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Abstract— Near the limits of adhesion, the forces generated
by a tire are nonlinear and intricately coupled. Efficient and ac-
curate modelling in this region could improve safety, especially
in emergency situations where high forces are required. To this
end, we propose a novel family of tire force models based on
neural ordinary differential equations and a neural-ExpTanh
parameterization. These models are designed to satisfy physi-
cally insightful assumptions while also having sufficient fidelity
to capture higher-order effects directly from vehicle state
measurements. They are used as drop-in replacements for an
analytical brush tire model in an existing nonlinear model
predictive control framework. Experiments with a customized
Toyota Supra show that scarce amounts of driving data — less
than three minutes - is sufficient to achieve high-performance
autonomous drifting on various trajectories with speeds up to
45mph. Comparisons with the benchmark model show a 4x
improvement in tracking performance, smoother control inputs,
and faster and more consistent computation time.

I. INTRODUCTION

Maximizing tire force usage is critical to safely negoti-
ating highly dynamic situations, e.g., emergency obstacle
avoidance. Yet, accurately predicting the effective force
generated by the four tires on a car is a difficult challenge.
Firstly, the tire in isolation has many complex nonlinear
phenomenon, including force saturation, camber thrust, and
nonlinear load dependence. Indeed, significant effort has
gone into developing analytical and empirical models for a
single tire [1]-[7], including the Magic Formula [1] which
is frequently used in industry. Despite its popularity, fitting
the many parameters of the Magic Formula is difficult and
often requires specialized testing and facilities [2], [3].

When attached to a vehicle, the complexity compounds,
as every input to these models is coupled into suspension
dynamics, weight transfer, and other effects. Many control
approaches in the literature thus resort to using a single-track
assumption [8]-[13], where these effects are ‘lumped’ into a
single tire model at the front and rear axles, and empirically
fit to measured vehicle data. This includes the Fiala brush
model [14], which has been experimentally demonstrated
in autonomous vehicle control scenarios at the limits of
handling, including emergency obstacle avoidance, drifting,
and racing [15]-[20]. Although the simplicity aids control
development, this single tire lumping often fails to accurately
capture the intricate coupling created by higher-order effects.

Neural networks, which have universal approximation
properties in the limit, could offer a solution. Black-box
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Fig. 1. A photocomposite showing stills from an overhead drone video of
a fully autonomous experiment superimposed at 1s intervals.

and Magic Formula-based neural network models [4]-[7],
[21]-[23] have been explored in the literature. However, they
do not retain physics-based guarantees, and none has been
tested on a full-size car operating near or at the limits of
handling. In general, their complexity has to be balanced
against overfitting and computational efficiency, especially
when reliable, physically insightful extrapolation is required
for real-time control.

Our first contribution is to combine the physical insights
of tire models with the modelling power of neural networks.
We propose a novel family of tire force models based on
neural ordinary differential equations (NODE) [24], [25]
and neural-ExpTanh, a novel parameterization which uses
curves generated by the exp(-)tanh(-) function. These are
designed to have high fitting fidelity while also incorporating
fundamental tire modelling insights [1]-[3], including the
friction ellipse constraint and ‘S-shaped’ saturation trend.
The NODE model defines a differential equation whose
family of solutions includes established models such as the
Magic Formula [1] and Fiala brush model [14]. Through
optimization-based techniques [24], [26], the model is
trained to fit vehicle state measurements. To address
the computational complexity of training and evaluating
NODE models, which requires integrating a differential
equation, we also introduce neural-ExpTanh, a subset of
the NODE model’s solutions. Neural-ExpTanh can be
trained efficiently and targets real-time control precisely due
to its cheap function and gradient computation time.

Our second contribution provides an extensive experimen-
tal evaluation of these NODE and ExpTanh models on a
full-size, heavily-modified Toyota Supra. We first compare
our models to the Magic Formula and Fiala models on a
dataset from the vehicle. The results show that NODE and
ExpTanh satisfy the tire fundamentals while being up to 2x
denser than the baselines around zero-mean prediction error.
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We then use these learned models as drop-in replacements for
an analytical brush model in an existing nonlinear model pre-
dictive control framework [16], [27]. These are compared in
autonomous drifting experiments on two different trajectories
which consistently excite the nonlinear regime. Compared
to the baseline, the results show improved tracking, fewer
steering oscillations, and lower computation time.

The last set of experiments demonstrates data efficiency
and generalization of our models. We switch to a different
set of tires, collect 3 minutes of manual driving data, train
an ExpTanh model in a few seconds, and then perform
figure-8 autonomous drifting experiments, shown in Figure 1.
The learned model shows similarly good closed-loop perfor-
mance, while the performance of the baseline model drops.

II. FUNDAMENTALS

Vehicle Dynamics. The dynamics are described using a
planar single-track model [8], [10]-[13], shown in Figure 2.
They are expressed in a
curvilinear coordinate sys-
tem [15], [18], [19], where
the vehicle position is rel-
ative to a reference trajec-
tory. The position coordi-
nate is described by the
distance s along the path,
the relative heading A¢
with respect to a planned
course ¢, and the lateral deviation e from the path. The
motion of the state x = [r,V,3,wys,,s,e,A¢] is given
by & = M(x,u)[Fyy, Fys, Fyr, Fyr], where the matrix M
can be found in [15]. The states r,V,(, and wy, de-
note, respectively, the yaw rate, velocity, sideslip angle, and
front/rear axle wheelspeed. The components of the control
u = [0, 7f,| represent the steering angle and the torque
exerted on the front/rear axle. Further, F, ¢, Fy ¢, Fyp, and
F,, define, respectively, the front longitudinal, front lateral,
rear longitudinal, and rear lateral tire forces. In what follows,
we use I, or Fy to refer to Fyp, Fyr or Fyp, Fy, where it
is clear from the context.

Tire Force Fundamentals. Modeling the nonlinear tire
forces F,, I, has been explored extensively. Many models
consider these forces to be generated by relative ‘slip’
velocity between the tire contact patch and the road. The slip
angle a, longitudinal slip ratio o, and total slip x as given
by (1) are often used as model inputs for the tire forces:

Fig. 2.
vehicle on a reference path.

Single-track model of a

o ¢ = arctan w = 5 o, = arctan ‘/S'm—/g—br
f V cos B3 T V cos
TywWfr — Vacf,:cr

, Kpr=4/tana}, +o7,

where V,; =V cos(d — 8) —arsind, Vyr = Vcos B, 1y i8
the effective radius of the wheel, and a, b are the distances
from the center of gravity to the front and rear axles. We
follow the sign convention of F}, < 0 for nonnegative o and
F, > 0 for nonnegative o.

(1)
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i me,a:r
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Fig. 3. The left figure shows the inflection points o 1, ap, &1 and the
changes in the convexity/concavity of I, in the pure slip regime. The right
figure shows the inflection point k1 of Fiot in the combined slip regime.

Measurements of Tire Forces. In this work, we learn
tire models from the state measurements and estimates of
the effective lumped axle forces. While there are different
strategies for estimating these forces, for simplicity in this
paper, we consider conditions where we can assume F,; =
0, e.g., no torque on the front wheels. Then, we compute
it V, ﬁ from measured states and invert through the matrix
M to obtain estimated forces, indicated by F [15].

III. PHYSICS-INFORMED LEARNED TIRE FORCES

In this section, we describe our physics-based, neural
ordinary differential equation (NODE) model and the derived
ExpTanh parameterization. In keeping with tire modelling
convention, we divide the discussion into pure slip and
combined slip regimes. In pure slip, the tire is only creating
force along one axis (¢ = 0 or a = 0); in combined slip,
the tire is creating both longitudinal and lateral force (o # 0
and « # 0). From tire fundamentals [1]-[3], we expect the
following generalized behavior, summarized in Figure 3.

Characteristic ‘S-shape’ curve. As the absolute value
of the input slip increases, the tire force magnitude also
increases until a peak force is attained and the tire contact
patch starts to slide. Beyond this point, the force decreases,
following an °‘S-shape’ curve. In the pure slip regime, the
input slip is ¢ or a. In the combined slip regime, the input
slip is some combination of ¢ and «, and the output is the
F2+ B,

Combined slip regime. For combined slip, the compo-
nents of Fi are distributed according to some ratio of the
slip angle and longitudinal slip vs. the combined slip. An
example is schematically shown in Figure 3, for fixed o and
|| increasing from 0: The proportion of longitudinal force
decreases while the lateral force increases until saturation.

Friction limits. In both regimes, the peak force is con-
strained by the maximum available tire/road adhesion capa-
bility, uF,, with p the friction coefficient and F', the normal
load on the tires. pF), is difficult to know precisely as it
depends on the surface, tire orientation, and the normal load
— which in turn vary with the vehicle’s state due to weight
transfer/suspension dynamics. Yet, this notion of a maximum
force greatly eases analysis for control and safety.

Throughout this paper, we assume a given set of mea-
surements D = {(af,r, 05,7, Vs By Wi.py Foy Fyy uF, )i 1Y 4,
where F, = jimg is a rough estimate of the nominal load
and {i encodes any available approximate knowledge on .

total force magnitude Fi, =
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A. Physics-Informed NODE for Tire Force Modeling

We seek a generalizable model that satisfies these physical
insights. First, for the characteristic ‘S-shape’, instead of
intuiting a curve, e.g., Magic Formula, that satisfies the
‘S-shape’, we characterize the family of physically-feasible
curves using notions of convexity, concavity, and inflection
points. Then, we optimize for the function in this family that
best fits the data via stochastic gradient descent.

Specifically, at critical inflection points (Figure 3), the
curve changes convexity or concavity. In the pure slip regime,
F, contains three inflection points a_1, o, vy We seek a
family of curves such that F(«) is convex for all o < a_;
and a € [ap, 1], and Fy () is concave otherwise, for some
a_1,00,a1. We have the same properties for —F (o), for
some o_1,0q,01. In the combined slip regime, the family of
curves for Fit, contains an inflection point ;1 such that Ve <
k1, Fiot (k) is concave, and convex otherwise. Convexity and
concavity correspond to nonnegative and nonpositive second-
order derivatives, respectively. Thus, the main idea is to learn
the inflection points and the second derivative of the tire
forces with respect to the corresponding slips while enforcing
the desired convexity/concavity properties; the forces are
then obtained by integration. Further, we enforce soft con-
straints on the peak force as required by the friction limits.

Pure Slip NODE Model. The lateral force F) is a solution
of the second-order differential equation given by

]

exp{NNY(z,feat)} if a < a?, or a € [of), o
—exp{NN}(z, feat)} otherwise

6 0 0
y 1, O, O

F'=GY z=[a,F).Gf 2)

{

where the derivative here is taken with respect to a.. The set
of features used for learning are feat = [r, V, 8, uF] for the
front axle and feat = [r, V, uF,] for the rear. We select the
feature set feat such that for fixed feat, o given in (1) is not
uniquely defined. NNg denotes a neural network, where € is
the set of all parameters for the model. The inflection points
are parameterized as [a? |, ad,af, F{,GY) NN (feat)
with F¢, GY being the initial states to use when integrating
the differential equation. Note that choosing the exp function
in G‘Z enforces the nonnegative and nonpositive second-order
derivatives constraints. We then compute the parameters 6 by
solving the following optimization problem

0
1

40 ]
G, =

wl v AN
meln N (Ode((2)7 [ag*, a]7 [FOG’ Gg]) _Fy)
F%ﬁ%{ﬁ» [F?,G,’f]
v uF €D Y

+ Mmin{uF, — |FJ|,0})? 3)
where ode, an integration scheme, solves (2) from ag to
the measured o with the initial condition given by [F¢, GJ].
The term A(min{uF, — |F5 |,0})% enforces the friction limits
knowledge as a soft constraint by penalizing values that
exceed the estimated nominal load pF,. The hyperparameter
X specifies the confidence in pF,: Low values enable the
peak force to be adjusted according to the data while high
values constrain the peak force to be less than puF,.
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Combined Slip NODE Model. The total force Fio is a
solution of the second-order differential equation given by

=0 0 _ 0 0 0
Fior = Gty 2 = [, Fiop, Gty K1)

-0 —exp{NNY(z,feat)} if x < !
Giot =

exp{NNY(z, feat)} otherwise
where the derivative is with respect to the combined slip &,
(K9, F{,GY) = NNY(feat), and the features feat are again
picked such that o and o are not uniquely defined. Then,
to learn the component distribution of this total force, we
define [sf,s9] = NN{(a,0) and estimate Fg and F? by
scaling F, as follows
9 F ot s5Fot
(s9)% + (s9)? (s9)% + (s9)?

Thus, the parameters § are obtained by solving the problem

“)

0

0

(&)

Y

) T

.1 _\2
min zvjﬁ ) (ode((4), (60, k], [0, G9)) — Ftot)
0,17, V, 0,1y,
F,,uF.eD (B Gl

+ (Fg - F_y)2 + (Fa? — F2)? + Mmin{pF, — Ft90t7 0})

where the measured total force is Fio, = 1/ F” + F,°.
Remark 1: Tn the pure slip regime, learning —F? follows
exactly the description of F; with a replaced by o. Despite
the rich class of functions encoded by the NODE formula-
tion, solving (2) and (4) to estimate the forces slows down
training and hinders the direct application of the formulation
for control. In practice, we address this issue by first learning
the parameters 6, then training a new neural network to
mimic the solutions of (2) and (4) via overfitting. Thus,
evaluating the obtained neural network and its Jacobian
becomes computationally cheap for real-time control.

B. ExpTanh: A New Family of Tire Models

We restrict the NODE model’s set of solutions to a family
of functions, namely ExpTanh, satisfying the second-order
derivative condition without the need to integrate a differen-
tial equation. ExpTanh curves are given by

b (a? + age_“g|2|) tanh (ag( g

ExpTanh?(z) z—ag))
where az are constants or neural network functions such that
af,a$,a > 0. Importantly, the maximum/minimum values

9,2% can be found analytically:

25,27
(a5a5) + 4(ag)”
2af
ExpTanh Pure Slip. We model F, as F{(a,feat) =
ExpTanh?(a), where (a?)?_, = NN(feat), feat are the
same features as in the NODE version, and 6 is the set
of all parameters. In practice, we pass a?,ag,ag through
an exponential function to enforce nonnegative values. The
optimum parameters ¢ are given by

:a0+

0.0
9 _ _a2a3)
Z4 =

ag + atanh( (6)

1 _\2 .
min Y (Fg - Fy) + MpF. — |F? (o, feat)])?
V.8,
Fy,uF.€D
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where the second term is a similar soft penalty on exceeding
the estimated maximum friction force.

ExpTanh Combined Slip. We model the total force as
F? . (k,feat) = ExpTanh?(x), where (a?)?_, = NN?(feat)
and feat represents the same set of features as in the
combined slip NODE model. The forces Fy9 and F? depend
on FY, as given by (5), where the functions s§ and s§ are
to be learned. Specifically, we compute 6 by solving

1 _ 2 _
min Z ) (Fteot(fi, feat) — Ft0t> + (Fg — F)?
a,0,m,V,8,Fy,

E’c:ﬂFzED
+ (Ff — F,)? + MuF, — F2 (x5, feat))?

Remark 2: Firstly, by incorporating selected subsets of
the measured states, feat, in addition to the slip values, the
proposed models are able to capture the intricate coupling
between the effective lumped tire force curves and vehicle
motion. While we made one choice for feat, other selections
are likely suitable, depending on the vehicle. Secondly, for
fixed parameters 6, ExpTanh requires only two evaluations
of the function exp, which is computationally cheap com-
pared to the Magic Formula requiring three evaluations of
arctan; the gradient is also easier to compute.

IV. EXPERIMENTS

We demonstrate the data efficiency, prediction accuracy,
and computational efficiency of our tire models through
several experiments: Comparisons to the Magic Formula and
Fiala brush on the testbed vehicle dataset, and autonomous
drifting on slalom and figure-8 trajectories.

The experiments in this section were performed on the
Toyota Supra described in [16], [27] and heavily modified
for high-performance autonomous driving. Vehicle state mea-
surements are obtained from a commercial RTK GPS-INS
unit at a rate of 250Hz. As a rear-wheel drive vehicle, the
front tires operate in the pure slip regime with Fy = 0, and
the rear tires operate in the combined slip regime. We assume
standard units for all quantities when they are not specified.
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A. Evaluation of the Learned Tire Models

To compare the tire models, we used a dataset D (Figure 4)
of manual and autonomous driving/drifting. The dataset
contains 306887 state measurements at 100 Hz, totaling ~ 1
hour accumulated over the span of three months on the same
surfaces under similar summer weather conditions.

For the NODE model, NNY, NN9, and NN have 2 hidden
layers with 16 nodes per layer, while NN§ have 4 nodes per
layer. For the ExpTanh model, NN? and NNZ have 2 hidden
layers with 3 nodes per layer. All neurons used tanh as acti-
vation function. We used A = 0.01 to express low confidence
in the estimated pF, = 7000. We trained the models via
Adam optimizer [28], where the learning rate is set to decay
exponentially with a rate of 0.01 and an initial value of 0.001.
On a laptop with GeForce RTX 2060, training both the pure
slip F, and the combined slip F%, and F;,. models took ~
27 minutes for NODE, and only ~ 4 minutes for ExpTanh.

We compare our models with the Magic Formula and Fiala
model. The parameters of the Magic Formula (Chapter 4,
Section 4.3.2 of [1]) were obtained by optimizing a mean-
square-error loss over the dataset. The Fiala model param-
eterization was empirically tuned by usage in the existing
autonomous drifting NMPC framework [15], [16]. Figure 4
summarizes our findings: Our tire models significantly im-
prove prediction accuracy over the Magic Formula and Fiala
while satisfying the tire fundamentals. The NODE model
provides the best prediction accuracy while taking signifi-
cantly more time to train and evaluate. In contrast, ExpTanh
achieves slightly lower prediction accuracy compared to the
NODE model while being easy to train and evaluate.

Figure 5 shows how the learned ExpTanh model effi-
ciently captures the coupling with the vehicle states r, V, S.
This suggests that our models not only fit the tires but can
also incorporate complex chassis interactions (e.g., weight
transfer and suspension dynamics). In the pure slip model, r
shifts the center of the curve. This could be due to significant
static and dynamic camber from the test vehicle’s aggressive
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Comparison of the different tire models trained and tested on a real-world driving dataset. The first row shows the density distribution of the

prediction error, and the second row shows the forces as a function of the slip values for a fixed state r, V, 8 = 0.7,20,0.1, where F,,(c;) is obtained
for fixed o, = 0.4 and Fm(ar) is obtained for fixed o, = 0.02. In the density plot, NODE and ExpTanh are at least 1.5x denser around zero-mean
error than expert-designed Fiala and Magic Formula (MF). The second row validates that the learned NODE and ExpTanh enforce the tire fundamentals.
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drift-specific front suspension setup. Low speed values tend
to flatten the curve, while the slip angle corresponding to
the peak force decreases with increasing sideslip angle .
For the combined slip model, the dependency on 7,V is
most significant in the nonlinear transitional region at low
longitudinal slip. As expected from the tire fundamentals,
the magnitude of F), decreases as the slip angle increases
for fixed o,..

By (10°)

«é ===
5 1= 0.=0 o, =0.8
S S5 m02
I I I I I
-1.0 —0.5 0.0 0.5 1.0
Slip angle

Fig. 5. Impact of the states r, V, 3 on the learned ExpTanh model. For
the front tire, the blue curve corresponds to fixed » = 1.8, 8 = 0.9, and
V' ranging from 5 to 20 with lower values represented by lighter colors.
The green curve follows the blue curve but with » = 0. The orange curve
uses fixed r = —1.8,V = 12, and §3 varying from —0.9 to 0.9. For the
rear tire, V' ranges from 5 to 20 with fixed r = —1.8 for the blue curve,
ranges from —1.8 to 1.8 with fixed V' = 12 for the green curve, and both
V and r vary for the orange curve.

B. Autonomous Drifting with Learned Tire Models

To evaluate their practical closed-loop performance, we
use our learned models in Figure 4 as direct drop-in replace-
ments for a Fiala model in an existing closed-loop NMPC
framework for autonomous drifting [16], [27]. The reference
trajectories were pre-computed via nonlinear optimization
with the benchmark Fiala model. The NMPC cost function
primarily penalizes the lateral error e, the deviation from
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the reference sideslip angle eg = 8 — Sy, and the relative
deviation A¢. The sideslip §,.; enforces the drifting profile.

1) Drifting on Slalom Trajectory: For the first experiment,
we compare the closed-loop performance of the benchmark
Fiala, NODE, and ExpTanh models on a transient slalom
trajectory (Figure 6). The integrated NODE formulation was
approximated with a neural network trained on its output.
The slalom trajectory has corners with reference sideslip
angle of up to 43° and velocity between 31mph and 45mph.
Figure 6 demonstrates improved tracking performance: In
terms of root mean squared error, ExpTanh tracks the path
(e and A¢) up to 3.5x better than the Fiala model while
achieving up to 1.5x better sideslip tracking performance.
The NODE model achieves slightly lower performance than
ExpTanh, possibly due to the loss of accuracy from the
approximation procedure. Importantly, we also note fewer
steering oscillations § when ExpTanh and NODE are used,
as compared to the baseline Fiala model.

2) Autonomous Drifting with 3 Minutes of Data: This
set of experiments investigates the generalizability of the
ExpTanh model. First, we perform experiments on a figure-
8 trajectory with both the benchmark Fiala model and the
ExpTanh model. We then changed the rear tires from Toyo
Proxes Sport 275/35R18, which we used for all previous
tests, to Bridgestone Potenza Sport 275/35R18. A safety
driver then manually drove the car on the skidpad, with
unstructured grip and drift maneuvers, for ~ 3 minutes. This
data was then used to train an ExpTanh model; this took
< 155 on a laptop with a GeForce RTX 2060. This freshly
fitted model was then again compared to the benchmark
model on the same figure-8 trajectory.

Figure 7 summarizes our findings. For the original
Toyo tires, performance was significantly better with the
ExpTanh model than the baseline Fiala model. Importantly,
the closed-loop behavior with the ExpTanh model was
similar after switching to the new Bridgestone tires and
retraining the network. In contrast, the performance with
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Fig. 6. Drifting on a slalom figure. Our approaches show better accuracy at trajectory tracking and fewer steering oscillations than Fiala model.
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Drifting on a figure-8 trajectory with 3 minutes of data. ExpTanh shows better tracking performance with both tires, especially in transitional

regions. The red line indicates where the Bridgestone + Fiala test was ended due to the safety driver feeling uncomfortable with the tracking error.

the unchanged Fiala model significantly degraded, showing
that there was indeed a notable difference in the behavior
of the tires that the ExpTanh model successfully adapted
to with sparse data. This is also reflected in the root mean
squared e and eg values: compared to the baseline, we see a
> 4x improvement in lateral error, and > 2x improvement
in sideslip tracking for both tires.

Toyo Bridgestone
RMS Fiala | ExpTanh | Fiala | ExpTanh
e (m) 1.77 0.40 2.02 0.27
ep (rad) | 0.013 0.006 0.011 0.004

With ExpTanh, the controller tracks the sideslip J ref-
erence with less overshoot and less steering oscillation
compared to the Fiala model. This difference is particularly
pronounced at the end of each transition, as shown in the
zoomed section on the sideslip evolution, where we expect to
see more complex interactions between the vehicle states due
to transient load transfer and high yaw rates. This suggests
not only that the ExpTanh model is able to capture these
effects but also that the controller benefits by exploiting this
in closed loop. In contrast, the controller with the Fiala model
tends to overshoot severely during these transitions.

Another region with complex coupling is the slow transi-
tion from drifting to grip driving at the end of the experiment
(e.g. s € [600,660]). Here, the baseline Toyo + Fiala model
combination exhibits steering and sideslip oscillations. In
contrast, with both tires, ExpTanh smoothly tracks sideslip,
and has better lateral error performance.

Figure 8 compares the observed optimal control problem
computation time during the 7oyo experiments. Due to its
simplicity, forward evaluation of the Fiala model is likely
faster than ExpTanh. However, in NMPC, the fidelity of the
tire model and the smoothness of its Jacobian are important.
Figure 8 shows that NMPC with Fiala often needs more
gradient iterations than ExpTanh to converge to a solution.

This is exacerbated in the transitional regime, s > 600, where
the number of iterations triples with the Fiala model, but
remains similar with ExpTanh . This suggests that NMPC
with ExpTanh can be both faster and more consistent.

Fiala, Toyo ExpTanh, Toyo
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Fig. 8. Compute time and number of gradient iterations from the controller.

V. CONCLUSION

We propose a family of tire force models based on neu-
ral ordinary differential equations (NODE) and ExpTanh.
These models combine physics-based tire modelling funda-
mentals with the ability to directly learn, using onboard sen-
sor measurements, higher-order effects from the interaction
between the tires, suspension, and road. Autonomous drifting
experiments, which subject the model to extreme conditions,
demonstrate improved tracking performance, optimized com-
putation time, and unprecedented data efficiency: Learning
with only 3 minutes of driving. Finally, our rapid training
time (usually a few seconds) suggests that future work could
explore using these models in a life-long learning setting,
where the tire curves are updated online during driving.
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