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P H Y S I C S

Coherence measurements of polaritons in thermal 
equilibrium reveal a power law for 
two- dimensional condensates
Hassan Alnatah1*, Qi Yao1, Jonathan Beaumariage1, Shouvik Mukherjee2, Man Chun Tam3,4, 
Zbigniew Wasilewski3,4, Ken West5, Kirk Baldwin5, Loren N. Pfeiffer5, David W. Snoke1

We have created a spatially homogeneous polariton condensate in thermal equilibrium, up to very high conden-
sate fraction. Under these conditions, we have measured the coherence as a function of momentum and deter-
mined the total coherent fraction of this boson system from very low density up to density well above the 
condensation transition. These measurements reveal a consistent power law for the coherent fraction as a func-
tion of the total density over nearly three orders of its magnitude. The same power law is seen in numerical simula-
tions solving the two- dimensional Gross- Pitaevskii equation for the equilibrium coherence. 

INTRODUCTION
Bose- Einstein condensation (BEC) is a remarkable state of matter in 
which a macroscopically large number of bosons act as a single, co-
herent wave. The physics of two- dimensional (2D) BEC has subtle dif-
ferences from the three- dimensional case because thermal fluctuations 
destroy the long- range order in systems of reduced dimensions (1). 
However, a quasicondensate state can exist with strongly correlated 
coherence over finite distances, as predicted by Berezinskii (2) and 
Kosterlitz and Thouless (3). Microcavity exciton- polaritons (called 
here simply “polaritons”) are good candidates for the investigation of 
2D boson systems because they allow direct experimental accessibili-
ty to the coherence in situ without destructive measurements. In most 
experiments with cold atoms that have tried to establish a phase dia-
gram, only the momentum distribution or spatial profile has been 
measured, not the coherence directly (4–7).

Polaritons can be viewed as photons dressed with an effective mass 
and repulsive interactions, due to the strong coupling of a cavity pho-
ton state and a semiconductor exciton state. These particles have been 
shown to demonstrate Bose condensation and coherent effects in 
various experiments for nearly two decades [e.g., (8–13)]. Although, 
in many experiments, the polaritons have fairly short lifetime, leading 
to nonequilibrium condensates, in the past 10 years, microcavity 
structures have been available with polariton lifetime of several hun-
dred picoseconds (14, 15), which has allowed demonstration of true 
equilibrium, as seen in near- perfect fits to an equilibrium Bose- 
Einstein energy distribution up to the Bose- degenerate regime (16) 
and in a thermal power law of the spatial correlation (17).

Sun et al. (16) showed equilibrium in the degenerate regime up to 
five to six particles in the ground state, but, at higher densities, the 
occupation- number distribution N(E) deviated from a purely equilib-
rium distribution. We have since established that this was primarily due 
to the condensate becoming spatially inhomogeneous. In this work, we 

report experiments in which equilibrium is well established in a homo-
geneous polariton gas well up to ground- state occupations in the range 
of 100 to 1000. Although the particles have a lifetime for decay that is 
replenished by a steady- state pump, the lifetime of the particles is long 
compared to their thermalization time, so that only a tiny fraction of the 
population is lost and replaced at any point in time.

This allows us to perform accurate measurements of the coherence 
of the gas over a wide range of density. Because the gas is thermal and 
homogeneous, it allows direct comparison to theories for the coher-
ence of a Bose gas in 2D. Although this type of experiment has been 
attempted with cold atoms (18), interference measurements in a cold 
atom gas are intrinsically a destructive measurement, and those mea-
surements had low resolution.

These experiments can be interpreted as measuring the “conden-
sate fraction” of the system, but, in a 2D system, the definition of the 
condensate fraction is somewhat controversial. Several theoretical pa-
pers [e.g., (19, 20)] have defined the “condensate” as only those parti-
cles with strictly zero momentum. These theories kept no track of the 
phase coherence, only the populations of k- states. However, the crucial 
aspect of the Gross- Pitaevskii equation, which allows superfluid be-
havior such as quantized vorticity, is the phase coherence, and the 
Gross- Pitaevskii equation makes no sharp distinction between the 
Fourier components of a coherent wave with k = 0 and Fourier com-
ponents with nonzero k. In addition, if the condensate is defined as 
only particles with strictly zero momentum, then the condensate frac-
tion in 2D has vanishingly small value in the thermodynamic limit; 
this is an unhelpful definition for a finite system because it is well 
known (1) that a 2D system can have coherence on finite length scales. 
Instead, one can define the “coherent fraction” as the fraction of the 
particles that have 100% fringe visibility in an interference measure-
ment, which is equivalent to the integral of the fringe visibility over the 
total set of momentum states. This is well- defined for any finite area. 
This may be termed the “quasicondensate,” because it corresponds to 
that part of the gas that has a single- valued wave function that obeys 
the Gross- Pitaevskii equation. Some, however, may restrict the term 
quasicondensate to a state with long- range, power- law correlation 
(21), while, at low density, there is exponential decay of the correlation 
of the coherence (as seen in our numerical model and presented in the 
Supplementary Materials). What we see experimentally is that there is 
no sharp cutoff between the coherent fraction at low density and the 
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quasicondensate at high density—the coherence increases continu-
ously from very low density up to near 100% at high density. Here, we 
will use the term coherent fraction to avoid confusion.

In this work, we undertake a detailed experimental and theoretical 
investigation of coherence as a function of the polariton gas density 
and determine the coherent fraction as a function of total particle 
density. First, we establish the polariton gas is in thermal equilibrium. 
We then determine the coherent fraction and compare it to numerical 
solutions of a 2D Gross- Pitaevskii equation.

RESULTS AND DISCUSSION
The sample was cooled in a continuous- flow cold- finger cryostat at 
∼5 K and excited nonresonantly with a continuous- wave laser, which 
was modulated by an optical chopper at 404 Hz with a duty cycle of 
1.7% to prevent sample heating. The pump profile was shaped into a 
broad Gaussian with full width at half maximum of ∼65 μm. The non-
resonant excitation created a plasma of electrons and holes, which 
spontaneously form excitons. These hot excitons then scatter down in 
energy to become polaritons.

The cavity detuning was δ = 2.5 meV, corresponding to an exciton 
fraction ∣X∣2 = 0.55 for the lower polariton at k = 0. The photolumi-
nescence (PL) was collected using a microscope objective with a nu-
merical aperture of 0.75 and was imaged onto the entrance slit of a 
spectrometer. The image was then sent through the spectrometer to a 
charge- coupled device for time- integrated imaging. A spatial filter 
was placed at the real- space plane to collect PL from a region where 
the gas was very homogeneous (typical diameter of 12 μm, as shown 
by the white dashed circle in Fig. 1).

To show that polaritons can achieve thermal equilibrium, we mea-
sured the lower polariton occupation and we compared it to occupation 
number predicted by Bose- Einstein statistics. The lower- polariton oc-
cupation was measured by angle- resolved imaging, giving the intensity 
I(k, E), which is then converted to an occupation number N(E) using a 

single efficiency factor (the calibration of this factor is discussed in the 
Supplementary Materials). The measured polariton occupation for dif-
ferent pump power values is shown in Fig. 2. The measured occupation 
numbers were fit to a Bose- Einstein distribution, given by

where T and μ are the temperature and chemical potential of the po-
lariton gas, respectively; ELP is the lower polariton energy; and ELP(0) 
is the polariton ground state energy at k = 0, which shifts to higher 
energy as the density increases, due to many- body renormalization 
(16). The fits to Bose- Einstein distribution were done by using T and 

N(ELP) =
1

e[ELP−ELP(0)−μ]∕kBT − 1
(1)

−20−1001020

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

Fig. 1. Real- space polariton emission. Polariton emission created by a wide area 
nonresonant pump. The white dashed circle indicates the region where the photo-
luminescence (PL) is collected.
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Fig. 2. Equilibrium distribution of polaritons. Occupation of the lower polariton 
as a function of energy. The solid lines are best fits to the equilibrium Bose- Einstein 
distribution in Eq. 1. The temperature and chemical potential extracted from the fit 
are shown in Fig.  3. The power values from low to high are 0.008, 0.031, 0.132, 
0.530, 0.653, 0.821, 0.940, 1.164, and 1.265 times the threshold pump power. The 
threshold power Pth is defined in the Supplementary Materials.
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μ as fit parameters. As seen in Fig. 2, the experimental polariton oc-
cupation is well described by a Bose- Einstein distribution for all den-
sities, indicating that the polariton gas is in true thermodynamic 
equilibrium. At densities well below the condensation threshold, the 
Bose- Einstein distribution becomes a Maxwell- Boltzmann distribu-
tion N(ELP) ∼ eμ/kBTe−E

LP
/kBT , which corresponds to a straight line on 

a semilog plot. However, when quantum statistics become important 
[i.e., N(ELP) ∼ 1], the shape of the distribution changes and an upturn 
at in low- energy states appears. The temperature and the chemical po-
tential obtained from the fit to Bose- Einstein distribution are shown 
in Fig. 3. We emphasize that a single efficiency factor is used for all the 
distributions and only T and μ were varied.

The coherent fraction was measured by interfering the light emit-
ted by the polariton gas E

(

kx, ky, t0
)

 with its mirror symmetric image 
E(−kx, ky, t0) using Michelson interferometry. The resulting intensity 
pattern exhibits interference fringes, indicating the emergence of 
extended coherence. A typical interference pattern in k- space is 
shown in Fig. 4 for different pump powers. We use these interference 
patterns to extract coherent fraction of the polariton gas as the fringe 
contrast gives a direct measurement of the level of coherence.

To extract the coherent fraction, we assume that interference pat-
tern is described by a partially coherent wave with a momentum- 
dependent amplitude N(k)

where κ is a fit parameter giving the region of coherence, α is a fit pa-
rameter ranging between 0 and 1 giving the degree of coherence, and 
λ is the component associated with the fringe spacing. Therefore, the 
coherent fraction can be defined as

In the limit κ → ∞, Eq. 2 reduces to the interference pattern for 
fully coherent classical waves and the coherent fraction n0/ntot → 1.

A notable result of these measurements is that the increase of the 
coherent fraction obeys a well- defined power law over a wide range of 
density, nearly three orders of its magnitude, as the density increases 
through the critical value. Figure 5 shows a typical dataset; as shown 
in the Supplementary Materials, many different datasets, including 
different values of the aperture size for the area of integration, can all 
be collapsed onto a single, universal curve. As discussed in the next 
section, this power law behavior is reproduced by a simple numerical 
solution of the Gross- Pitaevskii equation with no dissipation.

Theory and numerical simulation
Because the experimental Bose gas is thermal and homogeneous, we can 
model the system using the Gross- Pitaevskii equation for the simplest 
case to get a universal result, which applies to any number- conserving, 
spatially homogeneous, 2D Bose gas in thermal equilibrium.

We solve the following Gross- Pitaevskii equation with noise intro-
duced in the initial conditions

where m is the mass of the polaritons and gc is the repulsive polariton- 
polariton interaction. Significantly, we do not include any terms for 

generation or decay of the polaritons, because, as discussed above, the 
lifetime of the polaritons is long enough that these can be taken as 
negligible for the relevant dynamics, so that the system can be treated 
as number- conserving and in equilibrium.

To eliminate a computationally expensive transient regime, we 
start the system in an incoherent equilibrium state

I(k)=N(k)[1+αe−k∕κcos(λk)] (2)

n0
ntot

=
α ∫ d2k N(k)e−k∕κ

∫ d2k N(k)
(3)

iℏ
𝜕ψ(r, t)

𝜕t
=

[

−
ℏ
2∇2

2m
+gc ∣ψ(r, t)∣

2

]

ψ(r, t) (4)
ψ(x, y, t=0)=

∑

kn

∑

km

√

N

(

√

k2n+k2m

)

ei(knx+kmy)

×ei(θkn+θkm )

(5)

Fig. 3. Extracted temperature and chemical potential. (A) The effective tem-
perature of the polariton gas and (B) the reduced chemical potential obtained from 
the fits to the Bose- Einstein distribution. The vertical dashed line denotes when the 
occupation at E = 0 becomes equal to one, i.e., N(E = 0) = 1.
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where N(k) = {e[E(k) − μ]/kBT − 1}−1 is the Bose- Einstein distribution 
and E(k) = ℏ2k2/2m. The phases θkn and θkm are random numbers that 
are uniformly distributed in the interval [0,2π]. The system is then 
evolved in time until the system reaches a constant degree of coher-
ence. To calculate the coherent fraction from the simulations, we first 
compute the interference pattern between kx and −kx

where x0 is a constant that defines the fringe spacing and tmax is the 
total simulated time. ψ(kx, ky, t) is the Fourier transform of the wave 
function in real space. Because in the experiment we use a pinhole to 
only collect light from an area A = πr2, we apply the same kind of fil-
tering in the numerics for the real space wave function ψ(x, y, t) be-
fore calculating the Fourier transform ψ(kx, ky, t). The interference 

pattern I(kx, ky) is evaluated by averaging over several independent 
stochastic paths for each random initial condition as described by 
Eq. 5. Figure 4 shows a comparison between the experimentally mea-
sured interference pattern and the results obtained from the theoreti-
cal modeling, showing a very good agreement for the fringe visibility 
for different densities.

The coherent fraction from the numerical simulations is then cal-
culated by following the same fitting procedure that was described in 
the previous section, namely, Eqs. 2 and 3 (for more details, see the 
Supplementary Materials). In both the experiment and the numerics, 
we subtracted the coherent fraction found in the zero- density limit, 
which corresponds to the coherence due to instrumental response, 
seen even in the Maxwell- Boltzmann limit. As seen in Fig. 5, our ex-
perimentally measured and numerically calculated coherent fraction 
show a very good agreement, with the same n3.2±0.12 power law over 
nearly three orders of magnitude of the value of the coherent fraction. 
At the highest densities, the coherent fraction of course cannot exceed 
unity and, therefore, saturates.

As discussed in the Supplementary Materials, the numerical 
model also gives us the in- plane coherence length of the gas as a 
function of density, which gives the same power law of 3.2 when con-
verted to an area. In general, the numerics allow us to explore a wide 
range of conditions that agree with the experiments in all of the areas 
where we can compare them.

The agreement with the Gross- Pitaevskii numerical simulations 
for a homogeneous gas in equilibrium shows that the results of our 
experiments are truly universal, realizing the textbook paradigm of 
a uniform Bose Gas in 2D in thermal equilibrium.

Although the coherent fraction depends on the area from which 
the light is collected, we show in the Supplementary Materials that 
the same power law is experimentally observed for different pinhole 

I(kx , ky)=
1

tmax
∫
tmax

0

dt ∣ψ(kx , ky , t)e
ikxx0

+ψ(−kx , ky , t)e
−ikxx0∣2

(6)
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Fig. 4. Interference pattern. The interference pattern in k- space obtained from 
the experiment (left column) and the numerics (right column) for three different 
densities, (A) n = 1.5 μm−2, (B) n = 4.5 μm−2, and (C) n = 9.3 μm−2.
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Fig. 5. Coherent fraction. Black circles: Experimentally measured coherent fraction 
as a function of the total polariton density for a pinhole with an area A = π(6 μm)2. The 
quasicondensate fraction is defined in Eq. 3. Red triangles: Coherent fraction defined 
the same way, for the numerical simulations. Blue line: n3.2 power law. The vertical 
dashed line denotes the critical density, which is defined as the total density of polari-
tons at the threshold power P/Pth = 1, defined in the Supplementary Materials.
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sizes. The largest pinhole that was used experimentally has a diame-
ter of 12 μm because, for larger pinhole sizes, the assumption of ho-
mogeneity breaks down. However, our numerical model allows us to 
explore the effect of larger pinhole sizes. In agreement with the ex-
periment, our numerical model shows that the effect of the aperture 
size gives a shifted curve with the same n3.2 power law (see the Sup-
plementary Materials). Of course, for an infinite system, the coherent 
fraction goes to zero because an infinite 2D system cannot have long- 
range order at any finite temperature, but, for any finite area of obser-
vation, the same power law will be valid.

The density dependence of properties of a 2D condensate has not 
been deeply explored in the literature because typical experiments 
and theory assume a constant density and variation of temperature. 
We are not aware of any predictions of the observed power law for 
the coherent fraction, but, because this appears in clearly in both the 
experiments and simulations for a thermal, homogeneous gas, this 
should be a universal result. We emphasize the need for further theo-
retical exploration to give more physical intuition into the origin of 
the observed power law. It is our hope that our findings will inspire 
additional theoretical research to understand more deeply this uni-
versal power law.

It is quite unexpected that any universal behaviors could be found 
in a field as well studied for the past 50 years as 2D condensates. This 
is made possible by the experimental advances of very fine control 
over the polariton density and long lifetime that allows equilibrium 
over a wide range of density, as well as the direct in situ measurement 
of coherence, which is not possible in liquid helium or cold atoms.

MATERIALS AND METHODS
Sample design
The microcavities used in this work consisted of a total of 12 GaAs 
quantum wells with AlAs barriers embedded within a distributed 
Bragg reflector (DBR). The DBRs are made of alternating layers of 
AlAs and Al0.2Ga0.8As. The quantum wells are in groups of 4, with each 
group placed at one of the three antinodes of the 3λ/2 cavity. The large 
number of DBR periods gives the cavity a high Q- factor, resulting in a 
cavity lifetime of ∼135 ps and a polariton lifetime of ∼270 ps at reso-
nance. The long cavity lifetime allows polaritons to propagate over mac-
roscopic distances of up to millimeters (15). Further details about the 
samples are discussed in the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Sections I to XVI
Figs. S1 to S14
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