IEEE TRANSACTIONS ON S0OFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

4773

Let’s Go to the Whiteboard (Again): Perceptions
From Software Architects on Whiteboard
Architecture Meetings

Eduardo Santana de Almeida

, Senior Member, IEEE, Iftekhar Ahmed ', and

André van der Hoek =, Member, IEEE

Abstract—The whiteboard plays a crucial role in the day-to-
day lives of software architects, as they frequently will organize
meetings at the whiteboard to discuss a new architecture, some
proposed changes to an existing architecture, a mismatch between
a prescribed architecture and its code, and more. While much
has been studied about software architects, the architectures they
produce, and how they produce them, a detailed understanding
of these whiteboards meetings is still lacking. In this paper,
we contribute a mixed-methods study involving semi-structured
interviews and a subsequent survey to understand the perceptions
of software architects on whiteboard architecture meetings. We
focus on four aspects: (1) why do they hold these meetings,
(2) what is the impact of the experience levels of the partic-
ipants in these meetings, (3) how do the architects document
the meetings, and (4) what kinds of changes are made in
downstream activities to the work produced after the meetings
have concluded? In studying these aspects, we identify eleven
observations related to both technical aspects and social aspects
of the meetings. These insights have implications for further
research, offer concrete advice to practitioners, and suggest ways
of educating future software architects.

Index Terms—Software architecture, software architects,
whiteboard meetings, architecture documentation, interviews,
SUTVEY.

I. INTRODUCTION

ESIGNING a software architecture is not purely a techni-
D cal issue [1], [2]. It also involves numerous social, human,
and organizational aspects [3], [4] that can influence the success
of an architecture, and thus the entire project, considerably. One
such aspect concerns who is involved in the design process: the
different stakeholders participating must be selected with care
[5], [6]. So it is with the primary software architect or architects

Manuscript received 27 October 2022; revised 14 Aogust 2023; accepted
& September 2023, Date of current version 17 October 2023, This work
was supported in part by the National Science Foundation under Grant
CCE-2210812; INES (www.incs.org.br); CNPg under Grant 4656 14/2014-0;
CAPES under Grant BBBE7.13641072017-00; FACEPE under Grants AP()-
0399-1.0317 and PRONEX APQY03EE-1.03/14; and FAPESE under Grant
INCITE PIEOM2/2022. Recommended for acceptance by Y. Cai. (Corre-
sponding author: Eduardo Santana de Almeida.)

Eduardo Santana de Almeida is with the Institote of Computing (1C-UFBA),
Federal University of Bahia, Salvedor, Baha 40.170-110, Brazl (e-mail:
esal@nse.com.br).

Ifickhar Ahmed and André van der Hoek are with the Irvine Donald Bren
School of Information and Computer Sciences Department of Informatics,
University of California, Irvine (UCI), Irvine, CA 92697 USA.

Digital Object Identifier 10.110%TSE 20233314410

leading the effort: they are typically experienced members of
the team who are ultimately responsible for the design choices
made, validating them, and capturing and sharing them in var-
ious kinds of artifacts that will be used downstream [7].

To date, the software engineering community has studied
which kinds of projects and organizations need a software archi-
tect [1], the assigned duties, skills, and knowledge of architects
[2], what software architects actually do [7], [8], their mind-
set [9], the reasoning process involved in making architectural
decisions [10], [11], and the impact of architects writing code
themselves [12], [13], among others. Not all findings from these
studies are uniform. For instance, what architects do varies
considerably from one organization to another and even from
one project to another within the same organization [13], [14].
Moreover, gaps exist in our collective understanding, which has
led to calls for further studies of software architects, their work,
and how they conduct it [15], [16], [17].

This paper contributes one such study, with two closely related
goals. Our first goal is to understand how software architects per-
ceive the whiteboard design meetings in which they participate.
Whiteboards are an important medium used in reasoning and
problem solving in many disciplines, such as civil engineering
[18], mechanical engineering [19], and design engineering [19].
In software engineering, previous whiteboard studies focused on
programmers [6], [20], [21] and software designers [22], [23],
but not architects. With software architecture design laying the
critical foundations for a project’s success, then, it is important to
study software architecture design meetings at the whiteboard.
While not all architecture design work takes place at the white-
board, it is anecdotally well-known—and our study confirms—
that architects use the whiteboard for a broad range of reasons.
Understanding the unique context, demands, and approaches of
this setting is a primary poal of this paper.

Our second goal is to understand the ftransition from
architectural design sketches as produced in whiteboard
software architecture meetings to downstream development
activities. Architecture work at the whiteboard is necessarily
incomplete and, when the rubber hits the road during
additional architectural refinement, more detailed design, or
implementation, changes to the architecture as first envisioned
are frequently needed [23]. While much has been said about the
need for architecture and implementation to stay in sync [24], as

0098-3580 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires [EEE permission.
See https:fwww.icee.org/publications/rights/index html for more information.

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9312-6715
https://orcid.org/0000-0001-8221-5352
https://orcid.org/0000-0001-7917-932X
mailto:esa@rise.com.br

4774

well as about architectural erosion and drift over time [25], no
study to date has examined how information from whiteboard
architecture design meetings makes its way downstream, what
kinds of deviations happen in this process, and why.

We conducted semi-structured interviews with 27 software
architects from 18 different companies across five different
countries, with the software being worked on by these architects
spanning a wide range of application domains. We then sur-
veyed an additional 46 software architects across nine countries
to contextualize and augment the findings from the interviews.
Our focus in conducting these interviews and surveys was on
the aforementioned two goals. We could have also included an
analysis of the architectural sketches and how they are created
on the whiteboard or an examination of how the participants
engage in design discussions surrounding the sketches, but, as
exemplified by [26], each should be a separate study in its own
right to gain meaningful depth. We thus center on the following
four research questions:

« R(Q1: Why do software architects hold whiteboard sofi-
ware architecture design meetings? Design work is varied
and may take place across a range of meetings, some
at the whiteboard, some elsewhere [27]. As a base for
the subsequent research questions, we seek to document
what architectural design activities take place in white-
board meetings.

« R(Q2: What is the impact of the experience of the par-
ticipants on these meetings? Because of the complexities
involved and stakes of architectural design, it is ofien
thought to be the domain of experts [7]. Whiteboard design
meetings, however, do not only involve experts. We seek
to understand how the mix of participants impacts how
design work in proceeds in these meetings.

« R()3: How do software architects document what happens
in whiteboard software architecture meetings? Anecdo-
tally, a variety of mechanisms are used, including relying
on memory, taking photographs, or assigning notetakers
[21]. We seek to build a more comprehensive understand-
ing of the variety of approaches used.

« R(Q4: What kinds of changes arise in downstream ac-
tivities to the work produced in architecture whiteboard
meetings? Any designed architecture is subject to further
updates and changes after it has been produced and doc-
umented. We seek to identify the reasons why architects
believe such updates and changes are made.

Together, the answers to these questions have implications
for on the one hand research and what to study next and on the
other hand practice in how to best approach these meetings and
factors an organization or team might consider in improving its
own architecture whiteboard meetings.

This paper constitutes the first broad empirical study of how
software architects view and engage in whiteboard architecture
meetings, as well as the outflow of those meetings into down-
stream activities. It makes the following contributions:

« A mixed qualitative and quantitative study that investigates
key aspects of whiteboard software architecture meetings,
with a primary focus on the role of experience and how the
results from these meetings transition to later activities.

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

« A set of eleven observations regarding the nature of white-
board software architecture meetings, covering concrete
technical, human, and social perspectives on these meet-
ings and offering recommendations for practitioners, re-
searchers, tool builders, and educators.

« A collection of all our research materials on a project web-
site for replication and reproducible research purposes,
including our interview data (prompts, transcriptions, and
codebook) and the survey instrument.

II. RELATED WORK
A. Studies of Sketching and Whiteboard Use

Dekel and Herbsleb conducted an observational study ana-
lyzing several software design meetings from the ACM Design-
Fest event that was held at the 2005 QOOPSLA conference [28].
The analysis of the meetings primarily focused on the notations
that the designers used and the representations they created
in those notations, detailing for instance how the designers
often started with unstructured representations and how they at
times combined content from what were independently created
diagrams into a single diagram. Based on the results of the
study, Dekel and Herbsleb discussed several implications for
the design of future tools supporting whiteboard based design.
Cherubini et al. [21] performed an exploratory study at Mi-
crosoft of how and why developers use whiteboards, with a
particular focus on how developers ‘draw their code’. Based
on interviews and surveys with developers, they found that
informal notations were used in support of face-to-face commu-
nication about the code and that available modeling tools were
not capable of supporting this need since their focus on formal,
correct diagrams does not match the informal nature in which
developers seek to externalize their mental models of code.

Leveraging one of the videos collected for the 2009 Studying
Professional Software Design workshop [26], Nakakoji et al.
examined the conversations and whiteboard drawings of a pair
of professionals with the help of the Design Practice Streams
{DPS) tool they developed [29]. DPS allows replays of strokes
on the whiteboard and connects the replay to an automatically
created transcript of the meeting, enabling quick exploration
of concepts and when they were talked about. In the case of
the video analyzed, Nakakoji et al. highlight the role of key
concepts and what aspects of the design being worked on were
most frequently re-discussed.

In order to understand how to provide improved tool sup-
port for integrating visual sketches into developers” workflows,
Walny et al. conducted a qualitative study centered on the
creation, use, and transformation of sketches [30]. Using semi-
structured interviews with eight software developers, their par-
ticular focus was on the lifetime of sketches: with what medium
they were created first (e.g., paper, whiteboard, tool) and how
they then were captured, augmented, and re-created in similar
and other media (e.g., photo, tablet, another piece of paper).

Baltes and Diehl investipated the use of sketches and dia-
grams in software engineering practice, with a particular focus
on their relation to source code artifacts [31]. Using data from
three companies and a survey, they found that the majority of

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

the sketches were informal and that the most common purposes
for creating sketches and diagrams were designing, explaining,
and understanding. More than half of the sketches were created
on analog media like paper or whiteboards and were revised
after creation. Based on the findings from this work, Baltes et al.
developed SketchLink, a tool that aims at increasing the value of
sketches and diagrams by explicitly linking them to the source
code to which they pertain [32].

Mangano et al. conducted an observational study analyzing
fourteen hours of design activity by eight pairs of professional
software developers at the whiteboard [23]. In the study, each
pair was provided with a written prompt asking them to design
an educational traffic light simulation program. The researchers
analyzed the type of sketches created, how professional soft-
ware designers focus on individual sketches and shift their
attention among sketches, and the reasoning process to under-
stand and advance the state of the design at hand.

Out of these prior studies, the ideas discussed in [21], [22],
and [31] are most closely related to our study. However, our
study is unique in focusing on software architects and their
design activities at the whiteboard, as well as in examining
important aspects not covered in previous work, such as the
influence of levels of experience and the changes architectures
created at the whiteboard undergo in downstream activities.

Beyond studies that specifically focus on creating an un-
derstanding of sketching and whiteboard use, many tools have
been proposed to explicitly support software developers in their
design sketching. Baltes et al. [33], for instance, presented
LivelySketches, a prototype tool that supports the round-trip
lifecycle of sketches from analog to digital and back. As another
example, FlexiSketch supports collaboration across distances,
with the ability for users to define notations on the fly [34]. An
interesting recent example seeks to integrate sketching in the
IDE [35]. Compared to these and many other tools that have
been proposed, our paper does not contribute any tool designs,
though our findings give rise to implications for future tools.

B. Studies of Software Architects

Personal Experiences. The Pragmatic Architect column in
the IEEE Software magazine discussed many aspects about
the software architect and their role over the years. In [1], for
instance, Fowler introduced key definitions of software archi-
tecture and the architect’s role in creating and managing them.
Buschmann [36] shared and commented on a compressed week-
long diary of what his ‘real life” as an architect is like when
working on a product line for an industrial automation system,
which is similar to Kruchten [7] who described what software
architects ‘really do” based on his experience in managing a 10-
person architecture team from 1992-1995. Drawing on more
than ten years working as a software architect, Woods [37]
classified architects into three proups: enterprise, infrastructure,
and application architects. Klein [38] discussed what makes a
software architect successful. Erder and Pureur [17] considered
the architect’s role in agile development and followed up on this
discussion in a later paper that examined desired personality
traits of software architects [39]. Woods [12] discussed the

4775

benefits and drawbacks of architects actually engaging in pro-
gramming beyond their primary role as a designer. Klein [40],
based on his experience in industry, defined a three-phase model
(Blank Page, Integration, and Magic) to capture the evolution
of software systems, and discussed the kinds of contributions
necessary from the software architect for achieving success in
each phase. Sarang [41] proposed a structure for an architecture
team and defined the roles and responsibilities of the members.

Surveys. Clements et al. [2] investipated the human aspects
of architecting software, focusing on the duties, skills, and
knowledge of software architects. They canvased over 200 pub-
lic sources of information (e.g., web sites, blogs, training and
education materials, job descriptions) to identify about 200
different duties, 100 skills, and 100 areas of knowledge — each
of which was mentioned by at least one source.

Clerc et al. [9] performed a survey in the Netherlands to
collect feedback on the importance of architectural knowledge
for the daily work of practitioners in architecture. Based on
the answers from 107 respondents, the study provides insights
in the way practitioners view and use architectural knowledge
by listing which uses are important for the different roles that
architects play (e.g., project lead, reviewer, consultant) and on
what architectural level (e.g., software, information, enterprise).

Heesch and Avgeriou [10] surveyed 53 software architects
from several companies and project domains to get insights
in the reasoning processes followed in architectural design.
Among a variety of findings, they show that architects typically
are involved in requirements elicitation and therefore under-
stand the reasoning behind the requirements well, that architects
find it important to search for multiple options but equally
consider this an expensive activity and only engage in doing
50 when truly necessary (thus favoring known solutions), and
that architects seldom reject decisions they have made before.

Hoorn et al. [8] conducted a large-scale survey with 142 soft-
ware architects from four IT organizations in the Netherlands to
understand what architects do on a day-to-day basis and what
kind of support they need for sharing architectural knowledge.

Case Studies. Premaj et al. [42] conducted a case study with
two projects by performing retrospective root cause analyses
into the issues assigned to software architects to understand why
the issues arise, what types they are, and how their occurrences
could potentially be reduced in future through improvements in
the development process.

Rehman et al. [13] conducted a two-stage case study, com-
bining data analytics for five open source projects with semi-
structured interviews of several architects of these systems. The
authors addressed three questions: Do architects write code?
What type of code do architects write? Is there any empirical
evidence to support that software projects will benefit from
hands-on software architects? The primary conclusion is that
benefits exist to architects writing code.

While the focus of our study is different from these exist-
ing studies of software architects, the viewpoints expressed in
the personal experiences and the results from the case studies
were particularly influential in shaping the direction of our
study to provide a complementary view of an important under-
understood activity: whiteboard architectural design together

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

4776

with its downstream outflow. In addition, the surveys conducted
in [2], [8], [9], [10], [42], and [8] served as inspiration for how
we structured our survey questions.

III. RESEARCH DESIGN

We adopted a two-part research design for our study: we
first conducted in-depth semi-structured interviews with expe-
rienced software architects and then performed a validation
survey with additional, again experienced, software architects.
The goal of the interviews was to gather insights into practi-
tioner views to help us to formulate a clear picture of white-
board software architecture meetings and the outflow from these
meetings. These insights were then checked and refined by the
results from the validation survey. All study materials from
the interviews and surveys can be found in the supplementary
materials for the paper.!

A, Interviews

Protocol. We interviewed 27 software architects with expe-
rience in whiteboard software architecture meetings. The first
author interviewed the software architects either in person, if
they worked in the same area, or via Skype, if they did not. The
average length of the interviews was 37 minutes, the median
16.49, the shortest 7.18, and the longest 43.42.

Each interview consisted of two parts. In the first part, in
addition to a few demographic questions and questions about
the experience level of the interviewee, the interviewer asked
open-ended questions about their engapement in whiteboard
architecture design meetings, their perceptions about the partic-
ipation of novice and experienced software architects, and their
advice for other software architects participating in these kinds
of meetings. In the second part, the interviewer asked questions
related to the importance of the meetings to implementation, ap-
proaches used to document and communicate outcomes, deci-
sions and structures preserved from whiteboard to code, typical
changes that take place when moving from sketched designs to
concrete implementation, and aspects missing from whiteboard
discussions. Finally, we thanked the interviewees and debriefed
them by informing them about what we planned to do with
the data. The protocol was designed by two researchers over a
period of three months. Throughout the interviews, we limited
the conversation to in-person whiteboard meetings.

Participants. We selected the software architects to be
interviewed based on convenience sampling and snowballing.
We directly invited twenty software architects with experience in
designing software architectures and participating in whiteboard
architecture meetings. All of them agreed to be interviewed.
Each of them was asked for recommendations for other poten-
tial interviewees, which led to additional participants whom we
asked the same question. This eventually resulted in twenty-
seven software architects who agreed to participate in the study.

We first conducted a pilot interview with another software
architect (not included in the study) as a pretest [43] and then
performed the interviews with the 27 architects. The software

https-fgithub. comfwhitchoard-architecture/empirical-study

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

TABLE 1
SUMMARY OF PROFESSIONAL AND DEMOGRAPHIC
INFORMATION (0F PARTICIPANTS

SA Experience Domain Country
SAl 2-5 years IT Brazil
5A2 5+ years e-Government Brazil
SA3 2-5 years e-Commerce Brazil
S5A 4 5+ years IT Brazil
SA5 5+ years IT Brazil
SA 6 2-5 years Marketing Brazil
SA7 5+ years Audio streaming Sweden
SAR 5+ years IT Brazil
S5A 0 5+ years IT Brazil
SA 10 5+ years Finance Brazil
SA 11 5+ years Marketing Brazil
SA 12 2-5 years Embedded Software Germany
SA 13 5+ years Finance Brazil
SA 14 5+ vears e-Commerce Canada
SA 15 5+ years Embedded Software Usa
SA 16 5+ years e-Government Brazil
SA 17 5+ years Embedded Software Usa
SA 1B 5+ years e-Government Brazil
SA 19 5+ years Games Sweden
SA 20 5+ years Cyber-physical Usa
SA 21 5+ years Embedded Software Germany
SA 12 5+ years Embedded Software Usa
SA 23 5+ years Embedded Software Germany
S5A M 5+ years Embedded Software Usa
SA 25 5+ years Embedded Software Germany
SA 26 5+ years Embedded Software Usa
SA 27 5+ years Sports USA

architects came from eighteen different companies across five
different countries (Brazil 13, Canada 1, Germany 4, Sweden
2, and USA 7), working across a range of different domains,
including but not limited to games, music, finance, e-commerce,
data science, and sports. Note that after 24 interviews, we
reached saturation. We performed a few extra interviews to
ensure this was the case, reaching a total of 27. All interviews
were conducted by the first author over a period of four months.
Only one interview was completed face to face.

In the remainder of the paper, we label each interviewee SA1
through SA27. Table I provides a summary of the architects’
backgrounds in terms of their years of experience working as
a software architect, business domain in which they develop
software, and country where they reside and work. The supple-
mentary material attached to the paper presents detailed (though
anonymized) information about the participants.

Data analysis. Data analysis started with audio transcription
{16 hours and 46 minutes total). Two researchers conducted the
transcription using the Trint tool® and, after internal review, all
interview transcripts were formatted and then shared with the
respective software architects for validation; this resulted in mi-
nor adjustments involving the architects providing clarifications
of some of their answers.

After that, the coding process was started by two researchers
using the NVivo tool®. The two researchers had previous ex-
perience in conducting studies combining interviews, albeit in
different aspects of software engineering. Because the inter-
views were open-ended conversations with a limited number
of predefined lead questions and a broad range of open-ended

Thitpsffirint.com
hitps-fiwerw.gsrinternational com/nvivo/nvivo-products

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

https://github.com/whiteboard-architecture/empirical-study
https://trint.com
https://www.qsrinternational.com/nvivo/nvivo-products

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

and spontaneous follow-up questions by the researchers, and
because interviewees at times would return to prior topics as
part of answering later questions, we used a set of first cycle
and second cycle coding methods to data analysis [44]. First
cycle methods are those processes that happen during the initial
coding of data, where, per question, we identified and prelimi-
narily tagged possible relevant excerpts in the transcripts using
open coding [44]. After the first few transcripts, the researcher
met and created a unified coding schema, which they then
applied independently to the remainder of the transcripts. Once
each researcher had performed their independent turn on the
remainder, the two authors met to resolve differences in coding
through negotiated agreement [43].

Second cycle methods are advanced ways of reorganizing and
reanalyzing data coded by first cycle methods; in our study, the
codes created in the first cycle were refined and clustered by
the two researchers together into distinct, conceptually coher-
ent catepories with associated excerpts. These categories, then,
served as the source of our results as discussed in Section IV.

Note that we did not strive to develop a theory at this time.
Doing so0 is not always a necessary outcome for a qualitative
study [46] and, in our case, is actually ill suited for the research
questions we pose. Rather, we seek to document the varied
perceptions and experiences of software architects working in
the particular context of whiteboard meetings.

B. Survey

Protocol. Based on the results from the interviews, we de-
sipned a 30-minute survey to further build our understand-
ing of the perceptions of software architects on whiteboard
software architecture meetings. The first draft of the survey
was composed of seventeen questions, fifteen of which were
closed questions and two of which were open questions. For the
design of the survey, we followed Kitchenham and Pfleeger’s
guidelines for personal opinion surveys [47]. As one of the
guidelines, previous surveys related to sketches in software
engineering [31] and software architects [2], [8], [9], [10]
were consulted.

We piloted our survey with two experienced software ar-
chitects to get feedback on the formulation of the questions,
difficulties faced in answering the survey overall, and time to
finish it. As these pilot respondents were experts in the area,
we also wanted to know whether they felt we were asking the
right kinds of questions or should be changing the approach.
In response to their feedback, we modified the survey several
times, rephrasing some questions and removing others to make
it easier to understand and answer. The final version of the
survey consisted of 23 questions (including demographics). The
pilot survey responses were used solely to improve the ques-
tions, and these responses were not included in the final results.
We kept the survey anonymous, but in the end, the respondents
could share their email to receive a summary of the study. The
survey instrument is included in the supplementary material.

Participants. We followed a three-step approach to recruit
survey respondents: initially, we posted survey information on
personal accounts on social media (e.g., Twitter, LinkedIn).
Next, two authors contacted potential respondents by email

4177

(convenience sample) and asked them to share it with other po-
tential respondents (snowballing). Because of this process, we
were not able to track the total number of invitations. Overall,
we received 50 responses, out of which we disqualified four
responses that did not have any responses to any of the actual
survey questions of interest (despite having responses to the
basic demographics questions). This led to 46 valid responses
that were considered where the survey respondents answered
all questions.

The respondents were spread out across nine countries and
four continents. The top three countries where the respondents
came from were United States, Brazil, and Germany. The pro-
fessional experience of the 46 respondents working as software
architects varied from one year to 31 years, with an average
of 14 years and a median of 15 years. The majority of the
respondents had an advanced degree (67.4%), i.e., Master's or
Ph.D., 30.4% of the respondents had a Bachelor’s degree, and
229 praduated from high school without completing college.

Data Analysis. We collected the ratings that our respondents
provided for each closed question and converted these ratings to
Likert scores from 1 (Strongly Disagree) to 5 (Strongly Agree).
We computed the average Likert score of each statement related
to different perspectives (e.g., reasons to conduct whiteboard ar-
chitecture meetings, different levels of experience, role of doc-
umentation, downstream changes, and digital tools) and plotted
Likert scale graphs. In addition, we used open coding to analyze
the answers that the survey respondents gave to the two open
questions related to recommendations for software architects
conducting whiteboard architecture meetings and final thoughts
on the topic. To reduce subjective bias during the open coding
process, we assigned both to two authors of this paper. Each
author analyzed the answers separately. Once all the data were
coded, the two authors met to resolve differences in coding.

IV. RESULTS

In this section, we present the results for each of the four
research questions identified in Section 1. Before we do so,
however, we first further characterize whiteboard software ar-
chitecture meetings based on the responses from the architects.

A. Whiteboard Software Architecture Meetings

During the interview sessions, we asked the participants to
give an example or two of recent whiteboard software architec-
ture meetings in which they participated. We specifically asked
them to describe the setting, how many participants there were,
what roles they held, what problem the group addressed, and
how long the meeting lasted.

The meetings involved from two (min}) to 15 {max) partic-
ipants, with five being the averape. Beyond the interviewed
software architects themselves, other participants held many
different roles, including other software architects, developers,
requirements engineers, test engineers, marketing managers,
product managers, consultants, UX engineers, and users. Ac-
cording to one of the software architects (SA 10): “... you have
a team and evervone is working together, so the developer
who is doing the code is participating in the architecture

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

4778 IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

Brainstormang the ideas of others

Uniderstanding [aspects of] the problem

Explaining how the system works [is anticipated 1o work

Identifying the starting point for the eventual architectural solution

Uniarthing concarns that should be addressed architectually

Clarifying the project as a whale

Elabarating how the various components should interoperate

Elaborating the high-lewel architecture

Brainstarming my can ideas

Exchanching refevant knawledge among team members

Helping developers retain their crientation § undestanding of the direction of the project
Managing deckions

Delineating the scope of wark far the sub-teams that will be working on the implementing the design
Understanding canstraints that limet the available design chaices

Facilitating the eventual implementation

Communicating already made decisions to the rest af the team

‘Working out aspects of the architectural salution in detail

Setting domain vocabulary

Managing the complexity of the project

B 'ery Unimpartant @ Somewhat unimpaortant B Meutral

W Somewhat important

W ery impartant

Fig. 1.

discussion. The tester is also participating, the requirements
analyst too, evervone is on the same boat. There is no longer
separation.”

The topics discussed ranged from system integration and
service design, through cloud deployment and performance, to
knowledge management and even pre-sales. As one example, a
software architect (SA 21) described the topic of a whiteboard
meeting concerning the performance in the face of scale of
the software for which they are responsible as follows: “We're
using Lambda functions to go from one step to another and
we are seeing performance challenges on processing large
files given the limitation of the Lambda function of having
five hundred MB per data frame, so you can open any file
that will consume less than half GB memory of RAM and
then do the processing.” As another example, another architect
(SA 7) described a meeting they organized as: “As we had a
system that exchanged many messages over the network and
needed very high performance, several times we discussed
architectural problems that could bring I/O bottlenecks, be-
cause it was a system that wrote a lot on disk and sent many
messages over the network, so we had I/0 bottlenecks on the
machine running, as network bottlenecks needed high-level
architectural discussions.”

The meetings ranged from 20 minutes (minimum) to seven
hours (maximum), with an average of 1 hour and 10 minutes.
According to one of the software architects (SA 7), meetings
take longer when they involve activities that expressly seek to
document outcomes: “These meetings are roughly I would say
between four and seven hours. And this other meeting that
I told you about where we are documenting. So, when do
we do that, we typically also reserve at least half a day or
even better a day. So that we spend also at least four to six
hours really working on it.” This clearly is toward the extreme
end of meeting duration. At the same time, it recognizes that
architecture work is not easy and requires participants to engage
in depth to work through what sometimes can be very complex
issues. In this case, the culture at the company at which the
architect works is such that longer meetings to sort things out
are preferred over spreading the work across multiple, more
disconnected meetings.

Mineteen reasons for software architects to conduct whiteboard software architecture meetings.

B. Reasons to Conduct Whiteboard Software Architecture
Meetings (RQI)

From the interviews, we identified 19 different reasons
why software architects go to the whiteboard and hold
meetings concerning software architecture. We used the
survey responses to rank these 19 reasons, with Fig. |
showing the results. The top five reasons are: brainstorm-
ing the ideas of others (average Likert score for this
statement is 4.59, i.e., between “somewhat important” and
“very important™), understanding (aspects of) the problem
that the architecture has to solve (average Likert score for
this statement is 4.54, i.e., between “somewhat important™ and
“very important™), explaining how the system works/is antici-
pated to work (average Likert score for this statement is 4.37,
i.e., between “somewhat important”™ and *“very important™),
identifyving the starting point for the eventual architectural
solution (average Likert score for this statement is 4.37, ie.,
between “somewhat important™ and *“very important™), and un-
earthing concerns that should be addressed architecturally
{average Likert score for this statement is 4.28, i.e., between
“somewhat important”™ and “very important™).

The following are some comments from the sofiware ar-
chitects (SA) that highlight these aspects, topether with what
reason it was classified as:

v 5A 3: “Most of the time that an important decision was to
be made ar some doubt existed related to some important deci-
sion, we used the whiteboard to discuss or brainstorm things
or draw some things that were the common understanding
of the feam.” [understanding (aspects of) the problem that the
architecture has to solve]

v 5A 13: “So I would say that the solution crystallizes on
the whiteboard. The whiteboard makes it possible to quickly
change the solution or to brainstorm some different aspects.
So, the brainstorming is I would say impossible without the
whiteboard”. [brainstorming the ideas of others]

In our survey, we also asked respondents about the impor-
tance of whiteboard architecture meetings to successful ar-
chitectural design. Among the 46 survey respondents, 56.52
percent (26 respondents) consider whiteboard design meetings
very important to successful architectural design, 41.30 percent

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

TABLE 11
IMPORTANT ASPECTS (F EXPERIENCE RELEVANT TO WHITEBOARD
SOFTWARE ARCHITECTURE MEETINGS

Design of previous architectures

Ability to communicate

Participation in previous projects

Technical knowledge

Domain knowledge

Architectural knowledge on methods and tools
Awareness of technology trends

Ability to think strategically

Blend of technical and non-technical aspects
Depth of knowledge about a theme with breadth of
knowledge overall

Facilitation of meeting discussion

Having faced failures

Good understanding about existing systems
Ability to interact with project manager
Many hours of development

Knowing a lot of abstractions across domains

Frequency ||

e L) L Lad e L

(19) ranked the meetings as important, and 2.17 percent (1)
were neutral.

Observation 1
Brainstorming the ideas of others, understanding (as-
pects of) the problem that the architecture has to solve,
explaining how the system works/is anticipated to work,
identifying the starting point for the eventual archi-
tectural solution, and unearthing concerns that should
be addressed architecturally are the top five reasons
for software architects to conduct whiteboard software
architecture meetings.

C. Experience (RQ2)

1) Important Aspects of Experience: According to Kruchien
[7], a software architect is a software expert responsible for de-
signing, developing, nurturing, and maintaining the architecture
of the software-intensive systems in which they are involved.
Knichten further observes that, in general, the architect’s role
is typically reserved for someone with significant experience in
prior projects.

In order to better understand what kind of experience is
relevant to whiteboard software architecture meetings, we asked
the software architects during our interviews. Collectively, they
identified sixteen different aspects, as listed in Table II with
the number of architects that identified each aspect. The top
five aspects are: design of previous architectures (5), ability
to communicate (4), participation in previous projects (3),
technical knowledge (3), and domain knowledge (3).

The following are some comments from some of the soft-
ware architects that highlight these aspects, together with the
corresponding meaning of experience:

v 5A 9: “When we are with experienced architects, they
have already designed and implemented various software and
have more notion of what works and does not work, they
have already seen several examples of architecture, so that is
what they bring of importance, the experience itself” [design
of previous architectures]

4779

v SA 28: “So I think there is probably two aspects to the
experience, right. One is: experience with how to communi-
cate, right. So how to, how to produce design on the fly and
communicate that to the other people in the room quickly.”
[ability to communicate]

v SA 7: “Experience is also defined in terms of the variety
of prajects. If a person has developed an embedded system,
a mobile system, a web system, a large-scale micro-controller
system, in various contexts, [ed: they] will be able to com-
pare very well the performance of a web system is different
from mobile performance, embedded, etc.” [participation in
previous projects]

Overall, while the aspects mentioned differ, we note that the
majority point to the need for a strong technical background that
is not necessarily limited to just one project or type of project.

Observation 2
Design of previous architectures, ability to communi-
cate, participation in previous projects, technical knowl-
edge, and domain knowledge are the top five aspects
of experience seen as useful to whiteboard software
architecture meetings.

2} Team Composition: Most companies have a limited num-
ber of software architects and depending on the size of the
company, it may have just one or two people in this role.
Thus, whiteboard software architecture meetings necessarily
not only involve participants in different roles (as mentioned in
Section IV-A), but also participants who are likely to have
different levels of experience. In the interview sessions, we
asked about these different levels of expertise as they relate to
team composition for meetings at the whiteboard, and we used
the surveys to gather additional information in this regard.

We first discuss the participation of novices. The intervie-
wees mentioned that novices typically were invited for two
primary reasons. First, even though they were novices, they
sometimes already were responsible for some (small) part of the
code base that might be influenced by the architectural chanpes
being discussed. As such, the novices needed to be there and
participate just as more experienced developers. The second
reason is learning: by inviting novices to the meetings, the
architects provided the novices with the opportunity to become
familiar with other parts of the code as well as the higher level
architectural structures within which their parts of the code fit.
In this case, participants were still encouraged to participate
and ask questions, though they otherwise did not carry critical
responsibility. Rarely did the novices lead the meeting, which is
understandable because it is the architects that we interviewed
who hold full responsibility for the architecture and the deci-
sions governing its evolution over time.

The interviewees shared eleven different perceptions on in-
cluding novices in the meetings, which were ranked by the
software architects who participated in the survey (Fig. 2). The
top five perceptions are: with novices, the team has to provide
more context and offer more explanation during whiteboard
software design meetings (average Likert score for this state-
ment is 4.28, ie., between “somewhat agree” and “strongly

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

4780

Witk novices, the team Rhas 1o provide mone context and alfer mare
explarations during whitebasrd softwars design mestings.
Including novices in whiteboard software architecture design meetings is important, because
the dess that they contribute ane not baund by precanceived natians of what is rightfwrong.
When rovices are present, the team has to g6 into aspects of the desgn
that it had nat intended to foous on, mpacting the fow of meetings.

Movices da not consider all aspacts nacessany to design a good architectural salution.

It is important b include nowices in whiteboard software archifecture design
meeetings because they are nat biased by previous experiences/meetings.

Wovices are alraid to speak up in 8 whitebaard software architecture design mesting
Movices tend to be quiet, listening in and learning from others.

Hovices have difficulty in understanding the problem and ‘seeing” the overall salution.

Mowices are better at rewealing blind spots tham experienced architects,
unearthing assumgtions that experienced architacts make that might rat held,
MNowices do not understand the importance of architecture design.
Mavices are inflaxible in that, when they affer up an idea, they
canral ket it go and thereby lessen the ability 1o heve & productive meseting,
8-
W Srongly disagres

W Somewhat disagree W Neutral

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

-2E -1E

- . 12 b =0 42

® Somewhat agree B Strangly agree

Fig. 2. Architects” perceptions on including novice participants in whiteboard software architecture meetings.

agree”), including novices in whiteboard software architecture
design meetings is important, because the ideas that they
contribute are not bound by preconceived notions of what is
right/wrong (3.65, between “neutral” and “somewhat agree™),
when novices are present, the team has to go into aspects of the
design that it had not intended to focus on, impacting the flow
of meetings (3.59, between “neutral” and “somewhat agree™),
navices do not consider all aspects necessary to design a good
architectural solution (3.59, between *neutral” and “somewhat
agree”), and it is important to include novices in whiteboard
saftware architecture design meetings because they are not
biased by previous experiences/meetings (3.57, between “neu-
tral” and “somewhat agree™). The following are some comments
from the interviewees that highlight these aspects:

XSA 18: “When it is with more inexperienced architects,
sometimes it tends to be a bit more for lecture. Some points
you end up having to go deeper to see if you bring the person
to the same level or tend to go down. The person still does not
make a clear division between what is architecture level and
implementation. It poes down and up much more often and you
have to keep pulling the person up again.” [with novices, the
team has to provide more context and offer more explanations
during whiteboard software design meetings]

vSA 23: “So having novices in the room who are
unafraid to ask questions can help to clarify things which
daften leads to actual insights that would have gotten glossed
over had they not been written down.” [novices are better at
revealing blind spots than experienced architects, unearthing
assumptions that experienced architects make that may
not hold]

XSA 12: “The beginner has a lot of difficulty, sometimes, to
see the whole solution. The beginner is very focused on the
use of technology and a little distant from the solution as a
whaole. This is my perception. They already want to discuss the
technology, the infrastructure, the implementation, they have a
very great anxiety, the more novice the developer. The tendency
is to try to contain these impetus and take off the source code
leading to discussion at the architecture level, repardless of
technology or how it will be used. That's my main difficulty

with new developers. They are still very much attached to the
code and technology that will be used in the project.” [novices
have difficulty in understanding the problem and ‘seeing’ the
overall solution]

Observation 3
The top five perceptions on including novices in white-
board software architecture meetings are: with novices,
the team has to provide more context and offer more ex-
planations during whiteboard software design meetings:
including novices in whiteboard software architecture
design meetings is important, because the ideas that
they contribute are not bound by preconceived notions
of what is right/wrong; when novices are present, the
team has to go into aspects of the design that it had
not intended to focus on, impacting the flow of meet-
ings; novices do not consider all aspects necessary to
design a good architectural solution; and It is important
to include novices in whiteboard software architecture
design meetings because they are not biased by previous
experiences/meetings.

Note that the various perceptions represent a mix of positive
and negative effects of including novices, so the order in which
the perceptions are placed in Fig. 2 should not be read as
ranging from positive perceptions (top) to negative perceptions
{bottom), or vice versa. Rather, the figure is ordered by level
of agreeableness. The observation that, with novices, the team
has to provide more context and offer more explanation dur-
ing whiteboard software design meetings was apreed to most
often, while the observation that novices are inflexible in that,
when they offer up an idea, they cannot let it go and thereby
lessen the ability to have a productive meeting, was agreed to
least often.

In our survey, we also asked respondents whether they felt
that overall it is important to include novices in whiteboard
software architecture design meetings. Out of 46 respondents,
23 respondents strongly agree, 19 somewhat agree, and 2 are

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

Teae quality of the archiecture is infleenced by the participation of experienced architects.

Experienced architects are mpartant in s mesting 0 swid making the wrong decsions,

Esparienced wrchifiot an ab 1o work with linger abstraction asd have a tacility te dicuss thaee absbrastions.
Experienoed architects push edge cises, bizause they ane aware of thisr past mistakes in this negand.

Experienced archibects understand the whole contest of the design project.

Expaienced architects terd 1o go 1o tha whiteboard first [in, design at the whiteboard Test befors wsing other
means].

Experienced architects promote an envirenment of studting iradeofs among kheas, leading to a mone productive
meating.

Experienced archivects bend oo taliy'esplain a ot

One needs less preparation for meetings with more expenienced architects.

In & whitebeand softwane srchiticture design maeting with eepaniencad anchilois, th Meeting com mances
mare quickly, But often rushes bo condusions based on others rusting the experience of the mone experienced person.

If1 i white®sard dedigs riviating with e fanssd archites1s, it B almet a il thiy can reed sach othars mind,
It is difficult bo reacs agreement with ceperienced anchitects.

Experienced archRects think carefully before making a comment in 2 meeting.

u Srengly dsagrae

Fg. 3.

neutral to this statement. The average Likert score for
this statement is 4.35 (ie., between “somewhat agree” and
“strongly agree™).

In addition to building an understanding of the perceptions of
architects on the participation of novices, we equally sought to
understand perceptions on the participation of experienced ar-
chitects in the meetings. We identified thirteen such perceptions
from the interviews and asked the surveyed software architects
to rank these thirteen (Fig. 3). Again based on the level of
agreeableness, the top five perceptions are: the quality of the
architecture is influenced by the participation of experienced
architects (average Likert score for this statement is 4.35, ie.,
between “somewhat agree™ and “strongly apree™), experienced
architects are important in a meeting to avoid making the
wrong decisions (4.3, between “somewhat agree™ and “strongly
agree”), experienced architects are able to work with larger
abstractions and have a facility to discuss those abstractions
(4.26, between “somewhat agree” and “strongly agree™), expe-
rienced architects push edge cases, because they are aware
of their past mistakes in this regard (4.15, between “some-
what agree™ and “strongly agree™), and experienced architects
understand the whole context of the design project (3.91,
between “neutral” and “somewhat agree™). The following are
some comments from the interviewed software architects that
highlight these aspects:

v 5A 10: “The quality of the solution with more experienced
people considers requirements that less experienced people
will not consider. Then we will have a more stable and robust
solution with more experienced people” [the quality of the
architecture is influenced by the participation of experienced
architects]

v 85A 7 “It’s better because sometimes some decisions fake
a lot of work and if the decision is made wrong by a less
experienced architect setting the course of a particular project
in the next three, four weeks, we will lose a lot of time. So
the participation of experienced architects at these meetings is
imperative.” [experienced architects are important in a meeting
to avoid making the wrong decisions]

4781

11

wSomewhat diagree @ MNeutral | @ Somewhat agree @ Strongly agree

a
3
A 4 pL 2

15
18

Architects” perceptions on including expericnced participants in whiteboard software architecture mestings.

v SA 18: “The conversation is not the same level. You have
experienced architects it is almost that you are reading one
another mind. So it is more diagrammed and less talked about,
and when you have a discussion it is discussions that people
go deeper or that end up becoming a proof of concept because
they do not have a clear answer” [in a whiteboard design
meeting with experienced architects, it is almost as if they can
read each other's minds]

In our survey, we also asked respondents whether they felt
that overall it is important to include experienced architects
in whiteboard software architecture design meetings. Among
the 46 survey respondents, 37 respondents (80.43%) strongly
agree that it is important to include experienced architects in
the meeting, 6 (13.04%) somewhat agree, and 2 (4.35%) are
neutral. The average Likert score for this statement is 4.7 (i.e.,
between “somewhat agree” and “strongly agree™).

Observation 4
The top five perceptions on including experienced ar-
chitects in whiteboard software architecture meetings
are: the quality of the architecture is influenced by
the participation of experienced architects; experienced
architects are important in a meeting to avoid making
the wrong decisions; experienced architects are able
to work with larper absiractions and have a facility to
discuss those absiractions; experienced architects push
edge cases, because they are aware of their past mis-
takes in this regard; and experienced architects under-
stand the whole context of the design project.

Beyond ranking the effects on whiteboard meetings of in-
cluding experienced architects, we also asked the surveyed ar-
chitects to select the five most valued aspects of experience that
experienced architects should exhibit out of the ones identified
in the discussion of Subsection IV.C.1. Table III shows the
eighteen aspects, as ordered by frequency by which they were
included in the top five.

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

4782

Homiced team is mportant for educabion; those who have less experience learn more when those whao
harve more experience are present.
DCiversity s impartant for a mbsed team; mot only in lkevels of experience, but also in terms of different
arnas of Eipertke.

A mixed team s important to sharing the technical view of the dedsions with the team.
A taam of mised levels of espariance is better Tor Brainstorming.
& minsd Team i good because the participants sdd questions that ore sametimes does not ask aneall,

& miseed team of novioe and experienced anchitects i good o avold bias toward adopting past solutions.

A mined team af narice and exgerienced architects is good because novices sed experienced architects
complement the background of one anotier,

With a mised beam, the fnal selution i better because of the dilfarens Backgraunds of the particpants.

Ini @ mriwed mesting, the ssperenced architect is looked upon to lead the mesting.
& iz toaen s good Tar hiing imaghts, becauss rovices, am ralrsid 16 mk queitions thal (perhaps
inschverterdby) lead 1o ireights that would Fave othersise been glossed cver
Expenenced archiects are important to speed up decion making in whitebosrd software arch&ecture design
meetings.

Experiencoed architects can ask questions that others cannat in 3 whitehoard softwam desips mesting.

Experienced architects can undermine the enthusiasm of nosices in 2 meeting.

In & whitebcard design mesbing with experienced srchitects, the whiteboards exhib a back of detail because the
experienced architects know the detalls and waume evenyone does
‘With esperienced architects, you do not have to spend part of the whitehoard design meeting explaining the
solution; the mecting focuses..
F v complios design problanms, novios archilects ane s welcoma Bacaure thiy ane seem a likaly no baing
abli o Fave many insights

Discussions among experienced anchitects usaally Thow mone quickly, but often rush 1o conclusions.

With only experierced saltware architecty, the sakadion that emanges is of better quality than with & mized feam,

W Strongly

B o 4

W Neutral

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

18 -1 a 1w

-21

. w H

W Somewhat apree B Srorgly agres

Fig. 4 Architects” perceptions on having a mixed team of participants in whiteboard software architecture meetings.

Observation 5
The top five most valued qualities for experienced ar-
chitects participating in whiteboard software architec-
ture meetings are: posses a foundation of architectural
knowledge (patterns, methods, and tools); ability to see
and analyze trade-offs; experience in having designed
several architectures in the past; breadth of knowl-
edpe across domains, applications, and abstractions;
and ability to both introduce ideas and serve as a spar-
ring partner for them.

Because most whiteboard software architecture meetings in-
volve a mix of novice and experienced participants, we also
asked the interviewed software architects about their perception
on mixed teams, which led to eighteen different perceptions
that we asked the surveyed software architects to rank (see
Fig. 4). The top five perceptions are: a mixed team is important
for education; those who have less experience learn more
when those who have more experience are present (average
Likert score for this statement is 4.61, i.e., between “somewhat
agree” and “strongly agree™), diversity is important for a
mixed team; not only in levels of experience, but also in
terms of different areas of expertise (4.52, between “somewhat
agree” and “strongly agree™), a mixed team is important to
sharing the technical view of the decisions with the team
(4.15, between “somewhat agree” and “strongly agree™), a team
af mixed levels of experience is better for brainstorming
(4.04, between “somewhat agree” and “strongly agree”), and
a mixed team is good because the participants add ques-
tions that one sometimes does not ask oneself (4.04, between
“somewhat agree” and “strongly agree™). The following are

TABLE III
EiGHTEEN MosT VALUED ASPECTS OF EXPERIENCE FOR EXPERIENCED
ARCHITECTS

I Aspect of Expenence Frequency I
osses A on o nowledge

(patterns, methods, and tools)

Ability to see and analyze trade-offs

Experence in having designed several architectures in

the past

Breadth of knowledge across domains, applications,

and shstractions

Ability to both introduce ideas and serve as a sparring

partner for them

Ability to communicate with the team

Depth of knowledge in a particular area of specialty

(domain, technology)

Ability to facilitate fruitful discossions

Ability to mentor others

Understand failure cases

Experience in having participated in many different

projects

Ability to stop the tcam from going in the wrong
firect:

Understanding of the architecture of other existing

systems

Many hours of hands-on software development

Awareness of technology trends

Ability to interact positively with the project manager

Ability to diffuse interpersonal situations

Knowledge of existing design decisions and rationale

=1

21

=]

19
16

15
11
10
10

=]

=]

= e Lh O

some comments from the interviewed software architects that
highlight these aspects:

v 5A 9: “I think we should have peaple with various levels
of experience, because those who have less experience learn
more with those who have more experience. The discussion
becomes more concentrated with experienced people, I think
if is natural too, but it is imporiant for everyone fo parficipate

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

so that everyone has the complete understanding of what is
being discussed and everyone can learn how to do if, because
the less experienced in the future will be those people who
will lead these activities, so they need to participate from
the beginning.” [a mixed team is important for education, those
who have less experience earn more when those who have more
experience are present]

v 8A 11: “I do not think the result comes out better only
with experienced people. I think the outcome is best suited
to diversity as long as everyone is involved and participating
and have confidence in each other to participate. When there
is such confidence and comfort, I prefer a more diverse
environment, for even in the basic question insights arise, with
people who think differently, better insights emerge, so I see
more diversity. Diversity not only of experience, but also of
background af areas. At our whiteboard meetings, the person
who is project manager, who has a different background, a
business analyst, a person aof aperation, participates. The best
insights come from this mix.” [diversity is important for a mixed
team, not only in levels of experience, but also in terms of
different areas of expertise]

v 5A 6: “When you are working with something that does
not exist and something innovative, it is interesting to have
a mix of people, even because you do not know what the
roadmap will be or how the architecture will materialize, how
will be the implementation itself, because a lot of architectural
level, you can have assertion, define interfaces among subsys-
tems, but at the time of poing into the details, mainly, for
integration between existing systems, there are many details
that only arise when we do a more detailed design, and this
kind of question, the novices are more willing to do it for
lack of knowledge and this makes you think, explain, review
the concepts and you even discovering what you do not know
what you thought you knew and that enriches the discussion.”
[a mixed team is good for having insights, because novices are
unafraid to ask questions that (perhaps inadvertently) lead to
insights that would have otherwise been glossed over|

In our survey, we also asked respondents whether it is impor-
tant to include both novices and experienced software architects
in whiteboard software architecture design meetings. Out of the
46 respondents, 27 strongly agree, 17 somewhat agree, and |
was neutral with respect to this statement. The average Likert
score for this statement is 4.5 (i.e., between “somewhat agree”
and “strongly agree™).

Observation 6
The top five perceptions on including novice and expe-
rienced participants in whiteboard software architecture
meetings are: a mixed team is important for education;
those who have less experience learn more when those
who have more experience are present; diversity is im-
portant for a mixed team, not only in levels of experi-
ence, but also in terms of different areas of expertise; a
mixed team is important to sharing the technical view
of the decisions with the team; a team of mixed levels
of experience is better for brainstorming; and a mixed
team is pood because the participants add questions that
one sometimes does not ask oneself.

4783

D. Documentation (RQ3)

Even the most suitably designed software architecture is
useless if the people who need to use it do not know what it is,
cannot understand it well enough to apply it, or misunderstand
it and apply it incorrectly. All of the effort, analysis, hard work,
and insightful design on the part of the architects will have
been wasted. Thus, creating an architecture is not enough. It
has to be communicated in a way that stakeholders can use it
properly [48].

From the interviews, we learned that whether an archi-
tect documents their whiteboard software architecture meetings
varies drastically, from never to always. We used the survey to
better understand how often they do. Among the 46 survey re-
spondents, 3 (6.53%) always document what happens during the
meetings, whereas 21 (45.65%) document most of the time, and
11 (23.91%) only about half of the time. Ten others (21.74%)
infrequently document what happens during the meeting and
one (2.17%) does not document ever. The following are some
comments from our software architects (SA) that highlight
these aspects:

vSA I4: “We always take pictures of the whiteboard.
Sometimes we have to delete the whiteboard, so we fake a
picture, then take it again, so sometimes we have three, four
pictures af a single meeting. Usually this is broken. If it is a
very complex flow, we digitize it in the sense of redoing that
flow with some software, with some presentation or in the same
flow draw itself. Sometimes we have to better specify what we
have said, so we write a story and sometimes we have to
break the cases and better document what each of those parts
will be.”

v 5A 8: “I do not particularly like documentation very much
because it is very difficult to keep the documentation current
with reality. It is very common we left an architecture meeting,
go to a Wiki, we draw everyvthing, we put text, images and |
have particularly never seen this evolve in conjunction with
the code. You get some of reference, initial, etc., but at some
point this will be outdated. At some point people will no longer
update that. It's very difficult for any change people update
the document to reflect what's happening. So I am particularly
against documentation: over documentation.”

1) Documentation Approaches: During the interviews, we
also asked the software architects to describe what forms of
documentation are used. From the answers, we identified fif-
teen different approaches, which we seeded into the survey to
understand how many of the survey participants used each of
the different approaches (see Table IV). The top five documen-
tation approaches are: photo(s) of the whiteboard, Wiki pages,
notes taken during the meeting by one or more participants,
notes produced/polished after the meeting, and photo(s) with
additional notes. The following are some comments from our
software architects that highlight these choices, together with
the documentation approaches:

v'SA 24: “I never document in a formal way. So, many
times, what is happening is that you do is you design things
on the whiteboard and you make photos and as I said you put
them either into a folder” [photo(s) of the whiteboard]

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

4784

TABLE IV
FIFTEEN ArPrOACHES UsSED TO DOCUMENT WHITEBOARD SOFTWARE
ARCHITECTURE MEETINGS

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

TABLE ¥V
TweELVE REASONS WHY SOFTWARE ARCHITECTS CHOOSE TO DOCUMENT
WHITEROARD SOFTWARE ARCHITECTURE MEETINGS

|] Approach Frequency || || HReason Frequency ||

Photo (s} of the whiteboard 3B Berve as a starting point for follow-up discussion in 32

Wiki pages 32 future meetings

Motes taken dunng the meeting by one or more partic- 28 Retain as evidence for later of the decisions that were 33

ipants made

Motes produced/polished after the meeting 17 Participants forget 30

Photois) with additional notes 17 Communicate the outcomes to others on the project 27

UML diagrams 15 Different participants have different beliefs regarding 26

Powerpoint slides 13 the outcomes of a meeting; documenting helps disam-

Informal record of decisions, altenatives, and rationale 11 biguate

for choices Use later to educate new people on the project 14

Informal record of decisions 10 Validate in detail whether the design ideas indeed can 11

User stories 9 work as intended

Flow charts -] Train the team on the design B

We leave the whiteboard up ("Do not erase™) 7 Enable reuse of the design ideas in other design projects B

Architecture Decision Records (ADRs) 6 Present a preliminary solution to the customer 5

Use cases 6 Participants sometimes second-guess what they did 5

Filling of Jira issues, stories or epics with decisions 1 Include as part of the design that we are handing off to 3
the customer (so they can do the implementation work)

v SA 15: “It usually depends on the type of discussion. If I
want to validate just one quick idea, just to discuss one detail,
usually we only take a photo of what is on the whiteboard.
This is very common. So we put the photo on the Wiki directly,
to show that it had the discussion. We try to document and to
repister, unless it is a tiny thing, we are going to join quickly
and to discuss a thing of half an hour. But usually, we usually
take a picture to remember what we discussed, but the peneral
rule is to take that and write a page or two. Not documenting
is an exception.” [Wiki pages]

We note that these approaches range from capturing the re-
sults ‘as is” (e.g., photo(s) of the whiteboard, leave the content of
the whiteboard up), through some filtering and processing (e.g.,
notes produced/polished after the meeting, informal record of
decisions), to what can be a more elaborate pass during which
further refinement can take place by the person documenting the
results of the meeting (e.g., UML diagrams, flow charts). In the
latter case, it is not uncommon for the results to undergo further
scrutiny, either in a separate meeting where the more formal
document is reviewed or asynchronously through commenting
on a shared document. Any refinements made at that point
represent the start of what can be further downstream changes
(see Section IV-E).

We also note that the approach followed for documenting in
some cases clearly was connected to the content of the white-
board (e.p., using UML to document a component diagram
that was created on the whiteboard, using a flow diagram to
document a distributed protocol that was explored on the white-
board). In other cases, however, participants indicated using
a single or a few documentation approaches indiscriminately,
with, for instance, photographs of the whiteboard or a note
taker being responsible for sending an outcome and discussion
summary via Slack or e-mail the standard approach regardless
of the kind of content discussed at the whiteboard. As such,
there is no strong correlation, with different approaches used
for similar kinds of situations. That said, specific approaches
such as using user stories or ADRs only are applicable in certain
situations and it is clear that more generic approaches are used
most often.

Observation 7
A majority (76.09%) of software architects always or
most of the time document what happens in whiteboard
software architecture meetings. Photo(s) of the white-
board; Wiki pages; notes taken during the meeting by
one or more participants; notes produced/polished after
the meeting, and photo(s) with additional notes are the
five most common documentation approaches used by
the software architects to do so.

2) Reasons to Document the Meetings: Complementing
whether software architects document what happens in white-
board software architecture meetings and how they do so, we
also sought to understand their primary reasons for investing
time and effort in documenting. From the interview sessions,
we identified twelve reasons, from which we asked each survey
respondent to select the five most important to them.

As shown in Table V, the five reasons that were most fre-
quently selected are: serve as a starting point for follow-up
discussion in future meetings; retain as evidence for later of
the decisions that were made; participants forpet; communicate
the outcomes to others on the project; and different participants
have different beliefs regarding the outcomes of a meeting;
documenting helps disambiguate. The following are some com-
ments from the software architects that exemplify some of these
aspects, together with the reasons to document the meetings:

v 8A 13: “They are of course used because you take this as
a starting point to continue the work. So, they are essential to
the participants and sometimes also to other interested people
who pet the results by email. And later on they are looked at,
as 1 said the meefings are just the starting point to discuss
part of a solution or to provide some analysis that you can
support next discussion with data.” [serve as a starting point
for follow-up discussion in future meetings]

v SA I4: “The meeting cannot stay in people’s head, it
needs to be documented in some way. Someone needs fo

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

commit to transferring that knowledge that has been pener-
ated, sometimes on the whiteboard itself or at other times in
discussions, someone needs to be documenting this so that it
becomes a task.” [participants forget]

v 5A 9: “Every time we have a new person on the team,
we recommend [ed: them] to see the architecture documents
and present doubts or explain [ed: their] understanding of the
architecture. It is to make sure [ed: they] understood what we
designed. So, the documents are used as reference, whenever
someone has a doubt about a piece or a component designed,
we recommend the person to go back to the architecture
document.” [use later to educate new people on the project]

Observation §
The top five reasons to document whiteboard software
architecture meetings are: serve as a starting point for
follow-up discussion in future meetings; retain as ev-
idence for later of the decisions that were made; par-
ticipants forget what was discussed; communicate the
outcomes to others on the project; and different partic-
ipants have different beliefs regarding the outcomes of
a meeting/documenting helps disambiguate.

E. Downstream Changes (RQ4)

Various studies document what happens at the whiteboard
(e.g.. [21], [22], [23], [26]. [28], [29], [31]). Other studies
examine architectural decay and erosion: what happens to an
architecture once it has been realized in an implementation and
changes are necessary to the code base that have architectural
implications (e.g.. [25], [49], [50]). What has not been stud-
ied yet, however, is what happens in between: once a white-
board meeting concludes, what kinds of downstream changes
are necessary to be made to the architecture as it is being
rolled out and refined? As mentioned in Section IV-D, such
changes may already emerge just from the act of documenting
what happened at the whiteboard (an architect more formally
documenting decisions after a meeting may realize that some
aspect of the architecture as designed has a flaw and decide
to address the flaw on the spot since it is not too onerous to
do so) or may happen later (for example, when the architect
debriefs the team on the decisions made and in the process
of explaining realizes an issue, or when a developer respon-
sible for making some changes in the midst of making those
changes encounters a problem in how the envisioned architec-
tural changes are incompatible with some aspect of the current
codebase).

In our interviews, we asked architects about what kinds of
changes they have witnessed being made to the architectural
designs and plans they created in whiteboard software archi-
tecture meetings. Table VI shows the ten different aspects that
were recounted by the software architects, in order of how often
they were mentioned by the surveyed software architects. The
top five aspects that change downstream are: inferface of major
components in the architecture; implementation details; a small
handful of components in the architecture; detailed mod-
ules inside architectural components; and database schema.

4785

TABLE VI
TeN AsPECTS THAT CHANGE DownsTREAM FrOM WHITEBOARD
ARCHITECTURE MEETINGS

Interface of major components in the architecture 4
Implementation details 28
A small handful of components in the architecture 24
Detailed modules inside architectural components 21
Diatabase schema 20
Diriving scenarios 19
Format of messages connecting vanous parts of the 13
architecture

Overall architectural solution 13
Key algorithms 7
Change of proposed implementation (ime or scope) |

The following are some comments from the interviewed soft-
ware architects that highlight these aspects, together with the
kinds of changes:

v SA 9: “I think when you do not think of all the details.
I remember that we were once desipning part of the KNoT
device pratocol and we thought and wrate it on the whiteboard,
but we did not think at all. S0 we had to add more things
we had not thought about when we were designing. They are
things like that. They are parts of the implementation that you
do not think about when you're on the whiteboard, but then
vou realize you need it in implementation. It is which I think
usually changes.” [implementation details]

v SA 8: “What I see to change is usually the format of the
messages. We define the messages with certain attributes and
then we see that something is missing and we have to adjust
with more or less attributes due to performance, for example,
the payload pot too big and we need to decrease the payload
due to performance or we need fo send more attributes because
the domain or functional requirement changed on the other
side and we will need to consume more information than what
was originally intended. It is something that usually changes
a lot over the life of an application. It is something I see
happen frequently, we define that the message will be this and
for some reason we have to change that message or increase
or decrease for some reason.” [format of messapes connecting
various parts of the architecture]

Observation 9
The top five aspects that change downstream from
whiteboard architecture meetings are: interface of ma-
jor components in the architecture; implementation de-
tails; a small handful of components in the architecture;
detailed modules inside architectural components; and
database schema.

1) Rationale for Changes: After identifying the aspecis
that change downstream, a natural step was to understand the
rationale for the chanpges. From the interviews with the software
architects we identified seventeen reasons to make changes and
then asked the surveyed software architects to mark the five that
they experienced most frequently. Table VII shows the seven-
teen reasons to make chanpes together with their frequency.
The top five reasons for change are: certain aspects of the
solution are over-simplified and turn out to be more complex;

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

4786

TABLE VII
SEVENTEEN REasOoNs TO Makk CHanGES DOWNSTREAM FROM
WHITERDARD ARCHITECTURE MEETINGS

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

TABLE VIII
SIxTEER AsPECTS MissinG FrROM WHITEBOARD SOFTWARE
ARCHITECTURE MEETINGS THAT CouLn HAVE IMPROVED THE DUTOOMES

|] HReason Frequency || || Aspect Missing Frequency ||
Certain aspects of the solution were over-simplified and T8 Sufficient information about the problem to design the 20
turn out to be more complex solution
We discovered a better solution than the onginal we 23 Understanding of the relative pnonty of vanous design 24
devised at the whitehoard considerations
Multi-dimensionality of the problem — gualities that 23 Metrics that delineate ‘success” of the architectural 19
were not considered (or merely lightly considered) design
duning the whiteboard meeting are negatively affected Validity of assumptions abouwt decisions, as to whether 19
by the planned solution they hold up at implementation time
The project 1s Agile, and thus had to respond to new 23 Dietails about the envisioned implementation 19
circumstances Certain requirements 18
Performance 19 Agenda for the meeting 14
Customer requirements changed midstream 17 Dietails about the curent implementation 13
Technologyfplatform limitations 17 Test cases governing the architectural design 9
Team made false assumptions 14 Dependencies among the vanous whiteboard sketches 9
Difficulty in mapping the high-level solution to actual 9 Context diagram 9
code Interfaces among the components B
Scalability 9 Structure of the messages exchanged by the compo- 2
Certain predictions of how the architecture would be- -] nents
have did not hold up An overview of the project 2
Reliability 7 Clear problem to be solved 1
Lack of having documented what we did at the white- 3 Clear next steps and assigned responsibilities |
board
Team misunderstood the architectural design 3
Social problems with the team 2
il tlr: above at different times, it is very context 1 considered (or merely lightly considered) during the whiteboard

ent . . .

Tlrmigiml meeting was not condncted very well and 1 meeting are nepatively affected by the planned solution]
thus not effective

architects discover a better solution than the original at the
whiteboard; multi-dimensionality of the problem — gualities
that were not considered (or merely liphtly considered) during
the whiteboard meeting are negatively affected by the planned
solution; the project is Agile, and thus had to respond to new
circumstances, and performance. The following are some ex-
cerpts from the interviews that highlight a pair of these aspects,
together with the rationale for the changes:

vSA 19: “Good question. What sometimes changes, in
fact, does not change so much because what we do on the
whiteboard is very macro, it is an overview, it does not o as
far as detail, but what sometimes changes is that sometimes
you think of using a technology, a framework, and when you
go to Google, Stack overflow, or talking to a colleague, you
discover another technology is better For example, a text
search with Solr, and you find out that everyone is using
Elasticsearch, and you think: let’s use Elasticsearch. So you
find you have a more interesting alternative.” [we discovered a
better solution than the original we devised at the whiteboard]

v 5A 13: “So, sometimes you get to know more details about
some aspects so, we have multi-dimensional problems usually.
So, this is embedded saftware which is variable, being em-
bedded it is also resource-constrained, it is real-time running
on the multicore processors and there are also some other
architectural gqualities, maintainability and so on that need
to be addressed. So, frequently the whiteboards discussions
concentrate on some specific quality or on some specific
problems. Only then you realize: okay, if we do it that way
then maybe a third or fourth architectural quality will suffer”
[multi-dimensionality of the problem — qualities that were not

Observation 10
The top five reasons to make changes from sketches
to implementation are: certain aspects of the solution
are over-simplified and turns out to be more complex;
architects discover a better solution than the original at
the whiteboard; multi-dimensionality of the problem —
qualities that were not considered (or merely lightly
considered) during the whiteboard meeting are nega-
tively affected by the planned solution; the project is
Agile, and thus had to respond to new circumstances;
and performance.

2) Missing Meeting Aspects as Potential Causes: One
somewhat unexpected theme that emerged from the interviews
is that the architects talked about ‘what could have been’: as-
pects of whiteboard software architecture meetings and how
they were conducted that, had they been done differently, could
perhaps have avoided future changes being necessary. Based on
the interviews, we identified sixteen such aspects from which,
once again, each surveyed software architect could tag five as
what for them were most frequently "missing aspects’: aspects
that had they been incorporated better may have improved prior
meeting outcomes.

The top five aspects that resulted were: sufficient informa-
tion about the problem to design the solution; understand-
ing of the relative priority of various design considerations;
metrics that delineate ‘success’ of the architectural design;
validity of assumptions about decisions, as to whether they
hold up at implementation time; and details about the envi-
sioned implementation. Table VIII shows the sixteen aspects

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

in order of frequency in which they were tagged by the sur-
veyed architects. The following are some comments from the
software architects:

XSA 12: “That's a pood gquestion. I think it’s the depth
of the impact of architecture on the solution. Sometimes this
happens, for example, we infegrate a video platform of a
television channel with 110 thousand videos approximately.
We drew the entire model while we did not have the total
volume af videos from the customer. Sometimes we have little
knowledpe of the whole context the solution requires and this
has a lot of impact on implementation. It makes a very big
difference vou implement a solution for 10,000 and another
for 110 thousand videos with 3T of storage. What is missing
sometimes on the whiteboard is enough information to get the
solution.” [sufficient information about the problem to design
the solution]

XSA 8: “Success criteria and evaluation criteria. Whether
it is good or not and how we are going to measure things. As
we measure performance, uptime, fault tolerance, this kind of
thing is invariably missing.” [metrics that delineate ‘success’
of the architectural design]

Note how these factors represent a mix: some concern having
additional information at hand, some the conduct of the meeting
itself, some additional angles of the design that they wished they
had worked out in more detail, and some the criteria by which
the architecture eventually would be judged.

Observation 11
The top five aspects missing from the whiteboard soft-
ware architecture discussions are: sufficient information
about the problem to design the solution; understanding
of the relative priority of various design considerations;
metrics that delineate ‘success’ of the architectural
design; validity of assumptions about decisions, as to
whether they hold up at implementation time; and de-
tails about the envisioned implementation.

Previous research has shown that different kinds of media
are used for architecture design. Beyond the whiteboards, these
media may include scrap paper to informally sketch and model,
but also software tools like Photoshop and Powerpoint [32]. The
past decade also has seen the emergence of a new crop of tools,
such as the Microsoft Surface and other devices which enable
touch based design, as well as cloud-based, remote collabora-
tion oriented whiteboard tools such as Gliffy* and Miro®. These
kinds of tools offer new opportunities, both in terms of how
teams work together and who is brought into meetings (e.g.,
remote participation is much easier so meetings can be more
inclusive) and in terms of moving outcomes downstream (e.g.,
many of these tools have export capabilities, some are tightly
integrated with other tools such as Wikis and task managers).
Thus, it is important to understand software architects’ percep-
tions about these digital tools and the impact on their activities.
We used the survey to do so.

“https:fiwarw.gliffy.com/
Fhttps://miro.com/

4787

V. DISCUSSION

Ouwr study takes a look at software architecture meetings at
the whiteboard, a setting that to date has not been principally
examined. Through a combined interview and survey study, we
focus on the reasons why architects go to the whiteboard, the
impact of the experience of the participants in the meetings,
how meeting outcomes are documented, and what kinds of
downsiream changes are necessary to the architecture as first
outlined in the whiteboard meeting. Some of our findings align
with findings that have been made about whiteboard meetings
more broadly. As one example, the fact that architects go to the
whiteboard for a variety of reasons aligns with programmers
using the whiteboard for many different reasons [21]. Other
findings align with the literature on expertise and the roles that
experts and novices play in creative endeavors by, for instance,
confirming that the questions asked by novices can cause ex-
perts to reflect more deeply and as a result reassess assumptions
that hitherto they had not considered important to discuss [51].
Yet other findings, however, contribute novel insights as related
to the unique setting of our study: whiteboard software archi-
tecture meetings. Below, we first discuss the primary takeaways
as anchored in the results of Section IV and then discuss the
collective implications for research, practice, and education.

A. Primary Takeaways

Underneath the eleven observations that we already articu-
lated in the above are some important takeaways that charac-
terize whiteboard sofiware architecture meetings. Below, we
introduce and contextualize each takeaway.

Takeaway 1: Software architecture whiteboard meetings
concern high-level work, blend understanding the problem
with creative brainstorming and idea generation toward a
solution, and are seen as an important venue for educating
others. Across all of the reasons software architects mention
for going to the whiteboard (Fig. 1 and Section IV-B), most
paint a picture of the work performed in the meetings being at
a high level and oriented toward problem setting and figuring
out an overall direction for the architecture or architectural
change being discussed. This is consistent with prior observa-
tions regarding the nature of software architecture work more
broadly (e.g., [52], [53]), though our results delineate a nuance
in that whiteboard work represents a subset that in general stops
short of specifying an architecture in full detail. Creativity and
brainstorming are an important part of the meetings, which is
consistent with prior work regarding design and other work at
the whiteboard (e.g., [21], [23]), with the novel finding that a
major secondary purpose of the whiteboard meetings is educat-
ing colleagues either through organizing a whiteboard meeting
specifically for communicating already made decisions or more
indirectly through others’ presence and participation.

Takeaway 2: Software architects consider it impor-
tant that whiteboard meetings involve both experienced
and more novice participants, with the expectation that
experienced participants exhibit strong technical skills
garnered through exposure to prior architecture design, a
broad range of existing systems and domains, failure, and

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

https://www.gliffy.com/
https://miro.com/

47EE

more, as blended with more non-technical skills concerning
communication and teamwork to ensure effective ideation,
discussion, and consideration of tradeoffs. Since whiteboard
architecture meetings are ultimately solution focused, it is im-
portant that the team that is assembled at the whiteboard has
the right technical expertise to produce such solutions. Prior
expertise is seen as a strongly contributing factor to be able to
do so successfully, though it is interesting to observe that such
experience is not solely with the particular system at hand. In-
stead, broad architectural knowledge and experience appears as
important as deep domain knowledge, and both types of exper-
tise are explicitly sought to be brought together in whiteboard
software architecture meetings. An additional novel finding is
that the architects we interviewed and surveyed had a strong
preference for including novice participants in the meetings.
While they acknowledged drawbacks to doing so, in terms of
making meetings longer or having to explain things they do not
have to explain with just experienced architects, the benefits in
terms of sometimes unearthing wrong assumptions because of
having to respond to questions from novices or the generation
of a broader range of ideas when brainstorming, appear to
outweigh the drawbacks. Finally, the inclusion of novices is
also seen as essential in educating them, both in the architec-
ture and decisions being made as well as in training them as
budding architects.

Takeaway 3: Whiteboard software architecture meet-
ings are documented to serve as a starting point for
future activities and to remember what transpired, with
the mechanisms by which the meetings are documented
varying widely. Few architectures are designed in a single
meeting; most are the result of a series of activities [54],
[55], [56] of which the whiteboard meeting is but one. It is
unsurprising, then, to find that one reason architects capture
whiteboard meetings is to provide a starting point for future
activities, be it follow-up discussion, communicating outcomes
to others for detailed design or implementation, or validating
the envisioned architecture in detail. The full compendium
of reasons why they capture the meetings, however, also in-
cludes reasons that relate to remembering important aspects
of the meeting outcomes that might later be forgotten, mis-
remembered, or remembered differently among participants.
Meeting outcomes are primarily documented informally by
taking photos, adding content to a Wiki, or having one of
more participants take notes (that may or may not be polished
after the meeting and may or may not accompany photos).
On occasion, outcomes are documented more formally, e.g.,
as a UML diagram. Overall, these findings present a tenuous
picture. On the one hand, architects recognize the importance
of penerating documentation, presumably because of the im-
portance of the decisions being made in whiteboard software
architecture meetings. At the same time, informal documenta-
tion approaches are known to lead to potential problems [57].
We speculate that the memory of the meeting participants of-
ten still is relied upon most when knowledge is passed on to
later activities.

Takeaway 4: Downstream changes to the architecture
as designed in whiteboard software architecture meetings

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

stem from a variety of reasons, including changing external
circumstances and, most prevalent, aspects of the solution
being oversimplified when they should not have been; the
architects recognize that a frequent underlying cause is
that certain relevant information was not brought into the
discussion or simply was not yet available at the time. Our
study is a first that sheds light on what changes are typically
necessary when an architecture as envisioned at the whiteboard
is refined in future activities; these changes are different from
architectural erosion and decay in that the changes occur while
the architecture is still being conceptualized. Changes needed
range from implementation details and format of messages to
having to reconsider the entire architectural solution, driving
scenarios, and interfaces among major components. Architects
are able to pinpoint ‘what went wrong’, with—per Table VII—
oversimplification of the solution and a lack of understanding of
the full complexities of the problem (e.g., certain qualities were
not considered, performance, technology/platform limitations)
as two key reasons for why they have to make downstream
changes. A novel finding is that architects actually are aware of
what kind of information should be brought into the meetings to
help them avoid having to make such later changes (Table VIII),
but, piven that downstream changes continue to be necessary,
apparently cannot do so on a consistent basis.

B. Implications for Research

Our results give ride to a number of research directions that
we believe are important to pursue next, the primary ones of
which we introduce in the below.

Research Implication 1: Empirically validate the varied
findings concerning whiteboard architecture meefings ben-
efiting from a mix of experienced and novice participants.
The perceptions of the architects as discussed in Section IV-C
on what they believe the effects of different levels of expe-
rience are on how the meetings proceed remain perceptions.
The fact that many of the perceptions receive a significant
amount of agreement from the surveyed architects implies it
is likely that many of these perceptions are largely accurate.
At the same time, it is important to verify these perceptions
with rigorous studies of the impact of the mix of experience
in team composition on both how whiteboard software archi-
tecture meetings proceed as well as their eventual outcomes.
For instance, one of the software architects observed: “The
quality of the solution with more experienced people considers
requirements that less experienced people will not consider.
Then we will have a more stable and robust solution with
maore experienced people.” Yet, as we already mentioned, it
is also believed that novices can cause experienced architects
to reconsider aspects of their design because of seemingly
ignorant” questions, which equally can impact the resulting
quality. Exactly where the balance lies will need to be stud-
ied carefully, perhaps along the lines of the experiments of
[58], [591. [601, [61].

Research Implication 2: Study whiteboard software
architecture meeting dynamics. The behavioral and psycho-
logical aspects of whiteboard software architecture meetings

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

should also be further investigated. Our findings are not unan-
imous in this regard. Perceptions such as “novice participants
may be afraid to speak”, “difficulties reaching agreement with
merely experienced people”, “novices can be inflexible”, and
“needing less preparation for meetings with just experienced
architects” are mostly disagreed with by the surveyed architects,
but some of them actually agreed with these statements. Even
the perception that “the quality of the architecture is influ-
enced by the participation of experienced architects™ or “a team
with mixed participants is better for brainstorming™, which had
near-unanimous support, see some surveyed architects strongly
disagreeing. Understanding the meeting dynamics of varying
groups may be able to uncover the differing conditions and prac-
tices that lead to such different perceptions. “Another advice
has to do with facilitation as well. It is making sure everyone
in the meeting is heard. Sometimes we have more talkative and
less talkative people and sometimes we have opinions that are
left out because some people are more shy or not so vocal. So
to have an effective meeting, facilitation is a crucial point.”
Studies examining meeting conduct and people interactions
exist in a more general sense (e.g., [62], [63]), but the domain
of software and particularly software architecture has not been
studied to date in that repard. With software exhibiting unique
characteristics and challenges when it comes to meetings at
the whiteboard, observational studies considering these aspects
are welcome.

Research Implication 3: Revisit documentation tech-
niques. In the context of informal documentation approaches
being most common mentioned, together with the recognized
failure of many proposed design rationale techniques to be
adopted in practice [64], we consider it important to re-engage
in research that seeks to on the one hand study where and
when current documentation approaches succeed and fail, and
on the other hand in new techniques for assisting architects
in capturing whiteboard meetings. Interestingly, lack of hav-
ing documented what we did at the whiteboard is men-
tioned by just three survey participants, which might indicate
that current informal techniques are less of a problem than
it often is portrayed to be (e.g., [55], [57], [64]), especially
when contextualized by the many other reasons listed in Table
VII as to why downstream changes are needed. Intuitively,
the architects know they need to capture what was being dis-
cussed, but scant literature exists that shows the benefits of
doing so: when is this info used, by whom, how is it making
a difference, and what happens when the information is not
available? Such studies could improve the understanding as
to why one should capture which meeting outcomes in what
concrete form.

Complementarily, developing improved methods of cap-
turing meetings is an important avenue for future research.
The emergent use of Architectural Decision Records (ADRs)
presents an interesting middle ground in being lightweight,
yet more structured than many of the unstructured techniques
quoted in Table IV. The use of ADRs has recently gained
some traction (six out of 46 surveyed said they have used
ADRs, conform Table IV and the literature is also reporting
on the beneficial role of ADRs [65]). One of the architects

4789

commented: “Lately, we are experimenting with a technique
called ADR, a template that we put in archives of the
repository we are developing that documents the decisions.
Then you open a PR file, with that decision, someone approves
immediately and gets that decision. In peneral, it is a very
simple and short document, sometimes it does not reach
half a page of a document, but we record a decision that
we want to record and return to it when we are making
other decisions.”

Research Implication 4: Hybrid and remote. Although
our study focused on collocated whiteboard meetings, we note
that several architects brought up hybrid and remote meetings in
the interviews. While we ignored those parts in our analysis, the
interviewees understood the realities of today's post COVID-
19 world in which hybrid and remote work is persisting and
traditional whiteboard meetings must be adapted to include
remote team members. “We've got hugely distributed teams so
face to face meetings are becoming less and less important. In
fact, I've been working almost entirely remotely with peaple so
we kind of we do sometimes have we can make a virtual white-
board at design meetings but you know I think the tools for
that are fairly primitive now, right.” A great many studies are
emerging at this time surrounding the topic of remote and hy-
brid meetings (e.g., [66], [67]), including some emerging work
on maintenance design by an architecture team [68], yet a focus
on the creative and design aspects of whiteboard software archi-
tecture meetings remains absent. It is important to follow up this
study with a study that examines whether the same perceptions
remain, as well as what other perceptions emerge due to the dif-
ferent physical setting and different human behaviors arising in
this setting.

Research Implication 5: Tools. Beyond the traditional
physical whiteboard with pens and an eraser, which still con-
tinues to be used often for in-person meetings, many tools have
been developed that provide a virtual whiteboard experience
(e.g., Miro®, Jamboard’, Mural®, ConceptBoard”). Particularly
over the past few years, these tools have become increasingly
popular and have seen a significant expansion in the types of
features they include. While their primary purpose is to enable a
team of remote participants to collaborate, a virtual whiteboard
offers opportunities for additional functionality that could assist
architects in whiteboard software architecture meetings. In sev-
eral ways, they already do: they integrate advanced notations,
support a variety of design techniques (e.g., mindmapping),
and, because they are electronic, content persists. That said,
from the interviews and the survey, room for improvement
exists. “We cannot search it, we cannot verify what was
decided at the previous meeting for the which is being decided
now, we cannot compare the decisions and know that you've
been wrang for three months and that three-month error could
be recorded somewhere. 5o I think the transition for the digital
should be smarter, something like: “look, you are trying to

Ehttps:// miro.com/
Thitps:/'workspace. google com/products/jamboard/
Ehttps:www. mural.col

“https:/conceptboard.com/

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

https://miro.com/
https://workspace.google.com/products/jamboard/
https://www.mural.co/
https://conceptboard.com/

4790

write a structure that some time ago you have already defined,
vou do not want to reuse what vou did? Or vou're trying to
make an implementation much like another system that did the
same thing in a particular architecture sharing repository, let’s
say.” We make two observations about this desire and particular
comment. First, it points to needing better facilities to search
for past content. Second, we note that part of what is being
asked for already exists: current virtual whiteboards can turn
hand-drawn sketches into more formal diaprams and repre-
sentations that can then be exported to various other tools.
The comment, however, seeks a much deeper integration,
one in which such more formal documents and even prior
sketches are fed back into the virtual whiteboard experi-
ence to more deeply assist the architects at work. Com-
ments by several other architects similarly highlighted the
need for not just supporting designing in the right notation,
but to actually offer more ‘smart support” for the activities
at hand.

Separately, we believe virtual whiteboards could form the
basis for smart, semi-automatic note taking. Tools such as
otter.ai'” already can auto-transcribe meetings and even provide
rudimentary summaries. Combining such functionality with hu-
man guidance could help streamline the note taking process
significantly and help focus the capture on those pieces of
information that are mots likely to be needed in future (as
explored, for instance, in KnoCap [69]). Perhaps an even more
important function could be for virtual whiteboards to auto-
matically deliver relevant information to the architects as they
are designing. Since it is possible to “listen in” on conver-
sations, potentially relevant information that was captured in
the past could be non-intrusively suggested to the architects
as being relevant, with the option for them to ignore such
information or actually bring it up in more detail seamlessly
in the meeting.

C. Implications for Practice

From our study, several important sugpestions arise for prac-
ticing software architects and how they choose to conduct and
engage in whiteboard software architecture meetings.

Practice Implication 1: Involve the right mix of par-
ticipants. While this sounds in some ways too straightforward
and is perhaps even redundant advice, since architects typically
do consider whom they invite to the meetings and why, three
dimensions stand out to which they should pay particular atten-
tion: experience, different perspectives, and relevant expertise.
In terms of experience, the architects that we studied strongly
feel that mixed levels of experience should be brought into
the room, from highly experienced architects to much more
novice architects. Each proup challenges the other, causing
broader discussions to take place that both consider aspects of
the architecture that otherwise would not be considered and
teach the novices how to become better architects through their
participation (a key trait of experienced software designers is
continuous learning about new technologies and other types
of systems [70]).

0httpe-/fotter.ai

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

Beyond mixed levels of experience, including meeting par-
ticipants who bring different perspectives to the discussion is
crucial: “What also helps when you have 2-4 participants
is that they should have different perspectives, so they come
from different organizational background or have a different
expertise focus. You cannot know evervthing as a single person
and if vou get the second person which is similar to you from
the prafile it does not double the knowledpe. But if you have a
few people with different perspectives then you shed light from
different directions on the problem and usually someone has
a different perspective and sees other aspects of the problem
which vou could not come with because you do not even know
that such thing exists".

Complementing experience and perspective is the importance
of including people who have the relevant expertise: “Another
aspect is to bring the right people to the meeting. I have
seen meetings that were not effective because we did not
have the right people at the meeting. Let's discuss deploy,
containerization, but no one knows enough of Docker to talk
about it, does not know what the possibilities are, eic., so
bringing people who know how to talk about it is important
to get the findings faster”. It still happens that meetings are
conducted that fail these inclusion criteria.

Practice Implication 2: Promote psychological safety for
meeting participants. “Promote psychological safety, that
is, psvchological security for people to express opinions, so
they do not feel frightened. When you are poing to make
a comment, which is a complete bullshit, that’s fine, this
should not have a consequence, it should not be mocking
an opinion of a person who is sincere and is willing to
contribute to the meeting. So the person leading the meeting
needs to worry about all of these aspects so he can extract
the most valwe from it”. The importance of such psycholog-
ical safety is well-known in the literature on how to conduct
high-quality meetings (e.g., [71], [72]), but it is an important
reminder for architects to recognize that one of their roles in
these meetings is to create a welcoming and open environment
for discussion.

An important element of promoting psychological safety is
to conduct high-quality meeting, toward which the architects
recognized a number of strategies, ranging from making sure
that everyone is heard (“Sometimes we have opinions that are
left out because some people are more shy or not so vocal. So
fo have an effective meeting, facilitation is a crucial point.”™),
to defining and publicizing an agenda well before the meeting
(“I think that it is very important to have a meeting agenda.
Sometimes it happens the meeting pets away from the topic
and what we do is to set another meeting for the new, another
topic. We try to stay focused on the problem that we have
on our hands and use the time exactly for that"), to sharing
relevant materials beforehand so that meeting time can be spent
constructively considering materials that have been read by
the participants before the meeting starts rather than actually
reading the materials on the spot, to including a facilitator
(“Reparding agreeing and making the meeting effective, it
has a bit of facilitation as well. If facilitation is active, we
can reach conclusions faster. Usually we are discussing a

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

https://otter.ai

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

diagram or some proposals and we have opposing opinions,
different proposals, and sometimes the quickest conclusion is:
let’s test both. And there must be a maturity in the facilitation
to reach that consensus quickly.”). In many ways, whiteboard
software architecture meetings are just another type of meeting,
s0 it is not surprising that these kinds of general lessons also
apply here. We do note the particular importance of sharing
relevant materials beforehand. From Table VIIL, it is clear that
a significant problem in these meetings is a lack of critical
information, with the top four being insufficient information
of the problem, knowledge of the relatively priority of various
design considerations, metrics that delineate success, and an
understanding of the assumptions being made and how valid
those assumptions are. This is all information that an architect
could and should prepare beforehand, so all participants have a
shared sense coming into the meeting. Moreover, it avoids that
sharing such information in the meeting is seen as a distraction
from making progress when a meeting participant asks for
clarification or, worse yet, is simply forgotten to be shared in the
first place.

Practice Implication 3: Consider potential downstream
changes early. While some set of downstream changes are
relatively innocuous (e.g., adding more detail to an architec-
ture), others cause rework (e.g., driving scenarios that change,
overall architecture being reconsidered). The architects under-
stand the typical reasons as to why the architectures change
downstream (Table VII). Some of those reasons have to do
with the process being followed (e.g., lack of having docu-
mented what we did at the whiteboard, social problems with
the team), others with unpredictable changing circumstances
{e.g., customer requirements changed midstream, the project
is Agile and thus had to respond to new circumstances), and
yet others concern the architects not considering the problem
and solution to the fullest (e.g., certain aspects of the solution
were oversimplified, multi-dimensionality of the problem). One
approach to address dealing with potential future downstream
changes early is for architects to have a checklist of the typ-
ical causes, and invite participants to brainstorm and discuss
for each of the causes whether it is applicable to the situa-
tion, how much information the team has to substantiate the
likelihood, what information could help further clarify, and if
any action can be taken now (or shortly after the meeting) to
minimize the impact. Especially in light of the sixteen aspects
typically missing from whiteboard meetings as listed in Ta-
ble VIII, a majority of which concern a lack of information,
foregrounding the reasons in the meeting and addressing what
information is missing can potentially help stem disruptive
future changes.

Practice Implication 4: Consider when documentation
is necessary and in what form. Documentation appears
not necessary all the time, with, for instance, architects some-
times simply relying on their memory of the meeting to insti-
gate downstream activities. As such, dogmatically documenting
each meeting and its outcomes through extensive note taking
possibly with more formal diagrams attached such as UML or
flow charts would represent wasted effort. On the other hand,
there clearly are situations where documentation is important to

4791

have (Table V). Architects are mindful of the effort involved,
however: “Because it will change and it is very difficult to
maintain the consistency of what is in the code with this
abstraction which is its architecture. It is to spend bullet
with deceased dead. It should be used as a reference, as
1 said: you say when we started was like that and we
changed because of these aspects, it is much more static you
document the principles that were used in your architecture
than the architecture draw.” Within this context, then, it is not
surprising that more lightweight methods are mentioned most
frequently as being used (Table IV), although some architects
use certain methods always and others do so more selectively. In
terms of concrete advice, it might be worthwhile to focus the
documentation aspects on those parts of the architecture that
are likely to change (conform Table VI). This is a somewhat
counter-intuitive idea, as normally one tends to concentrate
on documenting those parts of the architecture that are well
understood and firm. Yet, documenting those paris that are
more likely to change has the potential benefit of creating
artifacts that can be discussed earlier (and thus with less po-
tential cost in terms of already implemented code) and that,
by virtue of being marked as tentative can invite such further
discussion. Moreover, when changes are needed, they can be
done with an explicit representation of what was discussed
in the past, which represents an important starting point and
avoids having to re-invent the wheel or re-constructing the
prior discussion.

D. Implications for Education

The insights we garnered provide fertile ground for how
students are educated in the topic of software architecture
as well.

Education Implication 1: Conducting whiteboard meet-
ings. Beyond the need to cover architecture as a separate topic
{which many programs do only peripherally so, although ex-
ceptions exist [73], [74]), perhaps the most important factor is
to teach the importance of architecture meetings at the white-
board: what is typically discussed, how to conduct them, what
kinds of perspectives should be brought to the discussion, the
role of sketches in supporting the discussion taking place, and
how to take those sketches into further development activi-
ties, and more. Soft skills are an under-tanght aspect of soft-
ware engineering. With software architecture serving a crucial
role in the development of systems, and with the collabora-
tive work at the whiteboard a key element in their design,
the need for new approaches to teach these topics is high.
Existing courses on how to design software (e.g., [75], [786],
[77]) as well as software maintenance (e.g., [78], [79]) might
provide both inspiration and serve as potential starting points in
this regard.

Education Implication 2: Architectural experience and
practice. Beyond traditional software engineering courses in
degree programs, we also suggest more advanced, special-
purpose architecture courses in which the human and social
aspects of meetings are explored side-by-side with the technical
considerations that go into architecture design and evolution.

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

4792

A critical ingredient of being a successful software architect
is exposure to many different systems and their designs [7]. A
specialized course in software architecture could begin to lay
the foundations for students to engage in building a portfolio
of systems and architectures to which they have been exposed.
Accompanying such material with students actually making
changes to the systems to which they are exposed, as exem-
plified by the work of van Deursen et al. [80], would further
solidify their understanding of the role of architecture and how

it shapes software.

VL. THREATS TO VALIDITY

In this section, we discuss several threats to validity for our
study.

Conclusion Validity. Threats to conclusion validity are
concerned with issues that relate to the treatment and the
outcomes of the study, including, for instance, the choice of
sample size and, as another example, the care taken in the
implementation of a study [81]. In our work, we conducted
interviews with open-ended questions in which the participants
were asked to provide their perceptions and point-of-views.
The interviews were then corroborated through a survey. The
interviews were conducted at 18 different companies and when
they happened within the same company, the participants were
warned not talk to each other about it to avoid bias. In ad-
dition, we requested and were given access to experienced
software architects at each company, to avoid the interviewees
not possessing the necessary deep and long-term experience
and knowledge in our area of investigation. We approached the
design and implementation of the survey with the same level
of care.

Another aspect that is critical for conclusion validity is the
quality of the material used in the study. Thus, to ensure that the
interview prompt and survey instrument were of high quality,
a pilot interview was conducted with a software architect and a
survey pre-testing was performed with two software architects.
Finally, to avoid the threat of drawing false conclusions based
on the interview data, we carefully validated our interviews and
findings with the participants as we performed analysis, asking
for clarification when so needed.

Internal Validity. To reduce introducing interviewer bias
during the interviews, we kept our questions open-ended and
let participants talk most of the time. Additionally, it is possible
that the participants might not have mentioned some points
that, given more time to think, they could have brought up. To
ameliorate this, we concluded the interviews by asking the par-
ticipants whether they had any further thoughts and gave them
ample time to respond before concluding the interviews. Simi-
larly, we concluded the survey with a question as to whether
survey participants had any additional thoughts they wanted
to share.

Interviewing participants remotely might also introduce
some bias as compared to interviewing in person, for instance,
by the interviewees giving shorter, incomplete, or unclear an-
swers. We attempted to reduce this bias by following up with

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

the interviewees if we felt an answer needed more clarification
for us to be able to understand it in retrospect.

Because they were derived from the answers from the in-
terviews, a possibility exists that the questions on the survey
might not have been sufficiently representative (e.g., additional
aspects that change from initial whiteboard design as the ar-
chitecture is further refined, additional approaches to document
whiteboard software architecture meetings). This was mitigated
by the option for the survey participants to provide additional
thoughts through an open-ended question at the conclusion of
the survey.

Finally, while our analysis was systematic, other researchers
may discern aspects different from our findings.

Construct Validity. There are potential threats to construct
validity from the lack of a clear definition of a software ar-
chitect. In general, participants understood that we meant an
experienced member in the development team responsible for
making high-level design choices, validating them, and com-
municating those decisions to relevant stakeholders. In ad-
dition, we verbally clarified whenever there appeared to be
some kind of confusion, both at the start of the interviews
and throughout.

Another threat to construct validity is related to the potential
problem of evaluation apprehension [81]. It was mitigated by
letting the participants know they would remain anonymous as
well as by assuring them that all information gathered during the
interviews and survey would solely be used only by the research
team and never shared beyond.

External Validity. Our 27 interviews were conducted with
software architects working in 18 different companies. Though
these interviews yielded important insights, it can be consid-
ered a small sample. In addition, we only sampled software
architects from five countries and findings may not generalize
to other countries and companies.

The same threat exists concerning the participants in the sur-
vey. Even though the respondents reside in nine countries across
four continents, our findings may not generalize to represent the
experiences and perceptions of all software architects.

VII. CONCLUSION

Becoming a software architect takes time and effort. In
addition to having serious technical responsibilities in be-
ing the person who is primarily accountable for the software
architecture and making architectural decisions, a software
architect is also responsible for the many social aspects
involved in the design and implementation of the architecture,
which includes the subject of our study: conducting white-
board software architecture meetings and bridging the outflow
from these meetings to downstream activities. To date, such
meetings have not been studied in detail and the realities of
why these meetings are held, who typically participantes, how
to best document the outcomes of the meetings, and what
kind of downstream changes may occur and why are not fully
understood yet.

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

In this paper, we contribute a mixed qualitative and quan-
titative study to investigate software architects” perceptions on
whiteboard software architecture meetings. Based on interviews
with 27 experienced architects and a subsequent survey with an
additional 46 experienced software architects, our study yields
eleven observations that range from reasons why software archi-
tects go to the whiteboard and perspectives on including experts
and novices in the meetings, through how they document the
outcomes of the meetings and why they document, to the kinds
of changes they witness when the outcomes of the whiteboard
meetings transition to downstream activities and the reasons for
those changes. Our study is the first study of this kind, with the
findings piving rise to further study, offering concrete advice for
practicing architects, and suggesting new topics for educating
future software architects.

As future work, we will engage in two activities. First, it
is important to dive deeper into our resulis by contextualizing
our findings with the content produced on the whiteboards
during these meetings. The type of content produced can have
implications for what kind of discussions are held, influence
the strategies for capturing the discussions and their outcomes,
and even be indicative of the quality of the discussion and thus
the potential for problems downstream. Second, we wish to
understand the role of novices in more detail and particularly
study how they might move from being a novice in these meet-
ings to a more full-fledged, equal participant. How does the
nature of their contributions change over time, does their level
of leadership change, and how do they engage in educating
future novices?

ACKNOWLEDGMENT

The authors would like to thank all the software architects
who participated in our interviews and survey.

REFERENCES

[11 M. Fowler, “Who needs an architect?,” JEEE Safiw., vol. 20, no. 5, pp.
11-13, Sep. 2003.

[2] B C. Clements, B. Karman, M. Klein, . Devesh, 5. Reddy, and
P Verma, “The duties, skills, and knowledge of software architects,”
in Proc. 6th Work, IEEEAFIP Conf. Softw. Archit. {WICSA), Mumbai,
Maharashtra, India, Jan. 6-9, 2007, p. 20.

[3] M. E. Conway, “How do committees invent?,” Datamation, Apr. 1968,
Accessed: Sep. 23, 2023, [Online]. Available: httpfwaw. melconway.
com/researchicommittees. hitml

[4] C. ¥. Baldwin and K. B. Clark, “Managing in an age of modularity,”
in Managing in the Modular Age: Architectures, Networks, and Organi-
zations, vol. 149, Malden, MA, USA: Blackwell Publishers Lid., 2003,
pp. 3403,

[5] E P Brooks Ir, "No silver bullet essence and accidents of software
engineening,” Computer, vol. 20, no. 4, pp. 10-19, Apr. 1987,

[6] D. E. Perry, N. A. Standenmayer, and L. G. Votta, “People, organiza-
tions, and process improvement,” TEEE Saftw., vol. 11, no. 4, pp. 3645,
Jul. 1994,

[7] B Kruchien, “What do software architects really do?" J Syst. Saffe,
vol. 81, no. 12, pp. 24132416, 2008.

[8] J. E Hoom, R. Farenhorst, P Lago, and H. van Vliet, “The lonesome

architect,” J. Syst. Saftw, vol. B4, no. 9, pp. 14241435, 2011.

V. Clerc, P. Lago, and H. van Vliet, “The architect’s mindset,” in

Proc 3rd Int. Conf. Qual. Softw. Archit., QoSA: Softw. Archit, Compon.,

Appl., in Revised Selected Papers, Medford, MA, USA, Jul. 11-23,

2007, pp. 231-249.

=

4793

[10] U. van Heesch and P. Avgenon, “Mature architecting—A survey about

the reasoning process of professional architects.” in Proc. Sth Work

TEEEAFIP Conf. Saftw. Archit. (WICSA), Boulder, CO, USA, Jun. 20—

24, 2011, pp. 260-269.

K. Power and RB. Wirfs-Brock, "Understanding architecture decisions in

context—An industry case study of architects’ decision-making context,”

in Proc. I2th Eur Conf. Softw. Archir. {ECSA), Madrid, Spain, Sep. 24—

28, 2018, pp. 284-299.

[12] E. Woods, “Should architects code™ JEEE Safiw:, vol. 34, no. 3, pp.

20-21, 2017.

I. Rehman, M. Mirakhorli, M. Nagappan, A. A. Unlu, and M. Thomton,

“Roles and impacts of hands-on software architects in five industrial

case studies.” in Proc. 40th Int. Conf. Softe. Eng. (ICSE), Gothenburg,

Sweden, May 27-Jun. 3, 2018, pp. 117-127.

R. N. Taylor, M. Medvidovic, and E. M. Dashofy, Software Architecture:

Foundations, Theory, and Practice. Hoboken, M), USA: Wiley, 2009,

D). Falessi, M. A. Babar, G. Cantone, and P. Kruchten, “Applying

empirical software engineering to software architecture: Challenges

and lessons leamned,” Empirical Softw. Eng., vol. 13, no. 3, pp. 250-

276, 2010

P 0. Antonino, A. Morgenstern, and T. Kohn, “Embedded-software

architects: It's not only about the software,” JEEE Soffw., vol. 33, no. 6,

pp. 3662, 2016

[17] M. Erder and P Purewr, “What's the architect’s role in an agile, cloond-
centric world?,” JEEE Saftw., vol. 33, no. 5, pp. 30-33, Sep./Oct. 2016.

[18] E. Y-L. Do and M. D. Gross, “Reasoning about cases with diagrams,”

in Proc. 3rd Congr. Comput. Civil Eng. Washington, DC, USA: ASCE,

1996, pp. 314-320.

K. Henderson, O Line and on Paper: Visual Representations, Visual

Culture, and Computer Graphics in Design Engineering. Cambndge,

MA, USA: MIT Press, 1998,

[20] T. D LaToza, G. Venolia, and B. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proc. 28th Int. Conf Softw. Eng.
(ICSE). New York, NY, USA: ACM, 2006, pp. 492-501.

[21] M. Cherubini, G. Venolia, R. DeLine, and A. 1. Ko, “Let’s go to the
whiteboard: How and why software developers use drawings.” in Proc.
SIGCHI Conf. Human Factors Comput. Syst. (CHI). New York, NY,
USA: ACM, 2007, pp. 557-566.

[22] M. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek, “Supporting
informal design with interactive whiteboards.” in Proc. SIGCHI Conf
Human Factors Comput. Syst. (CHI). New York, NY, USA: ACM, 2014,
pp. 331-340.

[23] M. Mangano, T. D). LaToza, M. Petre, and A. van der Hock, "How
software designers interact with sketches at the whiteboard,” TEEE Trans.
Softw. Eng., vol. 41, no. 2, pp. 135-156, Feh. 2015.

[24] T. Sharma, P. Singh, and D). Spinellis, “An empincal investigation on the

relationship between design and architecture smells,” Empirical Softw:

Eng., vol. 25, no. 5, pp. 40204068, 2020.

E. Li, P Liang, M. Soliman, and P. Avgeriou, “Understanding software

architecture erosion: A systematic mapping study,” J Softw. Evel

Process., vol. 34, no. 3, pp. 1-45, 2022,

[26] M. Petre and A. V. D). Hoek, Software Designers in Action: A Human-

Centric Look at Design Work, lst ed. London, UK.: Chapman &

Hall, 2013.

U. Dekel, *Supporting distributed software design meetings: What can

we learn from co-located meetings?,” in Proc. Workshop Human Social

Factors Softw. Eng. (HSSE). New York, NY, USA: ACM, 2005, pp. 1-7.

U. Dekel and J. . Herbsleb, “Motation and representation in collab-

orative object-oriented design: An observational study,” in Proc. 22sd

Annu. ACM SIGPILAN Conf. Object-Oriented Program., Syst., Lang.,

Appl. (OOQPSLA), Montreal, Quebec, Canada. New York, NY, USA:

ACM, Oct. 21-25, 2007, pp. 261-280.

K. Makakoji, Y. Yamamoto, N. Matsubara, and Y. Shirai, “Toward

unweaving streams of thought for reflection in professional software

design,” TEEE Saftw., vol. 29, no. 1, pp. 34-38, Jan/Feb. 2012

[30] J. Walny, J. Haber, M. Diick, J. Sillito, and 8. Carpendale, “Follow that
sketch: Lifecycles of diagrams and sketches in software development,”
in Proc. 6th Int. Workshop Visualizing Softw. Understanding Anal
(VISSOFT), 2011, pp. 1-8.

[31] 5. Balies and 5. Dichl, “Sketches and diagrams in practice,” in Proc.
22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng. (FSE). New York,
MY, USA: ACM, 2014, pp. 530-341.

[32] 5. Baltes, P. Schmitz, and 5. Dichl, “Linking sketches and diagrams to
source code artifacts,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found.
Softw. Eng. (FSE). New York, NY, USA: ACM, 2014, pp. T43-T46.

[

[13]

[14]

[13]

[16]

[19]

[23]

[27]

[28]

[29]

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

http://www.melconway.com/research/committees.html
http://www.melconway.com/research/committees.html

4794

[33] 5. Baltes, E Hollench, and S. Dhchl, “Round-trip sketches: Supporting
the lifecycle of software development sketches from analog to digital
and back,” in Proc. [EEE Work. Conf. Softw. Visualization (VISSOFT),
2017, pp. 9408,

[34] D. Wiiest, N. Seyff, and M. Glinz, “FLEXISKETCH TEAM: Collabora-
tive sketching and notation creation on the fly,” in Proc. 37th IEEEACM
Int. Conf. Softw. Eng. (ICSE), Florence, Italy, vol. 2. Los Alamitos, CA,
USA: [EEE Comput. Soc., May 16-24, 20135, pp. 685688,

[35] 5.G. Samuelsson and M. Book, “Towards skeich-based user interaction
with integrated software development environments,” in Proc. 42nd Iar.
Conf. Softw. Eng. (ICSE) Workshops, Seounl, Republic of Korea. New
York, NY, USA: ACM, Jun. 27-Jul. 19, 2020, pp. 181-184.

[36] E. Buschmann, “A weck in the life of an architect,” TEEE Safiw., vol.
20, no. 3, pp. 9496, May/Jun. 2012,

[37] E. Woods, “Return of the pragmatic architect,” [EEE Softw., vol. 31,
no. 3, pp. 10-13, May/Jun. 2014.

[38] 1. Klein, “What makes an architect successful?” IEEE Safiw., vol. 33,
no. 1, pp. 2022, Jan/Feb. 2016.

[39] M. Erder and P. Pureur, “What type of people are software architects?,”
IEEE Saftw., vol. 34, no. 4, pp. 2022, 2017.

[40] 1. Klein, "How does the architect’s role change as the software ages?)”
in Proc. 5th Work. IEEEAFIP Conf. Saftw. Archit. (WICSA), Pitisburgh,
PA, USA, Nov. 6-10, 2005, p. 141.

[£1] P. Sarang, “Setting up architect team,” in Proc. 6th Work TEEEAFIP
Conf. Saftw. Archir. (WICSA), Mumbai, Maharashtra, India, Jan. 69,
2007, p. 18.

[42] R. Premraj, G. Mauta, A. Tang, and H. van Vliet, “The boomeranged
software architect,” in Proc. @th Work, TEEEAFIP Conf. Softw. Archir.
(WICSA), Boulder, CO, USA, Jun. 20-24, 2011, pp. T3-82.

[43]) L. Seidman, Interviewing as Qualitative Research: A Guide for Re-
searchers in Education and the Social Sciences, 3rd ed., New York,
MY, USA: Teachers College Press, 2006

[44] 1. Saldana, The Coding Manual for Qualitative Researchers. Newbury
Park, CA, USA: Sage, 2015,

[45] 1. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data” Biometrics, vol. 33, no. 1, pp. 159-174, 1977.

[46] 1. Mason, Qualitative Researching. Newbury Park, CA, USA: Sage,
2018.

[47] B. A. Kitchenham and 5. L. Plleeger, "Personal opinion surveys,” in
Guide to Advanced Empirical Software Engineering, New York, NY,
USA: Sponger, 2008, pp. 63-02.

[48] P. Clements et al., Documenting Software Architectures: Views and
Beyond, 2nd ed. Reading, MA, USA: Addison-Wesley, 2010

[49] 1. van Gurp and J. Bosch, “Design erosion: Problems and causes,”
J. Syst. Softw, vol. 61, no. 2, pp. 105-119, 2002,

[50] M. Al 5. Baker, R. "Crowley, 5. Herold, and J. Buckley, “Architec-
ture consistency: State of the practice, challenges and requirements,”
Empirical Softw. Eng., vol. 23, no. 1, pp. 224-258, 2018.

[51] J. H. Lee and M. J. Ostwald, “The relationship between divergent
thinking and ideation in the conceptual design process,” Des. Stud., vol.
79, 2022, Art. no. 1010E9.

[52] D. E. Perry and A. L. Wolf, “Foundations for the study of softeare
architecture,” SIGSOFT Saoftw. Eng. Notes, vol. 17, no. 4, pp. 40-52,
Ohet. 1992

[53] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerping Discipline. Upper Saddle River, NJ, USA: Prentice-Hall, 1996,

[54] L. Bass, P. Clements, and B. Kazman, Soffware Architecture in Practice.
Reading, MA, USA: Addison-Wesley, 2003,

[55] P. Clements, D. Garlan, B. Litile, B. Nord, and J. Stafford, “Document-
ing software architectures: Views and beyond,” in Proc. 25th Int. Conf.
Softw. Eng. Piscatwway, MJ, USA: [EEE, 2003, pp. T40-T741.

[56] P. Clements et al., Evaluating Software Architectures. Beijing, China:
Tsinghua University Press, 2003.

[57] A. Tang, P. Liang, and H. v. ¥liet, “Software architecture documentation:
The road shead,” in Proc. 9th Work. IEEEAFIP Conf. Saftw. Archit.,
2011, pp. 252-255.

[58] B. Reimlinger, (). Lohmeyer, B. Moryson, and M. Meboldt, “A com-
panson of how novice and experienced design engineers benefit from
design guidelines,” Des. Stud., vol. 63, pp. 204-223, 2019.

[539] X. Ge, L. Leifer, and L. Shui, “Situated emotion and its constructive
role in collaborative design: A mixed-method study of expenenced
designers,” Des. Stud., vol. 73, 2021, Art. no. 1001020

IEEE TRAMNSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

[60] E. M. Silk. A. E. Rechkemmer, 5. B. Daly, K. W. Jablokow, and
5. McKilligan, “Problem framing and cognitive style: Impacts on design
ideation perceptions,” Des. Stud., vol. 74, 2021, Art. no. 101015,

[61] 5. Knshnakumar, C. Berdaner, C. Lauff, C. McComb, and J. Menold,
“The story novice designers tell: How rhetorical structures and proto-
typing shape communication with external andiences.” Des. Stud., vol.
82, 2022, Art. no. 101133

[62] C. A. Gorse and 5. Emmitt, “Communication behaviour during manage-
ment and design team meetings: A companson of group interaction,”
Constr. Marage. Econ., vol. 25, no. 11, pp. 11971213, 2007.

[63] 5. B. Paletz, J. Chan, and C. D. Schunn, “The dynamics of micro-
conflicts and uncertainty in successful and unsuccessful design teams,”
Des. Stud., vol. 50, pp. 38-69, 2017.

[64] A. Tang, M. A. Babar, 1. Gorton, and J. Han, “A survey of architecture
design rationale,” J. Syst. Saftwe, vol. 79, no. 12, pp. 17921804, 2006.

[65] O. Kopp, A. Armbruster, and . Zimmermann, “Markdown architeciural

decision records: Format and tool support,” in Proc. I0th Central Eur

(CEUR) Workshop Services Their Compos., Dresden, Germany, vol.

2072, CEUR-WS.org, Feb. 8-9, 2018, pp. 55-62.

5. IV Angelo and D. Gergle, “An eye for design: Gaze visualizations for

remote collaborative work,” in Proc. CHI Conf. Human Factors Comput.

Syst., Montreal, QC, Canada. Mew York, NY, USA: ACM, Apr. 21-26,

2018, p. 349,

[67] D. Ford et al., “A tale of two cities: Software developers working
from home during the COVID-19 pandemic,” ACM Trans. Softw. Eng.
Methodol., vol. 31, no. 2, pp. 27:1-27:37, 2022,

[68] A. M. Soria, A. van der Hoek, and J. E. Burge, “Recuming distributed
software maintenance meetings: Toward an initial understanding,” in
Proc. 15th IEEEACM Int. Warkshop Cooperative Human Aspects Saftw.
Eng., CHASE@ICSE, Pittsburgh, PA, USA. Piscataway, MJ, USA: IEEE,
May 21-22, 2022, pp. 21-25.

[69] A. M. Sona, “KNOCAP: Capturing and delivering important design bits
in whiteboard design meetings,” in Proc. ACMAEEE 42nd Int. Conf
Softw. Eng.: Companion Proc. (ICSE). New York, NY, USA: ACM,
2020, pp. 194-197.

[TO] M. Petre and A. Van Der Hoek, Saftware Design Decoded: 66 Ways
Experts Think. Cambridge, MA, USA: MIT Press, 2016.

[7T1] L. Delizonna, “High-performing teams need psychological safety. Here's
how to create it,” Harvard Bus. Rev, vol. 8, pp. 1-5, 2017.

[72] A. Mewman, B. Donchue, and M. Eva, “Psychological safety: A sys-
tematic review of the literature,” Human Resow Manage. Rev, vol. 27,
no. 3, pp. 521-535, 2017.

[7T3] P. Lago and H. van Vliet, “Teaching a course on software architec-
ture,” in Proc. 18th Conf Softw. Eng. Educ. Training (CSEET), 2003,
pp. 3342

[74] A. Van Deursen et al., “A collaborative approach to teaching software
architecture,” in Proc. ACM SIGCSE Tech. Symp. Comput. Sci. Educ.
(SIGCSE), 2017, pp. 591-596.

[75] 1. 1. Benedetto and J. Navon, “Exploiting group shuffling dvnamics to
convey the importance of good software design,” in Proc. 42nd Int
Conf. Saftw. Eng., Saftw. Eng. Educ. Training (ICSE-SEET), Seoul, South
Korea. Mew York, NY, USA: ACM, Jun. 27-Jul. 19, 2020, pp. 193-196.

[T&] Z. Li, “Using public and free platform-as-a-service (PaaS) based
lightweight projects for software architecture education,” in Proc. 42nd
Int. Conf. Saftw. Eng., Saftw. Eng. Educ. Training (ICSE-SEET), Seoul,
South Korea. New York, NY, USA: ACM, Jun. 27-Jul. 19, 2020,
pp. 1-11.

[77] 5. A. Rukmono and M. B. V. Chaudron, “Guiding peer-feedback in
learning software design using UML.” in Proc. IEEEACM 4dth Int
Conf. Saftw. Eng.: Softw. Eng. Educ. Training (ICSE-SEET), Pittsburgh,
PA, USA. Piscataway, NI, USA: IEEE, May 22-24, 2022, pp. 122-133.

[T8] M. Petrenko, D). Poshyvanyk, ¥. Rajlich, and J. Buchta, “Teaching

software evolution in open source,” Computer, vol. 40, no. 11, pp. 25—

31, 2007.

K. Gallagher, M. Fioravanti, and 5. Kozaitis, “Teaching software main-

tenance,” in Proc. TEEE Int. Conf. Saftw. Maintenance Evol. (ICIME),

2019, pp. 353362

[80] A. van Deursen et al., "A collaborative approach to teaching software
architecture,” in Proc. ACM SIGCSE Tech. Svmp. Comput. Sci. Educ.
(SIGCSE), M. E. Caspersen, 5. H. Edwards, T. Barnes, and D. D). Garcia,
Eds., Seattle, WA, USA. New York, NY, USA: ACM, Mar. 8-11, 2017,
pp. 391-3096.

[81] C. Wohlin, P. Runcson, M. Hst, M. C. Ohlsson, B. Regnell, and
A, Wessln, Experimentation in Software Engineering. Mew Yook, NY,
USA: Sprnger, 2012

[66

[79

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

DE ALMEIDA et al: LET'S GO TO THE WHITEBOARD (AGAIN): PERCEPTIONS FROM S0FTWARE ARCHITECTS

Eduarde Santana de Almeida (Semor Member,
IEEE) received the Ph.D). degree in computer sci-
ence from the Federal University of Pernambuco,
Brazil. He 15 corrently an Associate Professor with
the Institute of Computing (IC), Federal Univer-
sity of Bahia, where he leads the RiSE Labs. His
research interests include software reuse, software
product lines, software architecture, and empirical
software engineering. He is a scnior member of
ACM and an affiliaste member of the Brazilian
Academy of Sciences (ABC).

Iftekhar Ahmed received the B.Sc. degree in com-
puter science and engineering from Shahjalal Uni-
versity of Science and Technology, Bangladesh, and
after working in the industry for four years, received
the Ph.D. degree from Oregon State University. He
is5 currently an Assistant Professor in informatics
with the Donald Bren School of Information and
Computer Science, University of California, Irvine.
His research interests inclode the intersection of
software engineering and machine learning, en-
compassing socio-technical factors, and large-scale
analysis of software artifacts to ensure software quality.

4795

André van der Hoek (Member, [EEE) received the
BS. and M.S. degrees in business-oriented com-
puter science from Erasmus University Rotterdam,
The Metherlands, and the Ph.D. degree in computer
science from the University of Colorado at Boulder.
He 15 a Professor with the Department of Infior-
matics at the University of California, Irvine, and
the Head of the Software Design and Collaboration
Laboratory, which focuses on understanding and
advancing the roles of design, collaboration, and
education in software engineening. He is a Co-
Author of Software Design Decoded: 66 Ways How Experts Think and an
Co-Editor of Studyving Professional Software Design: A Human-Centric Look
at Design Work, two books that detail the expert practices of professional
software designers. He has authored and co-suthored over 100 peer-reviewed
journal and conference publications. In 2006, he was a recipient of an ACM
SIGSOFT Dhstinguished Paper Award; in 2013, he was recognized as an ACM
Distinguished Scientist; and in 2009, he was a recipient of the Premier Award
for Excellence in Engineenng Education Courseware. He is the Principal
Designer of the B.S. in informatics at UC Irvine. He was honored, in 2003, as
UC Irvine Professor of the Year for his outstanding and innovative educational
contributions.

Authorized licensed use limited o Access paid by The UC Irvine Libraries. Downloaded on July 12,2024 at 13:51:31 UTC from |EEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

