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ABSTRACT
While both the database and high-performance computing (HPC)
communities utilize lossless compression methods to minimize
floating-point data size, a disconnect persists between them. Each
community designs and assesses methods in a domain-specific man-
ner, making it unclear if HPC compression techniques can benefit
database applications or vice versa. With the HPC community in-
creasingly leaning towards in-situ analysis and visualization, more
floating-point data from scientific simulations are being stored
in databases like Key-Value Stores and queried using in-memory
retrieval paradigms. This trend underscores the urgent need for
a collective study of these compression methods’ strengths and
limitations, not only based on their performance in compressing
data from various domains but also on their runtime character-
istics. Our study extensively evaluates the performance of eight
CPU-based and five GPU-based compression methods developed
by both communities, using 33 real-world datasets assembled in the
Floating-point Compressor Benchmark (FCBench). Additionally,
we utilize the roofline model to profile their runtime bottlenecks.
Our goal is to offer insights into these compression methods that
could assist researchers in selecting existing methods or developing
new ones for integrated database and HPC applications.
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1 INTRODUCTION
Floating-point data is widely used in various domains, such as
scientific simulations, geospatial analysis, and medical imaging [15,
22, 60]. As the scale of these applications increases, compressing
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floating-point data can help reduce data storage and communication
overhead, thereby improving performance [58].
Why lossless compression? Using a fixed number of bits (e.g., 32
bits for single-precision data) to represent real numbers often results
in rounding errors in floating-point calculations [17]. Consequently,
system designers favor using the highest available precision to min-
imize the problems caused by rounding errors [59]. Similarly, due
to concerns about data precision, lossless compression is preferred
over lossy compression, even with lower compression ratios, when
information loss is not tolerable.

For instance, medical imaging data is almost always compressed
losslessly for practical and legal reasons, while checkpointing for
large-scale HPC simulations often employs lossless compression to
avoid error propagation [15]. Lossless compression is also essential
for inter-node communication in a majority of distributed appli-
cations [42]. This is because data is typically exchanged between
nodes at least once per time step. Utilizing lossy compression would
accumulate compression errors beyond acceptable levels, ultimately
impacting the accuracy and correctness of the results. Another ex-
ample is astronomers often insist that they can only accept lossless
compression because astronomical spectra images are known to
be noisy [12, 67]. With the background (sky) occupying more than
95% of the images, lossy compressions would incur unpredictable
global distortions [55].

1.1 Study Motivation
Both the HPC and database communities have developed lossless
compression methods for floating-point data. However, there are
fundamental differences between the floating-point data of these
two domains. Typically, numeric values stored in database systems
do not necessarily display structural correlations except for time-
series data. In contrast, HPC systems often deal with structured
high-dimensional floating-point data produced by scientific simula-
tions or observations, such as satellites and telescopes. The result
is that the two communities have developed floating-point data
compression methods for different types of data within their re-
spective domains. Naturally, an intriguing question arises: Can the
compression methods developed in one community be applied to the
data from the other community, and vice versa?

The urgency to answer this question arises from the growing
trend of utilizing database tools on HPC systems. Practical use cases
include in-situ visualization, which allows domain scientists to mon-
itor and analyze large scientific simulations. For instance, Grosset
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and Ahrens developed Seer-Dash, a tool that utilizes Mochi’s Key-
Value storage microservice [57] and Google’s LevelDB engine [18]
to generate in-situ visualizations for the HACC simulation [22].

To this end, we view the previously isolated evaluation of com-
pression methods in each community on their data as a short-
coming. In this paper, we survey 13 CPU- and GPU-based lossless
floating-point data compression software from both communities.
We evaluate their performances on 33 datasets from HPC, time-
series, observation, and database transaction domains to fill the gap,
while also profiling their runtime characteristics. We aim to provide
an efficient methodology for future HPC and database developers
to select the most suitable compressor for their use case/application,
thereby reducing the cost of trial and error.

1.2 Our Contributions
• We present an experimental study of 13 lossless compression

methods developed by the database and HPC communities for
floating-point data.

• We evaluate the performance of these 13 compression methods
based on a wide variety of 33 real-world datasets, covering
scientific simulations, time-series, observations, and database
transaction domains. This helps to refresh our understanding of
the selected methods, as they were previously evaluated only
within their own data domains.

• We investigate the compression performance with different
block/page sizes and measure the query overhead on a simu-
lated in-memory database application. This provides insights for
database developers to employ suitable compression methods.

• We utilize the roofline model [75] to assess the runtime charac-
teristics of selected algorithms regarding memory bandwidth
utilization and computational operations, enabling potential to
identify areas for performance enhancement.

• We employ statistical tools to recommend the most suitable
compression methods, considering various data domains, and
considering both the end-to-end time and query overheads.

Paper organization. The rest of this paper is organized as follows.
In §2, we present background about floating-point data, lossless
compression techniques, and previous survey works. In §3 and §4,
we survey eight CPU-based and five GPU-based methods, respec-
tively. In §5 and 6, we present the benchmarking methodology,
experiment setup, and results. In §7, we summarize our findings
and lessons. In §8, we conclude the paper and discuss future work.

2 BACKGROUND AND RELATEDWORK
We introduce the background on floating-point data representation,
lossless compression of floating-point data, and related studies.

2.1 Floating-point Data
The IEEE 754 standard [35] defined floating-point data to be in 32-
bit single word and 64-bit double word format. Figure 1 illustrates
the single-precision format: one bit for the positive or negative sign,
8 bits for the exponent, and 23 bits for the mantissa. The double-
precision format includes one sign bit, 11 exponent bits, and 52
mantissa bits. The actual value of a floating-point datum is formu-
lated as: x = (−1)sign × 2(exponent−bias) × 1.mantissa.

Figure 1: Single-precision format of the IEEE 754 standard.

2.2 Lossless Compression of Floating-point Data
Lossless compression encodes the original data without losing any
information. It is, therefore, used to compress text, medical imag-
ing and enhanced satellite data [61], where information loss is not
acceptable. Compression algorithms first identify the biased prob-
ability distribution, such as repeated patterns, and then encode
the redundant information with reduced sizes. Some widely used
encoding methods are listed below.
(1) Run-length coding replaces a string of adjacent equal values

with the value itself and its count.
(2) Huffman coding builds optimal prefix codes to minimize the

average length [2], based on the input data distribution.
(3) Arithmetic coding uses cumulative distribution functions (CDF)

to encode a sequence of symbols. It is more efficient than Huff-
man coding with increasing sequence length [61].

Figure 2: The Lorenzo transform and hypercubes.

2.3 The Lorenzo Transform
Data values from scientific simulations or sensors tend to corre-
late with neighboring values [42]. The Lorenzo predictor [27] can
leverage such structural dependencies to encode with fewer bits [8].
Figure 2 shows the value on a corner of a 2D grid or 3D cube can
be estimated by the neighboring corners: 𝑥̂ =

∑︁
𝑥odd − ∑︁

𝑥even.
The 2D or 3D structures can be generalized to high-dimensional
hypercubes in the Lorenzo transform.

2.4 Friedman Test and Post-hoc Tests
The machine learning community has long been embracing statisti-
cal validation to compare algorithms on a number of test data sets.
According to the theoretical and empirical guidance by Demšar, the
Friedman test and corresponding post-hoc analysis overcome the
limitations associated with using averaged metrics. These statistical
tests are suitable to apply when the number of algorithms 𝑘 > 5 and
the number of datasets 𝑁 > 10. The Friedman test [11] compares
the averaged ranks to find if all the algorithms are equivalent. The
post-hoc Nemenyi test computes critical differences (CD) of aver-
aged ranks. Finally, the CD diagram displays algorithms ordered by
their average rank and groups of algorithms between which there
is no significant difference.
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2.5 Related Prior Surveys
Previous surveys on data compression for databases and HPC appli-
cations have been conducted. Wang et al. comprehensively studied
9 bitmap compression methods and 12 inverted list compression
methods for databases on synthetic and real-world datasets [74].
However, bitmap and inverted list methods only compress cate-
gorical and integer values. Son et al. studied 8 lossless and 4 lossy
compression methods for scientific simulation checkpointing in
the exascale era [64]. They favored lossy compression algorithms
for scientific simulations checkpointing but did not consider the
situations when lossless compression is required. Lindstrom com-
pared 7 lossless compression methods but only tested them on
one turbulence simulation dataset [44]. Although the evaluation
metrics of space and time were common in previous studies from
both communities, the database community distinguished itself by
investigating the influence of compressors on query performances.
Compared with previous benchmarks, our study stands out in three
key aspects. First, we include more recent compressors, covering
multiple domains for a comprehensive evaluation of both software
and datasets. Second, we offer insights not only from the algo-
rithm design perspective but also from the standpoint of system
architecture. Third, we employ a collection of tools to ensure a fair
comparison of the selected methods. Specifically, we use statistical
tests for rankings and recommendations, a simulated in-memory
database for evaluating query performance, and the roofline model
to investigate runtime bottlenecks.

3 CPU-BASED COMPRESSION METHODS
In this section, we describe eight CPU-based lossless compression
methods. The first five are serial methods, and the last three are
parallel methods. For each method, we introduce its computational
workflow along with noteworthy features. Table 1 summarizes all
the studied methods. Their timeline is shown in Figure 3.

Figure 3: Timeline of studied compression methods.

3.1 fpzip
fpzip [45] is a prediction-based compression algorithm that pro-
vides both lossless and lossy compression on the single- and double-
precision floating-point data for scientific simulations.
Workflow: (1) fpzip uses the Lorenzo predictor [27] to predict the
value of a hypercube corner from its previously encoded neigh-
boring corners. (2) The predicted and actual floating-point values
are mapped to sign-magnitude integers to compute the residual.
(3) The integer residuals’ sign and leading zeros are symbols and
encoded by a fast range coding method [48]. (4) The remaining
non-zero bits are copied verbatim.

Insights: For fpzip to achieve a better compression ratio, users
should provide the Lorenzo predictor with the correct data dimen-
sionality to predict with the hypercubes. Note that fpzip does not
use parallel computing techniques.

3.2 SPDP
SPDP [9] (Single Precision Double Precision) is a dictionary-based
lossless compression algorithm for both precisions. It can work as
an HDF5 filter [21] or a standalone compressor.
Workflow: SPDP is synthesized from three transform components
to expose better data correlations and a reducer component to
encode the transformed values. After sweeping over a total of
9,400,320 1 combinations on 26 scientific datasets, the authors se-
lected the following four components that rendered the best com-
pression ratios: (1) LNVs2 subtracts the last 2𝑛𝑑 byte value from
the current byte value and emits the residual. (2) DIM8 groups the
most significant bytes of the residuals, followed by the second most
significant bytes, etc. This puts the exponent bits into consecutive
bytes. (3) LNVs1 computes the difference between the previously
grouped consecutive bytes. (4) LZa6 is a fast variant of the LZ77 [78]
to encode the final residuals.
Insights: SPDP has the trade-off between compression ratio and
throughput because LZa6 employs a sliding window to encode the
positions and lengths of matched patterns. Larger sliding window
sizes can increase the compression ratio with the cost of decreased
throughput due to prolonged searching time.

3.3 BUFF
BUFF [47] is a delta-based compression algorithm for low-precision
floating-point data, commonly used in server monitoring and IoT
(Internet of Things) devices. Two features distinguish BUFF from
other methods in this survey. (1) Without precision information,
BUFF essentially becomes a lossy compressor. (2) BUFF can directly
query byte-oriented columnar encoded data without decoding. This
capability allows BUFF to achieve a speedup ranging from 35x to
50x for selective and aggregation filtering.
Workflow: (1) BUFF splits the input values into integer and frac-
tional components. (2) It then uses a look-up table (Table 2) to keep
the most significant bits of the mantissa part and discard the trail-
ing bits. (3) BUFF computes the difference between the current and
minimal values. (5) BUFF uses padding to encode the integer and
fraction parts into a multiple of bytes. Each byte unit is treated as
a sub-column and stored together to enable query operations. (6)
The value range and precision information are saved as metadata
and compressed data for decompression.
Insights: BUFF’s compression ratio is sensitive to the value ranges
and outliers. It does not employ parallel processing. The byte-
column query follows the pattern match method. Assume each
data point 𝑥 is encoded and saved in sub-columns 𝑥1, 𝑥2, ..., 𝑥𝑘 . To
perform a predicate 𝑥 == 𝐶 , BUFF translates 𝐶 into sub-columns
𝐶1,𝐶2, ...,𝐶𝑘 and evaluates the equal operator on the sub-columns
one at a time. BUFF will skip a record once a sub-column is disqual-
ified (𝑥𝑖 ! = 𝐶𝑖 ).

1 The search space is (k + 1) (31 + 17)k−1 × 17 = 9400320 for combining k = 4
components from 31 transform candidates and 17 reducer candidates.
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Table 1: Summary of our studied lossless compression methods∗

year domain precision∗∗ arch. parallel impl. language trait availability
fpzip [45] 2006 HPC S,D CPU serial C++ Lorenzo open-source
pFPC [7] 2009 HPC D CPU threads C prediction open-source

bitshuffle::LZ4 [50] 2015 HPC S,D CPU SIMD + threads C+Python transform + dict. open-source
bitshuffle::zstd [50] 2015 HPC S,D CPU SIMD + threads C+Python transform + dict. open-source

Gorilla [56] 2015 Database D CPU serial go delta open-source
SPDP [9] 2018 HPC S,D CPU serial C dictionary open-source

ndzip-CPU [41] 2021 HPC S,D CPU SIMD + threads C++ transform+Lorenzo open-source
BUFF [47] 2021 Database S,D CPU serial rust delta open-source
Chimp[43] 2022 Database S,D CPU serial go delta open-source
GFC [54] 2011 HPC D GPU SIMT CUDA C delta open-source
MPC [76] 2015 HPC S,D GPU SIMT CUDA C transform+delta open-source

nvcomp::LZ4 [52] 2020 general S,D GPU SIMT CUDA C++ transform + dict. proprietary
nvcomp::bitcomp [52] 2020 general S,D GPU SIMT CUDA C++ transform + prediction proprietary

ndzip-GPU [42] 2021 HPC S,D GPU SIMT SYCL C++ transform + Lorenzo open-source
Dzip [19] 2021 general S,D GPU SIMT Pytorch prediction open-source

∗ bitshuffle methods (LZ4 and zstd) and nvcomp methods (LZ4 and bitcomp) are all listed separately. ∗∗ S, D stand for single-/double-precision.

Table 2: bits needed for targeted precision in BUFF.

Precision 1 2 3 4 5 6 7 8 9 10
Bits needed 5 8 11 15 18 21 25 28 31 35

3.4 Gorilla
Gorilla [56] is a delta-based lossless compression algorithm to
compress the timestamps and the data values for the in-memory
time series database used at Facebook.
Workflow: Given that time series data are often represented as
pairs of a timestamp and a value, Gorilla uses two different methods:
(1) It uses delta-of-delta to compress timestamps. With the fixed
interval of time series data, the majority of timestamps can be
encoded as a single bit of 0. (2) For floating-point data values, Gorilla
conducts XOR operations on the current and previous values and
encodes the residuals from the XOR operation. (3) Gorilla uses a
single bit 𝐶 = 0 to store all-zero residuals; 𝐶 = 10 is used to store
the actual meaningful bits when the nonzero bits of the residual
fall within the block bounded by the previous leading zeros and
trailing zeros; 𝐶 = 11 uses 5 bits for the length of leading-zeros, 6
bits for the length of meaningful bits and then the actual residual.
Insights: Gorilla’s performance is sensitive to the data patterns.
The overhead of control bits becomes high when data values change
frequently. Gorilla does not employ parallel computing techniques.

3.5 Chimp
Chimp [43] is a lossless compression algorithm to compress floating-
point values of time series data. Based on Gorilla’s [56] workflow,
Chimp redesigned the control bits to improve compression ratio
when the trailing zeros of XORed residuals are less than 6. Fur-
thermore, Chimp computes the best XORed residual (having the
highest number of trailing zeros) from the 128 previous values. In
other words, Chimp is a prediction-based method with a sliding
window ([6, 7]).
Workflow: (1) Chimp maintains evicting queues to store 128 previ-
ous values grouped by their less significant bits. This enables Chimp
to get more trailing zeros from the XORed residuals than Gorilla.
(2) Chimp uses control bits 𝐶 = 00 to encode all-zero residuals; For

𝐶 = 01, Chimp uses 3 bits to encode the length of leading zeros
and 6 bits to encode the length of meaningful bits. Then it stores
the meaningful bits; For𝐶 = 10, the current length of leading zeros
equals the previous length of leading zeros, so Chimp directly stores
the meaningful bits; For 𝐶 = 11, Chimp uses 3 bits to encode the
length of leading zeros, then stores the meaningful bits.
Insights: Using a sliding window allows Chimp to achieve a higher
compression ratio when data values are more random. However, the
overhead of looking up the sliding window also decreases Chimp’s
compression throughput compared with Gorilla’s.

3.6 pFPC
pFPC [7] is a prediction-based algorithm that losslessly compresses
double-precision scientific simulation data in parallel.
Workflow: (1) pFPC stores historical value sequences in two hash
tables and predicts current values by looking up the hash tables.
(2) The residuals are computed from the XOR operation between
the actual and predicted values. (3) The leading zeros of the XORed
result and the selected hash predictor are encoded with 4 bits. (4)
The nonzero residual bytes are copied.
Insights: pFPC utilizes parallel computing to increase the overall
throughput. The original data is partitioned into chunks and dis-
tributed across multiple CPU threads (default 8 pthreads). However,
there exists a trade-off between compression ratio and throughput.
Given that high-dimensional scientific data often exhibits higher
correlation along the same dimension, pFPC prefers to align the
number of threads with the data dimensionality. With a large num-
ber of threads and big chunk sizes, mixing values from multiple
dimensions can decrease the compression ratio. Thus, pFPC re-
quires data dimensionality as input parameters and typically does
not fully utilize multi-threading capacity to align with the data
dimensionality.

3.7 Bitshuffle
Bitshuffle [50] is a data transform in itself. The algorithm can
expose the data correlations within a subset of bits in a byte to
improve the compression ratio for downstream encoders.
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Workflow: (1) Bitshuffle splits the input data into blocks and dis-
tributes the blocks among threads. On each thread, a block’s bits
are arranged into a𝑚 × 𝑛 matrix, where𝑚 is the number of values
in a block, and 𝑛 is the data element size (32 or 64 bits). Then, it
performs a bit-level transpose to get a 𝑛 ×𝑚 matrix, where the i𝑡ℎ
(1 ≤ 𝑖 ≤ 𝑛) bits are combined into bytes. (2) Bitshuffle uses other
methods, such as LZ4 and zstd, to encode the transposed data.
Insights: Bitshuffle employs SSE2 and AVX2 vectorized instruction
sets for parallelized transforms. Although larger blocks will increase
the compression ratios, the default block size is set to 4096 bytes to
ensure that Bitshuffle can fit data into the L1 cache. LZ4 and zstd
are then applied to the cached data to improve performance.

3.8 ndzip-CPU
ndzip [41] is a prediction-based lossless compression algorithm.
The CPU implementation uses SIMD instructions and thread-level
parallelism to achieve high throughput.
Workflow: (1) ndzip divides data into blocks, with each block
corresponding to a hypercube containing 4096 elements. (2) A mul-
tidimensional Integer Lorenzo transform computes the residuals
within each block. (3) The residuals are divided into chunks of 32
single-precision or 64 double-precision values and performs bit-
transpose operations. (4) The zero-words in the transposed chunks
are removed. The positions of zero-words are encoded with 32- or
64-bit bitmap headers, and the non-zero words are copied.
Insights: ndzip employs multi-level parallel computing to achieve
high throughputs. The hypercubes are independently compressed
using thread-level parallelism, while each hypercube’s transforma-
tion, transposition, and encoding leverage SIMD vector instructions.

4 GPU-BASED COMPRESSION METHODS
4.1 GFC
GFC [54] is a delta-based compression algorithm for double-precision
floating-point scientific data. GFC leverages the massive GPU par-
allelism to achieve high compression/decompression throughput.
Workflow: (1) GFC divides input data into chunks equal to the
number of GPU warps, each consisting of 32 threads. These chunks
are further divided into subchunks of 32 double-precision values
and compressed independently. (2) GFC computes residuals by sub-
tracting the last value of the previous subchunk from the current
subchunk. (3) GFC encodes the sign and leading zeros with 4 bits
followed by the non-zero residual bytes. These operations are per-
formed in parallel across GPU warps.
Insights: GFC sets the size of subchunks to 32 to align with the
number of GPU threads in a warp. However, the delta-based pre-
dictor sacrifices accuracy to accommodate multidimensional data
within fixed-sized (256 Bytes) subchunks. This is due to the compu-
tation of all residuals for the current 32 values by subtracting the
last value from the previous 32. Another limitation of GFC is that
the input data size cannot exceed 512MB based on the hardware
available during their research.

4.2 MPC
MPC [76], which stands for Massive Parallel Compression, is a
synthesized delta-based lossless compression algorithm for floating-
point data. It is constructed from four components following the

process described in §3.2. The number of combinatorial search
spaces for MPC is 138, 240.
Workflow: MPC divides input data into chunks of 1024 elements
and processes them in parallel. The pipeline consists of four com-
ponents: (1) LNV6s computes the residual by subtracting the 6𝑡ℎ
prior value in the same chunk from the current value. (2) BIT reor-
ganizes the data chunks by emitting the most significant bit of each
word first (packing them into words), followed by the second most
significant bits, and so on. This is essentially the same operation of
Bitshuffle [50]. (3) LNV1s computes differences between consecutive
words from the BIT transform. Finally, (4) ZE outputs a bitmap to
indicate zero values in the chunk and copies the non-zero values
after the bitmap.
Insights:MPC resembles ndzip in the entire pipeline, except for
using the delta-based predictor to replace the Lorenzo prediction.
The input word size (single- or double-precision) information is im-
portant so that LNV6s computes the correct residuals. MPC demon-
strated that a delta-based predictor could achieve good compression
ratios when combined with data transform components.

4.3 nvCOMP
nvCOMP [52] is a CUDA library byNVIDIA to provide APIs of com-
pressors and decompressors. In the latest version (2.4), nvCOMP in-
cludes 8 compression algorithms. We include nvCOMP::LZ4 because
it achieves the highest compression ratio among the 8 compres-
sors. Similarly, we include nvCOMP::bitcomp for it has the highest
compression/decompression throughput.
Workflow: nvCOMP has been proprietary software since version
2.3, and NVIDIA does not describe the detailed workflow for each
compression method.
Insights: nvCOMP::LZ4 and nvCOMP::bitcomp do not require ex-
tra input parameters such as dimensional information.

4.4 ndzip-GPU
ndzip-GPU [42] is the GPU-based parallelization scheme for the
ndzip algorithm in §3.8. While the algorithm remains the same, the
GPU implementation further improves parallelism by distributing
transforming and residual coding among up to 768 threads.
Workflow: The compression pipeline of ndzip-GPU is the same
as the CPU implementation: (1) Divide data into hypercubes, (2)
Compute residuals using the Lorenzo predictor, (3) Perform bit-
transposition, (4) Remove zero-words, output the bit-map header
and uncompressed non-zeros.
Insights: ndzip-GPU first writes encoded chunks to a global scratch
to guarantee the order of variable-length encoded chunks. After
computing a parallel prefix sum to obtain the offsets for all chunks,
ndzip copies the encoded chunks from scratchmemory to the output
stream. By retrieving the offsets for each compressed block, the
decompression is fully block-wise parallel without synchronization.

4.5 Dzip
While Dzip [19] is not developed by the HPC or database commu-
nity, the Neural Network-based compression method represents
an emerging direction. Therefore, we include this method to en-
rich our survey. Dzip is a general-purpose lossless compressor in
contrast to the aforementioned floating-point oriented methods. It
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trains two recurrent neural network (RNN) models to estimate the
conditional distribution for input data symbols and encodes them
with an arithmetic encoding method.
Workflow: (1) An RNN-based bootstrap model is trained for multi-
ple passes. (2) Dzip trains a larger supportermodel and the bootstrap
model in a single pass to predict the conditional probability of the
current symbol. The supporter models are discarded after encoding
to save disk space. (3) Dzip retrains a new supporter model com-
bined with the bootstrap model in one pass during decoding. This
supporter model is again discarded later.
Insights: The bootstrap model is trained and saved. However, the
supporter model needs retraining for unseen datasets. Although
Dzip is faster than other NN-based compressors, such as NNCP [1]
and CMIX [39], its compression speed is about several KB/s. Thus,
NN-based compression methods are still not practical for applica-
tions at the time of our survey.

5 BENCHMARK METHODOLOGY AND SETUP
In this section, we present our benchmarking methodology and
experimental setups, including test datasets, software and hardware
configurations, and evaluation metrics.

5.1 Our Methdology
This benchmarking aims to enrich our understanding of these com-
pression algorithms’ performance from various perspectives. Our
benchmarking study encompasses three aspects.

5.1.1 The compression aspect: We evaluate the selected algorithms
with generic metrics: compression ratio, (de)compression through-
puts, end-to-end wall time, the effect of dimensionality parameters,
and scalability of parallel compression. For fair comparisons, we
perform statistical tests on the rankings.

5.1.2 The database query aspect: We adopt a micro-benchmarking
approach [3, 46] to swiftly evaluate query performance with com-
pression. Rather than analyzing queries in a comprehensive data-
base system, we develop a tool to simulate an in-memory database
and investigate three primitive operations: file I/O, data decoding,
and full table scan query. More concretely, we depict an HPC sys-
tem in Figure 4 that reads Hierarchical Data Format 5 (HDF5) [13]
files from the disk into Pandas [63] dataframes in memory and per-
forms the queries on these in-memory dataframes. This simulated
database enables us to quickly check the compression performance
with various block sizes and measure the decompression overhead
for query operations under the database context.

Our simulated tool has limitations in accurately reflecting the
true query performance of integrated compression methods in
a real database system. This is mainly because a full table scan
oversimplifies the process compared to more complex operations
like join and update queries in in-situ visualization applications. it
does help to bypass the substantial engineering efforts needed to
integrate compressors into an actual database system, aiding in the
selection of the best-fit method.

5.1.3 The system design aspect: We use the roofline model [75]
to identify potential bottlenecks, such as arithmetic intensity and
memory bandwidth, for future compression algorithm developers.

Figure 4: Integrating HPC and database with HDF5 and
Dataframes.

5.2 Evaluation Metrics
We use the compression ratio (CR), compression throughput (CT),
and decompression throughput (DT) to measure the compression
performance. They are calculated as follows.

CR =
orig size
comp size

, CT =
orig size
comp time

, DT =
orig size

decomp time

For fpzip, pFPC, Gorilla, SPDP, ndzip (CPU and GPU), BUFF,
Chimp, GFC, and MPC, we measured the times by adding instruc-
tions before and after the compression/decompression function to
exclude the I/O. For bitshuffle (LZ4 and zstd) and nvcomp (LZ4 and
bitcomp), we directly reported the timings and compression ratio
obtained from their built-in benchmark functions. We repeated
each method on the selected datasets ten times and reported each
dataset’s average compression ratios, run times, and throughputs.
We used the harmonic mean of compression ratios and arithmetic
mean of throughputs to evaluate the overall performance.d.

5.3 Datasets
We choose 33 open datasets from four domains, shown in Table 3.
The datasets include (1) scientific simulation data from Scientific
Data Reduction Benchmarks [77] and [40]; (2) time series data
such as sensor streams, stock market, and traffic data which typ-
ically require fewer precision digits; (3) observation data such as
HDR photos and telescope images; (4) simulated data generated
from the Transaction Processing Performance Council Benchmark
(TPC) [10], including numeric columns extracted from the TPC-H,
TPCX-BB, and TPC-DS transactions. Although the largest data size
of 4GB in our selection is much small for a typical HPC application,
it is a common workload of a time step for in-situ analysis [20] and
has been evaluated by many benchmark studies [40, 77].

5.4 Friedman Test and Post-hoc Tests
Following recent survey works [16, 25], we apply the Friedman test
and apply the CD diagram [11] to compare the selected compression
methods. 2 We use 𝛼 = 0.05, 𝑘 = 13, 𝑁 = 33 for the hypothesis test
and compute the critical difference.

2 The number of algorithms and datasets are big enough.
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Table 3: Evaluated floating-point datasets.

domain & name type∗ size in bytes entropy extent
HPC msg-bt [5] D 266,389,432 23.67 33298679 (1D)
HPC num-brain [5] D 141,840,000 23.97 17730000 (1D)
HPC num-control [5] D 159,504,744 24.14 19938093 (1D)
HPC rsim [70] S 94,281,728 18.50 2048× 11509 (2D)
HPC astro-mhd [37] D 548,458,560 0.97 130× 514× 1026 (3D)
HPC astro-pt [26] D 671,088,640 26.32 512× 256× 640 (3D)
HPC miranda3d [77] S 4,294,967,296 23.08 1024× 1024× 1024 (3D)
HPC turbulence [38] S 67,108,864 23.73 256× 256× 256 (3D)
HPC wave [69] S 536,870,912 25.27 512× 512× 512 (3D)
HPC hurricane [77] S 100,000,000 23.54 100× 500× 500 (3D)
TS citytemp [30] S 11,625,304 9.43 2906326 (1D)
TS ts-gas [14] S 307,452,800 13.94 76863200 (1D)
TS phone-gyro [66] D 334,383,168 14.77 13932632× 3 (2D)
TS wesad-chest [62] D 272,339,200 13.85 4255300× 8 (2D)
TS jane-street [33] D 1,810,997,760 26.07 1664520× 136 (2D)
TS nyc-taxi [31] D 713,711,376 13.17 12744846× 7 (2D)
TS gas-price [32] D 886,619,664 8.66 36942486× 3 (2D)
TS solar-wind [34] S 423,980,536 14.06 7571081× 14 (2D)
OBS acs-wht [49] S 225,000,000 20.13 7500× 7500 (2D)
OBS hdr-night [23] S 536,870,912 9.03 8192× 16384 (2D)
OBS hdr-palermo [24] S 843,454,592 9.34 10268× 20536 (2D)
OBS hst-wfc3-uvis [49] S 108,924,760 15.61 5329× 5110 (2D)
OBS hst-wfc3-ir [49] S 24,015,312 15.04 2484× 2417 (2D)
OBS spitzer-irac [29] S 164,989,536 20.54 6456× 6389 (2D)
OBS g24-78-usb [49] S 1,335,668,264 26.02 2426× 371× 371 (3D)
OBS jws-mirimage [49] S 169,082,880 23.16 40× 1024× 1032 (3D)
DB tpcH-order [72] D 120,000,000 23.40 15000000 (1D)
DB tpcxBB-store [73] D 789,920,928 16.73 8228343× 12 (2D)
DB tpcxBB-web [73] D 986,782,680 17.64 8223189× 15 (2D)
DB tpcH-lineitem [72] S 959,776,816 8.87 59986051× 4 (2D)
DB tpcDS-catalog [71] S 172,803,480 17.34 2880058× 15 (2D)
DB tpcDS-store [71] S 276,515,952 15.17 5760749× 12 (2D)
DB tpcDS-web [71] S 86,354,820 17.33 1439247× 15 (2D)

∗∗ S, D stand for single-/double-precision.

5.5 System Configuration
We evaluate the selected compression methods on a Chameleon
Cloud [36] compute node with two Intel Xeon Gold 6126 CPUs (2.6
GHz), 187 GB RAM and one Nvidia Quadro RTX 6000 GPU (24 GB
VRAM). The node is configured with Ubuntu 20.04, GCC/G++ 9.4,
CUDA 11.3, CMAKE 3.25.0, HDF5 1.14.1, and Python 3.8.

fpzip3, pFPC4, SPDP, ndzip-CPU5 are compiled with GCC/G++
9.4; nvCOMP::LZ4 and nvCOMP::bitcomp6 are executable binary
files downloaded from the benchmark page; bitshuffle::LZ4 and
bitshuffle+zstd7 are compiled with Python 3.8 and GCC 9.4;
Gorilla and Chimp are integrated in influxdb8, where they can
be compiled with go 1.18.0 and rustc 1.53.0; BUFF9 is compiled
with the nightly version of rust. GFC10, MPC11 and ndzip-GPU12 are
compiled with nvcc 11.3. Each C/C++ method was compiled with
-O3 flag. When possible, we changed the compile flags for GPU-
based methods to use the current GPU architecture -arch=sm_75.

6 EVALUATION RESULTS
In this section, we present the results following our evaluation
methodology described in §5.1. We begin by discussing general

3 fpzip: https://github.com/LLNL/fpzip
4 pFPC: https://userweb.cs.txstate.edu/~burtscher/research/pFPC/
5 ndzip-CPU: https://github.com/celerity/ndzip
6 nvCOMP::bitcomp: https://developer.nvidia.com/nvcomp-download
7 bitshuffle+zstd: https://github.com/kiyo-masui/bitshuffle.git
8 influxdb: https://github.com/panagiotisl/influxdb
9 BUFF: https://github.com/Tranway1/buff
10 GFC: https://userweb.cs.txstate.edu/~burtscher/research/GFC/
11 MPC: https://userweb.cs.txstate.edu/~burtscher/research/MPC/
12 ndzip-GPU: https://github.com/celerity/ndzip

compression performance, covering compression ratio, compres-
sion throughput, decompression throughput, and end-to-end wall
time (including memory copy, especially for GPU-based compres-
sors). This is followed by detailed discussions. Subsequently, we
delve into the evaluation results related to compression perfor-
mance in the context of databases. Finally, we present the findings
from the roofline model.

6.1 General Compression Performance
We evaluate the compression algorithms using the following param-
eters: (1) the compression level, which is set for the best compres-
sion ratios (CRs), and (2) blocks/chunks, which are set to default
sizes when applicable.

6.1.1 Compression Ratio.
Observation 1: compression ratios ≤ 2.0 Figure 5 shows all mea-
sured compression ratios. The median is 1.16 and outliers range
from 2.0 to 22.8. Our experiments support previous study [44] that
floating-point data is difficult to compress.

Figure 5: BoxPlot of compression ratios.

Figure 6 first shows the compression ratios on datasets of dif-
ferent domains and data types. (1) The median compression ratio
is 1.225 for single- and 1.202 for double-precision datasets. This
result supports the study [76] that double-precision data are more
challenging to compress. (2) Observation datasets (OBS) have the
highest median compression ratio of 1.292, followed by HPC, Time
Series (TS), and Database (DB) datasets with those of 1.206, 1.223,
and 1.080. DB is the most difficult domain to compress.

Figure 6: Compression ratios by data/methods groups.

Figure 6 also depicts the compression ratios of different groups
of compression methods based on their predictors and hardware
platforms. (1) Dictionary-based methods (bitshuffle::LZ4, bitshuf-
fle+zstd, Chimp) achieve higher compression ratios than Lorenzo-
based methods (fpzip, ndzip-CPU, ndzip-GPU) and Delta-based
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(a) Average compression ratios

(b) critical difference diagram on compression ratios

Figure 7: Compression ratios of different methods.

methods (Gorilla, GFC, and MPC). The median compression ra-
tios for these three groups are 1.309, 1.219, and 1.116, respectively.
(2) On the selected datasets, CPU-based methods exhibit higher
compression ratios compared to GPU-based methods.

Analysis: (1) Except for BUFF, the selected algorithms compress
either leading zeros or zero words. This is intuitive, as the exponents
are more compressible. Double-precision data are less compressible
due to their larger mantissa portion. (2) The OBS dataset achieves
the best compression ratio as it consists of highly structured single-
precision values. In contrast, the DB dataset is the most challenging
to compress due to its lack of structural patterns. (3) Dictionary-
based predictors outperform others because they search for patterns
over a longer range. (4) CPU-based methods tend to use more
dictionary-based predictors compared to GPU-based methods.

Takeaway: (1) Using single-precision for saving numeric values
in databases is desirable. (2) Dictionary-based predictors perform
better than delta- and Lorenzo-based predictors.
Observation 2: No significant winner Table 4 shows the de-

tailed CRs and Figure 7a shows their harmonic mean CRs. In Fig-
ure 7b, we present the critical difference diagram, where the se-
lected methods are ordered according to their average rankings
(higher ranking is better) and cliques (a group of algorithms) are
connected by a line representing the critical difference. We further
observe: (1) The CD diagram shows no clear winner because bit-
shuffle+zstd is not significantly better than SPDP, although it has
a significantly higher CR than ndzip-GPU. (2) GFC ranks the low-
est but is not significantly lower than nvCOMP::bitcomp, gorilla,
BUFF, and pFPC. (3) fpzip has the highest compression ratio on
HPC datasets; nvCOMP::LZ4 works the best on Time series (TS);
bitshuffle+zstd performs the best for Observation (OBS) datasets;
Chimp performs the best on Database (DB) datasets. (4) CPU-based
methods are more robust than GPU-based methods: 2.0% of CPU
experiments incurred runtime errors, while 7.3% of the GPU exper-
iments were killed by runtime errors.

Analysis: (1) Dictionary-based predictors not only help bitshuf-
fle::zstd achieve the top rank in compression ratios (CRs), but they
also assist Chimp128 in outperforming Gorilla. (2) Bit-level trans-
pose operations can expose subtle patterns, such as identical i𝑡ℎ
bits, benefiting both bitshuffle and MPC. (3) As described in §4.1,
the less accurate predictor of GFC contributes to its lower ranking.

Takeaway: (1) Although the critical difference does not signif-
icantly distinguish bitshuffle::zstd from the rest in the group (in-
cluding bitshuffle::Lz4, MPC, fpzip, nvCOMP::LZ4, Chimp128, and
SPDP), it does highlight a direction for future research: exploring
bit-level transposition and dictionary-based predictors to improve
compression ratios. (2) For highly structured data from the HPC or
OBS domains, delta- and Lorenzo-based compressors are compa-
rable to, or even better than, dictionary-based compressors. (3) As
numerical values in DB datasets lack structure, dictionary-based
methods outperform delta- and Lorenzo-based methods.

6.1.2 Compression Throughput.
Observation 3: GPU-based method is 350x faster Themedian
of compression throughput for GPU- and CPU-based methods are
73.71 GB/s and 0.21 GB/s respectively. Figure 8a and Table 5 show
the average compression throughputs of selected methods. We
further observe that (1) Among our selection, nvCOMP::bitcomp
and ndzip-CPU are the fastest GPU- and CPU-based method re-
spectively. (2) nvCOMP::LZ4 is the slowest GPU-based methods.
(3) Although serial methods such as Chimp, Gorilla, and fpzip are
significantly slower, BUFF has a decent compression speed.

Analysis: (1) The LZ4 algorithm can cause significant branch
divergence on GPUs, slowing down the compression process. Con-
sequently, nvCOMP::LZ4 exhibits the lowest compression ratio (CR)
compared to other GPU-based methods that utilize delta or Lorenzo
predictors. (2) bitshuffle::zstd, bitshuffle::LZ4, and ndzip-CPU all
leverage SIMD instructions and thread-level parallelism to enhance
compression throughputs. This advantage helps them surpass pFPC,
which relies solely on pthreads for parallel computation. (3) Among
serial methods, BUFF stands out for its speed, attributable to the
efficiency of the Rust language [4, 68].

Takeaway:Dictionary-based methods are more prone to branch
divergences, a significant challenge for GPU architectures. In addi-
tion, the high performance of the Rust language is noteworthy.

6.1.3 Decompression Throughput.
Observation 4: Decompression is faster Not surprisingly, Fig-
ure 8b shows that GPU-based methods have higher decompression
throughput. A bit more interesting observation is shown in Fig-
ure 9 that decompression is faster than compression on average. We
further observe that (1) ndzip-GPU and ndzip-CPU are the fastest
GPU- and CPU-based method respectively, while fpzip has the
lowest DT (0.07 GB/s). (2) Dictionary-based methods have higher
decompression speed than their compression. For nvCOMP::LZ4
and Chimp128, DT are 18.64× and 4× of their CT. However, bit-
shuffle+zstd and bitshuffle::LZ4 have balanced CT and DT. (3) Delta
and Lorenzo based methods have balanced compression and de-
compression speed.

Analysis: (1) Dictionary-based methods require significantly
fewer computations during decoding, leading to LZ4 algorithm and
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Table 4: Compression ratios (i.e., original size/compressed size).

domain & name pF
PC
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HPC msg-bt 1.251 1.327 1.200 1.205 1.188 1.127 1.032 1.086 1.129 1.091 1.145 1.063 1.056 1.127
HPC num-brain 1.153 1.200 1.250 1.174 1.177 1.165 2.133 1.110 1.175 1.091 1.185 0.996 0.999 1.165
HPC num-control 1.036 1.011 1.120 1.114 1.117 1.109 2.207 0.980 1.057 1.013 1.108 1.013 1.009 1.109
HPC rsim 1.351 1.686 1.480 1.500 1.560 1.973 0.640 1.335 1.338 1.298 1.514 1.309 1.306 1.973
HPC astro-mhd 10.926 20.935 8.720 12.367 17.506 12.579 1.524 18.595 5.971 - 8.132 22.824 20.801 12.579
HPC astro-pt 1.285 1.398 1.200 1.202 1.214 1.423 2.000 1.032 1.223 - 1.224 0.996 0.999 1.423
HPC miranda3d 1.136 1.195 2.200 - - 1.835 1.067 1.039 1.177 - 1.495 1.020 1.019 -
HPC turbulence 1.012 1.046 1.420 1.150 1.157 1.232 0.889 0.986 1.023 1.002 1.166 0.996 0.999 1.232
HPC wave 1.160 1.905 3.870 1.291 1.313 1.993 1.103 1.032 1.145 1.018 1.416 1.032 0.999 1.993
HPC hurricane 0.946 1.372 - 1.513 1.552 0.974 - 1.064 0.987 0.945 1.494 1.003 1.002 0.974

Domain-avg 1.229 1.381 1.601 1.447 1.468 1.450 1.149 1.161 1.232 1.059 1.399 1.167 1.131 1.420
TS citytemp 1.083 1.014 1.470 2.240 2.314 1.305 0.889 1.027 1.255 1.079 1.347 1.374 1.015 1.305
TS ts-gas 1.335 1.406 1.930 1.426 1.501 1.469 0.711 1.195 1.452 1.172 1.512 1.560 1.167 1.469
TS phone-gyro 1.031 1.083 1.060 1.199 1.243 1.000 1.939 0.971 1.384 1.023 1.190 1.808 0.999 1.000
TS wesad-chest 1.086 2.188 1.030 2.387 2.601 1.000 1.882 1.209 1.721 1.057 2.077 2.130 0.999 1.000
TS jane-street 1.034 1.000 1.080 1.066 1.032 1.087 1.600 0.968 1.025 - 1.093 1.042 0.999 1.087
TS nyc-taxi 1.196 1.174 1.070 1.419 1.577 1.000 1.231 0.976 1.838 - 1.098 1.836 1.004 1.000
TS gas-price 1.641 1.218 1.310 1.327 1.452 1.000 2.133 1.141 2.702 - 1.204 2.895 0.999 1.000
TS solar-wind 0.956 1.108 1.040 1.116 1.113 1.000 0.627 0.968 1.083 0.968 1.051 1.172 0.999 1.000

Domain-avg 1.148 1.235 1.163 1.334 1.387 1.061 1.176 1.051 1.457 1.050 1.252 1.603 1.020 1.061
OBS acs-wht 1.220 1.252 1.640 1.468 1.488 1.478 0.727 1.251 1.226 1.231 1.491 1.165 1.165 1.478
OBS hdr-night 1.049 2.008 1.400 2.974 3.137 1.092 0.681 1.407 1.257 1.052 2.583 1.404 1.134 1.092
OBS hdr-lalermo 1.106 2.079 1.840 3.846 4.071 1.337 1.000 1.467 1.386 - 3.713 1.418 1.359 1.337
OBS hst-wfc3-uvis 1.536 1.577 1.620 1.721 1.777 1.700 0.821 1.553 1.485 1.545 1.760 1.539 1.609 1.700
OBS hst-wfc3-ir 1.560 1.532 1.800 1.770 1.841 1.745 0.744 1.497 1.528 1.532 1.839 1.495 1.519 1.745
OBS spitzer-irac 1.186 1.229 1.320 1.359 1.379 1.304 0.821 1.196 1.178 1.191 1.346 1.234 1.235 1.304
OBS g24-78-usb 0.977 0.992 1.120 1.132 1.132 1.086 1.000 0.968 0.986 - 1.103 0.996 0.999 1.086
OBS jws-mirimage 1.151 1.051 1.340 1.289 1.312 1.255 0.615 1.013 1.116 1.068 1.332 0.997 0.999 1.255

Domain-avg 1.193 1.370 1.471 1.660 1.697 1.337 0.780 1.258 1.246 1.240 1.653 1.248 1.218 1.337
DB tpcH-order 1.025 1.016 1.170 1.305 1.299 1.105 1.333 1.083 1.575 1.072 1.122 1.502 0.999 1.105
DB tpcxBB-store 1.084 1.095 1.080 1.477 1.537 1.000 1.488 0.980 2.227 - 1.067 1.733 0.999 1.000
DB tpcxBB-web 1.081 1.098 1.090 1.458 1.477 1.000 1.455 0.982 2.169 - 1.067 1.692 0.999 1.000
DB tpcH-lineitem 1.018 1.017 1.090 1.309 1.446 1.000 0.711 0.983 1.616 - 1.010 1.510 0.999 1.000
DB tpcDS-catalog 0.982 0.998 1.090 1.106 1.117 1.000 0.727 0.970 1.027 0.976 1.034 1.058 0.999 1.000
DB tpcDS-store 0.988 0.990 1.070 1.096 1.129 1.000 0.744 0.973 1.049 0.990 1.033 1.134 0.999 1.000
DB tpcDS-web 0.987 0.998 1.100 - - 1.000 0.727 0.970 1.026 0.976 1.034 1.057 0.999 1.000

Domain-avg 1.022 1.029 1.098 1.274 1.313 1.014 0.920 0.990 1.382 1.002 1.051 1.328 0.999 1.014
Overall-avg 1.154 1.256 1.329 1.430 1.466 1.219 0.984 1.116 1.309 1.089 1.322 1.296 1.094 1.206

Table 5: Compression & decompression throughput (GB/s).

Metrics pFPC SPDP fpzip shf+LZ4 shf+zstd ndzip-C BUFF Gorilla Chimp GFC MPC nv::LZ4 nv::btcomp ndzip-G
avg. comp 0.564 0.181 0.079 0.923 1.407 2.192 0.202 0.047 0.034 87.778 29.595 2.716 240.280 142.635

avg. decomp 0.351 0.178 0.074 1.181 1.328 1.636 0.254 0.146 0.175 99.258 28.513 53.352 122.483 159.312

Table 6: End-to-end wall time (ms).

Metrics pFPC SPDP fpzip shf+LZ4 shf+zstd ndzip-C BUFF Gorilla Chimp GFC MPC ndzip-G
avg. comp 1602 2985 7103 403 328 282 2876 13760 16030 157 296 636

avg. decomp 2104 2898 7368 365 347 334 2256 5498 3126 140 387 688

∗We omit two nvcomp methods because the benchmark binary has no API to measure standalone walltime without I/O.

1426



(a) Compression throughputs.

(b) Decompression throughputs.

Figure 8: (De)compression throughputs of different methods.

Figure 9: 𝑟𝐷 = 𝐶𝑇−𝐷𝑇
𝐶𝑇

. 𝑟𝐷 > 0 if compression is faster.

Chim128 exhibiting higher decompression times (DT) than com-
pression times (CT). (2) In contrast, delta and Lorenzo predictors
perform more balanced operations for both compression and de-
compression. (3) bitshuffle::zstd and bitshuffle::LZ4 demonstrate
balanced CT/DT, behaving more similarly to delta and Lorenzo-
based methods. We will later show that they are memory-bound
using the roofline model.

Takeaway:Dictionary-basedmethods do not causemany branch
divergences during decompression. Their faster decompression
speed is advantageous for query operations, as databases often
decompress data multiple times.

6.1.4 End-to-End Wall Time.
Observation 5: Host-to-device is slow Table 6 shows the wall
time of the selected methods and includes the overhead of mem-
ory copy from hosts to GPU cards. In terms of end-to-end time,

bitshuffle::LZ4 and bitshuffle::zstd are comparable with GFC and
MPC, while ndzip-CPU is even faster than ndzip-GPU.

Takeaway: The overhead of host-to-device memory copy is
nonnegligible. Bitshuffle::zstd has the best overall computation
time plus its highest averaged CR in §6.1.1.

6.1.5 Effect of Dimension Information.
Delta and Lorenzo-based methods require dimension information
to improve prediction accuracy. In column-based databases, high-
dimensional data are stored as 1-d columns. We try to compress
the multi-dimensional datasets as 1-d arrays and employ Mann-
Whitney U Test [51] (𝛼 = 0.05) to test significant change of CRs.
Observation 6: Compression is 1-d friendly Table 8 compares
the CRswith/without the dimension information. TheMann-Whitney
U Test finds no significant difference.

Analysis: (1) Treating high-dimensional data as 1-D arrays
causes the Lorenzo predictor to degrade to the delta predictor, which
is capable of exposing data correlations. With the aid of bit-level
transpose operations, the compression ratios (CRs) of MPC, ndzip-
CPU, and ndzip-GPU do not exhibit significant changes. (2) The
GFC predictor remains inaccurate, even with the correct dimension
information because the residuals are computed from the current
chunk and the last value in the previous chunk.

Takeaway: Column-based databases can effectively utilize delta-
and Lorenzo-based compression methods as they scale the predic-
tion errors uniformly. Additionally, a bit-level transpose operation
can further reduce the impact of these prediction errors.

Table 7: Parallel compression throughputs.

thread # pFPC Bitshfl+LZ4 Bitshfl+Zstd ndzip-CPU

1

133 MB/s
1.00× (100%)

997 MB/s
1.00× (100%)

250 MB/s
1.00× (100%)

1655 MB/s
1.00× (100%)

2

172 MB/s
1.29× (65%)

1562 MB/s
1.57× (78%)

470 MB/s
1.88× (94%)

1640 MB/s
0.99× (50%)

4

225 MB/s
1.69× (42%)

2420 MB/s
2.43× (61%)

869 MB/s
3.48× (87%)

1658 MB/s
1.00× (25%)

16

530 MB/s
3.98× (25%)

3547 MB/s
3.56× (22%)

2432 MB/s
9.73× (61%)

1682 MB/s
1.02× (6%)

24

618 MB/s
4.65× (19%)

2977 MB/s
2.98× (12%)

2739 MB/s
10.96× (46%)

1683 MB/s
1.02× (4%)

6.1.6 Scalability of Parallel Compression.
Observation 7: Parallel compressors can scale up Wemeasure
the scalability of the compressors that support parallel/multi-thread
mode, noting that a data parallel design can effectively scale up
with multiple threads. Table-7 shows that they can achieve 3∼4×
speedup with 16 to 24 threads compared to their single-thread per-
formances. However, ndzip-CPU does not exhibit similar scalability,
which may be due to its implementation issue.

6.1.7 Memory Footprint.
As shown in Figure 10, while most of the selected compressors use
a memory footprint approximately twice the size of the input data,
pFPC and SPDP have fixed sizes for their read and write buffers,
resulting in a constant memory footprint across all datasets. In
contrast, BUFF incurs a memory footprint that is 7× larger than
the input data, rendering it less suitable for in-situ analysis.
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Table 8: Dimension information’s influence on compression ratios.

GFC MPC fpzip ndzip-C ndzip-G
md 1d md 1d md 1d md 1d md 1d

harmonic mean 1.091 1.089 1.347 1.365 1.334 1.326 1.223 1.210 1.207 1.200
𝑝-value (𝛼 = 0.05) 0.957 0.691 0.952 0.848 0.910

6.2 Performance under Context of Databases
Following the micro-benchmarking approach in §5.1.2, we inves-
tigate the performance of selected compression methods with dif-
ferent block/chunk sizes in a simulated database system. The com-
pressed data are initially stored in HDF5 files. They are read from
the disk and decompressed into Pandas dataframes. Finally, we
perform a table scan query.

6.2.1 Performance under Different Block Sizes.

HDF5 datasets consist of multiple disk pages (chunks) [65] simi-
lar to database page files. The default page size ranges from 4KB to
8KB. Note that compression algorithms utilizes larger block sizes
from 64KB to 8MB.

Observation 8: Compressors prefer larger block sizes Ta-
ble 9 displays the average CR, CT, DT of 8 compression algorithms
with 4KB, 64KB, and 8MB as block sizes. The best combinations of
(method, metric) are highlighted in bold. Seven out of eight com-
pression algorithms yield improved CRs, and all algorithms exhibit
higher throughts with 64KB- and 8MB- block sizes.

Takeaway:We suggest database designers to increase the de-
fault page sizes to improve the compression performances.

6.2.2 Query Performance on TPC Datasets.

To investigate query performance, we measure the running time
of three primitive operations depicted in Figure 4: (1) file I/O time
to retrieved compressed data from HDF5 files [13]; (2) data decod-
ing time; (3) full table scan query on the Pandas dataframes [63].
Table 10 presents the average reading and query time for selected
compression algorithms on the TPC benchmark datasets. For each
TPC dataset, the reading overhead varies due to different CRs and
DTs based on the compression algorithms; while the query time
remains consistent, as the retrieved Pandas dataframes are identical
across all algorithms. For instance, pFPC spends 78 ms to read the

Figure 10: Memory footprints with different input data sizes.

compressed chunks and 356 ms to decompress the TPCH-order
data. Subsequently, Pandas uses 190 ms to query the dataframe13.

Observation 9: End-to-end time is important The query per-
formance aligns with the end-to-end wall time of each method.
Despite of its fast query speed, we do not recommend GFC because
of its limitation on input data sizes.

Takeaway:Wehighlight bitshuffle+zstd as the prime CPU-based
compressor and MPC as the foremost GPU-based compressor.

6.3 Performance Analysis via Roofline Model
In this section, we examine the the runtime bottlenecks from the
standpoint of compression developers. 14 The roofline model [75]
visualizes algorithms as dots under the roof, which is formed by
the peak memory bandwidth and computations.

Observation 10: Three potential improvements Figure 11
profiles the CPU-based methods. 15 We further observe that (1)
Most GPU-based methods 16 are close to the memory bandwidth
roof. (2) Some CPU-based methods are far below the roof.

Analysis: (1) Serial methods (BUFF, fpzip, SPDP) are not bound
by memory or computation. The introduction of parallel techniques
could potentially improve their throughputs. (2) The throughput of
bitshuffle::LZ4 and bitshuffle::zstd could be enhanced by increas-
ing the number of threads, as evidenced by the scalability test.
(3) ndzip::CPU and ndzip::GPU are computation bound. Potential
improvements should consider reducing branch divergence.

Takeaway: The roofline model is an effective tool for providing
performance insights into the selected algorithms. For instance,
it suggests that the throughputs of bitshuffle methods can be im-
proved by utilizing more threads, circumventing the need for costly
scalability tests.

Figure 11: Roofline models of CPU-based methods

13 The average query time is measured on a set of full table scans: df.loc[df.A<=𝑣𝑖],
where 𝑣𝑖 are from the histogram of df.A. The number of histogram bins is 10.

14 We utilize Intel Advisor [28] and Nsight Compute [53] to profile on the msg-bt data.
15 Gorilla and Chimp for go is not supported in Advisor.
16 The roofline of GPU-based methods is not shown for space limitation.
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Table 9: Compression performance under different block sizes.

blocksize metrics pFPC SPDP shf+LZ4 shf+zstd Gorilla Chimp nv::LZ4 nv::btcmp

4K
avg-CR 1.151 1.215 1.426 1.463 1.116 1.309 1.244 1.075
avg-CT (GB/s) 0.018 0.142 1.342 1.271 0.092 0.081 4.953 108.983
avg-DT (GB/s) 0.017 0.143 1.179 1.190 0.192 0.226 88.669 71.286

64K
avg-CR 1.156 1.239 1.430 1.466 1.095 1.315 1.296 1.094
avg-CT (GB/s) 0.199 0.254 2.734 2.505 0.120 0.090 2.716 240.280
avg-DT (GB/s) 0.129 0.250 2.849 3.463 0.332 0.260 53.352 122.483

8M
avg-CR 1.154 1.256 1.361 1.491 1.086 1.315 1.226 1.057
avg-CT (GB/s) 0.640 0.181 1.384 1.807 0.158 0.104 10.402 68.033
avg-DT (GB/s) 0.405 0.178 4.467 4.271 0.452 0.294 94.400 50.279

Table 10: Read and query time (in ms) from HDF5 files.

name pFPC SPDP fpzip shf+LZ4 shf+zstd ndzip-C Gorilla Chimp GFC MPC ndzip-G query
tpcH-order 78+ 356 85+ 622 74+ 1577 66+ 94 66+ 72 74+ 60 75+1271 58+ 837 73+ 80 71+ 84 75+1232 190

tpcxBB-store 423+2032 491+3476 423+10162 311+657 299+623 463+712 472+5730 204+4531 - 430+549 462+2024 268
tpcxBB-web 549+2522 612+4643 539+12845 387+777 378+778 597+892 612+8799 266+5748 - 556+685 597+2224 292

tpcH-lineitem 565+2447 640+7463 525+14649 426+758 378+808 579+864 593+3102 339+6153 - 576+669 576+2196 885
tpcDS-catalog 109+ 499 121+1145 100+ 2910 96+135 97+149 106+168 110+1329 105+1131 108+115 103+119 108+1372 64
tpcDS-store 161+ 757 188+1735 150+ 4686 147+217 142+204 161+260 162+1558 151+1769 160+185 156+191 158+1405 106
tpcDS-web 65+ 272 67+ 580 60+ 1457 - - 60+ 98 64+ 676 61+ 568 63+ 58 62+ 68 58+1231 43

arithmetic mean 1548 3162 7165 679 666 727 3508 3131 211 616 1960 264

7 SUMMARY
In this section, we share the valuable insights from our study. We
reflect on key lessons learned, highlight essential takeaways, and
conclude with specific recommendations based on our evaluations.

7.1 Lessons Learned
First, understanding the characteristics of data is crucial as it allows
us to use single-precision values to achieve higher compression
ratios when feasible. Second, while GPU-based methods offer faster
computation, the overheads associated with host-to-device data
movement and branch divergence often become the bottlenecks.

7.2 Key Takeaways
For compressor developers: The trade-off between ratio and
throughput remains a crucial consideration. When data exhibit a
structural layout, such as in scientific simulations and observational
data, delta and Lorenzo-based predictors are effective in compres-
sion ratios and can easily employ data parallel designs. Conversely,
when data display repeated patterns, such as in time series data and
database transactions, dictionary-based methods are more effective,
albeit at the cost of challenging GPU parallelism due to branch diver-
gence. Ultimately, data transforms like bit and byte-level shuffling
effectively improve compression ratios.

For database designers: Compression methods show promise
in reducing disk storage, as many algorithms offer fast decom-
pression speeds and can compress 1-D arrays for column-based
databases without degrading compression ratio performance. To
fully utilize these compression algorithms, it is advisable to set
larger default database page sizes.

For system architects: Using the roofline model can reveal that
increasing the number of threads and employing parallel computa-
tions can improve compression/decompression speeds without the
need for expensive scalability tests.

7.3 Recommendations
For users focused on storage reduction: based on the rankings
in §6.1.1, we recommend fpzip for HPC data, nvCOMP::LZ4 for
time series data, bitshuffle::zstd for observational data, and Chimp
for database data. For users needing fast speed: We suggest bit-
shuffle::LZ4, bitshuffle::zstd, MPC, and ndzip-CPU/GPU, as they
demonstrate short end-to-end times in §6.1.4. For general users:
We recommend bitshuffle::zstd and MPC due to their balanced per-
formance in average compression ratio (CR), swift end-to-end wall
time, and minimal retrieval overhead for queries. Overall, bitshuffle
methods rank as the top choice due to their better robustness and
lower cost of CPU hardware.

8 CONCLUSION
In this study, we conducted a comprehensive examination of 13
lossless floating-point data compressors across 33 datasets from
multiple domains. Our analysis delves into their performance, con-
sidering not only algorithmic aspects but also architectural con-
siderations. By employing a combination of statistical testing, the
rooflinemodel, and a simulated in-memory database, we scrutinized
the key designs of the selected compressors. Building on this anal-
ysis, we offer recommendations for both compressor researchers
and database architecture designers. Additionally, we have created
a map to assist users in selecting the most suitable compressors
based on their specific requirements. These efforts represent our
commitment to bridging the gap between independently developed
compression methods in the HPC and database communities.
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