N
Check for
Updates

Concealing Compression-accelerated I/0 for HPC
Applications through In Situ Task Scheduling

Sian Jin
Temple University
Philadelphia, PA, USA

sian.jin@temple.edu

Sheng Di

Argonne National Laboratory
Lemont, IL, USA
sdil@anl.gov

Yves Robert
Inria & LIP, ENS Lyon
Lyon, France
yves.robert@inria.fr

Abstract

Lossy compression and asynchronous I/O are two of the
most effective solutions for reducing storage overhead and
enhancing I/O performance in large-scale high-performance
computing (HPC) applications. However, current approaches
have limitations that prevent them from fully leveraging
lossy compression, and they may also result in task colli-
sions, which restrict the overall performance of HPC appli-
cations. To address these issues, we propose an optimization
approach for the task scheduling problem that encompasses
computation, compression, and I/O. Our algorithm adap-
tively selects the optimal compression and I/O queue to min-
imize the performance degradation of the computation. We
also introduce an intra-node I/O workload balancing mecha-
nism that evenly distributes the workload across different
processes. Additionally, we design a framework that incor-
porates fine-grained compression, a compressed data buffer,
and a shared Huffman tree to fully benefit from our proposed
task scheduling. Experimental results with up to 16 nodes
and 64 GPUs from ORNL Summit, as well as real-world HPC
applications, demonstrate that our solution reduces I/O over-
head by up to 3.8 and 2.6X compared to non-compression
and asynchronous I/O solutions, respectively.

CCS Concepts: « Software and its engineering — Sched-
uling; - Theory of computation — Data compression.

Keywords: HPC, parallel I/O, data compression, task sched-
uling, performance.

“Corresponding author: Dingwen Tao, Luddy School of Informatics, Com-
puting, and Engineering, Indiana University.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.

EuroSys "24, April 22-25, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0437-6/24/04...$15.00
https://doi.org/10.1145/3627703.3629573

Dingwen Tao"
Indiana University
Bloomington, IN, USA
ditao@iu.edu

981

Frédéric Vivien
Inria & LIP, ENS Lyon
Lyon, France
frederic.vivien@inria.fr

Daoce Wang
Indiana University
Bloomington, IN, USA
daocwang@iu.edu

Franck Cappello
Argonne National Laboratory
Lemont, IL, USA
cappello@mcs.anl.gov

ACM Reference Format:

Sian Jin, Sheng Di, Frédéric Vivien, Daoce Wang, Yves Robert, Ding-
wen Tao, and Franck Cappello. 2024. Concealing Compression-
accelerated I/O for HPC Applications through In Situ Task Sched-
uling. In Nineteenth European Conference on Computer Systems (Eu-
roSys °24), April 22-25, 2024, Athens, Greece. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3627703.3629573

1 Introduction

Large-scale scientific simulations on HPC systems play a
crucial role in various scientific and engineering domains.
These simulations often generate massive volumes of data
that requires significant storage resources. For example, a
single Nyx [3] cosmological simulation with a resolution of
4096 X 4096 X 4096 cells generates up to 2.8 TB of data for a
single snapshot; a total of 2.8 PB of disk storage is needed,
assuming the simulation is run 5 times with 200 snapshots
dumped per simulation. Managing such large amounts of
data is a major challenge. It is impractical to save all the gen-
erated raw data to disk due to: (1) the limited storage capacity
even for supercomputers, and (2) the time required to save all
the produced data (about 1 hour) due to the limitation of I/O
bandwidth: at best 1 TB/s (on ORNL Summit) [12, 57, 58, 60].

Lossy compression has been identified as one of the major
data reduction techniques to address this issue. Specifically,
a new generation of error-bounded lossy compression tech-
niques, such as SZ [15, 37, 50], ZFP [40], MGARD [1], and
their GPU versions [13, 34, 54], have been widely used in
the scientific community [12, 15, 22, 28, 37, 40—42, 50, 52].
Compared to lossless compression, which provides up to a
2X compression ratio on scientific data [46], error-bounded
lossy compressors offer a much higher compression ratio
(16X to more than 200X for the applications considered in
this paper) while maintaining controllable loss of accuracy.

Scientific applications typically use parallel I/O libraries
such as the Hierarchical Data Format 5 (HDF5) [53] for read-
ing and storing their data. Specifically, HDF5 is lauded for its
high parallel I/O performance, data portability, and rich APIs
for managing data on various systems. It is widely used at
supercomputing facilities for storing, reading, and querying

https://doi.org/10.1145/3627703.3629573
https://doi.org/10.1145/3627703.3629573
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3629573&domain=pdf&date_stamp=2024-04-22

EuroSys ’24, April 22-25, 2024, Athens, Greece

scientific datasets [2, 20]. This is largely due to its specific
design and performance optimizations for popular parallel
file systems such as Lustre [9, 44]. Instead of relying on a gen-
eral database in distributed storage, these datasets employ
a specific data management approach based on the parallel
file system [9, 44]. Moreover, HDF5 offers users dynamically
loaded filters [25], including lossless and lossy compression
[14], which enable the automatic storage and access of data
in compressed formats. Thus, it allows HPC applications to
handle scientific data in these formats. Parallel I/O in HDF5,
combined with lossy compression filters, can significantly
reduce data size, thereby improving the overall I/O perfor-
mance by transmitting less data.

On the other hand, asynchronous I/O from parallel I/O
libraries can help alleviate I/O bottlenecks by overlapping
I/O operations with computations, enhancing the end-to-end
performance of HPC applications. However, the current im-
plementation of asynchronous I/O has certain limitations. It
supports either (1) asynchronous compression and I/O [30],
or (2) asynchronous I/O and computation [62]. In the for-
mer scenario, the data writing and computation are still
executed sequentially, limiting potential performance gains.
In the latter scenario, one would miss the opportunity to
utilize lossy compression to reduce data size and enhance
write performance. Moreover, asynchronous I/O typically
occurs in a background thread to prevent interference with
the main computational thread responsible for running the
simulation. Nevertheless, it can still potentially result in
performance degradation by introducing interference with
other background tasks related to communication within the
simulation, especially without proper scheduling [48, 55].

In this paper, we present a design that enables concur-
rent execution of compression, I/O, and computation. As
scientific applications increasingly adopt GPUs for compu-
tation [2, 7, 19], it is crucial to ensure that the GPUs are
utilized continuously with minimal interruptions. However,
the main and background threads experience periods of idle
time while processing computational tasks. Our goal is to
harness these idle periods to perform data compression and
I/0O tasks. To ensure that compression and I/O tasks do not
impact overall execution, we carefully schedule compression
tasks during the idle times of the corresponding computation
thread. It is essential to avoid any delays in existing process-
ing tasks, as this would hinder GPU work and potentially
result in a slowdown of the entire execution. To facilitate this
scheduling, we propose several system designs: we introduce
a framework that integrates fine-grained compression with
parallel I/O libraries for scientific applications. Our frame-
work includes three key components: fine-grained compres-
sion, a compressed data buffer, and a shared tree for Huffman
coding. The fine-grained compression algorithm allows for
independent compression of data blocks, thereby enhancing
task scheduling efficiency. The compressed data buffer en-
ables the overlapping of compression and I/O tasks, while the

982

Jinet al.

shared Huffman tree minimizes the overhead associated with
building the Huffman tree for compressing small data blocks.
To the best of our knowledge, unlike previous works that
have only addressed the overlap between computation and
I/O operations through asynchronous I/O [30, 62], this is the
first attempt to simultaneously conceal both the compression
and I/O operations from computation, thereby significantly
improving the performance of HPC applications. While this
work primarily focuses on HPC systems and applications,
the methodology of overlapping compression, I/O, and com-
putation can be extended to other systems, such as Cloud
computing and datacenter systems. By predicting/assessing
the compression performance and I/O bandwidth on these
platforms, our solution could be relevant to a wider range of
data-intensive, iterative applications.
The main contributions of this paper include:

e We propose to overlap both compression and I/O with
computation, including task scheduling algorithms de-
signed to efficiently integrate compression and I/O into
computation with minimal interference to the system.

e We propose workflows that include three components
aimed at improving end-to-end performance and task
scheduling efficiency: fine-grained compression, a com-
pressed data buffer, and a shared tree for Huffman coding.

o We discuss the implementation of our proposed frame-
work in both simulation and real-world scientific appli-
cations to provide detailed insights.

e Evaluation of our solution on two real-world HPC ap-
plications, utilizing up to 16 nodes and 64 GPUs from
the Summit supercomputer, demonstrates a reduction in
I/O overhead by up to 3.8x over the baseline solution
without asynchronous I/O or compression, and 2.6 over
the previous asynchronous I/O only solution.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the research background. In Section 3,
we formulate the task scheduling problem considering com-
pression, I/O, and computation, and present the solution
algorithms. In Section 4, we present our proposed frame-
work that integrates lossy compression with parallel I/O
libraries. In Section 5, we present our evaluation results. In
Section 6, we conclude the paper and discuss future work.

2 Background

In this section, we introduce background knowledge about
parallel I/O libraries, such as HDF5, error-bounded lossy
compression, and their use in scientific applications.

2.1 Parallel I/O Libraries for HPC Applications

Scientific applications generate and analyze massive amounts
of data. These applications critically require the ability to
efficiently access and manage this data on HPC systems.
Given the complex storage hierarchy, including node-local
persistent memory, burst buffers, and disk-based storage,

Concealing Compression-accelerated 1/0 for HPC Applications through In Situ Task Scheduling

parallel I/O becomes the key technology that enables effi-
cient data movement between compute nodes and storage.
For instance, HDF5 [53], netCDF [36], and the Adaptable IO
System (ADIOS) [21] are among the most widely used high-
performance 1/O libraries for HPC applications. However,
these I/0 libraries often struggle to handle extremely large
files (e.g., with aggregate scale of petabytes and beyond) due
to the inevitably limited I/O bandwidth. Consequently, com-
pression techniques are frequently adopted to reduce the
data size [47]. For example, H5Z-SZ [14] is a data filter that
integrates SZ compression into HDF5.

Given HDF5’s wide acceptance in the scientific community
as a system supporting parallel I/O, we primarily focus our
performance evaluation on HDF5, without loss of generality.
Moreover, to improve performance and productivity, a recent
release of HDF5 [9] implements a Virtual Object Layer (VOL),
which can redirect I/O operations to the VOL connector
and enable asynchronous I/O [49]. This feature allows an
application to overlap I/O with other operations, such as
compression. Therefore, we can leverage this capability to
deeply integrate and overlap predictive lossy compression
with parallel write operations, thereby improving parallel
write performance. Furthermore, we focus on parallel writing
to a large shared file due to three main factors: (1) It is a
common usage of HDF5 because it reduces the workload for
scientists in managing multiple files for storage, post-hoc
analysis, and visualization. (2) It minimizes the performance
overhead of opening/closing multiple files and the storage
overhead of metadata for numerous small files. (3) Partial
processes (e.g., up to 4,096 processes in [10]) of an HPC
application with subfiling still write to a shared file.

2.2 Error-Bounded Lossy Compression

Compression is a widely utilized technique in various sys-
tems and frameworks for reducing data sizes and enhancing
performance [17, 26, 31, 59]. Compared to lossless compres-
sion, lossy compression can compress data with extremely
high compression ratios by losing non-critical information
in the reconstructed data. The two most important metric
types to evaluate the performance of lossy compression are:
(1) compression ratio, i.e., the ratio between original data size
and compressed data size, or bit-rate, i.e., the number of bits
on average for each data point (e.g., 32/64 for single/double-
precision floating-point data) before compression; and (2)
data distortion metrics such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) to measure the
reconstructed data quality compared to the original data. In
recent years, a new generation of high-accuracy lossy com-
pressors for scientific data has been proposed and developed
for scientific floating-point data, such as SZ [15, 37, 50] and
ZFP [40]. These lossy compressors provide parameters that
allow users to control the loss of information due to lossy
compression precisely. Unlike traditional lossy compressors
such as JPEG [56] which are designed for images (in integers),

983

EuroSys *24, April 22-25, 2024, Athens, Greece

SZ and ZFP are designed to compress floating-point data and
can provide a strict error-controlling scheme based on user’s
requirements. Generally, lossy compressors provide multiple
compression modes, such as the error-bounding mode. The
error-bounding mode requires users to set an error type, such
as point-wise absolute error bound, and a bound value (e.g.,
1073). The compressor ensures that differences between orig-
inal and reconstructed data do not exceed the error bound.

Specifically, SZ is a prediction-based, error-bounded lossy
compressor designed for scientific data. It involves three
main steps: (1) Each data point’s value is predicted based on
its neighboring points, using an adaptive, best-fit prediction
method. (2) The difference between the actual value and the
predicted value is quantized, based on the user-set compres-
sion mode and error bound. (3) Customized Huffman coding
and additional lossless compression are applied to achieve a
high compression ratio.

Prior work has studied the impact of lossy compression on
the quality of reconstructed data and post-hoc analysis, pro-
viding guidelines on how to set compression configurations
for specific applications [16, 28, 29, 37, 38, 51]. For instance,
a comprehensive framework was developed to conduct a
systematic analysis of compression configurations with a
given dataset, providing the best-fit solution that satisfies
post-hoc analysis requirements [22]. Moreover, Jin et al. [27]
proposed a theoretical ratio-quality model to efficiently max-
imize the compression ratio given the quality constraints
of post-hoc analysis. Note that, as in previous work [63] on
improving communication efficiency via lossy compression,
this study assumes that the compression configuration is
set up by users based on their data quality requirements.
Therefore, the aforementioned compression configuration
methods are orthogonal to our solution.

2.3 I/O-intensive Scientific Applications

In this paper, without loss of generality, we primarily focus
on two I/O-intensive scientific applications—Nyx [2] and
WarpX [19], which have been used in numerous previous
I/O studies [4-6, 11, 24, 33]. These scientific simulations gen-
erally follow an iterative process, with variable durations.
Notably, neighboring iterations frequently exhibit high simi-
larity in their durations, enabling us to predict the resource
utilization pattern of the current simulation iteration based
on past iterations. We introduce them in detail as follows.
Nyx is an adaptive mesh, hydrodynamics code designed
to model astrophysical reacting flows on HPC systems [2, 3].
This code models dark matter as discrete particles moving
under the influence of gravity. The fluid in gas-dynamics is
modeled using a finite-volume methodology on an adaptive
set of 3-D Eulerian grids/meshes. The mesh structure is used
to evolve both the fluid quantities and the particles via a
particle-mesh method. For parallelization, Nyx uses MPI for
the long-range force calculation and architecture-specific
programming language for the short-range force algorithms,

EuroSys ’24, April 22-25, 2024, Athens, Greece

such as OpenMP and CUDA. Nyx uses multiple 3-D arrays
to represent field information in grid structure. According to
prior studies [2, 23, 45], it can run up to tens of thousands of
GPUs on leadership supercomputers such as Summit [18].

WarpX is a highly-parallel and highly-optimized code that
utilizes AMReX [61], runs on GPUs and multi-core CPUs,
and features load-balancing capabilities. WarpX can scale up
to the world’s largest supercomputer and was the recipient
of the 2022 ACM Gordon Bell Prize [43].

3 Task Scheduling with Lossy Compression

Unlike previous works that can only overlap two of the three
components [30, 62] among compression, I/O, and compu-
tation, our solution leverages task scheduling techniques
and runtime system designs to efficiently conceal both the
compression and I/O operations from computation in HPC
applications. In this section, we present a comprehensive ap-
proach to task scheduling that considers all compression, I/O,
and computation. First, we define the problem and highlight
the challenges encountered when optimizing task scheduling
under the constraints that arise with data compression. Next,
we recall the known complexity results. Then we introduce
our proposed scheduling algorithms to determine the most
efficient execution sequence for compression and I/O tasks,
while maintaining high computational performance. Lastly,
we discuss a technique to balance the I/O workload between
processes, thereby enhancing overall system efficiency.

3.1 Problem Formulation

Data compression is one of the most effective approaches
for reducing data size and mitigating I/O bottlenecks in HPC
applications. Likewise, the use of asynchronous I/O from
parallel I/O libraries can significantly enhance end-to-end
performance by overlapping I/O operations with computa-
tions. Regrettably, these two techniques are not yet well-
integrated, meaning we can only benefit from one method
at a time. Although compression can be considered part of
the computation, and its execution can be overlapped with
I/O, no previous studies have proposed a comprehensive task
scheduling approach that incorporates compression, I/O, and
computation together. Therefore, before designing our task
scheduling algorithm and proposing our framework design,
we first formulate the problem that asynchronously executes
data compression and I/O with respect to computation.

In this work, we target parallel scientific applications on
HPC systems. Inter-process optimizations will be addressed
in Section 3.4. Moreover, we focus on iterative HPC applica-
tions. Typically, either an initial solution is refined iteratively
or a dynamic simulation is performed where each iteration
computes the state of the system at a different date.

Let us consider iteration n in such a process. Let I, =
[beg,, end,] denote the time interval during which this iter-
ation is executed. The length of this iteration is then T,, =

984

Jinet al.

end, — beg,. During each iteration, the HPC application is
executing a series of tasks on both CPU and GPU. Usually,
each node operates multiple processes, with each process
assigned to a dedicated GPU along with a subset of CPU
cores. (In well-optimized HPC applications, these processes
can utilize the majority of CPU cores). Within each process,
there are multiple threads: one associated with the GPU (for
computation) and others with the CPU cores (for computa-
tion/compression/IO). Parallel I/O operations are collabora-
tively executed by the background thread in each process. It
is also common for the application to perform a number of
I/O operations before or after some computation. We ignore
the GPU and concentrate on the computing, compression,
and I/O tasks performed on the main thread, and on the
background thread by the CPU. We assume that for each
iteration, there are k computing tasks, Yy, 1, ..., Yy, executed
by the main thread. Interference with these computing tasks
would directly delay the execution of the application. The
i-th task, Y, ;, begins its execution at time beg, + a,; and
ends at time beg,, + b, ;, for 1 <i < k.

Periodically, either at each iteration, or every [iterations
for some fixed value [, the application generates a large
amount of data that needs to be written to the storage sys-
tem. To reduce I/O overhead and storage footprint, we apply
lossy compression to these data. A process is responsible
for managing a certain number of data fields, and each of
these fields undergoes our proposed fine-grained compres-
sion. This decomposition divides the compression into a total
of m independent compression tasks for the given process, as
detailed in Section 4. All iterations that execute compression
tasks comprise m compression tasks that need to be executed
on the main-thread, namely tasks Ry, 1, ..., Rnm for iteration
n. Compression task R, ; has a duration ¢, j, for 1 < j < m.
Task scheduling must ensure that the m compression tasks
are inserted within the time period [beg,,, end,] without in-
terfering with any of the computing tasks Yy, 1,..., Y,k. In
particular, this means that the execution of each task Yy, ;
should start and end at the same times whether we per-
form lossy compression (execution of tasks Ry, 1, . .., Ry m) or
not. Otherwise, the original computing tasks would be in-
terrupted by compression, which would delay the execution
of the application. Moreover, any compression task R, ; that
was started before a task ¥; must be completed before Y; starts
(in other words, a compression task cannot be preempted).
The scheduling of the compression tasks is therefore quite
constrained. However, we have absolute freedom on the or-
der in which the m compression tasks are executed. The
scheduler will therefore have to choose an execution order
of compression tasks that optimizes the overall performance.

Each compression task R, ; is followed by a corresponding
I/0 task By, j of length ¢, ; that writes the compressed data to
the storage system. We call a job the pair formed by a com-
pression task R, j and the corresponding I/O task B,, ;. We

Concealing Compression-accelerated 1/0 for HPC Applications through In Situ Task Scheduling

Main| Y Y,

/O

beg,=01 2 3 4 5 6 7 8 9 10 11 end, =12

(a) The set of unavailability intervals. On the main-thread there are two
unavailability intervals, from a; = 3 to b; = 4 and from a; = 6 to by = 7;
and on the background thread one from a] = 4 to b} = 5.

\ \ \ L |
Ry |V Y Ry Ry

|
Main|R;

I/0 ‘1 Gy ‘3 ‘4

beg,=01 2 3 4 5 6 7 8 9 10 11 end, =12

|

(c) Extended Johnson’s algorithm. Jobs 1 and 3 belong to M, (¢; < c})
while jobs 2 and 4 belong to M. The algorithm schedules the jobs in the
order 1, 3, 4, 2.

EuroSys *24, April 22-25, 2024, Athens, Greece

(b) The 4jobs:c; =1,¢] =2,c2=2,¢; =1,¢3 =2,¢; =2,¢4 = 3,and
ch=2.
4

Main|R; Y Y, Ry

/0 1 B, 4
T I T T

beg,=01 2 3 4 5 6 7 & 9 10 11 end, =12

(d) Extended Johnson’s algorithm with backfilling. Job 2 is scheduled
before job 4 (both for the compression task and the actual I/0) because
this is possible without modifying the start times of tasks R4 and By.

Figure 1. An example of the task scheduling problem: (a) the set of unavailability intervals; (b) the tasks to schedule; (c) the schedule built by the ExTJoHNSON
algorithm on this instance; (d) the solution built by ExTJoHNsoN+BF. Main stands for main-thread.

assume that the I/O operations and communications of the
application all occur on the background thread. For iteration
n, these m I/O tasks must then be scheduled within the time
interval [beg,, end,] on a background thread. By construc-
tion, these tasks are separated from, and cannot interfere
with neither the computing tasks (the Y;,;’s) nor the com-
pression tasks (the R, ;’s). However, there are o core tasks
Gn1, - - - Gnyo associated with computing which are executed
on the background thread. Note that these tasks can be either
I/O operations or communications. Like the computing tasks
Yu1,..., Yok, these tasks have known execution intervals
that must be respected when scheduling the I/O tasks. Any
interference or re-allocationof these tasks would directly
cause delays in the simulation. Namely, task G, ; must be
executed during the time interval [beg, + a;, ;, end, + b}, ;].
Similarly to the compression tasks R, 1, . . ., Ry m, the m I/O
tasks By 1, . .., Bym must be scheduled within the interval
[beg,,, end,] without interfering with any core task G, ;.
Specifically, the execution of anI/O task cannot be preempted
and should not overlap with any interval [beg, +a,, ;, beg, +
b;l, j], for 1 £ j < 0. However, I/O tasks have an additional
constraint. An I/O task B, ; cannot start before the corre-
sponding compression task R, ; has finished. This is because
the I/O operation on compressed data must occur after the
data has been compressed. The execution order of the I/O
tasks By, 1, . .., Bnm can also be freely adjusted to optimize
overall performance, as long as all constraints are satisfied.

In essence, we can summarize all these constraints as fol-
lows (refer to Figure 1 for an example): On the compute

985

thread, the compute (yellow) tasks Y, ; are immovable obsta-
cles that the compression (red) tasks must avoid. Similarly,
on the background thread, the core (green) tasks G, ; are
immovable obstacles that the I/O (blue) tasks must avoid.
The two threads are interdependent, as an I/O (blue) task
cannot start until the corresponding compression (red) task
completes. This is the only constraint on the order of com-
pression and I/O tasks, which can otherwise be scheduled in
any order compatible with these dependence constraints.
The goal of the task scheduling algorithm is to find an
ordering for compression tasks Ry 1, ..., Ry m, and for I/O
tasks By 1, . .., Bnm to minimize the overall execution time
of the current iteration. This execution time is defined as:

Ty
maXi<i<m tend(Rn,i) - begn
maXi<i<m tend(Bn,i) - begn

T;vemll = min

where t.,q4(x) denotes the completion time of task X. Since
an I/O task must always occur after the corresponding com-
pression task, te,q(By ;) is always larger than te,q(Rp ;). This
simplifies Tn”"em” to min {Tn, maxi<j<m tend(Bni) — begn}.
The scheduling problem is now formally defined. The op-
timization problem depends on many task lengths and dates,
namely the values of all variables an;, by i, cn i a:l’l., b;u., c;“.’s.
The objective is to minimize the iteration length T2l
Based on our observations, we assume that the execution
pattern is highly similar between consecutive iterations for
iterative scientific applications. Therefore, for scheduling
the n-th iteration we will use the recorded characteristics
of the (n — 1)-th iteration. Namely, we will assume that, for
1<i<k ayi=an;andb,; =b,_y; thatfor1 <i <o,

EuroSys ’24, April 22-25, 2024, Athens, Greece
a;u. = a;_lji and b;u. = b;l_l’i, and that T,, = T,,_;. The dura-
tion ¢, ; of compression task R, ; can be accurately predicted
based on the data to be compressed, for 1 < j < m. Hence,
this information is available before scheduling tasks and
there is no need to reuse past data for the c, ;’s.

It is important to note that slight variations in the required
task lengths and dates between neighboring iterations may
result in some performance degradation, as the proposed
task scheduling approach takes imperfect data as its input.
However, as we will demonstrate in the evaluation section,
these variations do not significantly impact the effectiveness
of the proposed solution.

3.2 Problem Analysis

Following scheduling theory nomenclature, the problem of
scheduling the compression and I/O tasks is a flow-shop
problem with two machines. The first machine corresponds
to the computation thread and the second machine corre-
spond to the background thread. Each job of the flow-shop
formulation comprises first a compression task that must
be scheduled on the first machine and then an I/O task that
must be executed on the second machine and can start only
after the completion of the first task. More precisely, our
problem is exactly a flow-shop problem with two machines
with deterministic unavailability intervals on both machines
and with non resumable jobs. The unavailability intervals are
said to be deterministic because their existence and dates
are known in advance. In practice, however, the predictions
related to the dates and durations of the unavailability inter-
vals, and on the durations of compression and I/O tasks, will
be unperfect. Therefore, the proposed solutions should toler-
ate some variability with minimal performance degradation.
A job is said to be resumable [35] if its execution can continue
after an unavailability interval whenever it was started but
not completed before the start of this unavailability interval.

The flow-shop problem with two machines, in the absence
of unavailability intervals, is optimally solved by Johnson’s
greedy algorithm [32]. Unavailability intervals change the
complexity. The problem with non resumable jobs becomes
NP-complete as soon as there is at least one unavailability
interval on one machine [35]; it becomes non-approximable
by any constant factor (unless P=NP) as soon as there are at
least two unavailability intervals on one machine [8].

Lastly, we note that although the optimization problem is
complex, it can be formulated as an Integer Linear Program
(ILP). We provide the ILP formulation in the Appendix for
completeness. However, it is important to mention that the
ILP was unable to find a solution for any of the experiments
we conducted due to the large number of variables involved
in the ILP formulation.

3.3 Scheduling Algorithms

We present in this section six different scheduling algorithms
for the problem. We start by proposing two extensions of

986

Jinet al.

Johnson’s algorithm. Then we propose two algorithms based
on list-scheduling. Finally, we propose two greedy algo-
rithms which are more computationally demanding, since
they explore a wider spectrum of solutions. Each algorithm
produces the ordered list used to schedule the tasks, and
the rule of the game (defined below) : (i) without backfilling;
(ii) with backfilling; or (iii) with exhaustive insertion. The
complete schedule, with the starting time of each task, is
fully determined by the ordered list and the rule of the game,
as detailed below.

3.3.1 Extensions of Johnson’s Algorithm. As recalled
in Section 3.2, Johnson’s algorithm builds an optimal so-
lution in the absence of unavailability intervals. Johnson’s
algorithm works as follows. The jobs are partitioned in two
sets M; and M, where jobs in M, are exactly the jobs which
have an execution time on the first machine smaller than
or equal to their execution time on the second machine. In
our context, this means that M; contains exactly the jobs
whose compression task is not longer than its I/O task. Now
jobs in M, are sorted by non-decreasing execution time on
the first machine (i.e., by non-decreasing duration of their
compression task). While jobs in M, are sorted by non-
increasing execution time on the second machine (i.e., by
non-increasing duration of their I/O task). Then Johnson’s
algorithm executes first all jobs in M; followed by all jobs
in M,, starting each task as soon as possible.

We extend Johnson’s algorithm to take unavailability in-
tervals into account. The first version is straightforward: the
ExTJoHNSON algorithm executes tasks in the same order as
Johnson’s algorithm would have in the absence of unavail-
ability intervals, but executes each task as soon as possible
after already scheduled tasks and while respecting the un-
availability intervals. ExTJoHNsON is illustrated on Figure 1c
where M, = {(Ry, B1), (R, B3) }.

On Figure 1c, there is an unused interval on the first ma-
chine between times 4 and 6, during which task R, could
have been executed. Backfilling [39] is a scheduling tech-
nique which enables to take advantage of such intervals of
idleness. Under backfilling, a new task, rather than being
mandatorily scheduled after the completion of all already
scheduled tasks, can be scheduled in an idleness interval
if doing so does not delay the start of any already sched-
uled task. If several idleness intervals can accomodate the
new task, the task is scheduled in the earliest one. EXTJOHN-
soN+BF is a variant of ExTJoHNsoN with backfilling. Ex-
TJoHNSON+BF considers tasks for scheduling decisions in
the same order as EXTJOHNSON but starts each task as soon
as possible, provided that this never postpones the start of an
already considered task. The behavior of ExTJoHNSoN+BF is
illustrated on Figure 1d. Note that, because tasks in M are
ordered by non-decreasing compression times, the execution
dates of compression tasks of M, are always the same under
ExTtJoHNsoN and ExTJoHNSON+BF.

Concealing Compression-accelerated 1/0 for HPC Applications through In Situ Task Scheduling

3.3.2 List Scheduling Algorithms. In parallel schedul-
ing, a list scheduling algorithm considers tasks one by one
following a predefined order, and it schedules each task as
soon as possible after the already scheduled tasks. Hence,
ExTJOHNSON is a list scheduling algorithm following John-
son’s order without unavailabity intervals. Our third algo-
rithm GENERATIONLISTSCHEDULE uses list-scheduling on the
tasks, according to their original order when we generate
them by fine-grained compression. The fourth algorithm
GENERATIONLISTSCHEDULE+BF is the counterpart of GENER-
ATIONLISTSCHEDULE when adding a backfilling mechanism:
when scheduling a task, GENERATIONLISTSCHEDULE+BF al-
lows it to start earlier than some already scheduled task, as
long as it does not cause any delay to scheduled tasks.

3.3.3 More Costly Greedy Algorithms. The fifth and
sixth algorithms explore more execution orders. The idea is
to try and insert the new task under consideration at any po-
sition in the task list that captures the current solution. Both
algorithms start with the original order of the tasks when
these are generated by fine-grained compression. ONELIST-
GREEDY always keep the same order for compression and I/O
tasks, while TwoL1sTSGREEDY enables different orderings.
For ONELISTGREEDY, assume that we have a partial ordered
list of » compression tasks . For the r + 1-th task, we try and
insert it at any possible position (first, second, ..., last) in
the list, which means r + 1 attempts. Each attempt consists
of greedily scheduling the compression tasks and the I/O
tasks as soon as possible, while ensuring that no I/O task can
start before the completion of the corresponding compres-
sion task. ONELISTGREEDY will retain the attempt that leads
to the smallest total execution time and updates the partial
list accordingly. This insertion technique is more aggressive
than backfilling, because it recomputes and possibly delays
the starting times of previously scheduled tasks.

ONELISTGREEDY restricts to constructing and updating the
same ordered list for both compression and I/O tasks. On the
contrary, TwoL1sTsSGREEDY allows for different orderings
of the compression tasks and the I/O tasks. Therefore it
maintains two partial lists, one for each task type. When
inserting the r + 1-th tasks, we now have (r + 1)? attempts
and keep the best of them to update both lists. Note that
each attempt can be executed in time linear in the number of
tasks and unavailability intervals. Altogether, the complexity
of ONELISTGREEDY is O(K?) and that of TwoLIsSTSGREEDY
is O(K?), where K = max(m, k, 0) is the maximum number
of parameters, either tasks (m compression and m I/O tasks)
or unavailability intervals (k on the compression thread and
o on the background thread).

3.4 1/0 Workload Balancing

The proposed scheduling algorithms lead to significant re-
ductions in the overall execution time of simulations. How-
ever, it is important to note that the size of compressed data

987

EuroSys *24, April 22-25, 2024, Athens, Greece

can vary significantly across processes, depending on the
compressibility of the data assigned to each process. Some
processes may have partitions with less information that
can be effectively compressed, while others may have more
challenging partitions that are less compressible. While com-
pression time is not highly dependent on the compression
ratio, I/O time is greatly influenced by the size of the com-
pressed data. Consequently, some processes may experience
longer I/O times compared to others, potentially becoming
a bottleneck for the entire system. To address this issue, we
propose an intra-node load balancing mechanism to miti-
gate the imbalance of the I/O workload for compressed data.
We do not extend this mechanism to inter-node scenarios
due to the significantly higher inter-node communication
overhead.

For most HPC applications, we notice that the compres-
sion ratio of the data being dumped remains relatively sta-
ble from one iteration to another for a given partition. For
instance, in a Nyx simulation, we have observed that the
compression ratio differences between two consecutive data
dumping operations has an average of 1.45% with a standard
deviation of 0.64% from six samples. This stability is due
to the fact that the simulation does not undergo significant
changes in the data characteristics over a short period of
time. Furthermore, our evaluation, as depicted in Figure 6,
also corroborates this point by demonstrating our ability
to utilize the same Huffman tree for encoding quantization
codes across multiple iterations. Based on this observation,
we propose utilizing the compression ratio from the previous
iteration as a guide for load-balancing the I/O operations in
the current iteration. By doing so, we can effectively address
any imbalances and ensure a more equitable distribution of
the I/O workload.

Within a given node, we determine the workload of each
process by considering its total length of I/O tasks from
the previous iteration. If a process has a high workload,
we redistribute a proportion of its I/O tasks to processes
with lower workloads. Specifically, we implement a load-
balancing mechanism by assigning the first I/O task of the
process with the largest I/O workload to be the last I/O task
for the process with the least I/O workload. We continue
this assignment until the workload of the process with the
largest workload is smaller than twice the workload of the
process with the smallest workload. This helps to redistribute
the I/O tasks more evenly across the processes and alleviate
any workload imbalances. However, we have observed that
the total length of compression tasks for different processes
remains relatively stable. This is because the compression
throughput is not significantly affected by the compressibil-
ity of the data, and the size of the raw data is the same across
all processes. Therefore, we apply the task load-balancing
technique only to the I/O tasks, as it effectively addresses
the workload imbalance in that aspect.

EuroSys ’24, April 22-25, 2024, Athens, Greece

Task Scheduling
Fine-grained blocks
EEEE
© —
5 (Prediction J
- Ve ~N
I~ _'°5° Scheduling algorithms
S 3 %“ gl
2| R
g o J
e N
170 workload balancing
P1
H P2 mmmm <
+ J
3
s R
'% '§ Runtime Design
g s - .)
= .§ Fine-grained compression
[
2 |\ EmEEE
8 (" Shared tree for h
3 Huffman coding .?}
E]
= N e/
a - 3\
2 Compressed data buffer
a
< g L N)

Figure 2. Overview of our proposed framework. We propose three runtime
designs to facilitate task scheduling to handle the data dumping process
from iteration n and execute asynchronous compression, I/O operations,
and computation tasks during iteration n+1.

4 Design of Our Proposed Framework

In this section, we present our proposed framework that
deeply integrates lossy compression with parallel I/O li-
braries, allowing for the overlap of compression and I/O with
computation using our task scheduling algorithms. Figure 2
shows the overview of our proposed framework. The goal is
to dump the data generated from iteration n during the next
iteration n + 1. First, we detail the runtime design that con-
sists of three main components: fine-grained compression,
compressed data buffer, and shared tree for Huffman coding.
Then, we offer implementation details for HPC applications.

4.1 Fine-grained Compression

The large volume of data generated by HPC applications
often consists of multiple data fields. For instance, data from
a Nyx cosmological simulation may include density, temper-
ature, and velocity information, resulting in multiple data
fields. While it may seem intuitive to compress each data
field separately to achieve granularity in compression tasks
for our task scheduling algorithms, most scientific appli-
cations have only a few data fields (e.g., 6~12 data fields).
This limits the number of compression tasks and I/O tasks,
leading to low task scheduling efficiency. To address this
challenge, we propose slicing each data field into smaller

988

Jinet al.

data blocks and independently compressing each data block.
This significantly increases the number of tasks, benefiting
our task scheduling problem with obstacles. Specifically, we
use a block size of 8~16 MB for compressing the data, while
ensuring an even division of each data field. As an exam-
ple, consider a Nyx cosmology simulation with a scale of
1024 X 1024 X 1024 distributed across 64 processes, resulting
in 64 MB of data per process for each data field. In this case,
we divide each data field into eight blocks per process using
a block size of 8 MB. Fine-grained compression may intro-
duce two potential issues: (1) a degradation in compression
ratio compared to compressing the data together, and (2)
a decrease in compression and I/O throughput. However,
the evaluation presented in Section 5.3 demonstrates that
using a minimum data block size of 8 MB results in minimal
compression ratio degradation. In practice, we use offline
profiling to evaluate compression and I/O performance on
a given system to identify the point at which compression
and I/O throughput start to deteriorate with small data block
sizes. This analysis informs our choice to select the smallest
available block size (> 8 MB). To mitigate the impact on I/O
throughput, we propose the use of a compressed data buffer.
Moreover, to minimize overhead caused by degradation in
compression throughput, we propose the use of a shared
Huffman tree.

4.2 Compressed Data Buffer

Based on our observations, the size of compressed data blocks
can be relatively small, with some blocks even smaller than 1
MB, depending on the achieved compression ratio. However,
writing data smaller than 1 MB can significantly reduce I/O
throughput. To optimize I/O efficiency, we introduce an ad-
ditional compressed data buffer that allows us to initiate I/O
tasks as soon as possible while maintaining high throughput.
Based on our evaluation presented in Section 5.3, we set
the maximum size of the compressed data buffer to 10 MB,
which typically accommodates 12 compressed data blocks
when the data block size is 8 MB and the average compres-
sion ratio is 10X. We have observed that further increasing
the maximum compressed data buffer size does not result in
significant performance improvement. The policy of writing
the compressed data to the buffer and subsequently writing
the buffer to the storage system is determined after the task
scheduling. During the execution phase, once the execution
orders for compression and I/O tasks are determined, we
start placing the compressed data into the buffer when the
background thread is engaged with I/O tasks or core tasks.

4.3 Huffman Coding with Shared Tree

During the prediction-based lossy compression process, one
of the crucial steps is Huffman encoding of the quantiza-
tion codes after prediction and quantization steps. When
compressing small data blocks with high compression ratios,

Concealing Compression-accelerated 1/0 for HPC Applications through In Situ Task Scheduling

building the Huffman tree can become a bottleneck for com-
pression throughput. This is because building the Huffman
tree takes nearly constant time regardless of the size of the
input data, as the number of quantization codes after the
predictor and quantizer of lossy compression is a fixed num-
ber in most cases. Additionally, based on our observation,
data of similar types often result in similar Huffman trees.
For example, the Huffman tree built from the data of one
iteration is highly similar to the tree built from the data of
the next iteration.

To improve compression throughput for small data blocks,
we propose using shared Huffman trees across different
timesteps and data blocks on the same process. Prediction-
based lossy compression accommodates outliers, which allow
us to modify to include values that defy coding by this shared
Huffman tree. Building and using a shared Huffman tree for
each process based on the data of the current iteration is
impractical, as it would require synchronization of all com-
pression tasks before any I/O taskfor compressed data can
proceed. Instead, we build the shared Huffman tree based on
the quantization code from the previous one or few iterations
and utilize it for the data of the current iteration. This is a
trade-off between compression ratio and shared tree reuse
frequency. This tree is stored in memory and loaded into the
compressor when compressing each data block. Based on
our evaluation in Section 5.3, the shared Huffman tree can be
reused for over 10 iterations without significant compression
ratio degradation.

4.4 Implementation Details

We implement our solution using the HDF5 parallel I/0 li-
brary [53], but the principles can be extended to other paral-
le] I/O libraries as well. We utilize the VOL connector from
HDF5 [49] to control the compression queue of the com-
pression tasks and launch asynchronous I/O tasks in the
background thread. In addition, we predict the compression
ratio before the actual compression process to compute the
offset for each data block using the algorithms described
in [27]. We also predict the compression time and I/O time
for the compressed data based on the compression through-
put and I/O throughput prediction approach proposed by Jin
et al. [30]. To handle the rare occurrence of data overflow
caused by alower-than-predicted compression ratio, we have
implemented additional space at the end of the shared HDF5
file to store the overflowed data. This extra I/O task for the
overflowed data is not predictable and cannot be scheduled
in advance. Thus, we queue this extra I/O task at the end of
the last I/O task for the compressed data.

All the proposed task scheduling algorithms are based on
the observation that the total compression time is theoreti-
cally fixed regardless of the compression order. Our optimiza-
tion focuses on the dependencies and timing of launching
write operations for each compressed data to minimize time-
outs compared to compression. The time complexity of the

989

EuroSys *24, April 22-25, 2024, Athens, Greece

proposed algorithm is O(n log n), whereas the time complex-
ity of our compression is O(N). Considering that N (i.e.,
the number of values) in one data partition is significantly
larger than n (i.e., the number of data fields), the optimiza-
tion overhead is almost negligible compared to the actual
compression and write time. On a typical HPC application
run, n can range from 6 to 12, while N can range from 2
million to 128 million.

Based on our algorithm design, we can expect the optimiza-
tion to bring benefits when there is a relatively stable balance
between compression time and I/O time. Additionally, we
note that our optimization can provide greater benefits when
the size of data fields is relatively large. This is because the
overall performance is dependent on the process with the
longest time among all the processes, due to independent
asynchronous writes.

5 Performance Evaluation

In this section, we present the evaluation results of our pro-
posed framework for accelerating HPC applications. We first
provide details about the experimental setup and the HPC
applications used in our evaluation. Next, we assess the per-
formance of our proposed task scheduling algorithms and
identify the most efficient one for further evaluations. We
then evaluate the performance of each individual component
of our compression design. Finally, we conduct a compre-
hensive performance evaluation using both simulation and
real-world HPC applications, comparing the results to the
baseline solution without compression and the previous so-
lution using asynchronous I/O without lossy compression.

5.1 Experimental Setup

System configuration. We rigorously implement our ap-
proach using HDF5 [9] and SZ3 [38], a modularized prediction-
based lossy compressor. Our experiments are conducted on
the Summit supercomputer [18] at Oak Ridge National Lab-
oratory with 16 nodes and 64 GPUs, where each node is
equipped with two IBM POWERY processors featuring 42
physical cores and 512 GB DDR4 memory.

Compression configuration. We evaluate our approach
using different scales of Nyx and WarpX applications. In
all our evaluations, we utilize both GPUs and CPUs. While
GPUs serve as the primary compute unit, CPUs handle com-
pression and I/O tasks. Based on previous work [28, 29], we
use absolute error bounds of (0.2, 0.4, 1e+3, 2e+5, 2e+5, 2e+5)
to compress the six Nyx data fields (baryon density, dark
matter density, temperature, velocity x, velocity y, velocity
z), respectively, to achieve an average PSNR (peak signal-to-
noise ratio) of 78.6 dB, resulting in a compression ratio of
approximately 16X. The problem size of the Nyx application
used in our evaluation is 4096 X 4096 X 4096 with three ad-
ditional fields: particle_vx, particle_vy, and particle_vz. We
compress these additional fields with a compression ratio of

EuroSys ’24, April 22-25, 2024, Athens, Greece

Algorithm | Iteration Duration (s)
ExtJoHNSON 4.363
ExTJOHNSON+BF 4.058
GENERATIONLISTSCHEDULE 4.665
GENERATIONLISTSCHEDULE+BF 4.470
ONELISTGREEDY 4.541
TwoLisTsGREEDY 4.274

Table 1. Iteration duration (in seconds) achieved by different scheduling
algorithms with Nyx cosmological simulation.

16x to ensure the post-hoc analysis quality. For the WarpX
application, we compress the data fields with a compression
ratio of 273.9X%, as suggested by the application developers
based on their post-hoc analysis.

5.2 Evaluation of Task Scheduling Algorithms

First, we conduct an evaluation of the six task scheduling al-
gorithms proposed in Section 3.3, focusing on their overhead
and optimized iteration time, based on the problem statement
outlined in Section 3.1. To gather data for our evaluation, we
sample three stages of a Nyx run, which is performed at a
scale of 1024 x 1024 x 1024 with 16 GPUs from 4 nodes. We
collect data from the beginning of the run when the data
distribution is mostly even, the middle of the run when the
data is structured, and towards the end of the run when the
data becomes highly centralized and the compressibility of
the data varies across different partitions.

In this case, each process holds a partition size of 256 X
512 x 512. Following our framework design described in Sec-
tion 4, we use a fine-grained compression block size of 8.39
MB, resulting in 32 data blocks per process. It is important to
note that we deliberately employ a non-integer block size to
ensure an evenly divided distribution of data blocks without
significant size discrepancies.

Next, we measure the time required to perform lossy com-
pression and write operations for each data block. It is worth
mentioning that in this section, our focus is on evaluating the
performance of the proposed task scheduling algorithms. To
determine the most suitable algorithm, we utilize actual val-
ues of compression time, I/O time, and computation intervals
instead of relying on predicted values.

We observe that the overall performance of our proposed
framework, as presented in this section, is slightly better than
that in subsequent sections that employ predicted values.
This discrepancy can primarily be attributed to the inherent
uncertainty associated with predicting compression time,
I/O time, and the intervals between neighboring simulation
iterations for each data block.

Table 1 presents the average scheduled iteration time for
each algorithm. In addition, we also evaluate the Integer Lin-
ear Program (ILP) as one of the task scheduling algorithms,
described in the appendix. While it can sometimes offer the
fastest iteration time, its computation time is significantly

990

Jinet al.

- 2

]

£18

2

o216

3

° 14

2

< 1.2

E

e 1

I 1 4 16 64

Max Compression Ratio Diff

Figure 3. Relative Performance improvements using our proposed intra-
node I/O workload balancing technique. The max compression ratio differ-
ence represents the variance in compression ratios between partitions with
the highest and lowest compression ratios within a single node.

longer than the other algorithms. In general, Johnson’s al-
gorithms with backfilling demonstrate the best overall per-
formance, considering both execution time and overhead.
Thus, we adopt Johnson’s algorithms with backfilling for our
subsequent evaluations.

It is worth noting that in cases where the CPU and I/O idle
time during the simulation significantly exceeds the time re-
quired for compression and compressed data I/O operations
(e.g., when data is dumped at relatively longer step sizes),
our selected task scheduling algorithm has the potential to
effectively mitigate the impact of compression and I/O on
the simulation. In other words, the scheduling algorithm can
minimize the perceived delays caused by these operations,
enabling the simulation to proceed seamlessly.

Next, we evaluate the effectiveness of our proposed I/O
workload balancing techniques in combination with the task
scheduling algorithm. We assess their performance across
various data distribution scenarios by assuming a maximum
compression ratio difference among processes within a given
node with 4 to 8 processes (i.e., GPUs). We further assume
that the compression ratios for each process follow a normal
distribution based on this maximum difference.

Figure 3 shows the relative performance improvement in
execution time achieved by the I/O workload balancing tech-
nique, compared to the original execution time. We observe
that as the compression ratio differences between processes
increase, the I/O workload balancing technique provides a
higher performance improvement. It is important to note
that the specific value of the maximum compression ratio
difference is highly dependent on the characteristics of the
HPC application being performed. For instance, in the case
of the Nyx Application, this number can reach as high as
20 with an average compression ratio of 16xX. In worst-case
scenarios where the maximum compression ratio difference
is extremely low, the I/O workload balancing technique does
not introduce additional overhead to the system.

5.3 Evaluation of Proposed Compression Design

In this section, we evaluate the efficiency of the three de-
signs we proposed in Section 4: fine-grained compression,
compressed data buffer, and shared Huffman tree. We begin

Concealing Compression-accelerated 1/0 for HPC Applications through In Situ Task Scheduling

| ==0=-mid. without shared tree —o—mid. beg. —o—end

1.6

g 14

\
N,
S
N\
\,
\,
N\,

12

elative Iteration Ti

16

32 64

Block Size (MB)

Figure 4. Execution time comparison with different block sizes (relative
to the execution time using a block size of 64 MB). The dashed blue line
represents the execution time without using the proposed shared Huffman
tree strategy.

by evaluating the benefits derived from fine-grained com-
pression. For this experiment, we select three stages of a Nyx
Application, performed at a scale of 512 X 512 X 512 using 8
GPUs. Each process in this setup manages a partition size of
256 X 256 X 256, with each data field approximately sized at
64 MB. Figure 4 illustrates the relative execution time with
different compression block sizes. The relative execution
time is measured in terms of the execution time without
fine-grained compression, which is 64 MB in this case. Dur-
ing this experiment, we utilize fine-grained compression, a
compressed data buffer of 20 MB, the shared Huffman tree,
and employ ExTJorNsoN+BF for scheduling. To accurately
evaluate the design efficiency of fine-grained compression
alone, we also utilize the actual compression time, I/O time,
and interval values instead of relying on predicted values.

First, we observe that fine-grained compression effectively
enhances overall performance across various data distribu-
tion scenarios. However, it is crucial to consider the block
size used, as excessively small block sizes can nullify the
performance benefits of fine-grained compression. This is
primarily due to a significant decrease in compression and
I/O throughput. We also observe that the shared Huffman
tree can significantly improve compression throughput when
the data block size is small. In this case, we find that using
a block size of 8-16 MB when compressing the data and
evenly dividing each data field works best. When compar-
ing different data distributions, we find that fine-grained
compression offers similar performance improvements for
evenly distributed data during the early stage of the run,
as well as for structured data with a wider range of com-
pression ratios, such as the middle stage of the run. This is
because the primary advantage of fine-grained compression
lies not only in initiating I/O operations earlier but also in
accommodating more compression and I/O tasks within the
computation application intervals. As a result, the benefits of
fine-grained compression are less dependent on the specific
characteristics of the data and their compressibility.

Next, we evaluate the effectiveness of utilizing a com-
pressed data buffer. For this experiment, we use the same

991

EuroSys *24, April 22-25, 2024, Athens, Greece

1.2
—O—mid. =--A--beg. —o—end

(]
£
=
o
S
T
[
>
(<)

0.2

0 20 40 60 80
Buffer Size

Figure 5. Execution time comparison with different buffer sizes (relative to
the execution time without any compressed data buffer).

15 5%
2 —-&--mid.
x 14 —o— beg. 4% 3
§ Y --0--build Huffman tree overhead 3% &
o \ 8
212 [
:

=

©11 5
2 S
8 1¢ @
©
.3

0.9

Iteration

Figure 6. Compression ratio degradation across iterations, assuming the
Huffman tree is built based on the data from iteration 0. The relative com-
pression ratio means the ratio degradation between compress while “reusing
the shared Huffman tree from x iterations ago” and “building a new tree”.

configurations as the fine-grained compression evaluation,
with a compression block size of 8 MB. Figure 5 presents the
relative time of the combined I/O tasks for compressed data,
considering different buffer sizes. Notably, the compressed
data buffer demonstrates an efficient reduction in overall
I/0O time. This is because of the relatively small size of the
compressed data, which allows for improved write perfor-
mance through the consolidation of these small data units.
In addition, our evaluation reveals that the performance im-
provement achieved through the use of a compressed data
buffer is consistent across data from different HPC applica-
tions, independent of the data structure and compression
ratio distribution. Based on our findings, we determine that
a compressed data buffer size of 20 MB delivers the optimal
performance enhancement while minimizing the memory
footprint required for the buffer.

Finally, we evaluate the effectiveness of utilizing the shared
Huffman tree. For this experiment, we use the same config-
urations as the previous experiments, with a compression
block size of 8 MB and a compressed data buffer of 20 MB.
Figure 6 shows the relative compression ratio degradation
compared to using a native Huffman tree for the given data,
when reusing the same Huffman tree for multiple iterations.

We notice that during the early stages/iterations where
data movement is relatively stable, the shared Huffman tree
can be effectively utilized for a greater number of iterations.
Moreover, by constructing the shared Huffman tree based
on data from the previous iteration (e.g., iteration number

EuroSys ’24, April 22-25, 2024, Athens, Greece

DOBaseline mOurs

Overhead

8 16 32 64
Average Compression Ratio

128

Figure 7. Time overheads (relative to the computation time) of the baseline
and our solution with different compression ratios.

1 in Figure 6), we can achieve minimal compression ratio
degradation while introducing minimal overhead in terms
of rebuilding the Huffman tree at the end of each iteration.

5.4 Overall Performance Improvement

In this section, we combine the aforementioned task schedul-
ing step with our proposed compression design to real-world
HPC applications to evaluate the performance improvement
from our proposed solution. We begin by evaluating the per-
formance improvement based on simulations, allowing us
to gather valuable insights and further validate our design
approach. Next, we present the in situ evaluation conducted
with Nyx and WarpX, showcasing the practical application
and effectiveness of our framework in real-world scenarios.

5.4.1 Simulation-based evaluation. Our simulation eval-
uations primarily focus on assessing the efficiency of our
framework across different overall compression ratios and
data distributions, as evaluating with real-world applications
is challenging. We gather the base computation intervals
from Nyx application. Then, we assume that the uncertainty
associated with the start and end times of these intervals
between neighboring iterations follows a normal distribu-
tion. The variance of this normal distribution is determined
by o = 0.01 X (end, — beg,), where end, represents the end
time of the given iteration, and beg, represents the start
time of the given iteration. This assumption is based on our
observations from Nyx and WarpX applications. Similarly,
we assume a normal distribution for the uncertainties of
the compression ratio, compression throughput, and com-
pressed data I/O time estimation. We use ¢ = 0.1 X R for
compression ratio, ¢ = 0.05 X T, for compression through-
put, and o = 0.05 X T;, for I/O throughput. Here, R is the
estimated compression ratio of each data blocks, T is the
estimated compression throughput, and Tj, is the estimated
I/O time. To handle potential conflicts between compression,
I/O, and computation intervals, we make the straightforward
assumption that both CPU tasks and background tasks are
executed sequentially. This means that if a CPU interval
takes longer than anticipated, it can result in delays for sub-
sequent compression tasks, potentially introducing overhead
to the application.

992

Jinet al.

OBaseline mOurs

Overhead

4 8 12 16
Max Compression Ratio Diff.

20

Figure 8. Time overheads (relative to the computation time) of the baseline
and our solution with different data distributions (represented as the intra-
node maximum compression ratio difference).

During the simulation, our main comparison is between
the performance of our solution and the baseline approach
where the data is not compressed, and the I/O operations are
performed sequentially with the computation. We evaluate
the performance by measuring the time overhead incurred
on the computation per iteration.

Figure 7 illustrates the performance of our solution across
different average compression ratios. We observe that our so-
lution consistently outperforms the baseline approach across
various compression ratios. Notably, when the compression
ratio is high, our solution exhibits slightly better perfor-
mance. This can be attributed to the smaller size of the com-
pressed data, resulting in shorter I/O time. As a result, the
overall time spent on I/O is reduced, and our scheduling
design benefits from more efficient allocation of I/O tasks
within the computation intervals.

Figure 8 shows the performance of our solution across
different data structure. We use the maximum compression
ratio differences to represent the data structure. Lower max-
imum compression ratio differences typically indicate that
the data is evenly distributed among the processes. We ob-
serve that our solution consistently outperforms the baseline
across various data structures. However, when the maximum
compression ratio difference is high, our solution exhibits
slightly worse performance. This is primarily due to imbal-
anced workloads across different processes. Nevertheless,
our I/O workload balancing design helps mitigate the neg-
ative impact of workload imbalances. By efficiently redis-
tributing tasks among processes, our solution minimizes the
effects of workload variations, resulting in overall improved
performance compared to the baseline approach.

5.4.2 Real-system-based evaluation. Finally, we eval-
uate our solution with real-world applications running on
the HPC system and compare it to the baseline and the pre-
vious solution, which only uses asynchronous I/O without
compression or task scheduling techniques.

Figure 9 shows the overall performance improvement of
our solution in comparison to the baseline and previous so-
lutions on the Nyx application. Additionally, we provide

Concealing Compression-accelerated 1/0 for HPC Applications through In Situ Task Scheduling

Ours

Ours-sim.

Previous

Baseline |

0% 10% 20% 30% 40%

Overhead (relative to computation)

50%

Figure 9. Time overheads (compared to computation time) of the baseline,
asynchronous I/O, and our solution (with simulation for reference) with
Nyx using 16 nodes and 64 GPUs.

| OBaseline @ Previous lOurs|

40%
40%
30%
T 30% S
2 ©
5 £ 20%
3 20% g
10% 10%
0% “ 0% U
Beg. Mid. End Beg. Mid. End
Timesteps Timesteps
(a) Nyx (b) WarpX

Figure 10. Time overheads of (compared to computation time) between
the baseline, asynchronous I/0, and our solution across different timesteps
with Nyx and WarpX.

DOBaseline @Previous WOurs

50% 20%
40%
30%
§ 30% 3
2 o
5 £ 20%
& 20% 2
10% 10%
0% 0%
16 32 64 6 32 64
GPUs GPUs
(a) Nyx (b) WarpX

Figure 11. Time overheads (compared to computation time) of the baseline,
asynchronous I/0, and our solution with different scales of Nyx and WarpX.

simulation results for reference. We note that the real imple-
mentation results in slightly larger overhead compared to
the simulation results. This is because the real implementa-
tion encounters more unexpected task interference due to
(1) uncertainty of computing application intervals, and (2)
inaccurately predicted compression ratio, compression time
and/or I/O time for compressed data. Nonetheless, our solu-
tion still achieves a significant performance improvement,
with a 3.78x and 2.57X improvement over the baseline and
previous solutions, respectively.

Figure 10 presents the performance of our solution across
different stages of the application: the beginning, middle,

993

EuroSys *24, April 22-25, 2024, Athens, Greece

and end. Our solution consistently outperforms the previous
solution across all stages of the application.

We also conduct a weak scaling evaluation to assess the
performance of our solution as the problem size scales with
the number of processes (GPUs), as shown in Figure 11. In
this experiment, the problem scale for each process is 256 X
256 x 256 for Nyx and 128 X 128 X 1024 for WarpX. Once
again, our solution consistently outperforms the previous
solution across all tested scales.

It is worth noting that both the baseline and the previous
solution experience longer execution times as the scale in-
creases. In contrast, our solution exhibits more consistent
performance across different scales. This can be attributed to
our data compression approach, where the overhead primar-
ily arises from conflict tasks resulting from mis-predicted
compression and I/O operations.

6 Conclusion and Future Work

Lossy compression and asynchronous I/O are two efficient
solutions for reducing storage overhead and improving I/O
performance in large-scale HPC/scientific applications. How-
ever, existing implementations have limitations that hinder
the full utilization of lossy compression and can lead to task
collisions, limiting the overall application performance. To
address these challenges, we propose an optimization ap-
proach for the task scheduling problem involving applica-
tion computation, compression, and I/O. Experimental re-
sults with up to 64 GPUs from Summit demonstrate that
our solution reduces I/O overhead by up to 3.8% and 2.6x
compared to the non-compression and asynchronous I/O
solutions, respectively. Note that the efficacy of the proposed
solution might decrease when the application is more reliant
on CPUs than GPUs, leading to fewer CPU idle periods.

In the future, we plan to expand the integration of our so-
lution to additional parallel I/O libraries, such as ADIOS, and
evaluate its performance with a wider range of real-world
HPC applications. Furthermore, we intend to extend our pro-
posed task scheduling method and compression design to
accommodate multi-file scenarios, where the dumping data
is stored in multiple files for specific HPC applications.

Acknowledgments

This research was supported by the Exascale Computing Project (ECP),
Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations—
the Office of Science and the National Nuclear Security Administration, re-
sponsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering
and early testbed platforms, to support the nation’s exascale computing
imperative. The material was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research (ASCR), under
contracts DE-AC02-06CH11357 and DE-AC02-05CH11231. This work was
also supported by the National Science Foundation under Grants 2003709,
2303064, 2104023, 2247080, 2247060, 2312673, 2311875, and 2311876.

EuroSys ’24, April 22-25, 2024, Athens, Greece

References

(1]

(8]

(10]

[11

—

[12

—

[13]

Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. 2018.
Multilevel techniques for compression and reduction of scientific
data—the univariate case. Computing and Visualization in Science
19, 5-6 (2018), 65-76.

Ann Almgren, Vince Beckner, Chris Daley, Brian Friesen, Zarija Lukic,
Andrew Myers, Jean Sexton, and Weiqun Zhang. 2023. Nyx. https:
//github.com/AMReX-Astro/Nyx

Ann S Almgren, John B Bell, Mike] Lijewski, Zarija Luki¢, and Ethan
Van Andel. 2013. Nyx: A massively parallel amr code for computational
cosmology. The Astrophysical Journal 765, 1 (2013), 39.

Babak Behzad, Surendra Byna, Stefan M Wild, Mr Prabhat, and Marc
Snir. 2014. Improving parallel I/O autotuning with performance mod-
eling. In Proceedings of the 23rd international symposium on High-
performance parallel and distributed computing. 253-256.

Babak Behzad, Huong Vu Thanh Luu, Joseph Huchette, Surendra Byna,
Ruth Aydt, Quincey Koziol, Marc Snir, et al. 2013. Taming parallel I/O
complexity with auto-tuning. In SC’13: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 1-12.

Wahid Bhimyji, Debbie Bard, Melissa Romanus, David Paul, Andrey
Ovsyannikov, Brian Friesen, Matt Bryson, Joaquin Correa, Glenn K
Lockwood, Vakho Tsulaia, et al. 2016. Accelerating science with the
NERSC burst buffer early user program. Lawrence Berkeley National
Laboratory (2016).

Robert Bird, Nigel Tan, Scott V Luedtke, Stephen Lien Harrell, Michela
Taufer, and Brian Albright. 2021. VPIC 2.0: Next generation particle-in-
cell simulations. IEEE Transactions on Parallel and Distributed Systems
33, 4 (2021), 952-963.

J. Breit, G. Schmidt, and V. A. Strusevich. 2003. Non-preemptive two-
machine open shop scheduling with non-availability constraints. Math-
ematical Methods of Operations Research 57 (2003), 217-234.

Suren Byna, M Scot Breitenfeld, Bin Dong, Quincey Koziol, Elena
Pourmal, Dana Robinson, Jerome Soumagne, Houjun Tang, Venkatram
Vishwanath, and Richard Warren. 2020. ExaHDF5: delivering efficient
parallel I/O on exascale computing systems. journal of Computer
Science and Technology 35, 1 (2020), 145-160.

Suren Byna, Mohamad Chaarawi, Quincey Koziol, John Mainzer, and
Frank Willmore. 2021. Tuning HDF5 subfiling performance on parallel
file systems. Lawrence Berkeley National Laboratory (2021).

Surendra Byna, Jerry Chou, Oliver Rubel, Homa Karimabadi, William S
Daughter, Vadim Roytershteyn, E Wes Bethel, Mark Howison, Ke-Jou
Hsu, Kuan-Wu Lin, et al. 2012. Parallel I/O, analysis, and visualization
of a trillion particle simulation. In SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 1-12.

Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Ding-
wen Tao, Chun Hong Yoon, Xin-Chuan Wu, Yuri Alexeev, and Fred-
eric T Chong. 2019. Use cases of lossy compression for floating-point
data in scientific data sets. The International Journal of High Perfor-
mance Computing Applications (2019).

Jieyang Chen, Lipeng Wan, Xin Liang, Ben Whitney, Qing Liu, David
Pugmire, Nicholas Thompson, Jong Youl Choi, Matthew Wolf, Todd
Munson, et al. 2021. Accelerating multigrid-based hierarchical scien-
tific data refactoring on gpus. In 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 859-868.

Sheng Di. 2023. H5Z-SZ. https://github.com/disheng222/H5Z-SZ
Sheng Di and Franck Cappello. 2016. Fast error-bounded lossy HPC
data compression with SZ. In 2016 IEEE International Parallel and
Distributed Processing Symposium. IEEE, 730-739.

Sheng Di and Franck Cappello. 2016. Fast error-bounded lossy HPC
data compression with SZ. In 2016 IEEE International Parallel and
Distributed Processing Symposium. IEEE, Chicago, IL, USA, 730-739.

994

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Jinet al.

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe,
Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin
Katti. 2018. Reducing DRAM footprint with NVM in Facebook. In
Proceedings of the Thirteenth EuroSys Conference. 1-13.

Oak Ridge Leadership Computing Facility. 2023. Summit supercom-
puter. https://www.olcf.ornl.gov/summit/

L. Fedeli, A. Huebl, F. Boillod-Cerneux, T. Clark, K. Gott, C. Hillairet, S.
Jaure, A. Leblanc, R. Lehe, A. Myers, C. Piechurski, M. Sato, N. Zaim,
W. Zhang, J. Vay, and H. Vincenti. 2022. Pushing the Frontier in the
Design of Laser-Based Electron Accelerators with Groundbreaking
Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Super-
computers. In SC22: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE Computer Society, Los
Alamitos, CA, USA, 1-12. https://doi.org/10.1109/SC41404.2022.00008
Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana
Robinson. 2011. An overview of the HDF5 technology suite and its
applications. In Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases. 36-47.

William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins,
Greg Eisenhauer, Junmin Gu, Philip Davis, Jong Choi, Kai Ger-
maschewski, Kevin Huck, et al. 2020. ADIOS 2: The Adaptable Input
Output System. A framework for high-performance data management.
SoftwareX 12 (2020), 100561.

Pascal Grosset, Christopher Biwer, Jesus Pulido, Arvind Mohan, Ayan
Biswas, John Patchett, Terece Turton, David Rogers, Daniel Livescu,
and James Ahrens. 2020. Foresight: analysis that matters for data
reduction. In 2020 SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE Computer
Society, 1171-1185.

Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin
Heitmann, David Daniel, Patricia Fasel, Vitali Morozov, George Zagaris,
Tom Peterka, Vishwanath Venkatram, Luki¢ Zarija, Sehrish Saba, and
Wei-keng Liao. 2016. HACC: Simulating sky surveys on state-of-the-art
supercomputing architectures. New Astronomy 42 (2016), 49-65.
Jaehyun Han, Donghun Koo, Glenn K Lockwood, Jachwan Lee, Hyeon-
sang Eom, and Soonwook Hwang. 2017. Accelerating a burst buffer
via user-level i/o isolation. In 2017 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 245-255.

HDF Group and others. 2000. Hierarchical data format version 5,
Filter.

Sian Jin, Sheng Di, Xin Liang, Jiannan Tian, Dingwen Tao, and Franck
Cappello. 2019. Deepsz: A novel framework to compress deep neural
networks by using error-bounded lossy compression. In Proceedings
of the 28th International Symposium on High-Performance Parallel and
Distributed Computing. 159-170.

Sian Jin, Sheng Dj, Jiannan Tian, Suren Byna, Dingwen Tao, and Franck
Cappello. 2022. Improving Prediction-Based Lossy Compression Dra-
matically Via Ratio-Quality Modeling. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 2494-2507.

Sian Jin, Pascal Grosset, Christopher M Biwer, Jesus Pulido, Jiannan
Tian, Dingwen Tao, and James Ahrens. 2020. Understanding GPU-
based lossy compression for extreme-scale cosmological simulations.
In 2020 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 105-115.

Sian Jin, Jesus Pulido, Pascal Grosset, Jiannan Tian, Dingwen Tao, and
James Ahrens. 2020. Adaptive configuration of in situ lossy compres-
sion for cosmology simulations via fine-grained rate-quality modeling.
In Proceedings of the 30th International Symposium on High-Performance
Parallel and Distributed Computing. 45-56.

Sian Jin, Dingwen Tao, Houjun Tang, Sheng Di, Suren Byna, Zarija Lu-
kic, and Franck Cappello. 2022. Accelerating parallel write via deeply
integrating predictive lossy compression with HDF5. In Proceedings of
the International Conference on High Performance Computing, Network-
ing, Storage and Analysis. 1-15.

https://github.com/AMReX-Astro/Nyx
https://github.com/AMReX-Astro/Nyx
https://github.com/disheng222/H5Z-SZ
https://www.olcf.ornl.gov/summit/
https://doi.org/10.1109/SC41404.2022.00008

[t

—

—

—

—

—

—

—

=

—

Concealing Compression-accelerated 1/0 for HPC Applications through In Situ Task Scheduling

[31] Sian Jin, Chengming Zhang, Xintong Jiang, Yunhe Feng, Hui Guan,

Guanpeng Li, Shuaiwen Leon Song, and Dingwen Tao. 2021. COMET:
a novel memory-efficient deep learning training framework by using
error-bounded lossy compression. Proceedings of the VLDB Endowment
15, 4 (2021), 886-899.

S. M. Johnson. 1954. Optimal two- and three-stage production sched-
ules with setup times included. Naval Research Logistics Quarterly 1, 1
(1954), 61-68.

Donghun Koo, Jachwan Lee, Jialin Liu, Eun-Kyu Byun, Jae-Hyuck
Kwak, Glenn K Lockwood, Soonwook Hwang, Katie Antypas, Kesheng
Wu, and Hyeonsang Eom. 2021. An empirical study of I/O separation
for burst buffers in HPC systems. J. Parallel and Distrib. Comput. 148
(2021), 96-108.

Matthew Larsen and Peter Lindstrom. 2023. cuZFP. https://github.
com/LLNL/zfp/tree/develop/src/cuda_zfp

Chung-Yee Lee. 1997. Minimizing the makespan in the two-machine
flowshop scheduling problem with an availability constraint. Opera-
tions Research Letters 20, 3 (1997), 129-139. https://doi.org/10.1016/
S0167-6377(96)00041-7

Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev
Thakur, William Gropp, Robert Latham, Andrew Siegel, Brad Gallagher,
and Michael Zingale. 2003. Parallel netCDF: A high-performance
scientific I/O interface. In SC’03: Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing. IEEE, 39-39.

Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi
Guo, Zizhong Chen, and Franck Cappello. 2018. Error-controlled
lossy compression optimized for high compression ratios of scientific
datasets. In 2018 IEEE International Conference on Big Data. IEEE, 438-
447.

Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M.
Gok, Jiannan Tian, Junjing Deng, Jon C. Calhoun, Dingwen Tao,
Zizhong Chen, and Franck Cappello. 2022. SZ3: A Modular Framework
for Composing Prediction-Based Error-Bounded Lossy Compressors.
IEEE Transactions on Big Data (2022), 1-14. https://doi.org/10.1109/
TBDATA.2022.3201176

David A. Lifka. 1995. The ANL/IBM SP scheduling system. In Job
Scheduling Strategies for Parallel Processing, Dror G. Feitelson and
Larry Rudolph (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
295-303.

Peter Lindstrom. 2014. Fixed-rate compressed floating-point arrays.
IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014),
2674-2683.

Tao Lu, Qing Liu, Xubin He, Huizhang Luo, Eric Suchyta, Jong Choi,
Norbert Podhorszki, Scott Klasky, Matthew Wolf, Tong Liu, and
Zhenbo Qiao. 2018. Understanding and modeling lossy compression
schemes on HPC scientific data. In 2018 IEEE International Parallel and
Distributed Processing Symposium. IEEE, 348-357.

Huizhang Luo, Dan Huang, Qing Liu, Zhenbo Qiao, Hong Jiang, Jing
Bi, Haitao Yuan, Mengchu Zhou, Jinzhen Wang, and Zhenlu Qin. 2019.
Identifying Latent Reduced Models to Precondition Lossy Compres-
sion. In 2019 IEEE International Parallel and Distributed Processing
Symposium. IEEE.

Oak Ridge Leadership Computing Facility. 2023. WarpX,
granted early access to the exascale supercomputer Frontier, re-
ceives the high-performance computing world’s highest honor.
https://www.olcf.ornl.gov/2022/11/17/plasma-simulation-code-wins-
2022-acm-gordon-bell-prize/ Online.

Santosh Pokhrel, Miguel Rodriguez, Alireza Samimi, Gerd Heber, and
Jamesina J Simpson. 2018. Parallel I/O for 3-D global FDTD earth—
ionosphere waveguide models at resolutions on the order of” 1 km and
higher using HDF5. IEEE Transactions on Antennas and Propagation
66, 7 (2018), 3548-3555.

Andrew Siegel, Erik Draeger, Jack Deslippe, Thomas Evans, Marianne
Francois, Timothy C Germann, Daniel F Martin, and William Hart.

EuroSys *24, April 22-25, 2024, Athens, Greece

2022. Application Results on Early Exascale Hardware. Technical Report.
Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal,
Wei-keng Liao, and Alok Choudhary. 2014. Data compression for
the exascale computing era-survey. Supercomputing Frontiers and
Innovations 1, 2 (2014), 76-88.

Houjun Tang, Suren Byna, N Anders Petersson, and David McCallen.
2021. Tuning parallel data compression and I/O for large-scale earth-
quake simulation. In 2021 IEEE International Conference on Big Data
(Big Data). IEEE, 2992-2997.

Houjun Tang, Quincey Koziol, John Ravi, and Suren Byna. 2021. Trans-
parent asynchronous parallel i/o using background threads. IEEE
Transactions on Parallel and Distributed Systems 33, 4 (2021), 891-902.
Houjun Tang, Quincey Koziol, John Ravi, and Suren Byna. 2022. Trans-
parent Asynchronous Parallel I/O Using Background Threads. IEEE
Transactions on Parallel and Distributed Systems 33, 4 (2022), 891-902.
https://doi.org/10.1109/TPDS.2021.3090322

Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. 2017.
Significantly improving lossy compression for scientific data sets based
on multidimensional prediction and error-controlled quantization. In
2017 IEEE International Parallel and Distributed Processing Symposium.
IEEE, 1129-1139.

Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. 2017.
Significantly improving lossy compression for scientific data sets based
on multidimensional prediction and error-controlled quantization. In
2017 IEEE International Parallel and Distributed Processing Symposium.
IEEE, 1129-1139.

Dingwen Tao, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cap-
pello. 2019. Optimizing lossy compression rate-distortion from au-
tomatic online selection between SZ and ZFP. IEEE Transactions on
Parallel and Distributed Systems 30, 8 (2019), 1857-1871.

The HDF Group. [n.d.]. Hierarchical data format version 5. http:
//www.hdfgroup.org/HDF5

Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman
Fulp, Robert Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen
Tao, et al. 2020. cuSZ: An Efficient GPU-Based Error-Bounded Lossy
Compression Framework for Scientific Data. In Proceedings of the
ACM International Conference on Parallel Architectures and Compilation
Techniques. 3-15.

Shu-Mei Tseng, Bogdan Nicolae, Franck Cappello, and Aparna Chan-
dramowlishwaran. 2021. Demystifying asynchronous I/O Interference
in HPC applications. The International Journal of High Performance
Computing Applications 35, 4 (2021), 391-412.

Gregory K Wallace. 1992. The JPEG still picture compression standard.
IEEE Transactions on Consumer Electronics 38, 1 (1992), xviii—xxxiv.
Lipeng Wan, Matthew Wolf, Feiyi Wang, Jong Youl Choi, George
Ostrouchov, and Scott Klasky. 2017. Analysis and modeling of the
end-to-end i/o performance on olcf’s titan supercomputer. In 2017
IEEE 19th International Conference on High Performance Computing
and Communications; IEEE 15th International Conference on Smart
City; IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 1-9.

Lipeng Wan, Matthew Wolf, Feiyi Wang, Jong Youl Choi, George
Ostrouchov, and Scott Klasky. 2017. Comprehensive measurement
and analysis of the user-perceived I/O performance in a production
leadership-class storage system. In 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS). IEEE, 1022-1031.
Daoce Wang, Jesus Pulido, Pascal Grosset, Jiannan Tian, Sian Jin,
Houjun Tang, Jean Sexton, Sheng Di, Zarija Luki¢, Kai Zhao, et al.
2023. AMRIC: A Novel In Situ Lossy Compression Framework for
Efficient I/O in Adaptive Mesh Refinement Applications. arXiv preprint
arXiv:2307.09609 (2023).

https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp
https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp
https://doi.org/10.1016/S0167-6377(96)00041-7
https://doi.org/10.1016/S0167-6377(96)00041-7
https://doi.org/10.1109/TBDATA.2022.3201176
https://doi.org/10.1109/TBDATA.2022.3201176
https://www.olcf.ornl.gov/2022/11/17/plasma-simulation-code-wins-2022-acm-gordon-bell-prize/
https://www.olcf.ornl.gov/2022/11/17/plasma-simulation-code-wins-2022-acm-gordon-bell-prize/
https://doi.org/10.1109/TPDS.2021.3090322
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5

EuroSys ’24, April 22-25, 2024, Athens, Greece

[60] Chengming Zhang, Sian Jin, Tong Geng, Jiannan Tian, Ang Li, and
Dingwen Tao. 2022. CEAZ: accelerating parallel I/O via hardware-
algorithm co-designed adaptive lossy compression. In Proceedings of
the 36th ACM International Conference on Supercomputing. 1-13.
Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes
Blaschke, Cy Chan, Marcus Day, Brian Friesen, Kevin Gott, Daniel
Graves, et al. 2019. AMReX: a framework for block-structured adaptive
mesh refinement. The Journal of Open Source Software 4, 37 (2019),
1370.

Huihuo Zheng, Venkatram Vishwanath, Quincey Koziol, Houjun Tang,
John Ravi, John Mainzer, and Suren Byna. 2022. HDF5 Cache VOL:
Efficient and Scalable Parallel I/O through Caching Data on Node-local
Storage. In 2022 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing (CCGrid). IEEE, 61-70.

Q Zhou, C Chu, NS Kumar, P Kousha, SM Ghazimirsaeed, H Subramoni,
and DK Panda. 2021. Designing High-Performance MPI Libraries
with On-the-fly Compression for Modern GPU Clusters. In 2021 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 444-453.

[61

—

[62

—

(63

[t

A Integer Linear Program

We provide the ILP discussed in Section 3.2. We need to
introduce some new variables for this ILP:

e The binary variable ﬁrstlg.() is equal to 1 if and only
if task X, ; precedes task X, ; (for X being either R or

B). We always have ﬁrst(X) =1- ﬁrst(X) Hence, to
decrease the number of Varlables we Wlll only consider
the variables ﬁrst() when i < J-

e The binary variable 5() is true if and only if task
X is executed between the (h — 1)-th and the h-th
unavailabiliy interval (for X being either R or B). That
is, if we consider compression tasks, between the times
beg, + by p-1 and beg, + anp, for 1 < h < 1+k, with
the convention that b, o = 0 and a, k41 = +oo.

e Zisavery large value, larger than the makespan of the
optimal solution. One can choose for Z the makespan
of a naive schedule (schedule the tasks as soon as pos-
sible in the order 1, ..., m.).

The ILP to find an optimal solution to the scheduling problem
is presented in Figure 12 (where for each equation, we have
1<i<j<mand X € {R B}). Here is a walkthrough:

e Equation (1): the iteration completion time is greater
than the maximum of the completion time of the I/O
tasks.

e Equation (2): an I/O task cannot start before the com-
pletion of the corresponding compression task.

e Equations (3) and (4): the completion time of a task is
equal to its start time plus its execution time.

e Equation (5): if task X, ; precedes task X, j in the sched-
ule, then task X,,; must be completed before task X, ;
can start. If X, ; precedes X, j then ﬁrstg) is equal to
1 and Equation (5) is equal t0 tgqr(Xn ;) > tend(Xni)-
If, on the contrary, X,, ; precedes X, ; then ﬁrstlg.() is

996

can start. If X, ; precedes X, ; then ﬁrstlg.()
0 and Equation (6) is equal to tsgr (x,,i) =
If, on the contrary, X,

Minimize T,2**"! subject to
T > tend(Bni)
tend(Rn,i) < tstart(Bn,i)
tend(Rn,i) = zLstart(Rn,i) +Cni
tend(Bn,i) = tstart(Bni) + C;”
X
tstart(Xn,j) tend(an) - (1 —ﬁrst())Z
X
tstart(an) 2 tend(an) ﬁrst()Z

1+k
D80 (beg, +bns) < tuan (Rns)
h=1
1+o

Z 5£5) (beg, + by ;) < tsart(Bni)

k+1
tend(Rai) <) 81 (beg,, + an)
h=1
o+1
tena(Bni) <) 815 (beg,, +a,;
h=1
1+k ®
R
Zal_’h =1
h=1
1+o0)
(B) _
Z‘Si,h =1
h=1

Jinet al.

(1)
@)
®)
4
®)
(6)

™)

®)

©

(10)

(11)

(12)

Figure 12. Integer Linear Program optimally solving the scheduling prob-

equal to 0 and Equation (5) is equal to tyqn (X ;) >
tend(Xn,i) — Z and Equation (5) is not constraining.
Equation (6): if task X, ; precedes task X, ; in the sched-
ule, then task X, ; must be completed before task X, ;
is equal to
tend (xn])
ni precedes X, ; then ﬁrst
equal to 1 and Equation (6) is equal to tsmrt(Xn,l) >
tend(Xn,j) — Z and Equation (6) is not constraining.
Equations (7) and (8): if binary variable 5;}? (resp. 51.(’12))
is equal to 1, then task R,,; (resp. By, ;) can start at the
earliest at time end, + b, ;_1 (resp. end, + b;u.fl), the
end of the (i — 1)-th unavailability interval.
Equations (9) and (10): if binary variable 51.(’12) (resp.
5£IZ)) is equal to 1, then task R, ; (resp. B,,;) can com-
plete at the latest at time beg, + a,;—1 (resp. beg, +
an,i-1), the start of the i-th unavailability interval.
Equations (11) and (12): all tasks must be executed at
some point.

Concealing Compression-accelerated 1/0 for HPC Applications through In Situ Task Scheduling

B Artifact Appendix
B.1 Artifact DOI
10.5281/zenodo.8394043

B.2 Abstract

Within this artifact, we offer a comparative analysis, bench-
marking our solution against two alternative approaches: (1)
the previous method employing asynchronous writes with-
out data compression, and (2) the baseline solution uses syn-
chronous data writes without compression. This alignment
with our paper underscores the performance enhancements
our solution delivers.

Furthermore, we conducted our artifact implementation
on Chameleon Cloud, utilizing a Singularity container to
ensure optimal applicability across various computing envi-
ronments. The test node on Chameleon Cloud is equipped
with two Intel Xeon E5-2660 CPUs and 128 GB of memory,
specifically configured with gpu.model=P100. We strongly
recommend to use Chameleon Cloud platform for assess-
ments with consistency and reproducibility.

B.3 Description & Requirements

B.3.1 How to Access. https://github.com/jinsian/EuroSys-
AsyncSchedule4IO.

B.3.2 Description of Experiment Workflow. The en-
tire workflow takes approximately 15 minutes to execute,
including downloading container image and preparing envi-
ronment (4 mins), running WarpX simulation (5 mins), run-
ning Nyx simulation (5 mins), and evaluating performance
(1 min).

B.3.3 Minimum System Requirements.

e OS: Ubuntu (20.04 is recommended)

e GPU: Nvidia GPUs with CUDA >= 12.2
e Memory: >= 16 GB RAM

e Processor: >= 16 cores

e Storage: >= 32 GBs

B.4 Set-up

o Step 1: Install Singularity
Please refer to:
https://singularity-tutorial.github.io/01-installation/.
o Step 2: Download, Build, and run the image file (need
root privilege) with singularity
You can download, build, and run the image file that en-
compasses all the necessary components.
sudo pip3 install gdown
gdown https://drive.google.com/uc?id=100AumoDJIgnZK\
cLXv-ZH7b51GhKzP4_6A
sudo singularity build --sandbox artiAsync \
AsyncSchedule.sif
sudo singularity shell --writable artiAsync

Now, you are running inside of the container.

997

EuroSys *24, April 22-25, 2024, Athens, Greece

B.5 Evaluation Workflow
o Step 3: Set up environmental variables

export OMPI_DIR=/opt/ompi

export OMPI_VERSION=4.1.1

export PATH=$OMPI_DIR/bin:$PATH

export LD_LIBRARY_PATH=$OMPI_DIR/1lib:$LD_LIBRARY_PATH
export MANPATH=$OMPI_DIR/share/man: $MANPATH
export C_INCLUDE_PATH=/opt/ompi/include\

: $C_INCLUDE_PATH

export CPLUS_INCLUDE_PATH=/opt/ompi/include\
: $CPLUS_INCLUDE_PATH

export OMPI_ALLOW_RUN_AS_ROOT=1

export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1

o Step 4: Run Nyx simulation with (1) baseline, (2) pre-
vious, and (3) ours

cd /home/EuroSys-AsyncSchedule/
bash ./runnyx.sh

o Step 5: Run WarpX simulation with (1) baseline, (2)
previous, and (3) ours

cd /home/EuroSys-AsyncSchedule/
bash ./runwarpx.sh

o Step 6: (Optional): We retaine log files for all runs,
and now you can check them out

head -n 200 ./Nyx/Exec/LyA/testl.txt
head -n 100 ./WarpX/testl.txt

The expected results for Nyx’s log are:

Nyx::est_time_step at level 0: estdt = 1.365270159e-07
Integrating a from time 1.345051497e-07 by dt = 1.36527
0ld / new A time 1.345051497e-07 2.710321656e-07
0ld / new A 0.00631247703 0.0063755786
0ld / new z 157.416418 155.8485094
Re-integrating a from time 1.345051497e-07 by dt = 1.3
0ld / new A time 1.345051497e-07 2.710321656e-07
0ld / new A 0.00631247703 0.0063755786
0ld / new z 157.416418 155.8485094
[Level @ step 2] ADVANCE at time 1.345051497e-07 with
Gravity ... multilevel solve for old phi at base level
ParticleContainer: :AssignCellDensitySingleLevel) time:
. subtracting average density 3.760710576e+1@ from
. subtracting -2.861022949e-06 to ensure solvabil

MLMG: Initial rhs = 103869.8512
MLMG: Initial residual (resid@) = 103869.8512
MLMG: Final Iter. 10 resid, resid/bnorm = 2.480104285
MLMG: Timers: Solve = 1.333416157 Iter = 1.276759186
moveKickDrift ... updating particle positions and vel
Gravity ... single level solve for new phi at level @

ParticleContainer: :AssignCellDensitySingleLevel) time:
. solve for phi at level 0
. subtracting average density from RHS in solve ...
. subtracting 3.531575203e-06 to ensure solvability

MLMG: Initial rhs = 101952.6971
MLMG: Initial residual (resid@) = 6501.955658
MLMG: Final Iter. 7 resid, resid/bnorm = 2.565720933
MLMG: Timers: Solve = 0.940721187 Iter = 0.901259195

The expected results for WarpX’s log are:

https://github.com/jinsian/EuroSys-AsyncSchedule4IO
https://github.com/jinsian/EuroSys-AsyncSchedule4IO
https://singularity-tutorial.github.io/01-installation/

EuroSys ’24, April 22-25, 2024, Athens, Greece

STEP 3 starts ...

--- INFO : Writing plotfile diags/plt000003

STEP 3 ends. TIME = 3.25787071e-16 DT = 1.085956903e-16
Evolve time = 10.47966713 s; This step = 3.457123984 s;

STEP 4 starts ...

o Step 7: Evaluate Nyx’s perormance between (1) base-
line, (2) previous, and (3) ours

cd $TEST_HOME/Nyx/Exec/LyA

python3 ./readresults.py testl.txt test2.txt \
test3.txt test4.txt

e Step 8: Evaluate WarpX’s perormance between (1)
baseline, (2) previous, and (3) ours

cd $TEST_HOME/WarpX/

python3 ./readresults.py testl.txt test2.txt \
test3.txt test4.txt

The expected results for Nyx’s performance compari-
son are:

Sample from 10 iterations.
Baseline
Baseline: no compression, no asynchronous write.

Nyx simulation with Baseline solution time: 47.08 s
Baseline overhead compared to computation only: 37.2 %
Previous
Baseline: no compression, no asynchronous write.

Nyx simulation with Previous solution time: 47.04 s
Previous overhead compared to computation only: 37.1 %
Ours
Baseline: no compression, no asynchronous write.
Nyx simulation with Our solution time: 37.12 s
Ours overhead compared to computation only: 8.2 %
Improvement
Our improvement compared to previous: 4.53 times
End

The expected results for WarpX’s performance com-
parison are:

Sample from 10 iterations.
Baseline
Baseline: no compression, no asynchronous write.

WarpX simulation with Baseline solution time: 38.74 s
Baseline overhead compared to computation only: 121.9 %
Previous
Baseline: no compression, no asynchronous write.

WarpX simulation with Previous solution time: 38.52 s
Previous overhead compared to computation only: 120.6 %
Ours
Baseline: no compression, no asynchronous write.
WarpX simulation with Our solution time: 23.87 s
Ours overhead compared to computation only: 36.7 %
Improvement
Our improvement compared to previous: 3.29 times
End

Please note that the performance may vary on different
machines and environments. Nevertheless, you should be
able to discern the performance improvements our solution
offers compared to previous approaches. These results are

998

Jinet al.

consistent with our paper’s findings. Please be aware that the
runtime may vary, particularly when resources are limited.
We highly recommend running steps 4, 5, 7, and 8 multiple
times to observe consistent results.

This result is primarily correlated to the main claim of
our paper, shown in Figure 9. When comparing the relative
overhead with both the original and previous solutions, our
approach effectively enhances the end-to-end performance
of the simulation.

Additionally: (1) You can adjust the number of simula-
tion iterations by modifying "max_step = 10" in “EuroSys-
AsyncSchedule4lO/Nyx/Exec/LyA/inputs” for Nyx, or "max
_step = 10" in “EuroSys-AsyncSchedule4I0/WarpX/inputs”,
and re-run steps 4, 5, 7, and 8. You should observe consis-
tent performance improvements, regardless of the number
of simulation iterations, as shown in Figure 10. (2) you can
modify the number of processes by changing all parameters
of “-np 16” in “EuroSys-AsyncSchedule4IO/runnyx.sh” and
“EuroSys-AsyncSchedule4IO/runwarpx.sh.”, and re-run steps
4,5, 7, and 8. You should observe consistent performance
improvements, regardless of the number of processes, as
shown in Figure 11.

	Abstract
	1 Introduction
	2 Background
	2.1 Parallel I/O Libraries for HPC Applications
	2.2 Error-Bounded Lossy Compression
	2.3 I/O-intensive Scientific Applications

	3 Task Scheduling with Lossy Compression
	3.1 Problem Formulation
	3.2 Problem Analysis
	3.3 Scheduling Algorithms
	3.4 I/O Workload Balancing

	4 Design of Our Proposed Framework
	4.1 Fine-grained Compression
	4.2 Compressed Data Buffer
	4.3 Huffman Coding with Shared Tree
	4.4 Implementation Details

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Evaluation of Task Scheduling Algorithms
	5.3 Evaluation of Proposed Compression Design
	5.4 Overall Performance Improvement

	6 Conclusion and Future Work
	References
	A Integer Linear Program
	B Artifact Appendix
	B.1 Artifact DOI
	B.2 Abstract
	B.3 Description & Requirements
	B.4 Set-up
	B.5 Evaluation Workflow

