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Abstract
Lossy compression and asynchronous I/O are two of the

most effective solutions for reducing storage overhead and

enhancing I/O performance in large-scale high-performance

computing (HPC) applications. However, current approaches

have limitations that prevent them from fully leveraging

lossy compression, and they may also result in task colli-

sions, which restrict the overall performance of HPC appli-

cations. To address these issues, we propose an optimization

approach for the task scheduling problem that encompasses

computation, compression, and I/O. Our algorithm adap-

tively selects the optimal compression and I/O queue to min-

imize the performance degradation of the computation. We

also introduce an intra-node I/O workload balancing mecha-

nism that evenly distributes the workload across different

processes. Additionally, we design a framework that incor-

porates fine-grained compression, a compressed data buffer,

and a shared Huffman tree to fully benefit from our proposed

task scheduling. Experimental results with up to 16 nodes

and 64 GPUs from ORNL Summit, as well as real-world HPC

applications, demonstrate that our solution reduces I/O over-

head by up to 3.8× and 2.6× compared to non-compression

and asynchronous I/O solutions, respectively.

CCS Concepts: • Software and its engineering→ Sched-
uling; • Theory of computation→ Data compression.

Keywords: HPC, parallel I/O, data compression, task sched-

uling, performance.
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1 Introduction
Large-scale scientific simulations on HPC systems play a

crucial role in various scientific and engineering domains.

These simulations often generate massive volumes of data

that requires significant storage resources. For example, a

single Nyx [3] cosmological simulation with a resolution of

4096 × 4096 × 4096 cells generates up to 2.8 TB of data for a

single snapshot; a total of 2.8 PB of disk storage is needed,

assuming the simulation is run 5 times with 200 snapshots

dumped per simulation. Managing such large amounts of

data is a major challenge. It is impractical to save all the gen-

erated raw data to disk due to: (1) the limited storage capacity

even for supercomputers, and (2) the time required to save all

the produced data (about 1 hour) due to the limitation of I/O

bandwidth: at best 1 TB/s (on ORNL Summit) [12, 57, 58, 60].

Lossy compression has been identified as one of the major

data reduction techniques to address this issue. Specifically,

a new generation of error-bounded lossy compression tech-

niques, such as SZ [15, 37, 50], ZFP [40], MGARD [1], and

their GPU versions [13, 34, 54], have been widely used in

the scientific community [12, 15, 22, 28, 37, 40–42, 50, 52].

Compared to lossless compression, which provides up to a

2× compression ratio on scientific data [46], error-bounded

lossy compressors offer a much higher compression ratio

(16× to more than 200× for the applications considered in

this paper) while maintaining controllable loss of accuracy.

Scientific applications typically use parallel I/O libraries

such as the Hierarchical Data Format 5 (HDF5) [53] for read-

ing and storing their data. Specifically, HDF5 is lauded for its

high parallel I/O performance, data portability, and rich APIs

for managing data on various systems. It is widely used at

supercomputing facilities for storing, reading, and querying

981

https://doi.org/10.1145/3627703.3629573
https://doi.org/10.1145/3627703.3629573
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3629573&domain=pdf&date_stamp=2024-04-22


EuroSys ’24, April 22–25, 2024, Athens, Greece Jin et al.

scientific datasets [2, 20]. This is largely due to its specific

design and performance optimizations for popular parallel

file systems such as Lustre [9, 44]. Instead of relying on a gen-

eral database in distributed storage, these datasets employ

a specific data management approach based on the parallel

file system [9, 44]. Moreover, HDF5 offers users dynamically

loaded filters [25], including lossless and lossy compression

[14], which enable the automatic storage and access of data

in compressed formats. Thus, it allows HPC applications to

handle scientific data in these formats. Parallel I/O in HDF5,

combined with lossy compression filters, can significantly

reduce data size, thereby improving the overall I/O perfor-

mance by transmitting less data.

On the other hand, asynchronous I/O from parallel I/O

libraries can help alleviate I/O bottlenecks by overlapping

I/O operations with computations, enhancing the end-to-end

performance of HPC applications. However, the current im-

plementation of asynchronous I/O has certain limitations. It

supports either (1) asynchronous compression and I/O [30],

or (2) asynchronous I/O and computation [62]. In the for-

mer scenario, the data writing and computation are still

executed sequentially, limiting potential performance gains.

In the latter scenario, one would miss the opportunity to

utilize lossy compression to reduce data size and enhance

write performance. Moreover, asynchronous I/O typically

occurs in a background thread to prevent interference with

the main computational thread responsible for running the

simulation. Nevertheless, it can still potentially result in

performance degradation by introducing interference with

other background tasks related to communication within the

simulation, especially without proper scheduling [48, 55].

In this paper, we present a design that enables concur-

rent execution of compression, I/O, and computation. As

scientific applications increasingly adopt GPUs for compu-

tation [2, 7, 19], it is crucial to ensure that the GPUs are

utilized continuously with minimal interruptions. However,

the main and background threads experience periods of idle

time while processing computational tasks. Our goal is to

harness these idle periods to perform data compression and

I/O tasks. To ensure that compression and I/O tasks do not

impact overall execution, we carefully schedule compression

tasks during the idle times of the corresponding computation

thread. It is essential to avoid any delays in existing process-

ing tasks, as this would hinder GPU work and potentially

result in a slowdown of the entire execution. To facilitate this

scheduling, we propose several system designs: we introduce

a framework that integrates fine-grained compression with

parallel I/O libraries for scientific applications. Our frame-

work includes three key components: fine-grained compres-

sion, a compressed data buffer, and a shared tree for Huffman

coding. The fine-grained compression algorithm allows for

independent compression of data blocks, thereby enhancing

task scheduling efficiency. The compressed data buffer en-

ables the overlapping of compression and I/O tasks, while the

shared Huffman tree minimizes the overhead associated with

building the Huffman tree for compressing small data blocks.

To the best of our knowledge, unlike previous works that

have only addressed the overlap between computation and

I/O operations through asynchronous I/O [30, 62], this is the

first attempt to simultaneously conceal both the compression

and I/O operations from computation, thereby significantly

improving the performance of HPC applications. While this

work primarily focuses on HPC systems and applications,

the methodology of overlapping compression, I/O, and com-

putation can be extended to other systems, such as Cloud

computing and datacenter systems. By predicting/assessing

the compression performance and I/O bandwidth on these

platforms, our solution could be relevant to a wider range of

data-intensive, iterative applications.

The main contributions of this paper include:

• We propose to overlap both compression and I/O with

computation, including task scheduling algorithms de-

signed to efficiently integrate compression and I/O into

computation with minimal interference to the system.

• We propose workflows that include three components

aimed at improving end-to-end performance and task

scheduling efficiency: fine-grained compression, a com-

pressed data buffer, and a shared tree for Huffman coding.

• We discuss the implementation of our proposed frame-

work in both simulation and real-world scientific appli-

cations to provide detailed insights.

• Evaluation of our solution on two real-world HPC ap-

plications, utilizing up to 16 nodes and 64 GPUs from

the Summit supercomputer, demonstrates a reduction in

I/O overhead by up to 3.8× over the baseline solution

without asynchronous I/O or compression, and 2.6× over

the previous asynchronous I/O only solution.

The remainder of this paper is organized as follows. In Sec-

tion 2, we introduce the research background. In Section 3,

we formulate the task scheduling problem considering com-

pression, I/O, and computation, and present the solution

algorithms. In Section 4, we present our proposed frame-

work that integrates lossy compression with parallel I/O

libraries. In Section 5, we present our evaluation results. In

Section 6, we conclude the paper and discuss future work.

2 Background
In this section, we introduce background knowledge about

parallel I/O libraries, such as HDF5, error-bounded lossy

compression, and their use in scientific applications.

2.1 Parallel I/O Libraries for HPC Applications
Scientific applications generate and analyzemassive amounts

of data. These applications critically require the ability to

efficiently access and manage this data on HPC systems.

Given the complex storage hierarchy, including node-local

persistent memory, burst buffers, and disk-based storage,
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parallel I/O becomes the key technology that enables effi-

cient data movement between compute nodes and storage.

For instance, HDF5 [53], netCDF [36], and the Adaptable IO

System (ADIOS) [21] are among the most widely used high-

performance I/O libraries for HPC applications. However,

these I/O libraries often struggle to handle extremely large

files (e.g., with aggregate scale of petabytes and beyond) due

to the inevitably limited I/O bandwidth. Consequently, com-

pression techniques are frequently adopted to reduce the

data size [47]. For example, H5Z-SZ [14] is a data filter that

integrates SZ compression into HDF5.

GivenHDF5’s wide acceptance in the scientific community

as a system supporting parallel I/O, we primarily focus our

performance evaluation on HDF5, without loss of generality.

Moreover, to improve performance and productivity, a recent

release of HDF5 [9] implements a Virtual Object Layer (VOL),

which can redirect I/O operations to the VOL connector

and enable asynchronous I/O [49]. This feature allows an

application to overlap I/O with other operations, such as

compression. Therefore, we can leverage this capability to

deeply integrate and overlap predictive lossy compression

with parallel write operations, thereby improving parallel

write performance. Furthermore, we focus on parallel writing

to a large shared file due to three main factors: (1) It is a

common usage of HDF5 because it reduces the workload for

scientists in managing multiple files for storage, post-hoc

analysis, and visualization. (2) It minimizes the performance

overhead of opening/closing multiple files and the storage

overhead of metadata for numerous small files. (3) Partial

processes (e.g., up to 4,096 processes in [10]) of an HPC

application with subfiling still write to a shared file.

2.2 Error-Bounded Lossy Compression
Compression is a widely utilized technique in various sys-

tems and frameworks for reducing data sizes and enhancing

performance [17, 26, 31, 59]. Compared to lossless compres-

sion, lossy compression can compress data with extremely

high compression ratios by losing non-critical information

in the reconstructed data. The two most important metric

types to evaluate the performance of lossy compression are:

(1) compression ratio, i.e., the ratio between original data size

and compressed data size, or bit-rate, i.e., the number of bits

on average for each data point (e.g., 32/64 for single/double-

precision floating-point data) before compression; and (2)

data distortion metrics such as Peak Signal-to-Noise Ratio

(PSNR) and Structural Similarity Index (SSIM) to measure the

reconstructed data quality compared to the original data. In

recent years, a new generation of high-accuracy lossy com-

pressors for scientific data has been proposed and developed

for scientific floating-point data, such as SZ [15, 37, 50] and

ZFP [40]. These lossy compressors provide parameters that

allow users to control the loss of information due to lossy

compression precisely. Unlike traditional lossy compressors

such as JPEG [56] which are designed for images (in integers),

SZ and ZFP are designed to compress floating-point data and

can provide a strict error-controlling scheme based on user’s

requirements. Generally, lossy compressors provide multiple

compression modes, such as the error-bounding mode. The

error-boundingmode requires users to set an error type, such

as point-wise absolute error bound, and a bound value (e.g.,

10
−3
). The compressor ensures that differences between orig-

inal and reconstructed data do not exceed the error bound.

Specifically, SZ is a prediction-based, error-bounded lossy

compressor designed for scientific data. It involves three

main steps: (1) Each data point’s value is predicted based on

its neighboring points, using an adaptive, best-fit prediction

method. (2) The difference between the actual value and the

predicted value is quantized, based on the user-set compres-

sion mode and error bound. (3) Customized Huffman coding

and additional lossless compression are applied to achieve a

high compression ratio.

Prior work has studied the impact of lossy compression on

the quality of reconstructed data and post-hoc analysis, pro-

viding guidelines on how to set compression configurations

for specific applications [16, 28, 29, 37, 38, 51]. For instance,

a comprehensive framework was developed to conduct a

systematic analysis of compression configurations with a

given dataset, providing the best-fit solution that satisfies

post-hoc analysis requirements [22]. Moreover, Jin et al. [27]

proposed a theoretical ratio-quality model to efficiently max-

imize the compression ratio given the quality constraints

of post-hoc analysis. Note that, as in previous work [63] on

improving communication efficiency via lossy compression,

this study assumes that the compression configuration is

set up by users based on their data quality requirements.

Therefore, the aforementioned compression configuration

methods are orthogonal to our solution.

2.3 I/O-intensive Scientific Applications
In this paper, without loss of generality, we primarily focus

on two I/O-intensive scientific applications—Nyx [2] and

WarpX [19], which have been used in numerous previous

I/O studies [4–6, 11, 24, 33]. These scientific simulations gen-

erally follow an iterative process, with variable durations.

Notably, neighboring iterations frequently exhibit high simi-

larity in their durations, enabling us to predict the resource

utilization pattern of the current simulation iteration based

on past iterations. We introduce them in detail as follows.

Nyx is an adaptive mesh, hydrodynamics code designed

to model astrophysical reacting flows on HPC systems [2, 3].

This code models dark matter as discrete particles moving

under the influence of gravity. The fluid in gas-dynamics is

modeled using a finite-volume methodology on an adaptive

set of 3-D Eulerian grids/meshes. The mesh structure is used

to evolve both the fluid quantities and the particles via a

particle-mesh method. For parallelization, Nyx uses MPI for

the long-range force calculation and architecture-specific

programming language for the short-range force algorithms,
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such as OpenMP and CUDA. Nyx uses multiple 3-D arrays

to represent field information in grid structure. According to

prior studies [2, 23, 45], it can run up to tens of thousands of

GPUs on leadership supercomputers such as Summit [18].

WarpX is a highly-parallel and highly-optimized code that

utilizes AMReX [61], runs on GPUs and multi-core CPUs,

and features load-balancing capabilities. WarpX can scale up

to the world’s largest supercomputer and was the recipient

of the 2022 ACM Gordon Bell Prize [43].

3 Task Scheduling with Lossy Compression
Unlike previous works that can only overlap two of the three

components [30, 62] among compression, I/O, and compu-

tation, our solution leverages task scheduling techniques

and runtime system designs to efficiently conceal both the

compression and I/O operations from computation in HPC

applications. In this section, we present a comprehensive ap-

proach to task scheduling that considers all compression, I/O,

and computation. First, we define the problem and highlight

the challenges encountered when optimizing task scheduling

under the constraints that arise with data compression. Next,

we recall the known complexity results. Then we introduce

our proposed scheduling algorithms to determine the most

efficient execution sequence for compression and I/O tasks,

while maintaining high computational performance. Lastly,

we discuss a technique to balance the I/O workload between

processes, thereby enhancing overall system efficiency.

3.1 Problem Formulation
Data compression is one of the most effective approaches

for reducing data size and mitigating I/O bottlenecks in HPC

applications. Likewise, the use of asynchronous I/O from

parallel I/O libraries can significantly enhance end-to-end

performance by overlapping I/O operations with computa-

tions. Regrettably, these two techniques are not yet well-

integrated, meaning we can only benefit from one method

at a time. Although compression can be considered part of

the computation, and its execution can be overlapped with

I/O, no previous studies have proposed a comprehensive task

scheduling approach that incorporates compression, I/O, and

computation together. Therefore, before designing our task

scheduling algorithm and proposing our framework design,

we first formulate the problem that asynchronously executes

data compression and I/O with respect to computation.

In this work, we target parallel scientific applications on

HPC systems. Inter-process optimizations will be addressed

in Section 3.4. Moreover, we focus on iterative HPC applica-

tions. Typically, either an initial solution is refined iteratively

or a dynamic simulation is performed where each iteration

computes the state of the system at a different date.

Let us consider iteration 𝑛 in such a process. Let 𝐼𝑛 =

[beg𝑛, end𝑛] denote the time interval during which this iter-

ation is executed. The length of this iteration is then 𝑇𝑛 =

end𝑛 − beg𝑛 . During each iteration, the HPC application is

executing a series of tasks on both CPU and GPU. Usually,

each node operates multiple processes, with each process

assigned to a dedicated GPU along with a subset of CPU

cores. (In well-optimized HPC applications, these processes

can utilize the majority of CPU cores). Within each process,

there are multiple threads: one associated with the GPU (for

computation) and others with the CPU cores (for computa-

tion/compression/IO). Parallel I/O operations are collabora-

tively executed by the background thread in each process. It

is also common for the application to perform a number of

I/O operations before or after some computation. We ignore

the GPU and concentrate on the computing, compression,

and I/O tasks performed on the main thread, and on the

background thread by the CPU. We assume that for each

iteration, there are 𝑘 computing tasks,𝑌𝑛,1, . . . , 𝑌𝑛,𝑘 , executed

by the main thread. Interference with these computing tasks

would directly delay the execution of the application. The

𝑖-th task, 𝑌𝑛,𝑖 , begins its execution at time 𝑏𝑒𝑔𝑛 + 𝑎𝑛,𝑖 and
ends at time 𝑏𝑒𝑔𝑛 + 𝑏𝑛,𝑖 , for 1 ≤ 𝑖 ≤ 𝑘 .

Periodically, either at each iteration, or every 𝑙 iterations

for some fixed value 𝑙 , the application generates a large

amount of data that needs to be written to the storage sys-

tem. To reduce I/O overhead and storage footprint, we apply

lossy compression to these data. A process is responsible

for managing a certain number of data fields, and each of

these fields undergoes our proposed fine-grained compres-

sion. This decomposition divides the compression into a total

of𝑚 independent compression tasks for the given process, as

detailed in Section 4. All iterations that execute compression

tasks comprise𝑚 compression tasks that need to be executed

on the main-thread, namely tasks 𝑅𝑛,1, . . . , 𝑅𝑛,𝑚 for iteration

𝑛. Compression task 𝑅𝑛,𝑗 has a duration 𝑐𝑛,𝑗 , for 1 ≤ 𝑗 ≤ 𝑚.

Task scheduling must ensure that the𝑚 compression tasks

are inserted within the time period [beg𝑛, end𝑛] without in-
terfering with any of the computing tasks 𝑌𝑛,1, . . . , 𝑌𝑛,𝑘 . In

particular, this means that the execution of each task 𝑌𝑛,𝑖
should start and end at the same times whether we per-

form lossy compression (execution of tasks 𝑅𝑛,1, . . . , 𝑅𝑛,𝑚) or

not. Otherwise, the original computing tasks would be in-

terrupted by compression, which would delay the execution

of the application. Moreover, any compression task 𝑅𝑛,𝑗 that

was started before a task𝑌𝑖 must be completed before𝑌𝑖 starts

(in other words, a compression task cannot be preempted).

The scheduling of the compression tasks is therefore quite

constrained. However, we have absolute freedom on the or-

der in which the 𝑚 compression tasks are executed. The

scheduler will therefore have to choose an execution order

of compression tasks that optimizes the overall performance.

Each compression task 𝑅𝑛,𝑗 is followed by a corresponding

I/O task 𝐵𝑛,𝑗 of length 𝑐
′
𝑛,𝑗 that writes the compressed data to

the storage system. We call a job the pair formed by a com-

pression task 𝑅𝑛.𝑗 and the corresponding I/O task 𝐵𝑛,𝑗 . We
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beg𝑛 = 0 end𝑛 = 121 2 3 4 5 6 7 8 9 10 11

𝑌1 𝑌2

𝐺1

Main

I/O

(a) The set of unavailability intervals. On the main-thread there are two

unavailability intervals, from 𝑎1 = 3 to 𝑏1 = 4 and from 𝑎2 = 6 to 𝑏2 = 7;

and on the background thread one from 𝑎′
1
= 4 to 𝑏′

1
= 5.

𝑅1

𝐵1

𝑅2

𝐵2

𝑅3

𝐵3

𝑅4

𝐵4

(b) The 4 jobs : 𝑐1 = 1, 𝑐′
1
= 2, 𝑐2 = 2, 𝑐′

2
= 1, 𝑐3 = 2, 𝑐′

3
= 2, 𝑐4 = 3, and

𝑐′
4
= 2.

beg𝑛 = 0 end𝑛 = 121 2 3 4 5 6 7 8 9 10 11

𝑌1 𝑌2

𝐺1

𝑅1

𝐵1

𝑅3

𝐵3

𝑅4

𝐵4

𝑅2

𝐵2

Main

I/O

(c) Extended Johnson’s algorithm. Jobs 1 and 3 belong to M1 (𝑐𝑖 < 𝑐′
𝑖
)

while jobs 2 and 4 belong to M2. The algorithm schedules the jobs in the

order 1, 3, 4, 2.

beg𝑛 = 0 end𝑛 = 121 2 3 4 5 6 7 8 9 10 11

𝑌1 𝑌2

𝐺1

𝑅1

𝐵1

𝑅3

𝐵3

𝑅4

𝐵4

𝑅2

𝐵2

Main

I/O

(d) Extended Johnson’s algorithm with backfilling. Job 2 is scheduled

before job 4 (both for the compression task and the actual I/O) because

this is possible without modifying the start times of tasks 𝑅4 and 𝐵4.

Figure 1. An example of the task scheduling problem: (a) the set of unavailability intervals; (b) the tasks to schedule; (c) the schedule built by the ExtJohnson

algorithm on this instance; (d) the solution built by ExtJohnson+BF. Main stands for main-thread.

assume that the I/O operations and communications of the

application all occur on the background thread. For iteration

𝑛, these𝑚 I/O tasks must then be scheduled within the time

interval [beg𝑛, end𝑛] on a background thread. By construc-

tion, these tasks are separated from, and cannot interfere

with neither the computing tasks (the 𝑌𝑛,𝑖 ’s) nor the com-

pression tasks (the 𝑅𝑛,𝑗 ’s). However, there are 𝑜 core tasks

𝐺𝑛,1, . . . ,𝐺𝑛,𝑜 associated with computing which are executed

on the background thread. Note that these tasks can be either

I/O operations or communications. Like the computing tasks

𝑌𝑛,1, . . . , 𝑌𝑛,𝑘 , these tasks have known execution intervals

that must be respected when scheduling the I/O tasks. Any

interference or re-allocationof these tasks would directly

cause delays in the simulation. Namely, task 𝐺𝑛,𝑖 must be

executed during the time interval [beg𝑛 + 𝑎′𝑛,𝑖 , end𝑛 + 𝑏′𝑛,𝑖 ].
Similarly to the compression tasks 𝑅𝑛,1, . . . , 𝑅𝑛,𝑚 , the𝑚 I/O

tasks 𝐵𝑛,1, . . . , 𝐵𝑛,𝑚 must be scheduled within the interval

[beg𝑛, end𝑛] without interfering with any core task 𝐺𝑛,𝑖 .

Specifically, the execution of an I/O task cannot be preempted

and should not overlap with any interval [beg𝑛 +𝑎′𝑛,𝑗 , beg𝑛 +
𝑏′𝑛,𝑗 ], for 1 ≤ 𝑗 ≤ 𝑜 . However, I/O tasks have an additional

constraint. An I/O task 𝐵𝑛,𝑖 cannot start before the corre-

sponding compression task 𝑅𝑛,𝑖 has finished. This is because

the I/O operation on compressed data must occur after the

data has been compressed. The execution order of the I/O

tasks 𝐵𝑛,1, . . . , 𝐵𝑛,𝑚 can also be freely adjusted to optimize

overall performance, as long as all constraints are satisfied.

In essence, we can summarize all these constraints as fol-

lows (refer to Figure 1 for an example): On the compute

thread, the compute (yellow) tasks 𝑌𝑛,𝑗 are immovable obsta-

cles that the compression (red) tasks must avoid. Similarly,

on the background thread, the core (green) tasks 𝐺𝑛,𝑗 are

immovable obstacles that the I/O (blue) tasks must avoid.

The two threads are interdependent, as an I/O (blue) task

cannot start until the corresponding compression (red) task

completes. This is the only constraint on the order of com-

pression and I/O tasks, which can otherwise be scheduled in

any order compatible with these dependence constraints.

The goal of the task scheduling algorithm is to find an

ordering for compression tasks 𝑅𝑛,1, . . . , 𝑅𝑛,𝑚 and for I/O

tasks 𝐵𝑛,1, . . . , 𝐵𝑛,𝑚 to minimize the overall execution time

of the current iteration. This execution time is defined as:

𝑇 overall
𝑛 = min


𝑇𝑛
max1≤𝑖≤𝑚 𝑡end (𝑅𝑛,𝑖 ) − beg𝑛
max1≤𝑖≤𝑚 𝑡end (𝐵𝑛,𝑖 ) − beg𝑛

where 𝑡end (𝑋 ) denotes the completion time of task 𝑋 . Since

an I/O task must always occur after the corresponding com-

pression task, 𝑡end (𝐵𝑛,𝑖 ) is always larger than 𝑡end (𝑅𝑛,𝑖 ). This
simplifies 𝑇 overall

𝑛 to min

{
𝑇𝑛,max1≤𝑖≤𝑚 𝑡end (𝐵𝑛,𝑖 ) − beg𝑛

}
.

The scheduling problem is now formally defined. The op-

timization problem depends on many task lengths and dates,

namely the values of all variables 𝑎𝑛,𝑖 , 𝑏𝑛,𝑖 , 𝑐𝑛,𝑖 , 𝑎
′
𝑛,𝑖 , 𝑏

′
𝑛,𝑖 , 𝑐

′
𝑛,𝑖 ’s.

The objective is to minimize the iteration length 𝑇 overall
𝑛 .

Based on our observations, we assume that the execution

pattern is highly similar between consecutive iterations for

iterative scientific applications. Therefore, for scheduling

the 𝑛-th iteration we will use the recorded characteristics

of the (𝑛 − 1)-th iteration. Namely, we will assume that, for

1 ≤ 𝑖 ≤ 𝑘 , 𝑎𝑛,𝑖 = 𝑎𝑛−1,𝑖 and 𝑏𝑛,𝑖 = 𝑏𝑛−1,𝑖 , that for 1 ≤ 𝑖 ≤ 𝑜 ,
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𝑎′𝑛,𝑖 = 𝑎
′
𝑛−1,𝑖 and 𝑏

′
𝑛,𝑖 = 𝑏

′
𝑛−1,𝑖 , and that 𝑇𝑛 = 𝑇𝑛−1. The dura-

tion 𝑐𝑛,𝑗 of compression task 𝑅𝑛,𝑗 can be accurately predicted

based on the data to be compressed, for 1 ≤ 𝑗 ≤ 𝑚. Hence,

this information is available before scheduling tasks and

there is no need to reuse past data for the 𝑐𝑛,𝑗 ’s.

It is important to note that slight variations in the required

task lengths and dates between neighboring iterations may

result in some performance degradation, as the proposed

task scheduling approach takes imperfect data as its input.

However, as we will demonstrate in the evaluation section,

these variations do not significantly impact the effectiveness

of the proposed solution.

3.2 Problem Analysis
Following scheduling theory nomenclature, the problem of

scheduling the compression and I/O tasks is a flow-shop

problem with two machines. The first machine corresponds

to the computation thread and the second machine corre-

spond to the background thread. Each job of the flow-shop

formulation comprises first a compression task that must

be scheduled on the first machine and then an I/O task that

must be executed on the second machine and can start only

after the completion of the first task. More precisely, our

problem is exactly a flow-shop problem with two machines

with deterministic unavailability intervals on both machines

and with non resumable jobs. The unavailability intervals are
said to be deterministic because their existence and dates

are known in advance. In practice, however, the predictions

related to the dates and durations of the unavailability inter-

vals, and on the durations of compression and I/O tasks, will

be unperfect. Therefore, the proposed solutions should toler-

ate some variability with minimal performance degradation.

A job is said to be resumable [35] if its execution can continue

after an unavailability interval whenever it was started but

not completed before the start of this unavailability interval.

The flow-shop problem with two machines, in the absence

of unavailability intervals, is optimally solved by Johnson’s

greedy algorithm [32]. Unavailability intervals change the

complexity. The problem with non resumable jobs becomes

NP-complete as soon as there is at least one unavailability

interval on one machine [35]; it becomes non-approximable

by any constant factor (unless P=NP) as soon as there are at

least two unavailability intervals on one machine [8].

Lastly, we note that although the optimization problem is

complex, it can be formulated as an Integer Linear Program

(ILP). We provide the ILP formulation in the Appendix for

completeness. However, it is important to mention that the

ILP was unable to find a solution for any of the experiments

we conducted due to the large number of variables involved

in the ILP formulation.

3.3 Scheduling Algorithms
We present in this section six different scheduling algorithms

for the problem. We start by proposing two extensions of

Johnson’s algorithm. Then we propose two algorithms based

on list-scheduling. Finally, we propose two greedy algo-

rithms which are more computationally demanding, since

they explore a wider spectrum of solutions. Each algorithm

produces the ordered list used to schedule the tasks, and

the rule of the game (defined below) : (i) without backfilling;

(ii) with backfilling; or (iii) with exhaustive insertion. The

complete schedule, with the starting time of each task, is

fully determined by the ordered list and the rule of the game,

as detailed below.

3.3.1 Extensions of Johnson’s Algorithm. As recalled
in Section 3.2, Johnson’s algorithm builds an optimal so-

lution in the absence of unavailability intervals. Johnson’s

algorithm works as follows. The jobs are partitioned in two

setsM1 andM2 where jobs inM1 are exactly the jobs which

have an execution time on the first machine smaller than

or equal to their execution time on the second machine. In

our context, this means that M1 contains exactly the jobs

whose compression task is not longer than its I/O task. Now

jobs inM1 are sorted by non-decreasing execution time on

the first machine (i.e., by non-decreasing duration of their

compression task). While jobs in M2 are sorted by non-

increasing execution time on the second machine (i.e., by

non-increasing duration of their I/O task). Then Johnson’s

algorithm executes first all jobs inM1 followed by all jobs

inM2, starting each task as soon as possible.

We extend Johnson’s algorithm to take unavailability in-

tervals into account. The first version is straightforward: the

ExtJohnson algorithm executes tasks in the same order as

Johnson’s algorithm would have in the absence of unavail-

ability intervals, but executes each task as soon as possible

after already scheduled tasks and while respecting the un-

availability intervals. ExtJohnson is illustrated on Figure 1c

whereM1 = {(𝑅1, 𝐵1), (𝑅3, 𝐵3)}.
On Figure 1c, there is an unused interval on the first ma-

chine between times 4 and 6, during which task 𝑅2 could

have been executed. Backfilling [39] is a scheduling tech-

nique which enables to take advantage of such intervals of

idleness. Under backfilling, a new task, rather than being

mandatorily scheduled after the completion of all already

scheduled tasks, can be scheduled in an idleness interval

if doing so does not delay the start of any already sched-

uled task. If several idleness intervals can accomodate the

new task, the task is scheduled in the earliest one. ExtJohn-

son+BF is a variant of ExtJohnson with backfilling. Ex-

tJohnson+BF considers tasks for scheduling decisions in

the same order as ExtJohnson but starts each task as soon

as possible, provided that this never postpones the start of an

already considered task. The behavior of ExtJohnson+BF is

illustrated on Figure 1d. Note that, because tasks inM1 are

ordered by non-decreasing compression times, the execution

dates of compression tasks ofM1 are always the same under

ExtJohnson and ExtJohnson+BF.
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3.3.2 List Scheduling Algorithms. In parallel schedul-

ing, a list scheduling algorithm considers tasks one by one

following a predefined order, and it schedules each task as

soon as possible after the already scheduled tasks. Hence,

ExtJohnson is a list scheduling algorithm following John-

son’s order without unavailabity intervals. Our third algo-

rithm GenerationListSchedule uses list-scheduling on the

tasks, according to their original order when we generate

them by fine-grained compression. The fourth algorithm

GenerationListSchedule+BF is the counterpart of Gener-

ationListSchedule when adding a backfilling mechanism:

when scheduling a task, GenerationListSchedule+BF al-

lows it to start earlier than some already scheduled task, as

long as it does not cause any delay to scheduled tasks.

3.3.3 More Costly Greedy Algorithms. The fifth and

sixth algorithms explore more execution orders. The idea is

to try and insert the new task under consideration at any po-

sition in the task list that captures the current solution. Both

algorithms start with the original order of the tasks when

these are generated by fine-grained compression. OneList-

Greedy always keep the same order for compression and I/O

tasks, while TwoListsGreedy enables different orderings.

For OneListGreedy, assume that we have a partial ordered

list of 𝑟 compression tasks . For the 𝑟 + 1-th task, we try and

insert it at any possible position (first, second, . . . , last) in

the list, which means 𝑟 + 1 attempts. Each attempt consists

of greedily scheduling the compression tasks and the I/O

tasks as soon as possible, while ensuring that no I/O task can

start before the completion of the corresponding compres-

sion task. OneListGreedy will retain the attempt that leads

to the smallest total execution time and updates the partial

list accordingly. This insertion technique is more aggressive

than backfilling, because it recomputes and possibly delays

the starting times of previously scheduled tasks.

OneListGreedy restricts to constructing and updating the

same ordered list for both compression and I/O tasks. On the

contrary, TwoListsGreedy allows for different orderings

of the compression tasks and the I/O tasks. Therefore it

maintains two partial lists, one for each task type. When

inserting the 𝑟 + 1-th tasks, we now have (𝑟 + 1)2 attempts

and keep the best of them to update both lists. Note that

each attempt can be executed in time linear in the number of

tasks and unavailability intervals. Altogether, the complexity

of OneListGreedy is 𝑂 (𝐾2) and that of TwoListsGreedy

is 𝑂 (𝐾3), where 𝐾 = max(𝑚,𝑘, 𝑜) is the maximum number

of parameters, either tasks (𝑚 compression and𝑚 I/O tasks)

or unavailability intervals (𝑘 on the compression thread and

𝑜 on the background thread).

3.4 I/O Workload Balancing
The proposed scheduling algorithms lead to significant re-

ductions in the overall execution time of simulations. How-

ever, it is important to note that the size of compressed data

can vary significantly across processes, depending on the

compressibility of the data assigned to each process. Some

processes may have partitions with less information that

can be effectively compressed, while others may have more

challenging partitions that are less compressible. While com-

pression time is not highly dependent on the compression

ratio, I/O time is greatly influenced by the size of the com-

pressed data. Consequently, some processes may experience

longer I/O times compared to others, potentially becoming

a bottleneck for the entire system. To address this issue, we

propose an intra-node load balancing mechanism to miti-

gate the imbalance of the I/O workload for compressed data.

We do not extend this mechanism to inter-node scenarios

due to the significantly higher inter-node communication

overhead.

For most HPC applications, we notice that the compres-

sion ratio of the data being dumped remains relatively sta-

ble from one iteration to another for a given partition. For

instance, in a Nyx simulation, we have observed that the

compression ratio differences between two consecutive data

dumping operations has an average of 1.45% with a standard

deviation of 0.64% from six samples. This stability is due

to the fact that the simulation does not undergo significant

changes in the data characteristics over a short period of

time. Furthermore, our evaluation, as depicted in Figure 6,

also corroborates this point by demonstrating our ability

to utilize the same Huffman tree for encoding quantization

codes across multiple iterations. Based on this observation,

we propose utilizing the compression ratio from the previous

iteration as a guide for load-balancing the I/O operations in

the current iteration. By doing so, we can effectively address

any imbalances and ensure a more equitable distribution of

the I/O workload.

Within a given node, we determine the workload of each

process by considering its total length of I/O tasks from

the previous iteration. If a process has a high workload,

we redistribute a proportion of its I/O tasks to processes

with lower workloads. Specifically, we implement a load-

balancing mechanism by assigning the first I/O task of the

process with the largest I/O workload to be the last I/O task

for the process with the least I/O workload. We continue

this assignment until the workload of the process with the

largest workload is smaller than twice the workload of the

process with the smallest workload. This helps to redistribute

the I/O tasks more evenly across the processes and alleviate

any workload imbalances. However, we have observed that

the total length of compression tasks for different processes

remains relatively stable. This is because the compression

throughput is not significantly affected by the compressibil-

ity of the data, and the size of the raw data is the same across

all processes. Therefore, we apply the task load-balancing

technique only to the I/O tasks, as it effectively addresses

the workload imbalance in that aspect.
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Figure 2. Overview of our proposed framework. We propose three runtime

designs to facilitate task scheduling to handle the data dumping process

from iteration n and execute asynchronous compression, I/O operations,

and computation tasks during iteration n+1.

4 Design of Our Proposed Framework
In this section, we present our proposed framework that

deeply integrates lossy compression with parallel I/O li-

braries, allowing for the overlap of compression and I/O with

computation using our task scheduling algorithms. Figure 2

shows the overview of our proposed framework. The goal is

to dump the data generated from iteration 𝑛 during the next

iteration 𝑛 + 1. First, we detail the runtime design that con-

sists of three main components: fine-grained compression,

compressed data buffer, and shared tree for Huffman coding.

Then, we offer implementation details for HPC applications.

4.1 Fine-grained Compression
The large volume of data generated by HPC applications

often consists of multiple data fields. For instance, data from

a Nyx cosmological simulation may include density, temper-

ature, and velocity information, resulting in multiple data

fields. While it may seem intuitive to compress each data

field separately to achieve granularity in compression tasks

for our task scheduling algorithms, most scientific appli-

cations have only a few data fields (e.g., 6∼12 data fields).

This limits the number of compression tasks and I/O tasks,

leading to low task scheduling efficiency. To address this

challenge, we propose slicing each data field into smaller

data blocks and independently compressing each data block.

This significantly increases the number of tasks, benefiting

our task scheduling problem with obstacles. Specifically, we

use a block size of 8∼16 MB for compressing the data, while

ensuring an even division of each data field. As an exam-

ple, consider a Nyx cosmology simulation with a scale of

1024 × 1024 × 1024 distributed across 64 processes, resulting

in 64 MB of data per process for each data field. In this case,

we divide each data field into eight blocks per process using

a block size of 8 MB. Fine-grained compression may intro-

duce two potential issues: (1) a degradation in compression

ratio compared to compressing the data together, and (2)

a decrease in compression and I/O throughput. However,

the evaluation presented in Section 5.3 demonstrates that

using a minimum data block size of 8 MB results in minimal

compression ratio degradation. In practice, we use offline

profiling to evaluate compression and I/O performance on

a given system to identify the point at which compression

and I/O throughput start to deteriorate with small data block

sizes. This analysis informs our choice to select the smallest

available block size (≥ 8 MB). To mitigate the impact on I/O

throughput, we propose the use of a compressed data buffer.

Moreover, to minimize overhead caused by degradation in

compression throughput, we propose the use of a shared

Huffman tree.

4.2 Compressed Data Buffer
Based on our observations, the size of compressed data blocks

can be relatively small, with some blocks even smaller than 1

MB, depending on the achieved compression ratio. However,

writing data smaller than 1 MB can significantly reduce I/O

throughput. To optimize I/O efficiency, we introduce an ad-

ditional compressed data buffer that allows us to initiate I/O

tasks as soon as possible while maintaining high throughput.

Based on our evaluation presented in Section 5.3, we set

the maximum size of the compressed data buffer to 10 MB,

which typically accommodates 12 compressed data blocks

when the data block size is 8 MB and the average compres-

sion ratio is 10×. We have observed that further increasing

the maximum compressed data buffer size does not result in

significant performance improvement. The policy of writing

the compressed data to the buffer and subsequently writing

the buffer to the storage system is determined after the task

scheduling. During the execution phase, once the execution

orders for compression and I/O tasks are determined, we

start placing the compressed data into the buffer when the

background thread is engaged with I/O tasks or core tasks.

4.3 Huffman Coding with Shared Tree
During the prediction-based lossy compression process, one

of the crucial steps is Huffman encoding of the quantiza-

tion codes after prediction and quantization steps. When

compressing small data blocks with high compression ratios,
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building the Huffman tree can become a bottleneck for com-

pression throughput. This is because building the Huffman

tree takes nearly constant time regardless of the size of the

input data, as the number of quantization codes after the

predictor and quantizer of lossy compression is a fixed num-

ber in most cases. Additionally, based on our observation,

data of similar types often result in similar Huffman trees.

For example, the Huffman tree built from the data of one

iteration is highly similar to the tree built from the data of

the next iteration.

To improve compression throughput for small data blocks,

we propose using shared Huffman trees across different

timesteps and data blocks on the same process. Prediction-

based lossy compression accommodates outliers, which allow

us to modify to include values that defy coding by this shared

Huffman tree. Building and using a shared Huffman tree for

each process based on the data of the current iteration is

impractical, as it would require synchronization of all com-

pression tasks before any I/O taskfor compressed data can

proceed. Instead, we build the shared Huffman tree based on

the quantization code from the previous one or few iterations

and utilize it for the data of the current iteration. This is a

trade-off between compression ratio and shared tree reuse

frequency. This tree is stored in memory and loaded into the

compressor when compressing each data block. Based on

our evaluation in Section 5.3, the shared Huffman tree can be

reused for over 10 iterations without significant compression

ratio degradation.

4.4 Implementation Details
We implement our solution using the HDF5 parallel I/O li-

brary [53], but the principles can be extended to other paral-

lel I/O libraries as well. We utilize the VOL connector from

HDF5 [49] to control the compression queue of the com-

pression tasks and launch asynchronous I/O tasks in the

background thread. In addition, we predict the compression

ratio before the actual compression process to compute the

offset for each data block using the algorithms described

in [27]. We also predict the compression time and I/O time

for the compressed data based on the compression through-

put and I/O throughput prediction approach proposed by Jin

et al. [30]. To handle the rare occurrence of data overflow

caused by a lower-than-predicted compression ratio, we have

implemented additional space at the end of the shared HDF5

file to store the overflowed data. This extra I/O task for the

overflowed data is not predictable and cannot be scheduled

in advance. Thus, we queue this extra I/O task at the end of

the last I/O task for the compressed data.

All the proposed task scheduling algorithms are based on

the observation that the total compression time is theoreti-

cally fixed regardless of the compression order. Our optimiza-

tion focuses on the dependencies and timing of launching

write operations for each compressed data to minimize time-

outs compared to compression. The time complexity of the

proposed algorithm is𝑂 (𝑛 log𝑛), whereas the time complex-

ity of our compression is 𝑂 (𝑁 ). Considering that 𝑁 (i.e.,

the number of values) in one data partition is significantly

larger than 𝑛 (i.e., the number of data fields), the optimiza-

tion overhead is almost negligible compared to the actual

compression and write time. On a typical HPC application

run, 𝑛 can range from 6 to 12, while 𝑁 can range from 2

million to 128 million.

Based on our algorithm design, we can expect the optimiza-

tion to bring benefits when there is a relatively stable balance

between compression time and I/O time. Additionally, we

note that our optimization can provide greater benefits when

the size of data fields is relatively large. This is because the

overall performance is dependent on the process with the

longest time among all the processes, due to independent

asynchronous writes.

5 Performance Evaluation
In this section, we present the evaluation results of our pro-

posed framework for accelerating HPC applications. We first

provide details about the experimental setup and the HPC

applications used in our evaluation. Next, we assess the per-

formance of our proposed task scheduling algorithms and

identify the most efficient one for further evaluations. We

then evaluate the performance of each individual component

of our compression design. Finally, we conduct a compre-

hensive performance evaluation using both simulation and

real-world HPC applications, comparing the results to the

baseline solution without compression and the previous so-

lution using asynchronous I/O without lossy compression.

5.1 Experimental Setup
System configuration.We rigorously implement our ap-

proach usingHDF5 [9] and SZ3 [38], amodularized prediction-

based lossy compressor. Our experiments are conducted on

the Summit supercomputer [18] at Oak Ridge National Lab-

oratory with 16 nodes and 64 GPUs, where each node is

equipped with two IBM POWER9 processors featuring 42

physical cores and 512 GB DDR4 memory.

Compression configuration.We evaluate our approach

using different scales of Nyx and WarpX applications. In

all our evaluations, we utilize both GPUs and CPUs. While

GPUs serve as the primary compute unit, CPUs handle com-

pression and I/O tasks. Based on previous work [28, 29], we

use absolute error bounds of (0.2, 0.4, 1𝑒+3, 2𝑒+5, 2𝑒+5, 2𝑒+5)
to compress the six Nyx data fields (baryon density, dark

matter density, temperature, velocity x, velocity y, velocity

z), respectively, to achieve an average PSNR (peak signal-to-

noise ratio) of 78.6 dB, resulting in a compression ratio of

approximately 16×. The problem size of the Nyx application

used in our evaluation is 4096 × 4096 × 4096 with three ad-

ditional fields: particle_vx, particle_vy, and particle_vz. We

compress these additional fields with a compression ratio of
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Algorithm Iteration Duration (s)

ExtJohnson 4.363

ExtJohnson+BF 4.058

GenerationListSchedule 4.665

GenerationListSchedule+BF 4.470

OneListGreedy 4.541

TwoListsGreedy 4.274

Table 1. Iteration duration (in seconds) achieved by different scheduling

algorithms with Nyx cosmological simulation.

16x to ensure the post-hoc analysis quality. For the WarpX

application, we compress the data fields with a compression

ratio of 273.9×, as suggested by the application developers

based on their post-hoc analysis.

5.2 Evaluation of Task Scheduling Algorithms
First, we conduct an evaluation of the six task scheduling al-

gorithms proposed in Section 3.3, focusing on their overhead

and optimized iteration time, based on the problem statement

outlined in Section 3.1. To gather data for our evaluation, we

sample three stages of a Nyx run, which is performed at a

scale of 1024 × 1024 × 1024 with 16 GPUs from 4 nodes. We

collect data from the beginning of the run when the data

distribution is mostly even, the middle of the run when the

data is structured, and towards the end of the run when the

data becomes highly centralized and the compressibility of

the data varies across different partitions.

In this case, each process holds a partition size of 256 ×
512× 512. Following our framework design described in Sec-

tion 4, we use a fine-grained compression block size of 8.39

MB, resulting in 32 data blocks per process. It is important to

note that we deliberately employ a non-integer block size to

ensure an evenly divided distribution of data blocks without

significant size discrepancies.

Next, we measure the time required to perform lossy com-

pression and write operations for each data block. It is worth

mentioning that in this section, our focus is on evaluating the

performance of the proposed task scheduling algorithms. To

determine the most suitable algorithm, we utilize actual val-

ues of compression time, I/O time, and computation intervals

instead of relying on predicted values.

We observe that the overall performance of our proposed

framework, as presented in this section, is slightly better than

that in subsequent sections that employ predicted values.

This discrepancy can primarily be attributed to the inherent

uncertainty associated with predicting compression time,

I/O time, and the intervals between neighboring simulation

iterations for each data block.

Table 1 presents the average scheduled iteration time for

each algorithm. In addition, we also evaluate the Integer Lin-

ear Program (ILP) as one of the task scheduling algorithms,

described in the appendix. While it can sometimes offer the

fastest iteration time, its computation time is significantly

Figure 3. Relative Performance improvements using our proposed intra-

node I/O workload balancing technique. The max compression ratio differ-

ence represents the variance in compression ratios between partitions with

the highest and lowest compression ratios within a single node.

longer than the other algorithms. In general, Johnson’s al-

gorithms with backfilling demonstrate the best overall per-

formance, considering both execution time and overhead.

Thus, we adopt Johnson’s algorithms with backfilling for our

subsequent evaluations.

It is worth noting that in cases where the CPU and I/O idle

time during the simulation significantly exceeds the time re-

quired for compression and compressed data I/O operations

(e.g., when data is dumped at relatively longer step sizes),

our selected task scheduling algorithm has the potential to

effectively mitigate the impact of compression and I/O on

the simulation. In other words, the scheduling algorithm can

minimize the perceived delays caused by these operations,

enabling the simulation to proceed seamlessly.

Next, we evaluate the effectiveness of our proposed I/O

workload balancing techniques in combination with the task

scheduling algorithm. We assess their performance across

various data distribution scenarios by assuming a maximum

compression ratio difference among processes within a given

node with 4 to 8 processes (i.e., GPUs). We further assume

that the compression ratios for each process follow a normal

distribution based on this maximum difference.

Figure 3 shows the relative performance improvement in

execution time achieved by the I/O workload balancing tech-

nique, compared to the original execution time. We observe

that as the compression ratio differences between processes

increase, the I/O workload balancing technique provides a

higher performance improvement. It is important to note

that the specific value of the maximum compression ratio

difference is highly dependent on the characteristics of the

HPC application being performed. For instance, in the case

of the Nyx Application, this number can reach as high as

20 with an average compression ratio of 16×. In worst-case

scenarios where the maximum compression ratio difference

is extremely low, the I/O workload balancing technique does

not introduce additional overhead to the system.

5.3 Evaluation of Proposed Compression Design
In this section, we evaluate the efficiency of the three de-

signs we proposed in Section 4: fine-grained compression,

compressed data buffer, and shared Huffman tree. We begin
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Figure 4. Execution time comparison with different block sizes (relative

to the execution time using a block size of 64 MB). The dashed blue line

represents the execution time without using the proposed shared Huffman

tree strategy.

by evaluating the benefits derived from fine-grained com-

pression. For this experiment, we select three stages of a Nyx

Application, performed at a scale of 512 × 512 × 512 using 8

GPUs. Each process in this setup manages a partition size of

256 × 256 × 256, with each data field approximately sized at

64 MB. Figure 4 illustrates the relative execution time with

different compression block sizes. The relative execution

time is measured in terms of the execution time without

fine-grained compression, which is 64 MB in this case. Dur-

ing this experiment, we utilize fine-grained compression, a

compressed data buffer of 20 MB, the shared Huffman tree,

and employ ExtJohnson+BF for scheduling. To accurately

evaluate the design efficiency of fine-grained compression

alone, we also utilize the actual compression time, I/O time,

and interval values instead of relying on predicted values.

First, we observe that fine-grained compression effectively

enhances overall performance across various data distribu-

tion scenarios. However, it is crucial to consider the block

size used, as excessively small block sizes can nullify the

performance benefits of fine-grained compression. This is

primarily due to a significant decrease in compression and

I/O throughput. We also observe that the shared Huffman

tree can significantly improve compression throughput when

the data block size is small. In this case, we find that using

a block size of 8-16 MB when compressing the data and

evenly dividing each data field works best. When compar-

ing different data distributions, we find that fine-grained

compression offers similar performance improvements for

evenly distributed data during the early stage of the run,

as well as for structured data with a wider range of com-

pression ratios, such as the middle stage of the run. This is

because the primary advantage of fine-grained compression

lies not only in initiating I/O operations earlier but also in

accommodating more compression and I/O tasks within the

computation application intervals. As a result, the benefits of

fine-grained compression are less dependent on the specific

characteristics of the data and their compressibility.

Next, we evaluate the effectiveness of utilizing a com-

pressed data buffer. For this experiment, we use the same

Figure 5. Execution time comparison with different buffer sizes (relative to

the execution time without any compressed data buffer).

Figure 6. Compression ratio degradation across iterations, assuming the

Huffman tree is built based on the data from iteration 0. The relative com-

pression ratio means the ratio degradation between compress while “reusing

the shared Huffman tree from x iterations ago” and “building a new tree”.

configurations as the fine-grained compression evaluation,

with a compression block size of 8 MB. Figure 5 presents the

relative time of the combined I/O tasks for compressed data,

considering different buffer sizes. Notably, the compressed

data buffer demonstrates an efficient reduction in overall

I/O time. This is because of the relatively small size of the

compressed data, which allows for improved write perfor-

mance through the consolidation of these small data units.

In addition, our evaluation reveals that the performance im-

provement achieved through the use of a compressed data

buffer is consistent across data from different HPC applica-

tions, independent of the data structure and compression

ratio distribution. Based on our findings, we determine that

a compressed data buffer size of 20 MB delivers the optimal

performance enhancement while minimizing the memory

footprint required for the buffer.

Finally, we evaluate the effectiveness of utilizing the shared

Huffman tree. For this experiment, we use the same config-

urations as the previous experiments, with a compression

block size of 8 MB and a compressed data buffer of 20 MB.

Figure 6 shows the relative compression ratio degradation

compared to using a native Huffman tree for the given data,

when reusing the same Huffman tree for multiple iterations.

We notice that during the early stages/iterations where

data movement is relatively stable, the shared Huffman tree

can be effectively utilized for a greater number of iterations.

Moreover, by constructing the shared Huffman tree based

on data from the previous iteration (e.g., iteration number
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Figure 7. Time overheads (relative to the computation time) of the baseline

and our solution with different compression ratios.

1 in Figure 6), we can achieve minimal compression ratio

degradation while introducing minimal overhead in terms

of rebuilding the Huffman tree at the end of each iteration.

5.4 Overall Performance Improvement
In this section, we combine the aforementioned task schedul-

ing step with our proposed compression design to real-world

HPC applications to evaluate the performance improvement

from our proposed solution. We begin by evaluating the per-

formance improvement based on simulations, allowing us

to gather valuable insights and further validate our design

approach. Next, we present the in situ evaluation conducted

with Nyx and WarpX, showcasing the practical application

and effectiveness of our framework in real-world scenarios.

5.4.1 Simulation-based evaluation. Our simulation eval-

uations primarily focus on assessing the efficiency of our

framework across different overall compression ratios and

data distributions, as evaluating with real-world applications

is challenging. We gather the base computation intervals

from Nyx application. Then, we assume that the uncertainty

associated with the start and end times of these intervals

between neighboring iterations follows a normal distribu-

tion. The variance of this normal distribution is determined

by 𝜎 = 0.01 × (end𝑛 − beg𝑛), where end𝑛 represents the end

time of the given iteration, and beg𝑛 represents the start

time of the given iteration. This assumption is based on our

observations from Nyx and WarpX applications. Similarly,

we assume a normal distribution for the uncertainties of

the compression ratio, compression throughput, and com-

pressed data I/O time estimation. We use 𝜎 = 0.1 × 𝑅 for

compression ratio, 𝜎 = 0.05 ×𝑇𝑐 for compression through-

put, and 𝜎 = 0.05 × 𝑇𝑖𝑜 for I/O throughput. Here, 𝑅 is the

estimated compression ratio of each data blocks, 𝑇𝑐 is the

estimated compression throughput, and 𝑇𝑖𝑜 is the estimated

I/O time. To handle potential conflicts between compression,

I/O, and computation intervals, we make the straightforward

assumption that both CPU tasks and background tasks are

executed sequentially. This means that if a CPU interval

takes longer than anticipated, it can result in delays for sub-

sequent compression tasks, potentially introducing overhead

to the application.

Figure 8. Time overheads (relative to the computation time) of the baseline

and our solution with different data distributions (represented as the intra-

node maximum compression ratio difference).

During the simulation, our main comparison is between

the performance of our solution and the baseline approach

where the data is not compressed, and the I/O operations are

performed sequentially with the computation. We evaluate

the performance by measuring the time overhead incurred

on the computation per iteration.

Figure 7 illustrates the performance of our solution across

different average compression ratios. We observe that our so-

lution consistently outperforms the baseline approach across

various compression ratios. Notably, when the compression

ratio is high, our solution exhibits slightly better perfor-

mance. This can be attributed to the smaller size of the com-

pressed data, resulting in shorter I/O time. As a result, the

overall time spent on I/O is reduced, and our scheduling

design benefits from more efficient allocation of I/O tasks

within the computation intervals.

Figure 8 shows the performance of our solution across

different data structure. We use the maximum compression

ratio differences to represent the data structure. Lower max-

imum compression ratio differences typically indicate that

the data is evenly distributed among the processes. We ob-

serve that our solution consistently outperforms the baseline

across various data structures. However, when the maximum

compression ratio difference is high, our solution exhibits

slightly worse performance. This is primarily due to imbal-

anced workloads across different processes. Nevertheless,

our I/O workload balancing design helps mitigate the neg-

ative impact of workload imbalances. By efficiently redis-

tributing tasks among processes, our solution minimizes the

effects of workload variations, resulting in overall improved

performance compared to the baseline approach.

5.4.2 Real-system-based evaluation. Finally, we eval-
uate our solution with real-world applications running on

the HPC system and compare it to the baseline and the pre-

vious solution, which only uses asynchronous I/O without

compression or task scheduling techniques.

Figure 9 shows the overall performance improvement of

our solution in comparison to the baseline and previous so-

lutions on the Nyx application. Additionally, we provide
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Figure 9. Time overheads (compared to computation time) of the baseline,

asynchronous I/O, and our solution (with simulation for reference) with

Nyx using 16 nodes and 64 GPUs.

(a) Nyx (b) WarpX

Figure 10. Time overheads of (compared to computation time) between

the baseline, asynchronous I/O, and our solution across different timesteps

with Nyx and WarpX.

(a) Nyx (b) WarpX

Figure 11. Time overheads (compared to computation time) of the baseline,

asynchronous I/O, and our solution with different scales of Nyx andWarpX.

simulation results for reference. We note that the real imple-

mentation results in slightly larger overhead compared to

the simulation results. This is because the real implementa-

tion encounters more unexpected task interference due to

(1) uncertainty of computing application intervals, and (2)

inaccurately predicted compression ratio, compression time

and/or I/O time for compressed data. Nonetheless, our solu-

tion still achieves a significant performance improvement,

with a 3.78× and 2.57× improvement over the baseline and

previous solutions, respectively.

Figure 10 presents the performance of our solution across

different stages of the application: the beginning, middle,

and end. Our solution consistently outperforms the previous

solution across all stages of the application.

We also conduct a weak scaling evaluation to assess the

performance of our solution as the problem size scales with

the number of processes (GPUs), as shown in Figure 11. In

this experiment, the problem scale for each process is 256 ×
256 × 256 for Nyx and 128 × 128 × 1024 for WarpX. Once

again, our solution consistently outperforms the previous

solution across all tested scales.

It is worth noting that both the baseline and the previous

solution experience longer execution times as the scale in-

creases. In contrast, our solution exhibits more consistent

performance across different scales. This can be attributed to

our data compression approach, where the overhead primar-

ily arises from conflict tasks resulting from mis-predicted

compression and I/O operations.

6 Conclusion and Future Work
Lossy compression and asynchronous I/O are two efficient

solutions for reducing storage overhead and improving I/O

performance in large-scale HPC/scientific applications. How-

ever, existing implementations have limitations that hinder

the full utilization of lossy compression and can lead to task

collisions, limiting the overall application performance. To

address these challenges, we propose an optimization ap-

proach for the task scheduling problem involving applica-

tion computation, compression, and I/O. Experimental re-

sults with up to 64 GPUs from Summit demonstrate that

our solution reduces I/O overhead by up to 3.8× and 2.6×
compared to the non-compression and asynchronous I/O

solutions, respectively. Note that the efficacy of the proposed

solution might decrease when the application is more reliant

on CPUs than GPUs, leading to fewer CPU idle periods.

In the future, we plan to expand the integration of our so-

lution to additional parallel I/O libraries, such as ADIOS, and

evaluate its performance with a wider range of real-world

HPC applications. Furthermore, we intend to extend our pro-

posed task scheduling method and compression design to

accommodate multi-file scenarios, where the dumping data

is stored in multiple files for specific HPC applications.
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A Integer Linear Program
We provide the ILP discussed in Section 3.2. We need to

introduce some new variables for this ILP:

• The binary variable first (𝑋 )
𝑖, 𝑗

is equal to 1 if and only

if task 𝑋𝑛,𝑖 precedes task 𝑋𝑛,𝑗 (for 𝑋 being either R or

B). We always have first (𝑋 )
𝑖, 𝑗

= 1 − first (𝑋 )
𝑗,𝑖

. Hence, to

decrease the number of variables, wewill only consider

the variables first (𝑋 )
𝑖, 𝑗

when 𝑖 < 𝑗 .

• The binary variable 𝛿
(𝑋 )
𝑖,ℎ

is true if and only if task

𝑋𝑛,𝑖 is executed between the (ℎ − 1)-th and the ℎ-th

unavailabiliy interval (for 𝑋 being either R or B). That
is, if we consider compression tasks, between the times

beg𝑛 + 𝑏𝑛,ℎ−1 and beg𝑛 + 𝑎𝑛,ℎ , for 1 ≤ ℎ ≤ 1 + 𝑘 , with
the convention that 𝑏𝑛,0 = 0 and 𝑎𝑛,𝑘+1 = +∞.

• Z is a very large value, larger than the makespan of the

optimal solution. One can choose for Z the makespan

of a naive schedule (schedule the tasks as soon as pos-

sible in the order 1, ...,𝑚.).

The ILP to find an optimal solution to the scheduling problem

is presented in Figure 12 (where for each equation, we have

1 ≤ 𝑖 < 𝑗 ≤ 𝑚, and 𝑋 ∈ {R, B}). Here is a walkthrough:

• Equation (1): the iteration completion time is greater

than the maximum of the completion time of the I/O

tasks.

• Equation (2): an I/O task cannot start before the com-

pletion of the corresponding compression task.

• Equations (3) and (4): the completion time of a task is

equal to its start time plus its execution time.

• Equation (5): if task𝑋𝑛,𝑖 precedes task𝑋𝑛,𝑗 in the sched-

ule, then task 𝑋𝑛,𝑖 must be completed before task 𝑋𝑛,𝑗

can start. If 𝑋𝑛,𝑖 precedes 𝑋𝑛,𝑗 then first (𝑥 )
𝑖, 𝑗

is equal to

1 and Equation (5) is equal to 𝑡start (𝑋𝑛,𝑗 ) ≥ 𝑡end (𝑥𝑛,𝑖 ).
If, on the contrary, 𝑋𝑛,𝑗 precedes 𝑋𝑛,𝑖 then first (𝑋 )

𝑖, 𝑗
is

Minimize 𝑇 overall
𝑛 subject to



𝑇 overall
𝑛 ≥ 𝑡end (B𝑛,𝑖 ) (1)

𝑡end (R𝑛,𝑖 ) ≤ 𝑡start (B𝑛,𝑖 ) (2)

𝑡end (𝑅𝑛,𝑖 ) = 𝑡start (𝑅𝑛,𝑖 ) + 𝑐𝑛,𝑖 (3)

𝑡end (𝐵𝑛,𝑖 ) = 𝑡start (𝐵𝑛,𝑖 ) + 𝑐′𝑛,𝑖 (4)

𝑡start (𝑋𝑛,𝑗 ) ≥ 𝑡end (𝑋𝑛,𝑖 ) − (1 − first (𝑋 )
𝑖, 𝑗

)Z (5)

𝑡start (𝑋𝑛,𝑖 ) ≥ 𝑡end (𝑋𝑛,𝑗 ) − first (𝑋 )
𝑖, 𝑗
Z (6)

1+𝑘∑︁
ℎ=1

𝛿
(𝑅)
𝑖,ℎ

(beg𝑛 + 𝑏𝑛,𝑖 ) ≤ 𝑡start (𝑅𝑛,𝑖 ) (7)

1+𝑜∑︁
ℎ=1

𝛿
(𝐵)
𝑖,ℎ

(beg𝑛 + 𝑏′𝑛,𝑖 ) ≤ 𝑡start (𝐵𝑛,𝑖 ) (8)

𝑡end (𝑅𝑛,𝑖 ) ≤
𝑘+1∑︁
ℎ=1

𝛿
(𝑅)
𝑖,ℎ

(beg𝑛 + 𝑎𝑛,𝑖 ) (9)

𝑡end (𝐵𝑛,𝑖 ) ≤
𝑜+1∑︁
ℎ=1

𝛿
(𝐵)
𝑖,ℎ

(beg𝑛 + 𝑎′𝑛,𝑖 ) (10)

1+𝑘∑︁
ℎ=1

𝛿
(𝑅)
𝑖,ℎ

= 1 (11)

1+𝑜∑︁
ℎ=1

𝛿
(𝐵)
𝑖,ℎ

= 1 (12)

Figure 12. Integer Linear Program optimally solving the scheduling prob-

lem.

equal to 0 and Equation (5) is equal to 𝑡start (𝑋𝑛,𝑗 ) ≥
𝑡end (𝑋𝑛,𝑖 ) − Z and Equation (5) is not constraining.

• Equation (6): if task𝑋𝑛,𝑗 precedes task𝑋𝑛,𝑖 in the sched-

ule, then task 𝑋𝑛,𝑗 must be completed before task 𝑋𝑛,𝑖

can start. If 𝑋𝑛,𝑗 precedes 𝑋𝑛,𝑖 then first (𝑋 )
𝑖, 𝑗

is equal to

0 and Equation (6) is equal to 𝑡start (𝑥𝑛,𝑖 ) ≥ 𝑡end (𝑥𝑛,𝑗 ).
If, on the contrary, 𝑋𝑛,𝑖 precedes 𝑋𝑛,𝑗 then first (𝑋 )

𝑖, 𝑗
is

equal to 1 and Equation (6) is equal to 𝑡start (𝑋𝑛,𝑖 ) ≥
𝑡end (𝑋𝑛,𝑗 ) − Z and Equation (6) is not constraining.

• Equations (7) and (8): if binary variable 𝛿
(𝑅)
𝑖,ℎ

(resp. 𝛿
(𝐵)
𝑖,ℎ

)

is equal to 1, then task 𝑅𝑛,𝑖 (resp. 𝐵𝑛,𝑖 ) can start at the

earliest at time end𝑛 + 𝑏𝑛,𝑖−1 (resp. end𝑛 + 𝑏′𝑛,𝑖−1), the
end of the (𝑖 − 1)-th unavailability interval.

• Equations (9) and (10): if binary variable 𝛿
(𝑅)
𝑖,ℎ

(resp.

𝛿
(𝐵)
𝑖,ℎ

) is equal to 1, then task 𝑅𝑛,𝑖 (resp. 𝐵𝑛,𝑖 ) can com-

plete at the latest at time beg𝑛 + 𝑎𝑛,𝑖−1 (resp. beg𝑛 +
𝑎𝑛,𝑖−1), the start of the 𝑖-th unavailability interval.

• Equations (11) and (12): all tasks must be executed at

some point.
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B Artifact Appendix
B.1 Artifact DOI
10.5281/zenodo.8394043

B.2 Abstract
Within this artifact, we offer a comparative analysis, bench-

marking our solution against two alternative approaches: (1)

the previous method employing asynchronous writes with-

out data compression, and (2) the baseline solution uses syn-

chronous data writes without compression. This alignment

with our paper underscores the performance enhancements

our solution delivers.

Furthermore, we conducted our artifact implementation

on Chameleon Cloud, utilizing a Singularity container to

ensure optimal applicability across various computing envi-

ronments. The test node on Chameleon Cloud is equipped

with two Intel Xeon E5-2660 CPUs and 128 GB of memory,

specifically configured with gpu.model=P100. We strongly

recommend to use Chameleon Cloud platform for assess-

ments with consistency and reproducibility.

B.3 Description & Requirements
B.3.1 How toAccess. https://github.com/jinsian/EuroSys-

AsyncSchedule4IO.

B.3.2 Description of Experiment Workflow. The en-
tire workflow takes approximately 15 minutes to execute,

including downloading container image and preparing envi-

ronment (4 mins), running WarpX simulation (5 mins), run-

ning Nyx simulation (5 mins), and evaluating performance

(1 min).

B.3.3 Minimum System Requirements.
• OS: Ubuntu (20.04 is recommended)

• GPU: Nvidia GPUs with CUDA >= 12.2

• Memory: >= 16 GB RAM

• Processor: >= 16 cores

• Storage: >= 32 GBs

B.4 Set-up
• Step 1: Install Singularity

Please refer to:

https://singularity-tutorial.github.io/01-installation/.

• Step 2: Download, Build, and run the image file (need
root privilege) with singularity
You can download, build, and run the image file that en-

compasses all the necessary components.

sudo pip3 install gdown
gdown https://drive.google.com/uc?id=1o0AumoDJgnZK\
cLXv-ZH7b5lGhKzP4_6A
sudo singularity build --sandbox artiAsync \
AsyncSchedule.sif
sudo singularity shell --writable artiAsync

Now, you are running inside of the container.

B.5 Evaluation Workflow
• Step 3: Set up environmental variables
export OMPI_DIR=/opt/ompi
export OMPI_VERSION=4.1.1
export PATH=$OMPI_DIR/bin:$PATH
export LD_LIBRARY_PATH=$OMPI_DIR/lib:$LD_LIBRARY_PATH
export MANPATH=$OMPI_DIR/share/man:$MANPATH
export C_INCLUDE_PATH=/opt/ompi/include\
:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/opt/ompi/include\
:$CPLUS_INCLUDE_PATH
export OMPI_ALLOW_RUN_AS_ROOT=1
export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1

• Step 4: Run Nyx simulation with (1) baseline, (2) pre-
vious, and (3) ours
cd /home/EuroSys-AsyncSchedule/
bash ./runnyx.sh

• Step 5: Run WarpX simulation with (1) baseline, (2)
previous, and (3) ours
cd /home/EuroSys-AsyncSchedule/
bash ./runwarpx.sh

• Step 6: (Optional): We retaine log files for all runs,
and now you can check them out
head -n 200 ./Nyx/Exec/LyA/test1.txt
head -n 100 ./WarpX/test1.txt

The expected results for Nyx’s log are:
Nyx::est_time_step at level 0: estdt = 1.365270159e-07
Integrating a from time 1.345051497e-07 by dt = 1.36527
Old / new A time 1.345051497e-07 2.710321656e-07
Old / new A 0.00631247703 0.0063755786
Old / new z 157.416418 155.8485094
Re-integrating a from time 1.345051497e-07 by dt = 1.3
Old / new A time 1.345051497e-07 2.710321656e-07
Old / new A 0.00631247703 0.0063755786
Old / new z 157.416418 155.8485094
[Level 0 step 2] ADVANCE at time 1.345051497e-07 with
Gravity ... multilevel solve for old phi at base level
ParticleContainer::AssignCellDensitySingleLevel) time:
... subtracting average density 3.760710576e+10 from
... subtracting -2.861022949e-06 to ensure solvabil

MLMG: Initial rhs = 103869.8512
MLMG: Initial residual (resid0) = 103869.8512
MLMG: Final Iter. 10 resid, resid/bnorm = 2.480104285
MLMG: Timers: Solve = 1.333416157 Iter = 1.276759186
moveKickDrift ... updating particle positions and vel
Gravity ... single level solve for new phi at level 0
ParticleContainer::AssignCellDensitySingleLevel) time:
... solve for phi at level 0
... subtracting average density from RHS in solve ...
... subtracting 3.531575203e-06 to ensure solvability
MLMG: Initial rhs = 101952.6971
MLMG: Initial residual (resid0) = 6501.955658
MLMG: Final Iter. 7 resid, resid/bnorm = 2.565720933
MLMG: Timers: Solve = 0.940721187 Iter = 0.901259195

The expected results for WarpX’s log are:
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STEP 3 starts ...
--- INFO : Writing plotfile diags/plt000003
STEP 3 ends. TIME = 3.25787071e-16 DT = 1.085956903e-16
Evolve time = 10.47966713 s; This step = 3.457123984 s;

STEP 4 starts ...

• Step 7: Evaluate Nyx’s perormance between (1) base-
line, (2) previous, and (3) ours
cd $TEST_HOME/Nyx/Exec/LyA
python3 ./readresults.py test1.txt test2.txt \
test3.txt test4.txt

• Step 8: Evaluate WarpX’s perormance between (1)
baseline, (2) previous, and (3) ours
cd $TEST_HOME/WarpX/
python3 ./readresults.py test1.txt test2.txt \
test3.txt test4.txt

The expected results for Nyx’s performance compari-
son are:
Sample from 10 iterations.
-------------------- Baseline --------------------
Baseline: no compression, no asynchronous write.
Nyx simulation with Baseline solution time: 47.08 s
Baseline overhead compared to computation only: 37.2 %
-------------------- Previous --------------------
Baseline: no compression, no asynchronous write.
Nyx simulation with Previous solution time: 47.04 s
Previous overhead compared to computation only: 37.1 %
---------------------- Ours ----------------------
Baseline: no compression, no asynchronous write.
Nyx simulation with Our solution time: 37.12 s
Ours overhead compared to computation only: 8.2 %
------------------- Improvement ------------------
Our improvement compared to previous: 4.53 times
----------------------- End ----------------------

The expected results for WarpX’s performance com-
parison are:
Sample from 10 iterations.
-------------------- Baseline --------------------
Baseline: no compression, no asynchronous write.
WarpX simulation with Baseline solution time: 38.74 s
Baseline overhead compared to computation only: 121.9 %
-------------------- Previous --------------------
Baseline: no compression, no asynchronous write.
WarpX simulation with Previous solution time: 38.52 s
Previous overhead compared to computation only: 120.6 %
---------------------- Ours ----------------------
Baseline: no compression, no asynchronous write.
WarpX simulation with Our solution time: 23.87 s
Ours overhead compared to computation only: 36.7 %
------------------- Improvement ------------------
Our improvement compared to previous: 3.29 times
----------------------- End ----------------------

Please note that the performance may vary on different

machines and environments. Nevertheless, you should be

able to discern the performance improvements our solution

offers compared to previous approaches. These results are

consistent with our paper’s findings. Please be aware that the

runtime may vary, particularly when resources are limited.

We highly recommend running steps 4, 5, 7, and 8 multiple

times to observe consistent results.

This result is primarily correlated to the main claim of

our paper, shown in Figure 9. When comparing the relative

overhead with both the original and previous solutions, our

approach effectively enhances the end-to-end performance

of the simulation.

Additionally: (1) You can adjust the number of simula-

tion iterations by modifying "max_step = 10" in “EuroSys-

AsyncSchedule4IO/Nyx/Exec/LyA/inputs” for Nyx, or "max

_step = 10" in “EuroSys-AsyncSchedule4IO/WarpX/inputs.”,

and re-run steps 4, 5, 7, and 8. You should observe consis-

tent performance improvements, regardless of the number

of simulation iterations, as shown in Figure 10. (2) you can

modify the number of processes by changing all parameters

of “-np 16” in “EuroSys-AsyncSchedule4IO/runnyx.sh” and

“EuroSys-AsyncSchedule4IO/runwarpx.sh.”, and re-run steps

4, 5, 7, and 8. You should observe consistent performance

improvements, regardless of the number of processes, as

shown in Figure 11.
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