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Abstract-Near the limits of adhesion, the forces generated 
by a tire are nonlinear and intricately coupled. Efficient and ac-
curate modelling in this region could improve safety, especially 
in emergency situations where high forces are required. To this 
end, we propose a novel family of tire force models based on 
neural ordinary differential equations and a neural-ExpTanh 
parameterization. These models are designed to satisfy physi-
cally insightful assumptions while also having sufficient fidelity 
to capture higher-order effects directly from vehicle state 
measurements. They are used as drop-in replacements for an 
analytical brush tire model in an existing nonlinear model 
predictive control framework. Experiments with a customized 
Toyota Supra show that scarce amounts of driving data - less 
than three minutes - is sufficient to achieve high-performance 
autonomous drifting on various trajectories with speeds up to 
45mph. Comparisons with the benchmark model show a 4 x 
improvement in tracking performance, smoother control inputs, 
and faster and more consistent computation time. 

I. INTRODUCTION 

Maximizing tire force usage is critical to safely negoti-
ating highly dynamic si tuations, e.g., emergency obstacle 
avoidance. Yet , accurately predicting the effective force 
generated by the four tires on a car is a difficult challenge. 
Firstly , the tire in isolation has many complex nonlinear 
phenomenon, including force saturation, camber thrust, and 
nonlinear load dependence. Indeed, significant effort has 
gone into developing analytical and empirical models for a 
single tire [l]-[7], including the Magic Formula [l] which 
is frequently used in industry. Despite its popularity, fitting 
the many parameters of the Magic Formula is difficult and 
often requires specialized testing and facilities [2] , [3]. 

When attached to a vehicle, the complexity compounds, 
as every input to these models is coupled into suspension 
dynamics, weight transfer, and other effects. Many control 
approaches in the literature thus resort to using a single-track 
assumption [8]-[13], where these effects are ' lumped' into a 
single tire model at the front and rear axles, and empirically 
fit to measured vehicle data. This includes the Fiala brush 
model [14], which has been experimentally demonstrated 
in autonomous vehicle control scenarios at the limits of 
handling, including emergency obstacle avoidance, drifting, 
and racing [15]-[20]. Although the simplicity aids control 
development, this single tire lumping often fails to accurately 
capture the intricate coupling created by higher-order effects. 

Neural networks, which have universal approximation 
properties in the limit, could offer a solution. Black-box 
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Fig. 1. A photocomposite showing still s from an overhead drone video of 
a fully autonomous experiment superimposed at I s intervals. 

and Magic Formula-based neural network models [4]-[7], 
[21]-[23] have been explored in the literature. However, they 
do not retain physics-based guarantees, and none has been 
tested on a full-size car operating near or at the limits of 
handling. In general, their complexity has to be balanced 
against overfitting and computational efficiency, especially 
when reliable, physically insightful extrapolation is required 
for real-time control. 

Our first contribution is to combine the physical insights 
of tire models with the modelling power of neural networks. 
We propose a novel family of tire force models based on 
neural ordinary differential equations (NODE) [24], [25] 
and neural-ExpTanh, a novel parameterization which uses 
curves generated by the exp(·) t anh(·) function. These are 
designed to have high fitting fidelity while also incorporating 
fundamental tire modelling insights [l]-[3], including the 
friction ellipse constraint and 'S-shaped' saturation trend. 
The NODE model defines a differential equation whose 
family of solutions includes established models such as the 
Magic Formula [l] and Fiala brush model [14]. Through 
optimization-based techniques [24], [26] , the model is 
trained to fit vehicle state measurements. To address 
the computational complexity of training and evaluating 
NODE models, which requires integrating a differential 
equation, we also introduce neural-ExpTanh, a subset of 
the NODE model's solutions. Neural-ExpTanh can be 
trained efficiently and targets real-time control precisely due 
to its cheap function and gradient computation time. 

Our second contribution provides an extensive experimen-
tal evaluation of these NODE and ExpT anh models on a 
full-size, heavily-modified Toyota Supra. We first compare 
our models to the Magic Formula and Fiala models on a 
dataset from the vehicle. The results show that NODE and 
ExpTanh satisfy the tire fundamentals while being up to 2x 
denser than the baselines around zero-mean prediction error. 20
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We then use these learned models as drop-in replacements for 
an analytical brush model in an existing nonlinear model pre-
dictive control framework [16], [27]. These are compared in 
autonomous drifting experiments on two different trajectories 
which consistently excite the nonlinear regime. Compared 
to the baseline, the results show improved tracking, fewer 
steering oscillations, and lower computation time. 

The last set of experiments demonstrates data efficiency 
and generalization of our models. We switch to a different 
set of tires, collect 3 minutes of manual driving data, train 
an ExpTanh model in a few seconds, and then perform 
figure-8 autonomous drifting experiments, shown in Figure 1. 
The learned model shows similarly good closed-loop perfor-
mance, while the performance of the baseline model drops. 

II. FUNDAMENTALS 

Vehicle Dynamics. The dynamics are described using a 
planar single-track model [8], [10]-[13], shown in Figure 2. 
They are expressed in a \I 

curvilinear coordinate sys-
tem [15], [18], [19], where -~--
the vehicle position is rel-
ative to a reference trajec-
tory. The position coordi-
nate is described by the 
distance s along the path, 
the relative heading 6.¢ Fig. 2. Single-track model of a 
with respect to a planned vehicle on a reference path. 

course <Pref, and the lateral deviation e from the path. The 
motion of the state x = [r, V , (3, WJ,r, s, e, 6.¢ ] is given 
by x = M(x, u)[Fxf, Fyf, Fxr, Fyr ], where the matrix M 
can be found in [15]. The states r, V , (3, and WJ,r de-
note, respectively, the yaw rate, velocity, sideslip angle, and 
front/rear axle wheelspeed. The components of the control 
u = [6, TJ ,r] represent the steering angle and the torque 
exerted on the front/rear axle. Further, Fxf , Fyf, Fxr, and 
Fyr define, respectively, the front longitudinal, front lateral, 
rear longitudinal, and rear lateral tire forces. In what follows, 
we use Fx or Fy to refer to Fxf, Fxr or Fyf, Fyr, where it 
is clear from the context. 

Tire Force Fundamentals. Modeling the nonlinear tire 
forces Fx, Fy has been explored extensively. Many models 
consider these forces to be generated by relative 'slip' 
velocity between the tire contact patch and the road. The slip 
angle a, longitudinal slip ratio er, and total slip ,-,, as given 
by (1) are often used as model inputs for the tire forces: 

V sin (3 + ar V sin (3 - br 
a f = arctan V (3 - 6, ar = arctan V (3 cos cos 

rwWJ ,r - Vxf,xr . 2 2 
er1,r= V , t-,,f,r= tana1,r+erf,r 

xf,xr 
(1) 

where Vxf = V cos( 6 - (3) - ar sin 6, Vxr = V cos (3, rw is 
the effective radius of the wheel, and a, b are the distances 
from the center of gravity to the front and rear axles. We 
follow the sign convention of Fy :::; 0 for nonnegative a and 
Fx 2 0 for nonnegative er. 
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Fig. 3. The left figure shows the inflection points a 1, ao, a1 and the 
changes in the convexity/concavity of Fy in the pure slip regime. The right 
figure shows the inflection point li1 of Ftot in the combined slip regime. 

Measurements of Tire Forces. In this work, we learn 
tire models from the state measurements and estimates of 
the effective lumped axle forces. While there are different 
strategies for estimating these forces, for simplicity in this 
paper, we consider conditions where we can assume Fxf = 
0, e.g., no torque on the front wheels. Then, we compute 
r, V, jJ from measured states and invert through the matrix 
M to obtain estimated forces, indicated by F [15]. 

III. PHYSICS-INFORMED LEARNED TIRE FORCES 

In this section, we describe our physics-based, neural 
ordinary differential equation (NODE) model and the derived 
ExpTanh parameterization. In keeping with tire modelling 
convention, we divide the discussion into pure slip and 
combined slip regimes. In pure slip, the tire is only creating 
force along one axis (er = 0 or a = 0); in combined slip, 
the tire is creating both longitudinal and lateral force (er =/- 0 
and a =/- 0). From tire fundamentals [l]-[3], we expect the 
following generalized behavior, summarized in Figure 3. 

Characteristic 'S-shape' curve. As the absolute value 
of the input slip increases, the tire force magnitude also 
increases until a peak force is attained and the tire contact 
patch starts to slide. Beyond this point, the force decreases, 
following an 'S-shape' curve. In the pure slip regime, the 
input slip is er or a. In the combined slip regime, the input 
slip is some combination of er and a, and the output is the 
total force magnitude Ftot = F; + FJ. 

Combined slip regime. For combined slip, the compo-
nents of Ftot are distributed according to some ratio of the 
slip angle and longitudinal slip vs. the combined slip. An 
example is schematically shown in Figure 3, for fixed er and 
lal increasing from 0: The proportion of longitudinal force 
decreases while the lateral force increases until saturation. 

Friction limits. In both regimes, the peak force is con-
strained by the maximum available tire/road adhesion capa-
bility, µFz, withµ the friction coefficient and F z the normal 
load on the tires. µFz is difficult to know precisely as it 
depends on the surface, tire orientation, and the normal load 
- which in turn vary with the vehicle's state due to weight 
transfer/suspension dynamics. Yet, this notion of a maximum 
force greatly eases analysis for control and safety. 

Throughout this paper, we assume a given set of mea-
surements V = {(aJ,r ,erf,r ,r, V, (3 ,wJ.r,Fx,Fy ,µFz)i }{:1, 

where µFz = µmg is a rough estimate of the nominal load 
and p, encodes any available approximate knowledge on µ. 
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A. Physics-Informed NODE for Tire Force Modeling 

We seek a generalizable model that satisfies these physical 
insights. First, for the characteristic ' S-shape' , instead of 
intuiting a curve, e.g., Magic Formula, that satisfies the 
'S-shape', we characterize the family of physically-feasible 
curves using notions of convexity, concavity, and inflection 
points. Then, we optimize for the function in this family that 
best fits the data via stochastic gradient descent. 

Specifically, at critical inflection points (Figure 3), the 
curve changes convexity or concavity. In the pure slip regime, 
Fy contains three inflection points cL 1, o:0, o:1. We seek a 
family of curves such that Fy ( o:) is convex for all o: :S o:_ 1 

and o: E [o:o, o:1] , and Fy(o:) is concave otherwise, for some 
o:_1, o:o, o:1. We have the same properties for - Fx(a), for 
some a_ 1, a0 , a1. In the combined slip regime, the family of 
curves for Ftot contains an inflection point K: 1 such that\/ K: :S 
K: 1, Ftot(K:) is concave, and convex otherwise. Convexity and 
concavity correspond to nonnegative and nonpositive second-
order derivatives, respectively. Thus, the main idea is to learn 
the inflection points and the second derivative of the tire 
forces with respect to the corresponding slips while enforcing 
the desired convexity/concavity properties; the forces are 
then obtained by integration. Further, we enforce soft con-
straints on the peak force as required by the friction limits. 

Pure Slip NODE Model. The lateral force Fy is a solution 
of the second-order differential equation given by 

F. 0 0 0 [ F0 0 0 0 0 0] y = Y ' z = 0:, Y ' y,0:_1, 0:o, 0:1 (2) 

00 = { exp{NNf( z ,feat)} if o: :S o:~1 or o: E [o:g,o:f] 
Y - exp {NN~ ( z , feat)} otherwise 

where the derivative here is taken with respect to o:. The set 
of features used for learning are feat = [r, V , /3, µF2 ] for the 
front axle and feat = [r , V, µF2 ] for the rear. We select the 
feature set feat such that for fixed feat, o: given in (1) is not 
uniquely defined. NNt denotes a neural network, where 0 is 
the set of all parameters for the model. The inflection points 
are parameterized as [o:~1,o:g,o:f,Ft,GgJ = NN~(feat) 
with Ft, cg being the initial states to use when integrating 
the differential equation. Note that choosing the exp function 
in ct enforces the nonnegative and nonpositive second-order 
derivatives constraints. We then compute the parameters 0 by 
solving the following optimization problem 

mJn ! L ( ode( (2), [o:t o:], [Fg , cg]) - Fy f 
a ,r , V ,(3, 

Fy, µ F' z E D 

where ode, an integration scheme, solves (2) from o:g to 
the measured o: with the initial condition given by [Ft, cg]. 
The term .\(min{µF2 - 1Ft l, O} )2 enforces the friction limits 
knowledge as a soft constraint by penalizing values that 
exceed the estimated nominal load µFz, The hyperparameter 
A specifies the confidence in µF2 : Low values enable the 
peak force to be adjusted according to the data while high 
values constrain the peak force to be less than µF 2 • 
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Combined Slip NODE Model. The total force Ftot is a 
solution of the second-order differential equation given by 

Pt0ot = cfot, Z = [ K:, F fot, cf ot, K: f ] 

00 _ { - exp{NNf ( z , feat)} if K: :S K:f ( 4) 
tot - exp{NN~ ( z, feat)} otherwise 

where the derivative is with respect to the combined slip K:, 

[K:f,Ft , cg] = NN~(feat), and the features feat are again 
picked such that o: and a are not uniquely defined. Then, 
to learn the component distribution of this total force, we 
define [sf, s~] = NN~(o:, a) and estimate Ft and F! by 
scaling Ff0 t as follows 

80 p0 s02pt0ot 
p0 = l tot F0 = --;====:::::::::::::==;;::= (5) 
Y J(sf)2 + (s~)2, x J(sf)2 + (s~)2 

Thus, the parameters 0 are obtained by solving the problem 

l ~ ( ( 0 0 0) - ) 2 
mJn N ~ ode (4) , [K: 0 , K:], [F0 , G0] - Ftot 

a,a,r, V ,(3,Fy, 
Fx, µ F' z E D 

0 - 2 0 - 2 · - 0 2 + (Fy - Fy) + (Fx - Fx) + .\(mm{µF2 - Ftot, O}) 

where the measured total force is F'tot = Fx 2 + Fy 2. 

Remark 1: In the pure slip regime, learning - F! follows 
exactly the description of Ft with o: replaced by a. Despite 
the rich class of functions encoded by the NODE formula-
tion, solving (2) and (4) to estimate the forces slows down 
training and hinders the direct application of the formulation 
for control. In practice, we address this issue by first learning 
the parameters 0, then training a new neural network to 
mimic the solutions of (2) and ( 4) via overfitting. Thus, 
evaluating the obtained neural network and its Jacobian 
becomes computationally cheap for real-time control. 

B. E x p Tanh : A New Family of Tire Models 

We restrict the NODE model's set of solutions to a family 
of functions, namely ExpT a n h , satisfying the second-order 
derivative condition without the need to integrate a differen-
tial equation. ExpTa n h curves are given by 

ExpTa n h 0 (z ) = ag + (af + a~e-a~lzl) tanh (a~(z - a~)) 

where af are constants or neural network functions such that 
af, a~, a~ 2'. 0. Importantly, the maximum/minimum values 
zt , z~ can be found analytically: 

0 0 h( J ( a~a~)2 + 4( a~)2 - a~a~) ½=¾±~~ 0 ~ 
2a4 

ExpTanh Pure Slip. We model Fy as Ft ( o:, feat) = 
ExpTan h 0 (o:) , where (anf=o = NN°(feat), feat are the 
same features as in the NODE version, and 0 is the set 
of all parameters. In practice, we pass af, a~, a~ through 
an exponential function to enforce nonnegative values. The 
optimum parameters 0 are given by 

. 1 ~ ( 0 - ) 2 - 0 0 2 mJn N ~ FY - Fy + .\(µF2 - IFv (o:±, feat) I) 
a, r ,V ,f) , 

Fy ,µ FzE D 
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where the second term is a similar soft penalty on exceeding 
the estimated maximum friction force. 

ExpTanh Combined Slip. We model the total force as 
Ft,, t (K:, feat) = ExpTanh 0 (K:), where (ar)f=o = NN°(feat) 
and feat represents the same set of features as in the 
combined slip NODE model. The forces F% and F! depend 
on Ff0 t as given by (5), where the functions sf and s~ are 
to be learned. Specifically, we compute 0 by solving 

· 1 """"' ( 0 - ) 2 0 - 2 mJn N L.., Ftot ( K: , feat) - Ftot + ( FY - Fy) 
a,a,r, V, /3,F' y, 
F.., µFzE D 

0 - 2 - 0 0 2 + (Fx - Fx) + >.(µFz - Ftot(K: +,feat)) 

Remark 2: Firstly, by incorporating selected subsets of 
the measured states, feat, in addition to the slip values, the 
proposed models are able to capture the intricate coupling 
between the effective lumped tire force curves and vehicle 
motion. While we made one choice for feat, other selections 
are likely suitable, depending on the vehicle. Secondly, for 
fixed parameters 0, ExpTanh requires only two evaluations 
of the function exp, which is computationally cheap com-
pared to the Magic Formula requiring three evaluations of 
arctan; the gradient is also easier to compute. 

IV. EXP E RIMENTS 

We demonstrate the data efficiency, prediction accuracy, 
and computational efficiency of our tire models through 
several experiments: Comparisons to the Magic Formula and 
Fiala brush on the testbed vehicle dataset, and autonomous 
drifting on slalom and figure-8 trajectories. 

The experiments in this section were performed on the 
Toyota Supra described in [16], [27] and heavily modified 
for high-performance autonomous driving. Vehicle state mea-
surements are obtained from a commercial RTK GPS-INS 
unit at a rate of 250Hz. As a rear-wheel drive vehicle, the 
front tires operate in the pure slip regime with Fxf = 0, and 
the rear tires operate in the combined slip regime. We assume 
standard units for all quantities when they are not specified. 

A. Evaluation of the Learned Tire Models 

To compare the tire models, we used a dataset D (Figure 4) 
of manual and autonomous driving/drifting. The dataset 
contains 306887 state measurements at 100 Hz, totaling ~ 1 
hour accumulated over the span of three months on the same 
surfaces under similar summer weather conditions. 

For the NODE model, NNf, NNt and NN~ have 2 hidden 
layers with 16 nodes per layer, while NN~ have 4 nodes per 
layer. For the ExpTanh model, NN° and NN~ have 2 hidden 
layers with 3 nodes per layer. All neurons used tanh as acti-
vation function. We used>. = 0.01 to express low confidence 
in the estimated µF 2 = 7000. We trained the models via 
Adam optimizer [28], where the learning rate is set to decay 
exponentially with a rate of 0.01 and an initial value of 0.001. 
On a laptop with GeForce RTX 2060, training both the pure 
slip Fyf and the combined slip Fxr and Fyr models took ~ 
27 minutes for NODE, and only~ 4 minutes for ExpTanh. 

We compare our models with the Magic Formula and Fiala 
model. The parameters of the Magic Formula (Chapter 4, 
Section 4.3.2 of [l]) were obtained by optimizing a mean-
square-error loss over the dataset. The Fiala model param-
eterization was empirically tuned by usage in the existing 
autonomous drifting NMPC framework [15], [16]. Figure 4 
summarizes our findings: Our tire models significantly im-
prove prediction accuracy over the Magic Formula and Fiala 
while satisfying the tire fundamentals. The NODE model 
provides the best prediction accuracy while taking signifi-
cantly more time to train and evaluate. In contrast, ExpTanh 
achieves slightly lower prediction accuracy compared to the 
NODE model while being easy to train and evaluate. 

Figure 5 shows how the learned ExpTanh model effi-
ciently captures the coupling with the vehicle states r, V, /3 . 
This suggests that our models not only fit the tires but can 
also incorporate complex chassis interactions (e.g., weight 
transfer and suspension dynamics). In the pure slip model, r 
shifts the center of the curve. This could be due to significant 
static and dynamic camber from the test vehicle's aggressive 

c::::J Fiala c::::J MF c::::J NODE c::::J ExpTanh 
,--_ .... 
I 
0 
2 0.5 - ----~ -::1--------1 

.2 
CJ] 

i:: 
Q.) 

o o.L.-~~--.--~~---,., 

- 0.5 0.0 0.5 

!:,,Fxr 

- 0.5 0.0 0.5 - 1 0 

Fig. 4. Comparison of the different tire models trained and tested on a real-world driving dataset. The first row shows the density distribution of the 
prediction error, and the second row shows the forces as a function of the slip values for a fixed state r, V, /3 = 0. 7, 20, 0.1, where F yr (Cir ) is obtained 
for fixed ar = 0.4 and F xr (ar ) is obtained for fixed Cir= 0.02. In the density plot, NODE and E x pTanh are at least l.5x denser around zero-mean 
error than expert-designed Fiala and Magic Formula (MF). The second row validates that the learned NODE and E x pTanh enforce the tire fundamentals. 
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drift-specific front suspension setup. Low speed values tend 
to flatten the curve, while the slip angle corresponding to 
the peak force decreases with increasing sideslip angle (3 . 
For the combined slip model, the dependency on r, V is 
most significant in the nonlinear transitional region at low 
longitudinal slip. As expected from the tire fundamentals, 
the magnitude of Fxr decreases as the slip angle increases 
for fixed CJ r . 

,:;;-- 5 
0 -~ 0 -1-----+----+-----'_. _ __ 4--__ _ r _=_1-.,.-----1 
'--s 

k.?; -5 

,:;;-- 5 
0 -
::: 0 -1-----
k.~ -5 l~1tl~t~-=--=-t~-=--=-==-~1\~~~~i~~~~~t~~~ 

- 1.0 - 0.5 0.0 
Slip angle 

0.5 1.0 

Fig. 5. Impact of the states r, V, /3 on the learned ExpTanh model. For 
the front tire, the blue curve corresponds to fixed r = 1.8, /3 = 0.9, and 
V ranging from 5 to 20 with lower values represented by lighter colors. 
The green curve follows the blue curve but with r = 0. The orange curve 
uses fixed r = - 1.8, V = 12, and /3 varying from - 0.9 to 0.9. For the 
rear tire, V ranges from 5 to 20 with fixed r = - 1.8 for the blue curve, r 
ranges from -1.8 to 1.8 with fixed V = 12 for the green curve, and both 
V and r vary for the orange curve. 

B. Autonomous Drifting with Learned Tire Models 

To evaluate their practical closed-loop performance, we 
use our learned models in Figure 4 as direct drop-in replace-
ments for a Fiala model in an existing closed-loop NMPC 
framework for autonomous drifting [16], [27]. The reference 
trajectories were pre-computed via nonlinear optimization 
with the benchmark Fiala model. The NMPC cost function 
primarily penalizes the lateral error e, the deviation from 

Ref 

360 
<l) 0 

380 2 

400 
co. 0 

~ 420 E 
~ .... 
C/J 440 ~ 0.5 l:.il 

460 
OQ 0.0 

0.5 
480 

500 
-e- 0.0 
<l 

0.2 
300 250 250 

North (m) 

the reference sideslip angle ef3 = (3 - f3ref, and the relative 
deviation 6. ¢. The sideslip f3re f enforces the drifting profile. 

1) Drifting on Slalom Trajectory: For the first experiment, 
we compare the closed-loop performance of the benchmark 
Fiala, NODE, and ExpTanh models on a transient slalom 
trajectory (Figure 6). The integrated NODE formulation was 
approximated with a neural network trained on its output. 
The slalom trajectory has corners with reference sideslip 
angle of up to 43° and velocity between 31mph and 45mph. 
Figure 6 demonstrates improved tracking performance: In 
terms of root mean squared error, ExpTanh tracks the path 
( e and 6. ¢) up to 3.5 x better than the Fiala model while 
achieving up to 1.5 x better sideslip tracking performance. 
The NODE model achieves slightly lower performance than 
ExpT anh, possibly due to the Joss of accuracy from the 
approximation procedure. Importantly, we also note fewer 
steering oscillations c5 when ExpTanh and NODE are used, 
as compared to the baseline Fiala model. 

2) Autonomous Drifting with 3 Minutes of Data: This 
set of experiments investigates the generalizability of the 
ExpTanh model. First, we perform experiments on a figure-
8 trajectory with both the benchmark Fiala model and the 
ExpTanh model. We then changed the rear tires from Toyo 
Proxes Sport 275/35R18, which we used for all previous 
tests, to Bridgestone Potenza Sport 275/35Rl8. A safety 
driver then manually drove the car on the skidpad, with 
unstructured grip and drift maneuvers, for ~ 3 minutes. This 
data was then used to train an ExpTanh model; this took 
< 15s on a laptop with a GeForce RTX 2060. This freshly 
fitted model was then again compared to the benchmark 
model on the same figure-8 trajectory. 

Figure 7 summarizes our findings. For the original 
Toyo tires, performance was significantly better with the 
ExpT anh model than the baseline Fiala model. Importantly, 
the closed-loop behavior with the ExpTanh model was 
similar after switching to the new Bridgestone tires and 
retraining the network. In contrast, the performance with 

300 350 400 450 
Path distance s 

Fig. 6. Drifting on a slalom figure. Our approaches show better accuracy at trajectory tracking and fewer steering oscillations than Fiala model. 
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Ref ---- Fiala, Toyo Fiala, Bridg ---- ExpTanh, Toyo ExpTanh, Bridg 

390 

400 

410 

~ 
420 

E 
'-..., 

430 .... 
r/] 
c<l 

iJ.:I 440 

450 

0.5 J./1 c,o 0.0 
0.5 

460 '$- 0.0 <l 
470 

0.2 
300 280 260 200 300 400 500 600 700 

North (m) Path distance s 

Fig. 7. Drifting on a figure-8 trajectory with 3 minutes of data. E x pT anh shows better tracking performance with both tires, especially in transitional 
regions. The red line indicates where the Bridgestone + Fi ala test was ended due to the safety driver feeling uncomfortable with the tracking error. 

the unchanged Fiala model significantly degraded, showing 
that there was indeed a notable difference in the behavior 
of the tires that the ExpTanh model successfully adapted 
to with sparse data. This is also reflected in the root mean 
squared e and e f3 values: compared to the baseline, we see a 
> 4 x improvement in lateral error, and > 2 x improvement 
in sideslip tracking for both tires. 

Toyo Bridgestone 
RMS Fiala ExpTanh Fiala ExpTanh 
e (m) 1.77 0.40 2.02 0.27 

ef3 (rad) 0.013 0.006 0.011 0.004 

With ExpTanh, the controller tracks the sideslip /3 ref-
erence with less overshoot and less steering oscillation 
compared to the Fiala model. This difference is particularly 
pronounced at the end of each transition, as shown in the 
zoomed section on the sideslip evolution, where we expect to 
see more complex interactions between the vehicle states due 
to transient load transfer and high yaw rates. This suggests 
not only that the ExpTanh model is able to capture these 
effects but also that the controller benefits by exploiting this 
in closed loop. In contrast, the controller with the Fiala model 
tends to overshoot severely during these transitions. 

Another region with complex coupling is the slow transi-
tion from drifting to grip driving at the end of the experiment 
(e.g. s E [600, 660]). Here, the baseline Toyo + Fiala model 
combination exhibits steering and sideslip oscillations. In 
contrast, with both tires, ExpTanh smoothly tracks sideslip, 
and has better lateral error performance. 

Figure 8 compares the observed optimal control problem 
computation time during the Toyo experiments. Due to its 
simplicity, forward evaluation of the Fiala model is likely 
faster than ExpTanh. However, in NMPC, the fidelity of the 
tire model and the smoothness of its Jacobian are important. 
Figure 8 shows that NMPC with Fiala often needs more 
gradient iterations than ExpTanh to converge to a solution. 
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This is exacerbated in the transitional regime, s 2". 600, where 
the number of iterations triples with the Fiala model, but 
remains similar with ExpTanh . This suggests that NMPC 
with ExpTanh can be both faster and more consistent. 

- Fiala, Toyo ExpTanh, Toyo 
0.10 xlO 2 

r/] 

c:: 
~ .2 r/] 

~ 0.08 ~ 30 ... 
-~ -~ 

<!) 0.06 C: 
> <!) 20 

0 ;a 
r/] 0.04 c<l ... 
3 bJJ 

~ 0.02 6 10 
::I z 

200 400 600 200 400 600 

Fig. 8. Compute time and number of gradient iterations from the controller. 

V. CONCLUSION 

We propose a family of tire force models based on neu-
ral ordinary differential equations (NODE) and ExpTanh . 
These models combine physics-based tire modelling funda-
mentals with the ability to directly learn, using onboard sen-
sor measurements, higher-order effects from the interaction 
between the tires, suspension, and road. Autonomous drifting 
experiments, which subject the model to extreme conditions, 
demonstrate improved tracking performance, optimized com-
putation time, and unprecedented data efficiency: Learning 
with only 3 minutes of driving. Finally, our rapid training 
time (usually a few seconds) suggests that future work could 
explore using these models in a life-long learning setting, 
where the tire curves are updated online during driving. 
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