likely char-
acteristic of SO low clouds throughout the year, and suggests that the measured reflectivity factor might be used as
a proxy to determine the precipitation phase for cold‐topped Southern Ocean stratocumulus with CloudSat (or
other “radar only”) retrievals where no other information is available to constrain the precipitation phase.

For liquid‐phase precipitation, we performed retrievals for precipitation rain rate and other microphysical pa-
rameters based on radar and lidar, with the goal to test a hierarchy of retrieval methods, from the simplest Z–R
relationship approach where only radar reflectivity (Z) is used to estimate the rain rate, to a reflectivity‐velocity
(ZV) retrieval where there are two observables (inputs to the retrieval), to a radar‐lidar retrieval with three ob-
servables. Our evaluation shows that rain rates from the Z–R, ZV, and radar‐lidar retrievals all compare well with
the in situ rain rates, with Pearson correlation coefficient of 0.88. 0.88 and. 0.89, and fractional difference
(difference between the retrieved and in situ mean value divided by the average of the means) of only − 12.5%,
− 5.5%, and − 15.1%, respectively. In addition to rain rate, ZV, and radar‐lidar retrievals can retrieve other pre-
cipitation properties, such as precipitation number concentration, precipitation liquid water content, number
concentration, size, and width. The overall statistics and distribution of these retrieved precipitation properties
below the cloud base, also compare well with in situ estimates from the sawtooth below‐cloud segments. This
good performance gives us some confidence in using these retrieval techniques for SO stratocumulus, including in
our recently published manuscript that examines coalescence scavenging in SO stratocumulus (Kang et al., 2022).

Despite the good retrieval performance overall, there are important caveats. When developing the power‐law
relationships between reflectivity (Z) and rain rate (R) following Z = aRb we found the b exponent varied lit-
tle with altitude and had a value around 1.2 to 1.4. This is similar to values obtained in previous studies for
stratocumulus in other regions (Comstock et al., 2004; van Zanten et al., 2005). The a coefficient, on the other
hand, increases as one moves from the cloud layer to the surface. In general, one can derive a power‐law rela-
tionship between Z and R based on the assumption of a modified gamma distribution (e.g., Rosenfeld &
Ulbrich, 2003), and doing so shows that one should expect the a coefficient to depend on the total droplet number
concentration. Given the vertical variations in the precipitation droplet number concentration (see Figures 10 and
11), the vertical variation in the a coefficient is not surprising. But such also hints that the a coefficient may well
vary with the accumulation mode aerosol concentration or other factors that control the cloud droplet number
concentration. So Z–R relationships should be used with some caution in studies intending to establish re-
lationships between rain rates and aerosols. We also find that the derived Z–R relationships are sensitive to
whether ones exclude drops with diameters smaller than 40 μm when in cloud, because these drops make a non‐
trivial contribution to total liquid water flux, as perhaps first noted by Nicholls (1984). Our analysis suggests that
below‐cloud Z–R equations should be applied with caution to in‐cloud reflectivity measurements, and should be
expected to underestimate the total liquid water flux in cloud.

Comparing the ZV retrieval with radar‐lidar retrieval shows that both retrievals capture the mean vertical
structure of precipitation microphysics below cloud. Based on in situ data and retrievals, we found that rain rate,
precipitation number concentration (Nprecip), precipitation liquid water (LWCprecip) all decrease as one gets closer
to the surface, while precipitation liquid water content weighted mean diameter (Dprecip) and width (σprecip) in-
creases. The e‐folding distance over which the rain rate decreases to 1/e (37%) of its initial value is about 260 m
for radar‐lidar retrieval and 340 m for ZV retrieval. However, we find that both D0 and Nprecip from the ZV
retrieval have less spatial variability than that from the radar‐lidar retrieval, and assuming a shape factor of μ = 0,
results in the ZV retrieved mean D0 being a bit too small and Nprecip being too large as compared to the radar‐lidar
retrieval. This is because the shape factor is not constant and in particular, because the shape factor in the stronger
precipitation shafts below the thicker portion of the clouds should be larger than zero (because the precipitation
DSD is narrower with a more well‐defined peaked rather than a broad exponential‐like distribution).

This study also explored rain rate dependence on cloud depth and aerosol concentration. Rain rate at cloud base
(RCB) increases with cloud depth (H) and decreases with aerosol concentration (Na). Using a least squares
regression, we found RCB varies with H3.1 N− 0.8

a , which is broadly consistent with estimates for stratocumulus in
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previous studies over other regions (van Zanten et al., 2005; Pawlowska & Brenguier, 2003; Lu et al., 2009; Mann
et al., 2014; Comstock et al., 2004). However as noted in Section 6, our results differ from the satellite‐based
estimates for the SO by Mace and Avey (2017), hereafter M17, who suggest an exponent of − 0.32 for the
aerosol concentration based on satellite retrievals. M17 also noted that their estimates differ from previous studies
in other regions. There are a variety of potential reasons for the different results in our study and in M17. The first
obvious reason is different data sources. Our study used in situ measured Na and retrieved rain rate with airborne
radar and lidar measurements, while M17 used Nd, liquid water path, and rain rate derived from MODIS and
Cloudsat based on an optimal estimation algorithm. Another reason might be different cloud populations; where
in our study about 80% of the clouds are cold‐topped, M17 restricted their analysis to warm‐topped clouds. Data
collected during the Macquarie Island Cloud and Radiation Experiment (MICRE), suggest that warm‐topped SO
clouds are geometrically thinner and closer to the surface than cold‐topped clouds (Tansey et al., 2023). As‐is, we
end this study here, leaving a regime‐dependent analysis of precipitation susceptibility for a future study. As more
data are collected, including in future campaigns such as the upcoming Clouds And Precipitation Experiment at
Kennaook (CAPE‐K) that will begin inMarch 2024, the aerosol sensitivity of low altitude SO clouds are certain to
be the focus of future multi‐ or cross‐experiments studies.

Data Availability Statement
The authors would like to acknowledge the SOCRATES Project for providing data through the SOCRATES Data
Archive Center (SDAC) at NCAR’s Earth Observing Laboratory (EOL). The dataset derived based on this
manuscript is available at EOL Data Archive as SOCRATES Liquid Precipitation Properties Retrieval Product
(Kang et al., 2024). Other data used in this manuscript can also be accessed via EOL Data Archive: (a) low rate
(1 Hz) navigation, state parameter, and microphysics flight‐level data version 1.4 that contain data from many
probes, including CDP and UHSAS (UCAR/NCAR ‐ Earth Observing Laboratory, 2022); (b) 2DS data version
1.1 (Wu &McFarquhar, 2019); (c) SOCRATES Cloud Phase Product version 1.0 (D’Alessandro et al., 2022); (d)
HCR radar and HSRL lidar moments 2 Hz data version 3.1 (NCAR/EOL HCR Team & NCAR/EOL HSRL
Team, 2022). Miepython is developed by Prahl (2023).
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