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ABSTRACT

Enviromics refers to the characterization of micro- and macroenvironments based on large-scale environ-
mental datasets. By providing genotypic recommendations with predictive extrapolation at a site-specific
level, enviromics could inform plant breeding decisions across varying conditions and anticipate produc-
tivity in a changing climate. Enviromics-based integration of statistics, envirotyping (i.e., determining envi-
ronmental factors), and remote sensing could help unravel the complex interplay of genetics, environment,
and management. To support this goal, exhaustive envirotyping to generate precise environmental profiles
would significantly improve predictions of genotype performance and genetic gain in crops. Already, infor-
matics management platforms aggregate diverse environmental datasets obtained using optical, thermal,
radar, and light detection and ranging (LiDAR)sensors that capture detailed information about vegetation,
surface structure, and terrain. This wealth of information, coupled with freely available climate data, fuels
innovative enviromics research. While enviromics holds immense potential for breeding, a few obstacles
remain, such as the need for (1) integrative methodologies to systematically collect field data to scale
and expand observations across the landscape with satellite data; (2) state-of-the-art Al models for data
integration, simulation, and prediction; (3) cyberinfrastructure for processing big data across scales and
providing seamless interfaces to deliver forecasts to stakeholders; and (4) collaboration and data sharing
among farmers, breeders, physiologists, geoinformatics experts, and programmers across research insti-
tutions. Overcoming these challenges is essential for leveraging the full potential of big data captured by
satellites to transform 21st century agriculture and crop improvement through enviromics.
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deciphering the intricate interactions between genotype, envi-
ronment, and management (G X E x M) for effective adapta-
tion to changing climates. Terrestrial and atmospheric factors
directly influence crop growth, development, and productivity
(Xu 2010, 2016; Cooper et al., 2014), and genotypes that
excel in one region may perform poorly in another due to
specific environmental conditions (Xu 2010). In addition to
understanding such G X E interactions, knowledge of the
variable features of the environment (Piepho and Blancon,
2023) can inform targeted genomic prediction, genetic
improvement, and crop management strategies that boost
agricultural productivity.

Toassess G x Eand G x E x M interactions, replicate genotypes
are generally grown in environments distinguished by specific com-
binations of locations and years. The resulting data can be as-
sessed using approaches such as adaptability and stability ana-
lyses (van Eeuwijk et al., 2016; Crossa et al., 2022) or graphical
techniques such as genotype plus genotype-by-environment bi-
plot and additive main effects and multiplicative interaction to
map the responses of different genotypes to varied environments
(Neisse et al.,, 2018; Olivoto et al., 2019). In addition, muilti-
environment trial (MET) analysis, which uses statistical models to
analyze variance and covariance structures between environ-
ments, can detail genotype performance under precise cultivation
and management conditions (Malosetti et al., 2013). Factor analytic
modeling has also gained popularity recently, as it speeds model
convergence when analyzing large, multi-environment datasets
(Krause et al., 2020; Smith et al., 2021). Notably, crop growth
models generate virtual simulations of genotype behavior under
hypothetical scenarios; integrating genetic and environmental
information using mechanistic eco-physiological-based models
can enhance model accuracy (Bustos-Korts et al., 2019; Rincent
etal.,, 2019).

Enviromics, as an omics, represents a somewhat distinct
approach to assess G X E and G X E x M interactions based
on environmental data (Resende et al.,, 2021). The term
enviromics first appeared in psychiatric literature in the mid-
1990s (Anthony et al., 1995). In plant breeding, it was initially
mentioned by Xu (2016), and its deeper exploration began
with a 2019 bioRxiv preprint, ultimately leading to a
publication by Resende et al. (2021). Since then, enviromics
has rapidly gained popularity in the breeding community,
highlighted by research from various groups (Costa-Neto
et al., 2021a; Cooper and Messina, 2021; Crossa et al., 2021;
Resende et al., 2022). An envirome, similar to a genome and
phenome, is a set of envirotypes represented by all
environmental factors that affect the growth and development
of an organism, involving landscape and climatic variables
(Xu, 2016; Costa-Neto and Fritsche-Neto, 2021; Resende
et al., 2021). The origin of the term envirotype is attributed to
Patten (1991) and was revisited by Beckers et al. (2009) in
genetic studies of mice. Envirotyping was conceptualized by
Xu in 2010 and formally published in 2016 (Xu et al., 2022) to
describe the gathering of environmental data to characterize
environments, as also discussed by Cooper et al. (2014). For
crops, the enviromics approach prioritizes spatial data
analysis, integrating both experimental and on-farm data for
accurate model validation across various scales. If envirotyping
is considered a third typing technology (Xu, 2016), along with
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genotyping and phenotyping, then enviromics represents a
third omics approach, alongside genomics and phenomics
(Resende et al., 2021).

The current era has witnessed the rise of digital agriculture,
commonly known as precision agriculture (Shaikh et al.,
2022). A wealth of information is readily accessible—often
free of charge—and many envirotypic inputs can be
downloaded using only a few steps. The availability of big
data enables enviromics studies, and integrated analyses of
genotypes and environments (Xu et al., 2022) can facilitate
the identification of genotypes with superior response
patterns across diverse conditions. These insights can inform
the selection of varieties best suited to withstand abiotic
stresses, including heat stress, drought stress, or elevated
CO, conditions caused by climate change. However, impre-
cise data overlay poses barriers to enviromics analysis, and
this vast amount of information must be rigorously validated
(Marcatti et al., 2017; Resende et al., 2022).

Satellite sensors are a source of invaluable data for enviromics.
For instance, Earth observation satellites such as Landsat,
MODIS (Moderate Resolution Imaging Spectroradiomete), and
Sentinel monitor surface phenomena including climate, vegeta-
tion composition, land use, and air or water pollution (Zhao
et al., 2022). Positioned in higher orbits, the meteorological
satellites GOES (Geostationary Operational Environmental
Satellites) and Meteosat provide data on weather and climate
conditions, acquiring parameters such as light, temperature,
humidity, and wind speed (Krinitskiy et al., 2023). In addition,
reanalysis tools such as Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA-2) leverage global
observations (Reichle et al., 2017) for calibration, uncertainty
determination, and data product evaluation, as emphasized
by Bronnimann et al. (2018) (see also this 2-min YouTube video
for a nice overview of reanalysis data: youtube.com/watch?
v=FAGobvUGI24).

The data now derived from satellites offer a detailed view of
geographical sites, enabling more complete analysis of the
influence of the environment on genotype performance. In
this perspective, we examine the relationship among modern
envirotypic data and their effects on enviromics and plant
breeding, with a particular focus on spaceborne/spatial tech-
nologies that facilitate our understanding of crop genotype
and envirotype interactions, emphasizing the role of enviro-
mics in providing information on an omics scale. Our aim is
to update the knowledge base, addressing the gap in compre-
hensive reviews amid rapid technological advancements and
data analysis innovations to boost precision and efficiency in
crop management and improvement in the face of climate
change.

INTEGRATING THE TARGET
POPULATION OF ENVIRONMENTS INTO
THE ENVIROMICS CONTEXT

The initial step in managing enviromics frameworks for crop

studies involves identifying the target population of environ-
ments (TPE; Figure 1, step 1). The TPE represents the
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GIS

STEPS FOR
ENVIROMICS

Collect multiple environmental covariate data
using sources such as satellites and weather
stations, applying sensor technologies and
kriging when spatial interpolation is needed.

Sample a wide range of phenotypic
data across the TPE area, including
breeding trials, longitudinal series, and

on-farm data for thorough analysis.

Define the Target Population of
Environments by mapping spatial
polygon features, tailored to specific
crop needs and outcome objectives.

« coordinate and projection systems; « metric units;

¢
5 i & . Initial
« and the probable spatial resolution (i.e., pixel size), [ settings
contingent on envirotyping data availability.

Verify and refine envirotyping raster overlays
against established coordinate systems, opti-
mizing pixel size to enhance accuracy for
strategic genetic improvement inferences.

Match genotypic and envirotypic datasets
based on their geographical coordinates,
optionally integrating genomic (or other

omics) data to enrich enviromics studies.

Develop enviromic markers and conduct
GxExM studies for predictive modeling,
integrating all database to assess environ-

mental impacts on plant phenotypes.

Figure 1. Necessary GIS steps for enviromics to enhance precision breeding through integrating phenotypic and environmental data.

This workflow begins with establishing a target population of environments (TPE) and ends with intricate data integration for enviromics analysis.
It includes key stages such as the validation of phenotypic data, strategic collection of envirotyping data via remote sensing, meticulous
standardization of GIS data, and comprehensive analysis of envirotypic data. This systematic approach is designed to refine predictive
modeling and optimize agricultural outcomes by assessing and exploiting the interplay among genotype, the environment, and management

practices.

composition and frequency of environmental types within a
region targeted by plant breeders and includes the range of
environments where candidate genotypes will be evaluated
for performance under various growth conditions (Cooper
et al.,, 2014; Chenu, 2015). With the availability of GPS data
for civilian use, it has become possible to determine the
variability of environmental factors at the regional, farm,
and field scales. In enviromics, the focus is not on an
individual experimental site, as it would be in MET
approaches, but on the entire TPE extent, which is viewed
as a virtual geoprocessing shape that directly represents the
real environment in the field.

After the TPE is identified, phenotypic data must be examined
across diverse settings (Figure 1, step 2). Conducting an
enviromics study, or even a comprehensive G x E x M study,
with a few representative trials across various environments is
akin to conducting a genomics study using a few individual
plants or even a few single-nucleotide polymorphism markers
(Resende et al., 2021). The environmental range must generate
sufficient envirotypic variation to enable enviromics analysis.
This involves expanding the data collection to encompass
longitudinal studies and on-farm data, providing wide-ranging in-
formation on genotype performance in various environmental
conditions. Khosla (2023) showcased grid sampling and sensor
technology for gathering envirotype data alongside phenotypic
performance data for crops. Improved soil sensors can be used
for rapid, reliable, cost-effective in situ measurements at the
plot scale. Through field and laboratory experiments, both crop
and envirotypic data layers are collected, providing information
about the genotypic conditions within the TPE. By integrating
these diverse data sources, the analysis gains depth and reli-
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ability, connecting theoretical environmental definitions with
tangible, real-world agricultural outcomes.

To date, enviromics has been applied to plant breeding at the
cultivar selection/recommendation stage when the TPE is the
focus. For instance, enviromics concepts were recently used to
quantify the effects of climate on the adaptation of elite common
bean (Phaseolus vulgaris) germplasm in Brazil, leading to the
identification of climate limits and critical developmental phases
for each production scenario and guiding efforts in selecting
climate-smart varieties (Heinemann et al., 2022). Ultimately,
envirotyping needs to be scaled to small experimental plots or
even individual plants to achieve the same level of resolution
that genotyping and phenotyping can achieve (Xu, 2016). To
realize this goal, three types of technical developments and
scientific advancements are needed. First, envirotyping for all
environmental factors must be possible, likely via coupling of
satellite-equipped sensors with ground-based sensors and
probes. Second, all sensors and probes must be affordable
and have high enough resolution, throughput, and efficiency for
envirotyping at the individual-plant level. Third, enviromic infor-
mation management tools are needed that are equipped with
powerful computation and Al-assisted modeling and prediction
systems.

APPLYING ENVIROMICS TO BREEDING:
THE NEED FOR EXHAUSTIVE
ENVIROTYPING

The term environment is used in different ways. It can refer to (1)
the natural conditions that affect human existence, as discussed
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by environmental scientists; (2) the social and cultural conditions
that shape individual or community life, a concept pertinent to so-
cial sciences; (3) geographical sites, which exhibit year-to-year
variation; and (4) the physical, chemical, biotic, and abiotic fac-
tors that influence the growth and development of an organism,
which collectively constitute an envirotype. For enviromics,
we favor the latter two usages, with a focus on collecting environ-
mental data for georeferenced sites and analyzing their
spatial and temporal variation. In particular, viewing the complex
layers of environments as envirotypes sets the stage for meticu-
lously examining predictive models in plant breeding, where rela-
tionships between environmental factors and genotypic perfor-
mance must be analyzed with precision and depth (Figure 1,
step 3).

From the perspective of quantitative genetics, the environment
is one of two terms used to explain phenotypic variation. The
envirome is defined as the complete set of external conditions
affecting phenotypic performance (Costa-Neto and Fritsche-
Neto 2021). Enviromics approaches parse out hidden
patterns through the envirotype itself and its interaction with
genotype, which is essential for understanding and improving
crops. Compared to the genotype, which comprises many
genes that determine the phenotype, the envirotype involves
numerous environmental factors with different effects on the
phenotype (Cooper and Messina, 2021). Some factors may
have major effects and be largely predictable, such as
photoperiod (day and night length), temperature patterns,
annual and seasonal precipitation, soil properties, and
specific abiotic stresses.

Much discussion revolves around explanatory versus predictive
models (e.g., in a forum led by Leo Breiman, a developer of
RandomForest; Breiman, 2001). While explanatory models
aim to understand the causal relationships between variables,
predictive models aim to forecast future outcomes based on
past or current data (Shmueli, 2010). Both prediction and
explanation are important for enviromics, each offering unique
contributions that together can synergistically enhance crop
improvement, making both approaches critical for advancing
the field (Costa-Neto et al., 2023). However, it is important to
remember that, when two variables appear to be related, the
assumption that one variable will accurately predict the other
can lead to incorrect population inferences, as what appears
to be effective in a set of sample data may not hold true
universally. Testing these assumptions is particularly vital for
plant breeding, where predictive models are preferred over
explanatory models for identifying genotypes with desirable
phenotypes, such as vyield performance and disease
resistance.

The goal of plant breeding is to identify genotypes with desirable
phenotypic performance, and predictive models can facilitate
this identification. For instance, genomic selection uses genetic
markers to build a prediction model for the genetic merits of
selected candidates with regard to complex traits (Resende,
2024). Genomic selection offers advantages over traditional
quantitative trait locus (QTL)-based marker-assisted selection,
particularly for complex traits governed by many genes with small
effects (Budhlakoti et al., 2022). High-density genotyping is
needed to support genomic prediction, as additional marker
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data can shed light on the genetic variation contributing to
the trait (Sousa et al., 2019). Similarly, more environmental
information, when combined with genomic information (and/or
other omics inputs), can lead to enhanced prediction outcomes
in enviromics (Araujo et al., 2024; Callister et al., 2024). The
value of exhaustive data is exemplified by work from Millet
et al. (2019), who studied maize (Zea mays) across diverse
European environments, and Li et al. (2021), who integrated
environmental factors in genome-wide association studies of
crops such as wheat (Triticum aestivum), maize, and oat (Avena
sativa).

Several approaches can be used to characterize envirotypes.
For instance, the agricultural production systems simulator
pathway, which categorizes environments for agricultural
modeling, employs observed data and model simulations to
define distinct types of environments based on factors such
as climate, soil, and management practices (Holzworth et al.,
2018). Statistical methods for characterizing environment
type, such as iclass, rely on analysis of observed datasets,
such as crop yield, to identify groups or clusters of
environments. These methods aim to minimize crossover
G X E to classify environment types for research or breeding
purposes (Smith et al., 2021).

Enviromics can harness both agricultural modeling and statistical
models, integrating multidimensional information from envirotyp-
ing and genotyping through the use of kernel-based or random
regression models (Jarquin et al., 2014; Costa-Neto et al,
2021b; Resende et al., 2021). Li et al. (2022) demonstrated that
the methods used in genomics and phenomics are also
effective in enviromics, applying these methods to predict the
impact of climatic conditions on the performance of wheat.
Importantly, the envirotype can be regarded as an independent
factor that significantly influences phenotype, its prediction, and
its selection, rather than merely being included as a cofactor in
G x E interactions.

That enviromics integrates various G x E x M methodologies
within its framework yet is fundamentally different from models
rooted in eco-physiology, such as crop growth models or those
derived solely from METs. To acquire sufficient genomic-en-
viromic-phenomic (G-E-P) data to support the analysis,
various unbalanced datasets can be incorporated into the
models. Indeed, for predictive models, large, unbalanced data-
sets are far more advantageous than scarce, balanced data,
with all genotypes being represented in all trials (Resende
et al., 2021). Statistical strategies can effectively handle
genetic predictions and report genetic and residual variance
components using unbalanced trial data (Schmidt et al,
2019; Dias et al., 2020). Envirotyping procedures draw
inspiration from dissecting G x E interactions through data
acquired by exhaustive, or high-throughput, envirotyping
(Cooper et al., 2014; Xu, 2016). Figure 2 shows a hypothetical
envirotyping data structure that could support envirome-wide
selection. The area shown is in Indiana, USA, where diverse
layers of envirotyping data can be acquired. Although this
hypothetical case study focuses on a single area, the
concepts apply to broad regions, from individual countries to
entire continents and even intercontinental regions, with the
TPE tailored to suit specific interests.

Molecular Plant 17, 848-866, June 3 2024 © 2024 The Author. 851
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Figure 2. An example of a prediction area located in North
America.

Twenty-five sampling points containing phenotypic data are shown
(experimental or on-farm trials). The prediction area is in Indiana, USA.
Various layers of envirotyping data for the area are also depicted.

To integrate envirotyping data from diverse sources, cartography
and geodesy use datums, or reference frames, composed of a
coordinate and reference system to represent the Earth’s surface
(an important task for step 4 shown in Figure 1). The ellipsoids and
transformation parameters of global datums such as WGS84,
NAD83, ED50, SIRGAS, and ITRF, each optimized for specific re-
gions, ensure accurate referencing in data overlays and maps.
While WGSB84 is a global standard, regional datums continue to
be utilized for local applications, especially in high-precision
mapping and geodetic studies, with global integration driven by
technological advancements. The data cube concept, which uti-
lizes geocoding and image co-registration techniques, handles
diverse geospatial data with tools such as gdalcubes and xcube
for multivariate analysis. Notably, a gdalcubes library enables on-
demand construction and processing of data cubes from satellite
image collections (Appel and Pebesma, 2019). In addition, the
Python package CGC facilitates co- and tri-clustering of geodata
cubes to identify patterns across spatial, temporal, and thematic
dimensions (Nattino et al., 2022).

Acquiring myriad data points concerning terrestrial attributes
and surface characteristics, such as agricultural crop growth
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patterns at the farm level, has become feasible, especially
when temporal data are considered, segmented according to
the accessibility of the environmental monitoring platform and
amalgamated with climatological norms (Uthes et al., 2020).
Importantly, incorporating climatological norms affords a more
robust depiction of average insights pertinent to geographical
focal points. This approach facilitates the detection of climatic
deviations, such as unusual temperature shifts or precipitation
patterns, warranting deeper investigation.

Some environmental factors are predictable, as they are largely
determined by longitude, latitude, and altitude, whereas some
are unpredictable due to random variable factors such as
weather changes. Even for the most seasoned climatologists,
predicting aberrant climate events is a formidable undertaking
(Brady and Spring, 2021), complicating efforts to identify suitable
cultivars for growth in the face of climate variation. Such
variations do not invariably result in tangible events. Satellite data
offer temporal information, that is, measurements at certain
intervals (refer to Supplemental Table 1; discussed in detail
below). Some measurements are influenced by atmospheric
factors, including (but not limited to) cloud formations, pollutants,
lightning, and various forms of radiation such as solar and cosmic
rays. Importantly, while enviromics requires less granularity
compared to phenomics, it demands attention to detail at the
pixel level, even at the levels of individual field plots, blocks, and
even individual plants (Xu, 2016; Xu et al., 2022). Furthermore, the
concept of “pan-enviromics” encapsulates enviromics across
various dimensions, including time, space, multiple locations,
and developmental stages. For further discussion on the
intricate relationships among envirotype, envirotyping, envirome,
enviromics, and pan-enviromics, see Crossa et al. (2021) and
Guo and Li (2023).

A variety of sources provide data for enviromics studies. Meteo-
rological stations provide information on climatic parameters
such as temperature, humidity, precipitation, and wind speed.
Hydrological stations monitor data related to water resources,
such as river and lake levels. In situ sensors and sensor networks
collect data at specific environmental points, sometimes associ-
ated with the Internet of Things. Drones and unoccupied aerial
vehicles (UAVs) can perform high-resolution data collection in
hard-to-reach areas. Crowdsourcing involving public collabora-
tion can be used to collect and provide information. Mobile de-
vices can collect geospatial data in real time. In addition, histori-
cal data collections provide information on patterns and trends
over time, such as historical climate records, maps, and
documents.

SATELLITE SYSTEMS AND REMOTE
SENSING FOR ENVIROTYPING

Satellites and their classification

Plant scientists are well versed in advanced genotyping tech-
nologies, bioinformatics, and increasingly high-throughput
phenotyping. Both UAVs and satelltes can offer high-
resolution imagery, with great potential for precise estimation
in breeding plots of various sizes, allowing cost-effective, stan-
dardized phenotyping in breeding programs (Pinto et al.,
2023). Importantly, enviromics data can sometimes intersect
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with aerial phenomics and can capture the combined influence
of all environmental factors, even when there are small
differences. A recent study integrating UAV and Sentinel-2
data significantly improved the prediction of sugarcane (Sac-
charum officinarum) yields, offering a cost-effective solution
for yield management (Som-ard et al.,, 2024). Utilizing
multispectral and microwave data from the ALOS (Advanced
Land Observing Satellite), specifically AVNIR-2 and PALSAR
sensors, Domingues et al. (2023) demonstrated the
effectiveness of artificial neural networks for accurately
estimating wood volume in a commercial eucalyptus
plantation in Brazil. However, few studies have focused on
integrating breeding with envirotyping using satellites (Xu
et al., 2022).

Satellites are technological marvels tailored for specific mis-
sions with unique characteristics. They range from small
CubeSats (modular satellites in cube form a few centimeters
in size used in low-cost space missions) to large
satellites weighing several tons (Levchenko et al., 2018). The
satellite choice is determined by payload and launch
constraints and by the target applications, from land
monitoring to global communications. Earth observation
satellites frequently operate in lower orbits to obtain high-
resolution images, while communication and navigation satel-
lites operate in higher orbits, such as geostationary orbits
(Zhao et al., 2022). The stability and orientation of satellites
are ensured by the attitude control system, which can vary;
some satellites use gyroscopes and reaction wheels, while
others use more sophisticated systems with reaction wheels
and magnets.

Satellites can be grouped based on their purpose. Astronomical
satellites are used to observe space and celestial bodies (e.qg.,
the celebrated Hubble and James Webb). Communication
satellites transmit radio, television, telephone, and Internet sig-
nals. Earth observation satellites monitor terrestrial resources,
such as vegetation, soil, water, and climate. Meteorological
satellites are used for weather forecasting and collecting cli-
matic data. Military satellites are used for defense, espionage,
navigation, and communication purposes. Finally, space
stations house astronauts and scientific experiments in
space (Jakobsen et al., 2022). The most suitable satellites for
enviromics are Earth observation and meteorological
satellites. These are placed in low orbits to monitor the
Earth’s surface and collect scientific data (Levchenko et al.,
2018) or in geostationary orbits (remaining at high altitudes in
a fixed position relative to the Earth) to monitor climate
conditions and predict storms (Krinitskiy et al., 2023). Earth
observation satellites also vary by sensor type: optical,
thermal, radar, and light detection and ranging (LiDAR;
Figure 3A). These sensors and their applications in
envirotyping are discussed in detail in below.

Satellite sensors for envirotyping

Optical sensors

Optical sensors capture images of the Earth’s surface using
the visible and near- and short-wave infrared electromagnetic
spectrum, allowing a detailed pixel-based analysis of an agri-
cultural site. By monitoring strategic variables, such as leaf in-
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dex, soil moisture content, and plant health, breeders gain in-
sights into crop development, as they can detect early signs of
issues such as biotic or abiotic stress. By providing contin-
uous, precise aerial views, these optical sensors enable
the implementation of more efficient agricultural practices,
increasing crop productivity and facilitating informed decision
making in managing cultivated areas. These sensors are often
employed in drones, and the multispectral approach explores
various spectral bands, facilitating their use in phenotyping ex-
periments for genetic improvement.

The spectral bands of optical sensors cover wavelengths
useful for agricultural applications, providing powerful envirotypic
data for enviromics (Figure 3A and 3B). The blue band
(~450-495 nm) is useful for detecting healthy vegetation and
measuring nutrients and chlorophyll in plants. The green band
(500-575 nm) is used to evaluate plant health, allowing areas
with higher vegetation density to be identified. The green 1
band (500-550 nm) is employed to assess leaf health and
evaluate plant responses to stress (Yang et al., 2022).

It is important to distinguish between applications in plant phe-
notyping and environmental envirotyping. Centimeter-level ac-
curacy for detailed plant phenotyping, focusing on individual
plants and plots, has generally been achieved using sensors
on UAVs. By contrast, envirotyping examines the broader
environmental context, making use of satellite imagery with
resolutions finer than 4 m or applying kriging (spatial interpola-
tion) at specific resolutions for genetic-improvement projects.
Excitingly, advanced satellite imagery technology can now
provide centimeter-level detail (Karwowska and Wierzbicki,
2022), which can support applications such as selection in
breeding populations at early stages of evaluation (Zhang
et al.,, 2019). This level of detail is also important for
allogamous (cross-pollinating) crops such as maize, where a
3-4 m? plot size is optimal for progeny selection (Chaves
and de Miranda Filho, 1992), and for tree crops due to
the variable spacing between trees (Marcatti et al., 2017).
These advancements highlight the evolving role of remote
sensing in agricultural analysis, which seamlessly integrates
phenotyping and envirotyping for a thorough genetic and
environmental assessment.

In some cases, vegetation behavior acts as a proxy for envi-
ronmental quality, with healthy, vigorous plants indicating
favorable environments for crop development, a notion termed
plant-based characterization (Skovsgaard and Vanclay, 2008).
Different spectral bands within the electromagnetic spectrum
are instrumental for indirectly measuring plant features.
The near-infrared (NIR) region (750-1300 nm) is used to assess
crop health by reflecting leaf and canopy structures
(Kokaly et al., 2003), while red bands (600-750 nm) are
used to evaluate chlorophyll levels, underpinning assessment
of vegetation cover and productivity (Venancio et al., 2019).
Red-edge bands (bridging red and NIR) are used to
detect subtle changes in vegetation related to growth and
stress. The efficacy of these bands in reporting plant
traits depends on crop type, stress levels, and other environ-
mental conditions. Vegetation indices derived from these
bands quantify environmental impacts on vegetation: the
normalized difference vegetation index (NDVI) gauges plant
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(A) Spectrum range covered by different sensor technologies; wavelengths from gamma rays to long radio waves are shown, along with specific bands
used by optical, radar, and LiDAR sensors for envirotyping data acquisition; thermal sensors cover NIR, mid-infrared (MIR), and far infrared (FIR) (this
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(B) Optical-based sensor, showing a false-color NIR-R-G image from the Sentinel-2 satellite at 10-m resolution.
(C) Backscattering signal (microwaves) obtained using Sentinel-1 sensor synthetic aperture radar (SAR) with an approximately 10-m resolution.
(D) Topography obtained using airborne LIDAR technology, with an average post spacing of 1.5 m, sourced from IndianaMap (IndianaMap 2011).

UV, ultraviolet.

health by contrasting NIR and red light; the soil adjusted
vegetation index adjusts NDVI for soil background, enhancing
accuracy in regions with sparse vegetation; enhanced
vegetation index improves NDVI by correcting for the
influences of atmosphere and soil, offering sensitive detection
of changes; and normalized difference water index focuses
on water content, aiding hydrology studies (Silva et al,
2020). Together, these indices and bands provide
comprehensive insights into environmental quality and
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vegetation, demonstrating the conditional effectiveness of
spectral analysis depending on the specific agricultural
context.

Optical sensors can also be used in environmental quality as-
sessments incorporating "Earth-based" landscape characteris-
tics (Skovsgaard and Vanclay, 2008). Short-wave infrared
(SWIR) bands are useful for identifying soil compositions and
pinpointing moisture discrepancies in both the soil and canopy,
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with SWIR-1 alongside NIR bands being especially valuable
for estimating soil moisture content and surveying crop health
under varied hydration states (Yue et al., 2019). The less
commonly used ultra-blue and yellow bands contribute to
research on atmospheric aerosol scattering (Bautista et al.,
2022). Hyperspectral sensors have extensive spectral
resolution, covering wavelengths from visible to NIR and even
into the SWIR spectrum, offering detailed, pixel-based data
across numerous narrow bands. Rizzo et al. (2023) constructed
a high-definition global soil color map at 30-m precision based
on over three decades of Landsat satellite data and ground
spectral measurements, laying the foundation for soil resource
monitoring and management in the future. These sensors, cap-
ped at 30-m spatial resolution, can be used to collect a vast
amount of envirotypic data, such as soil types and moisture
levels, thereby advancing environmental and agricultural
research (Yue et al., 2019).

Radar sensors

Unlike optical sensors, radar sensors emit microwaves and
detect the reflected radiation. These sensors have night-vision
capabilities, as they can penetrate through clouds, and provide
images at lower spatial resolution, making them well suited for
adverse weather conditions and three-dimensional (3D) map-
ping of the Earth’s surface (Wang et al., 2018). For example,
the image produced by radar sensors shown in Figure 3C
demonstrates the phenomenon of backscattering, i.e., the
return of microwave energy emitted by the Sentinel-1 synthetic
aperture radar (SAR) sensor operating in the C-band to the
sensor itself, revealing details about the surface’s topography,
structure, and moisture based on the signal variation. Radar
sensors can thus facilitate envirotyping by providing informa-
tion about ground conditions, such as vegetation, soil mois-
ture, and water availability. They can also enhance plant health
monitoring by detecting changes in crop health related to
diseases and water stress (Emmerik et al., 2017). Data from
these sensors can be used to analyze phenotype traits
associated with plant performance in different environments
(Al-Turjman, 2019).

Crop mapping is another important application, as radar sen-
sors can help map the spatial distributions of different crops
in large agricultural areas, aiding in the design of plant
breeding experiments. By employing data from a dual-
polarimetric C-band radar image satellite and a QUEST
(Quick, Unbiased, Efficient Statistical Tree) decision tree clas-
sifier, Mishra et al. (2017) mapped the spatial distribution of
rice (Oryza sativa) cultivation areas, with an impressive
accuracy of 88.6%. This approach serves as an effective tool
for rice crop mapping and could potentially enhance supply
chain forecasting.

LiDAR sensors

LiDAR sensors are active remote sensors that emit laser
beams in the green and NIR wavelengths. These sensors are
capable of accurately modeling the Earth’'s surface
(Figure 3A). LIDAR sensors aboard satellites emit laser pulses
toward the Earth’s surface and measure the time it takes for
the pulse to return to the sensor. The information can be
used to calculate the distance between the satellite and the
surface point that reflected the pulse. By combining multiple
measurements from different shots, LIDAR satellites provide
detailed 3D surface information, including the heights of the
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terrain and vegetation. Even more detailed models can be
created using point clouds from both aerial and terrestrial
LiDAR systems. The two orbiting LiDAR systems, NASA’s
IceSat-2 and Global Ecosystem Dynamics Investigation
(GEDI), produce data in the form of photon-counting and
waveform samples of the Earth’s surface that require interpo-
lation to create a raster. Good digital elevation models from
orbital platforms can be derived from radar technologies,
such as SRTM (Shuttle Radar Topography Mission) and
ALOS-PALSAR (Phased Array type L-band Synthetic Aperture
Radar).

The Airborne Laser Terrain Mapper is an airborne sensor that per-
forms high-resolution topographic mapping and terrain modeling,
providing accurate data. The land, vegetation, and ice sensor
mounted on the ICESat satellite measures the height of the Earth’s
surface, vegetation, and ice, shedding light on climate change and
enabling environmental monitoring. The GEDI, coupled with the
ICESat-2 satellite, maps the vertical structure of forests, facili-
tating the study of terrestrial ecosystem dynamics (Alvites et al.,
2022). The sophisticated ATLAS LiDAR sensor, which is also inte-
grated into the ICESat-2 satellite, is used to measure the height of
polar ice and the Earth’s surface, contributing to climate studies
and environmental monitoring.

Acquiring LiDAR data is costly, primarily due to the high price
of sensors and the expenses involved in integrating them into
airborne devices. In addition, the resulting data files are large.
Nevertheless, LIDAR sensors serve various purposes in agri-
culture. Figure 3D illustrates the use of aerial LIDAR data to
model the topography of the area shown in Figure 2. The
data were obtained through the free IndianaMap Framework
LiDAR platform (IndianaMap, 2011) and are displayed for
comparative purposes and for exploring LiDAR functionalities.
LiDAR sensors can map the topography of agricultural areas,
thereby enhancing the precision of land use and irrigation
planning (Debnath et al., 2023). Additionally, LiDAR data pro-
vide information about crop structure and height, facilitating
plant health evaluations and the early detection of issues
such as water stress or diseases. When deployed on satellites,
LiDAR sensors can be used for large-scale monitoring, swiftly
covering large territories—an invaluable asset in modern agri-
culture, where intelligent resource management and contin-
uous monitoring are needed to enhance productivity. When
mounted on UAVs, LiDAR provides geometric measures that
are particularly advantageous for capturing height and
modeling biomass at the plot level in breeding programs; how-
ever, it remains uncertain whether the same level of resolution
is achievable with satellite-based LiDAR.

Weather-related sensors

Meteorological satellites equipped with a specific range of sen-
sors monitor atmospheric conditions. High-resolution thermal
infrared cameras measure the temperature of the Earth’s surface,
aiding in climate studies and the detection of thermal variations.
Thermal cameras typically exhibit low spatial and spectral resolu-
tion. A notable exception is NASA’s ECOSTRESS mission, with a
spatial capability of 70 m. Lower-level products from the
ECOSTRESS mission include information about water-use effi-
ciency and the evaporative stress index (Fisher et al., 2020),
which help elucidate the ability of different genotypes to deal
with dryer conditions.

Molecular Plant 17, 848-866, June 3 2024 © 2024 The Author. 855



Molecular Plant

Radiometers measure solar and infrared radiation, providing
important information about the climate and incident solar energy
on Earth. Microwave radiometers measure sea surface tempera-
tures and other oceanic features, contributing to oceanographic
studies and the prediction of ocean-related phenomena. Atmo-
spheric sounders are employed to measure temperature, humid-
ity, and pressure at different altitudes, offering information about
atmospheric processes and facilitating weather forecasting.
Meteorological satellites also include high-temporal-resolution
imagers, allowing for detailed images of cloud cover and weather
patterns, providing essential data for predicting and monitoring
extreme weather.

The surface and weather sensors complement each other,
facilitating the study and monitoring of terrestrial and atmo-
spheric environments. The combined use of advanced tech-
nologies, such as optical cameras, multispectral and hyper-
spectral sensors, SAR, radiometers, and atmospheric
sensors, provides a broad, accurate view of the Earth and
its climatic phenomena. Continued collaborations in these
fields will contribute to basic research and the application of
satellite data in agriculture and plant breeding, providing
a deeper understanding of interactions between genotypes
and agro-climatic settings and supporting decision making in
enviromics-related sectors such as agriculture, climate sci-
ence, meteorology, and environmental policy.

Remote-sensing products for enviromics

The current panorama of remote sensing offers a diverse array of
products, each designed for specific applications (Khanal et al.,
2020; Lechner et al., 2020; Weiss et al., 2020). These products
(detailed in Supplemental Table 1) originate from terrestrial
monitoring missions and often comprise multiple satellites.
Their various sensors capture "scenes"—images or datasets
representing Earth’s surface areas at specific times—that are
essential for envirotyping. The scenes are presented in a raster
format that encapsulates geographic or metric coordinates. The
coverage and capture intervals of a scene are usually set
during mission planning, with some flexibility in customization
for certain products. Scenes can include multiple bands to
capture temporal and spectral variations, enriching the data’s
dimensionality. Selecting a remote-sensing product for enviro-
mics requires an understanding of its resolution types, which
determine its suitability for specific applications (Jensen, 2009;
Khanal et al., 2020).

Spatial resolution determines how well the smallest identifiable
object in a remote-sensing scene can be distinguished. Resolu-
tion is closely linked to pixel size, with smaller pixels offering
greater detail. High spatial resolution allows specific features to
be detected, such as water deficiency in certain crops, making
it ideal for analyzing small areas such as experimental sampling
units (Jensen, 2009; Khanal et al., 2020). However, products
with high spatial resolution (pixel < 5 m) often come with costs,
both financially and in terms of the computational resources
required for data processing, and they usually cover smaller
areas in a single scene. The selection of spatial resolution in
a genetic-improvement program is influenced by factors
including the type of crop, scale of production, data source,
and stage of the breeding cycle. For instance, the space
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occupied by plant populations can vary significantly, with early-
generation populations covering less area compared to later
stages (e.g., F5 or F6 generations; Chaves and de Miranda
Filho, 1992).

Temporal resolution (the frequency of image capture in the
same location) affects the ability to monitor changes over
time. A higher temporal resolution means shorter intervals
between captures, as exemplified by the Landsat mission’s
16-day cycle (Jensen, 2009). However, the practical use of
images is affected by atmospheric conditions, especially
cloud cover, which can obscure data collection, particularly
during the rainy season, when plants are at critical stages of
growth. This challenge is especially pronounced for optical
sensors. The choice of temporal resolution thus depends on
specific requirements, such as the crop’s life cycle, the
desired level of detail throughout its life cycle, and specific
phenological stages (Yang et al., 2022). High temporal
resolution increases the likelihood of obtaining usable, cloud-
free images for critical periods, such as peak vegetative
growth, which is essential for accurate analysis and decision
making (Lechner et al., 2020).

Spectral resolution is determined by the sensor’s ability to
discern different wavelengths across the electromagnetic
spectrum (Jensen, 2009). NIR and red bands are essential
for calculating vegetation indices (such as NDVI), which help
assess plant vigor and stress levels. Blue and green bands
contribute to true-color (RGB, Red, Green, Blue) imagery and
vegetation and soil indices. Mid-infrared bands aid in evalu-
ating plant water content, while thermal bands are pivotal for
measuring land surface temperature. An ideal remote-
sensing product combines visible (RGB) and NIR bands, facil-
itating comprehensive vegetation studies and environmental
assessments (Silva et al., 2020; Voitik et al., 2023). Mid-
infrared and thermal bands are beneficial for drought-resis-
tance studies. Technological advancements have led to the
development of multispectral sensors, offering broad spectral
coverage using limited bands, and hyperspectral sensors,
providing high spectral resolution using over 100 bands.
Although hyperspectral sensors are not yet widespread, their
potential for identifying specific plant traits or environmental
conditions is significant, promising future advancements
in precise plant and environmental monitoring (Terentev
et al., 2022).

While spatial, temporal, and spectral resolutions are primary
factors in choosing remote-sensing products for enviromics,
additional factors are also important, such as the cost of the
products, particularly free versus paid options. High-spatial-
resolution (<5 m) and high-temporal-resolution (<5 days) prod-
ucts are rarely free, and high-temporal-resolution products
typically feature moderate spatial resolution (>30 m). However,
for many enviromics applications, ultra-high-resolution data
may not be necessary, and data obtained for other purposes,
such as infrastructure planning or crop prediction modeling,
can be leveraged. The evolution of computational power and
data-management tools promises more accessible high-
resolution products in the future. Additionally, the operational
status of a satellite mission must ensure the long-term viability
of enviromics methods. With the continued development of
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sensor technologies, discontinued sensors are often replaced,
ensuring continuous data availability. The use of a diverse
array of remote-sensing sources enhances the precision of
environmental analysis and reduces reliance on single data
sources. Finally, the sensor type—optical very high resolution,
optical, radar, LiDAR, or weather—is a key decision for remote
sensing, as each offers unique advantages for specific appli-
cations, as summarized in Supplemental Table 1.

Choosing the best remote-sensing tool for enviromics requires
an understanding of how environmental factors influence a
genotype’s productive capacity. This can be assessed using
Earth-based and plant-based strategies, as outlined by
Skovsgaard and Vanclay (2008). Earth-based assessments
focus on physical characteristics such as climate, topography,
and soil. Weather sensors gather climate data (e.g., precipita-
tion, temperature), while radar and LiDAR sensors are invalu-
able for topographic modeling, offering information about
terrain attributes and soil types. Plant-based assessments uti-
lize optical sensors to evaluate crop-related characteristics,
correlating specific optical spectrum bands and derived
indices with crop production and stress factors (such as dis-
ease and water deficit; Tomar et al., 2014; Khanal et al.,
2020; Voitik et al., 2023).

ENVIROMIC INFORMATION
MANAGEMENT PLATFORMS AND
CYBERINFRASTRUCTURE

The extract, transform, and load process can also be used to
handle the diversity and complexity of environmental data
(Aydinoglu, 2016). The process of managing such data can
be divided into extraction (represented in Figure 1 by steps
1-2), transformation (Figure 1, steps 3-5), and loading
(Figure 1, step 6). Extraction involves gathering information
from various sources, such as satellites and sensors (e.g.,
MODIS and Sentinel-2), weather stations, and climatic reposi-
tories (e.g., MERRA-2 and ERAS5), encompassing data on
climate, radiation, soil, vegetation, and topography. During
transformation, the data are processed and prepared for
advanced analysis via cleaning, normalization, integration,
feature extraction, and relevant index calculations. Finally,
the processed data are loaded into an appropriate analytical
environment, such as a geographic information system (GIS)
or environmental data platform, providing a solid foundation
for more detailed analyses. In this section, we address the
extraction stage.

Environmental data for enviromics can be extracted from plat-
forms (or repositories) that aggregate datasets and analysis
systems, gathering comprehensive and retrospective informa-
tion about the environment and the Earth’s surface. Infor-
matics management platforms integrate a variety of data sour-
ces, such as satellite observations, surface measurements,
and climate model data, to provide detailed envirotypic infor-
mation, such as meteorological variables and information
about the global climate and climate change on a global or
regional scale. Much of the data, such as from EOS,
LANDSAT, Sentinel, ALOS, GEDI, and RADARSAT, can be
easily acquired using the Google Earth Engine platform
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(Velastegui-Montoya et al., 2023). In addition, GIS codes
facilitate collaboration among software projects. The Open
Geospatial Solutions organization on GitHub hosts open-
source projects developed and maintained by a community
of geospatial software experts, which are free for use and
modification and are licensed by Massachusetts Institute of
Technology (refer to the Open Geospatial Solutions GitHub
page by Wu, Aybar, and Brown for further information:
https://github.com/opengeos).

MERRA-2 is a long-term climate dataset that offers a comprehen-
sive, retrospective assessment of past atmospheric conditions,
providing detailed information on meteorological variables such
as temperature, humidity, wind, and atmospheric pressure
(Gelaro et al., 2017). Similarly, ERA5, which was developed by
the European Centre for Medium-Range Weather Forecasts, pro-
vides high-resolution global climate reanalysis data, covering an
extensive period and enabling global-scale climate analysis
(Hersbach et al., 2020).

NCEP/NCAR Reanalysis, a collaborative effort between the
National Centers for Environmental Prediction (NCEP) and
the National Center for Atmospheric Research (NCAR), pro-
vides a consistent and comprehensive dataset with decades
of climate information. The Copernicus Climate Change Ser-
vice (C3S), part of the European Union’s Copernicus program,
provides fundamental climate data, including satellite observa-
tions, surface data, and climate model results, to analyze
climate change and its impacts. MODIS, a satellite sensor
aboard NASA'’s Terra and Aqua missions, is a tool for environ-
mental and climate monitoring that acquires spectral data and
high-temporal-resolution images of the Earth’s surface, offer-
ing a comprehensive, detailed view of our planet’s conditions.
These platforms can support climate research, studies on
environmental changes, weather forecasting, and retrospec-
tive analyses, providing data to better comprehend global
climate and its complexities over time.

Several R and Python packages can be used to gather data
from diverse sources for enviromic modeling. The Python
Requests library (Reitz, 2024) makes HTTP requests to web
services or application programming interfaces , including
various types of environmental data. The pyModis library
(Delucchi and Neteler, 2013) extracts MODIS satellite data,
and the Sentinelsat package extracts Sentinel satellite data.
Geopy enables the extraction of geographical information,
and web scraping libraries, such as BeautifulSoup and
Scrapy, facilitate data extraction from websites (Kouzis-
Loukas, 2016). The Pyproj package assists in extracting
geospatial coordinates and transformations. For details on
these and other Python packages and procedures for GIS
analysis, see Westra (2016).

The R package nasapower (Sparks, 2018) provides access to
NASAPOWER data for extracting climatic and meteorological infor-
mation. The R packages raster, sf, and terra are robust tools for ex-
tracting and managing raster geospatial data (Hijmans et al., 2022).
The stars package can be used to extract spatiotemporal data
(Pebesma and Bivand, 2023), while sen2r can be used to extract
data from Sentinel-2 satellites (Ranghetti et al., 2020). Some
packages also assist in downloading data, making it easily
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accessible, such as EnvRtype (Costa-Neto et al., 2021a) and
SoilType (Fritsche-Neto, 2023).

Some data-management platforms offer resources and data-
sets that can be strategically used to acquire envirotyping
data. Using detailed climate classifications described by
Koppen-Geiger (Cui et al., 2021) and Ecoregions (Dinerstein
et al, 2017), it is possible to categorize planting
environments based on specific climatic conditions.
SoilGrids soil property maps (Poggio et al., 2021) provide
information about the physical and chemical properties of
multiple soil layers. Solar energy data from nasapower
(Sparks, 2018), as well as information on wind, precipitation,
seasonal humidity, climate seasonality, and even extreme
events via WorldClim1 (Hijmans et al., 2005) and WorldClim2
(Fick and Hijmans, 2017) can be used to model the complex
relationships that affect plant growth and development. The
Environmental Data Initiative (Gries et al., 2023) provides
access to a wide variety of envirotypic data, enriching
enviromics studies with information about past and present
environmental conditions. NASA GenelLab (Berrios et al.,
2021) also contributes to the collection and organization of
omics data and provides access to these data from space
missions and analogous experiments, fostering scientific
discoveries and shedding light on the effects of space
environments on biology. All these resources empower
researchers to consider myriad environmental factors,
enhancing our understanding of G x E interactions and
facilitating the selection of plants for sustainable agriculture
and the conservation of biodiversity.

Despite the availability of numerous satellite data repositories,
processing and analyzing large amounts of data still requires
significant computational power and specialized knowledge
about Earth data science. The cyberinfrastructure required
for such endeavors includes high-performance computing
and cloud services such as Amazon Web Services, Planetary
Computer/Azure, and Google Earth Engine. The expected
rise in the use of web tools, such as Google Earth Engine Ap-
plications and R Shiny Dashboards, in the coming decade
highlights the increasing need for advanced tools that make
data analysis more accessible. In this era of big data analytics,
the ability to leverage purpose-driven envirotyping products
will empower researchers to engage with the open satellite
data revolution, facilitating informed decision making in the
environmental and agricultural domains (Khanal et al., 2020;
Vance et al., 2024).

AI-ASSISTED ENVIROMICS

As discussed above, data from various sources are now being
seamlessly combined thanks to platforms that provide
uniform data access, storage solutions, application-based inter-
faces, and middleware, facilitating the merger of genotypic—envir-
omic—phenotypic (G-E-P) data into comprehensive knowledge
networks (Lund, 2020). These tools deploy data-mining
algorithms to weave together diverse data streams (Marsh
et al., 2021). Techniques such as concatenation, transformation,
and model-based integration facilitate the effective merging of
datasets (Picard et al., 2021). Multiomics datasets make this
process challenging due to their varying formats, scales, and
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dimensions, as they are often noisy, sparse, and collected
under different conditions. To navigate these complexities,
international standards and deep-learning algorithms are needed
to manage nonlinear patterns and facilitate data integration (Selby
etal., 2019; Montesinos-Lopez et al., 2022). Al has emerged as an
effective strategy to overcome the intricacies of enviromics
datasets, enhancing predictions for plant breeding through
integrating G-E-P data. This involves considering the structural
nuances of breeding data and leveraging statistical methods to
optimize predictions and decision-making processes in plant
breeding (Xu et al., 2022).

In addition to traditional predictive methods (e.g., mixed
models and/or Bayesian), Al and machine learning (ML)
methods can assist in enviromics to enhance genotypic predic-
tions and recommendations (Resende et al., 2021; Costa-Neto
et al., 2023). Both Al and ML are triggering a paradigm shift in
geoprocessing (GIS) and plant breeding. For geoprocessing, Al
leverages advanced algorithms and ML models to extract
knowledge from spatial data, enabling more precise analysis
and decision making in fields such as environmental
monitoring and disaster management. Al can enhance the
accuracy of mapping, spatial pattern recognition, and
predictive modeling, thereby revolutionizing how we
understand and interact with geographic information (Khan
et al, 2022; Montesinos-Lopez et al., 2022). Emerging Al
techniques are useful for identifying and selecting desirable
traits in genetic datasets. Their potential to enhance genotype
selection, crop yield optimization, and climate adaptability is
an active area of research (Hayes et al., 2023; Negus
et al., 2024).

Transformative synergy between Geoprocessing + Al (GeoAl)
(Song et al., 2023) and plant breeding has the potential to
address pressing global challenges related to food security and
sustainable land management. Artificial neural networks and
other Al techniques have been successfully applied for
various purposes in geosciences and geotechnical engineering
(Noack et al., 2014; Kim et al., 2019; Samui, 2020). In addition,
several studies have demonstrated the superior performance of
XGBoost and random forest algorithms in predicting geological
properties (Naghibi et al., 2020; Zhang et al., 2021). Notable
reviews by Negus et al. (2024) and Khan et al. (2022) highlight
the opportunities to similarly exploit Al in plant breeding,
which could transform crop improvement and lead to major
advancements in agriculture.

ENVIROMICS FOR CROP IMPROVEMENT

After identifying environmental targets, collecting phenotypic
data, and acquiring environmental data, the next step in
enviromics involves merging the datasets (Figure 1, step 5). This
step combines environmental information with phenotypic
observations and (perhaps) genomic or other omics datasets.
The core issue is to ensure that the geographical coordinates of
the sites containing phenotypic data use the same coordinate
system (i.e., Datum) as the envirotyping data. This task ensures
a nested evaluation that minimizes analysis noise and clarifies
factor interactions, laying the groundwork for comprehensive
enviromics analyses. Integrating multidimensional data, big
data technology, and Al enables the development of an



Satellite-enabled enviromics in crop breeding

Molecular Plant

Figure 4. A hypothetical enviromics anal-
ysis.

This figure serves as a resource for informed local
breeding decisions.

(A) The prediction area for enviromics or the TPE.
(B) Output from an infinitesimal random regres-
sion enviromics-based model.

(C) Genotypic recommendations: complete
ranking of all evaluated genetic materials with
predictive extrapolation for all pixels in the area.
(D) Potential genetic gains: optimal environments
for implementing breeding experiments.

(E) Breeding zones: geographical polygons mini-
mizing genotype-by-environment (G X E) in-
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intelligent and integrated G-E-P breeding scheme, leading
to more precise phenotype predictions and greater genetic
gains through integrative breeding platforms and open-source
initiatives (Xu et al., 2022; Vance et al., 2024). Nevertheless,
G x E x M interactions pose hurdles to optimizing genetic gains
and crop productivity. Driven by advancements in genetic,
genomic, and remote-sensing technologies, this could lead to
the emergence of enviromics for complex trait prediction
(Cooper and Messina, 2021).

Enviromics can also benefit from ecophysiological data integration,
offering solutions for climate-smart agriculture, cost-effective field
practices, and future plant breeding scenarios (Costa-Neto et al.,
2021b). Incorporating probabilistic concepts from Bayesian
models further improves cultivar recommendation processes in
MET, enhancing our understanding of G x E interactions (Dias
et al., 2020). Notably, countries such as Australia and other
nations in the International Wheat Improvement Network have
obtained substantial genetic gains using remote sensing
combined with genomic selection through parent crossing and
progeny selection, as highlighted in the comprehensive review by
Chen et al. (2022), providing valuable platforms for ongoing
research and refining breeding methodologies.

Enviromics for predictive breeding

Finally, our discussion turns to step 6 in the enviromics process,
as depicted in the enviromics analysis (Figure 1), where

(F) Potential productivity: projection of produc-
tivity for the entire area or any other desired
phenotypic traits. Results apply to both the

é;ferﬁ?ia population average and selected/recommended
Productivity genetic materials.
High
Intermediate
Lo hypothetical results from Resende et al.
(2021) are illustrated in Figure 4A. One
model used in enviromics is random
Potential regression, where horizontal pulses along
Genetic Gains 0 onviromic marker gradient (x axis)
High represent a new predicted trial (Figure
intermediate ~ 4B) (i.e., @ 100% virtual experiment). This
Low model predicts the behavior of each

genetic material and its rank in order, with
predictive extrapolation at the site-specific
level for all pixels in the area (Figure 4C).
The average potential productivity of each
selected/recommended genetic material can be predicted, as
shown in Figure 4D. For example, integrating climate and
geographic data allowed optimal eucalyptus genotypes to be
selected across a wide area, tailoring clonal cultivar choices to
maximize wood volume for different planting ages; this analysis
showcased the power of innovative environmental stratification
to optimize productivity (Marcatti et al., 2017).

Compared with genotypes, where inbred or hybrid varieties
can generally be replicated, or single-locus genotypes or
multi-locus haplotypes can be replicated by groups of individ-
uals, envirotypes for certain environmental factors are consid-
ered to be generally replicable for any specific envirotyping
location, as determined by longitude, latitude, and altitude.
Major environmental factors (envirotypes), such as seasonal
day/night length, temperature variations, and managed envi-
ronments, are generally consistent and largely predictable,
while minor environmental factors are largely unpredictable.
The prediction accuracy for phenotypic performance is deter-
mined by complex combinations of genotypes, envirotypes,
and their interactions (Araujo et al., 2024). Therefore, only
major environmental factors can be used for classification
and prediction. However, similar to the selection indices
used to evaluate quantitative phenotypes, enviromic indices
can be constructed for each specific envirotypic location/site
using information extracted from all environmental factors
based on their individual (infinitesimal) contributions to the
total envirotypic variation and their envirotypic relationships
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(Costa-Neto et al., 2021b; Li et al., 2021; Resende et al., 2021;
Piepho, 2022; Xu et al., 2022).

Going further, if a G x E interaction is significantly associated
with groups of environments within the TPE, greater genetic
gains can be achieved by reorganizing experiments into
“mega-environments” (Crespo-Herrera et al., 2021; Krause
et al, 2022). This leads to a discussion about “breeding
zones” versus mega-environments (Gauch and Zobel, 1997),
where breeding zones refer to the re-aggregation of pixels
minimizing G X E and not to groups of experiments. In other
words, breeding zones are geographical polygons that
minimize G X E (Figure 4E and refer Callister et al. (2024)).
The partitioning of environments (geographical regions)
into homogeneous subgroups has been performed for
decades (DelLacy and Cooper, 1990; Ouyang et al., 1995). In
this era of enviromics, we have much more diverse and
complete envirotypic data available than ever before for
establishing homogeneous subgroups by classifying or
clustering the environmental trial sites using all enviromic
information. Based on enviromic similarity levels or indices,
breeding zones, experimental stations, and MET locations
can be established and optimized. The more enviromic
information used, the better the strategies that can be
developed to optimize breeding pipelines and programs.

It is possible to achieve potential selection gains at the pixel
level in an area. Optimal environments for implementing breeding
experiments are shown in Figure 4F. This information can
be especially useful when deploying new experiments in the
next rotations. After all, sites with higher potential gains will
likely provide more accurate genetic selections. According
to Fernandes-Filho et al. (2023), including environmental
information in the form of enviromics in genomic prediction
models for assessing genotype performance in multi-harvest al-
falfa (Medicago sativa) breeding experiments resulted in increased
genetic variance, reduced error variance, and enhanced predic-
tive capacity, especially for the adaptability and persistence of
the evaluated genetic families.

Field-scale enviromics and optimizing breeding
programs

It is currently difficult to predict the effects of genetics and
management practices on crop performance in a specific
environment at regional-to-global scales. Multiscale crop
modeling will allow gene-to-farm systems to be designed for
resilient and sustainable crop production in a changing
climate. Such modeling could be advanced by representing
crop ftraits, interfacing crop models with large-scale models,
improving the representation of physiological responses to
climate change and management practices, closing data
gaps, and harnessing multi-source data (Peng et al., 2020).
Crop growth models provide a way to predict crop productivity
in G X E x M scenarios, enabling the rapid design and
testing of innovative crop breeding strategies based on an
integrated understanding of G X E X M interactions. This
will create opportunities to identify and implement pathways
to increase productivity through integrating genetic gains
from breeding and crop management strategies (Cooper
et al., 2020).
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At the field level, Guan et al. (2023) proposed a scalable
framework to quantify carbon outcomes for farmlands, which
measured the emissions of greenhouse gases, including N,O
and CHy, and changes in soil carbon stock. A “system-of-sys-
tems” solution was proposed based on integrating various ap-
proaches (e.g., diverse observations, sensor/in situ data, and
modeling). This approach consists of five components: (1)
scalable collection of ground-truth data and cross-scale
sensing of E, M, and crop conditions at the local field level;
(2) advanced modeling to support the quantification; (3) sys-
tematic model-data integration at the local farmland level; (4)
high computation efficiency and Al to scale to millions of indi-
vidual fields at low cost; and (5) robust and multi-tier validation
systems and infrastructures to ensure solution fidelity and true
scalability. This proposed solution should be generalized and
used for quantifying other enviromic measurements in plant
breeding.

Employing platforms such as The Climate Corporation and the
Earth Observing System Data Analytics (EOSDA) Crop Moni-
toring, the agriculture and plant breeding sectors access exten-
sive datasets, including meteorological data from over 2.5 million
sites and 150 billion soil observations, to generate 10 trillion
weather simulation data points. This collection of data enables
detailed soil moisture monitoring, zoning for efficient resource
use, and assessments of vegetation health, thereby driving ge-
netic advancements and promoting sustainable agricultural prac-
tices. Specifically, EOSDA excels in providing critical soil and
vegetation data through satellite-powered insights, integrating
satellite imagery with high-resolution data from UAVs and ground
vehicles to enhance the precision of enviromic data for specific
locations. This approach, detailed at https://eos.com/blog/
how-precision-farming-fights-climate-change/, supports the se-
lection of optimal trial sites based on environmental similarities,
accelerates breeding through engineered environments, and en-
hances breeding strategies. Notably, the adoption of genomic-
enviromic prediction methods, as discussed by Xu et al. (2022),
could offer improved accuracy over traditional genomic
predictions, significantly boosting breeding efficiency and
genetic gains.

Temporal data and adaptation to climate change

Satellite data offer temporal information, providing dynamic
measurements at various time points, which increase our un-
derstanding of the growth period of a crop and the similarities
among different locations. However, some of these measure-
ments can be affected by atmospheric events such as clouds,
pollution, lightning, and solar/cosmic radiation. Rustowicz
(2017) explored the use of time-series satellite imagery and
ML techniques for crop classification. Going further, Pazur
et al. (2021) emphasized the value of fine-temporal-resolution
satellite sensors for studying landscape ecology, showing
that including temporal information improves the accuracy of
landscape mapping and the identification of important
landscape elements.

Exploring the impact of climate change on agriculture, the
study by Rezaei et al. (2023) delves into the effects of
warmer temperatures, elevated CO, levels, and changing wa-
ter availability on crop yields. It uncovers varied responses
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from C3 and C4 crops to drought and high CO, levels, noting
potential plant yield variability increases. Particularly, crops in
lower latitudes could experience severe yield reductions, with
losses anticipated to be between 7% and 23% without adap-
tive measures. The research underscores the importance of a
multidisciplinary approach, recommending the combination of
biophysical yield assessments with economic and environ-
mental analyses to navigate the complex interactions of fac-
tors such as nitrogen loss, changes in soil organic matter,
and crop nutritional quality (Ciscar et al, 2019). By
leveraging envirotyping and accurate climate predictions, it
suggests strategies for addressing the broad spectrum of
climate-change challenges, advocating for the development
of innovative agricultural methods to maintain productivity
amid environmental changes. Integrating trial, breeding, and
on-farm data with genotype annotations through big data
structures clarifies G X E X M interactions, helping to manage
the challenges imposed by climate change. Such integration,
along with the use of diverse genetic materials in diverse
environments, represents a path to improved cultivar perfor-
mance. Crop environments must be characterized for
enhanced breeding and germplasm selection tailored to the
TPE (Chenu, 2015). Saltz et al. (2018) delved into the
variability of G X E interactions, advocating for studies
on their biological bases by examining traits linked to
performance in current environments as indicators for
future conditions. This approach to temporal continuity is
instrumental for forecasting changes in genotypes for plant
adaptation to the changing climate. Crafting crop strategies
that accommodate these interactions and the realities of
climate change is necessary to sustain productivity (Cooper
et al.,, 2021). Notably, a G x M technology framework to
adapt to climate change and secure food stability has been
proposed (Messina and Cooper, 2022).

CONCLUDING REMARKS

Enviromics has emerged as a powerful approach to enhance
plant breeding, enabling the integration of multidimensional infor-
mation from satellite-based remote-sensing data. The use of
traditional statistics, big data, and Al in conjunction with multiple
environmental datasets, many derived from satellite sensors, can
provide a precise view of G x E x M interactions. This integration
leads to the development of intelligent and integrated G-E-P
breeding schemes, enabling more precise phenotypic predictions
and greater genetic gains. This is made possible by predicting
entire “virtual trials” that closely replicate reality, eliminating the
need for physical trials, thereby reducing operational expenses.
Enviromics offers a complementary dimension to genomics and
phenomics, representing a promising, innovative path toward
sustainable advances in crop science to bridge the gap between
scientific knowledge and reality in the field and contribute to resil-
ient agricultural crop production in the face of climate change.

With enviromics, the possibilities are vast. Genotypic recom-
mendations with predictive extrapolation for all pixels (i.e.,
bins) in an area empower breeders to make local decisions
based on detailed information about the behavior of genetic
materials under different cultivation conditions. Furthermore,
the concept of breeding zones, i.e., geographical polygons
that minimize G X E (and in some cases G X E x M) interac-
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tions, represents an innovative approach for optimizing crop
productivity on a large scale. The projection of potential pro-
ductivity for the entire area and any other desired phenotypic
traits highlights the usefulness of enviromics for obtaining
predictive insights into crop productivity under different cli-
matic scenarios. These findings can inform decision making
regarding the selection of varieties better adapted to specific
local environments and help reduce costs in the field under
current and future scenarios.

There is a notable gap in the capabilities of many breeding pro-
grams due to a lack of proficiency in translating satellite-
derived information into practical knowledge to inform decision
making. To address this issue, a focused effort is needed to
empower professionals working in the plant breeding industry
with the necessary knowledge to fully leverage the wealth of
satellite data. This would include knowledge about data pro-
cessing, analytical methods, and the utilization of advanced
technologies such as Al and statistical modeling. By nurturing
these fundamental skills, plant breeding programs could un-
lock the tremendous potential of enviromics and effectively uti-
lize satellite data as a potent instrument in advancing sustain-
able agriculture.

Although challenges remain, such as the need for more freely
available, high-resolution satellite data and the widespread
use of methods to integrate the data with genomics and phe-
nomics data, it is clear that enviromics offers a new opportu-
nity to enhance agricultural productivity and sustainability.
There is a need to integrate low-resolution satellite data with
high-resolution UAV data through imputation or Al to reduce
the cost associated with obtaining high-resolution imagery at
scale. Moreover, advanced Al models can improve several
steps in enviromics, from data augmentation to data fusion,
the use of complex models, and forecasting. Collaboration
among agronomists, physiologists, breeders, geoinformatics
experts, and programmers across research institutions is
essential for advancing this field and harnessing the full poten-
tial of envirotyping data for the transformation of 21st century
agriculture.
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