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1. Introduction

Despite billions of dollars invested into cancer drug development 
each year, studies have shown that oncological clinical trials had 
a staggeringly low success rate of 3.5% in 2022 [1]. Drug candi
dates tested in the commonly used murine models often fail to 
reproduce a comparable efficacy and safety profile in clinical 
trials. In addition, failure to meet parameters of ADMET 
(Absorption, Distribution, Metabolism, Excretion, and Toxicity) 
results in the filtering out of many drug candidates in the pre
clinical phase. Such sunken costs call for changes in methodology 
and policy to increase the success rates of cancer drug develop
ment. One of the strategies is to implement additional in vivo 
models to identify suitable hits and filter out inadequate candi
dates early in the pipeline. From the perspective of clinical appli
cation, it is difficult to predict treatment responses due to the 
genetic predisposition of patients and the heterogenicity of can
cer. Patient-derived organoids (PDO) and murine patient-derived 
xenografts (PDX), the commonly used models to simulate 
responses, have limitations in practicality and accuracy prediction 
[2]. This calls for the inclusion of other cancer models to improve 
the landscape of precision medicine.

The zebrafish was first introduced as a disease model in the 
1970s. Owing to its unique strengths, its utilization in cancer 
research has grown exponentially in recent years. The advan
tages of zebrafish include 1) high conservation to the human 
genome and oncologic signaling; 2) high reproduction rates 
and low cost in animal housing; 3) relative transparency, which 
enables live-tracking of tumors; and 4) lack of a mature adap
tive immune system until four weeks of life, making xenograft 
studies straightforward. Here, we summarize the current appli
cation of zebrafish in the pipeline of cancer drug discovery 
(Figure 1). Additionally, we provide examples of how zebrafish 
helped advance therapeutics developments to various stages 
of clinical trials (Table 1).

2. Target discovery with reduced toxicities

Although in vitro cell culture systems are the traditional tools 
used to screen for primary drug targets, zebrafish offer advan
tages as a whole organism to filter out those that impact 

development or induce organ toxicity. Zebrafish are especially 
useful for studying host-tumor interactions in tumor microen
vironment and metastasis. Using tools such as mutagenesis 
and transgenesis, researchers can manipulate molecular tar
gets transiently or permanently, as well as spatially or tempo
rally. In particular, these techniques have been combined with 
zebrafish’s transparency (e.g. the complete transparent adult 
fish Casper) to fluorescently label and study tumor cells and 
tissues of interest [3]. Technological advances in imaging also 
enable noninvasive observation of host-tumor interaction in 
live zebrafish up to single-cell resolution [4]. Using zebrafish, 
researchers can also validate drug targets by modulating the 
expression, structure, or function of the target protein and 
determining how the intervention impacts tumor develop
ment and oncogenic pathways. For example, Vlecken and 
Bagowski were able to identify and validate LIMK1 and 
LIMK2 as potential targets for tumor angiogenesis by using 
RNAi techniques in a zebrafish xenograft model of human 
pancreatic cancer [3]. In addition, a genetic screen using trans
genic zebrafish identified dihydrolipoamide 
S-succinyltransferase, a TCA-cycle transferase, as a target for 
MYC-driven tumors [5]. Devimistat, which inhibits the TCA 
cycle, has been tested in clinical trials for treating both hema
tological and solid tumors and recently received a fast-track 
designation from the FDA for treating acute myeloid leukemia 
(Table 1). Both examples highlight the ability of zebrafish as an 
in vivo model in identifying drug targets with translational 
value.

3. In vivo lead screens

Zebrafish-based screens often utilize transgenic or xenograft 
models of cancer. The output of administered drugs can be 
measured in zebrafish models for morphologic, therapeutic, 
pathway, or behavioral changes [6]. Due to the high fecundity 
and small size of zebrafish, these drug screens feature high 
throughput capabilities and reliable statistical outputs. 
Researchers have also ventured into optimizing the screens by 
automating steps of the process such as microinjections, embryo 
sorting, phenotype identification, and image acquisition.
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3.1. Target-based screens

Zebrafish are suitable for screens to uncover the leads that 
inhibit well-studied targets from libraries composed of thou
sands of biochemical compounds. For example, a transgenic 
zebrafish screen of pharmacologically active compounds iden
tified two antidepressants that target the β-catenin pathway in 
hepatocellular carcinoma [6]. A zebrafish blastomere screen of 
3,840 bioactive small molecules identified retinoid acid ago
nists with potent anti-cancer properties, which reduce the 
aberrant MYB expression in adenoid cystic carcinoma and 
leukemia [7]. Retinoid acid is tested in clinical trials for treating 
multiple types of cancers including advanced adenoid cystic 
carcinoma, neuroblastoma, and brain cancers (NCT03999684, 
NCT00135135, and NCT00528437; Table 1). The third example 
is the discovery of 16,16-dimethyl-PGE2 (dmPGE2; ProHema) 
through a screen for compounds targeting the prostanoid 
E receptors [8]. DmPGE2 was found to regulate vertebrate 
hematopoietic stem cells by increasing their numbers in the 
aorta-gonad-mesonephros region of zebrafish. Subsequently, 
dmPGE2 has progressed to a phase II clinical trial for treating 
hematologic malignancies (NCT00890500; Table 1) [8].

3.2. Phenotype-based screens

Zebrafish are also ideal for screening leads based on pheno
typic changes (e.g. cancer-suppressing) when the molecular 
target is unknown. This phenotype-based screen has several 
strengths over target-based drug discovery. It can identify 
entirely new classes of therapeutics and reveal previously 
unsuspected ‘druggable’ pathways or molecular targets [9]. 
Moreover, candidate drugs identified through this method 
must fulfill parameters of both anticancer efficacy and minimal 
in vivo toxicity. ‘Traditional’ target-based drug discovery often 
fails due to in vivo toxicities that are typically tested later in 
the process. Zebrafish phenotypic screens bypass this issue 
with toxicity assessment as the first filtering criterion, saving 
both cost and time.

Drugs discovered by this approach include Lenaldekar that 
was identified from a library of 26,400 molecules [10]. 
Lenaldekar exhibits selective killing of multiple types of leuke
mia with potential for clinical utility. Another example is the 
discovery of perphenazine for killing T-cell leukemia cells 
through a similar phenotype-based screen of 4,880 FDA- 
approved drugs or drug-like molecules [11]. Notably, 
NSC210627 was discovered by screening a 2,000-chemical 
library based on melanoma-inhibiting phenotypes [12]. 
Chemoinformatic structural analysis revealed that NSC210627 
resembles dihydroorotate dehydrogenase (DHODH) inhibitors 
and exerts its anti-melanoma effects through DHODH suppres
sion. DHODH was then validated to be a new druggable target 
for melanoma. Leflunomide, an FDA-approved DHODH inhibi
tor for treating rheumatoid arthritis, was evaluated in preclini
cal studies and a phase I trial for melanoma treatment 
(NCT01611675) [9]. Leflunomide is now tested in clinical trials 
for treating multiple myeloma and metastatic triple-negative 
breast cancer (Table 1), demonstrating the ability of zebrafish 
phenotypic screens to simultaneously identify new targets and 
therapeutics.Ta
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Both target and phenotype-based screens can result in drug 
repurposing, which is time and cost efficient as the drug is 
already well characterized. Using zebrafish gastrulation as 
a readout in a screen, Nakayama et al. identified 20 FDA- 
approved drugs that can inhibit tumor cell invasion [13]. Their 
follow-up studies using zebrafish and mouse xenografts led to 
the identification of pizotifen, an antagonist of serotonin recep
tor 2C, as a metastasis-suppressing drug. Wang et al. demon
strated that Rosuvastatin, an FDA-approved drug for treating 
hypercholesterolemia and cardiovascular diseases, impacts 
endothelial cell function and suppresses prostate tumor growth 
[14]. Rosuvastatin is now being tested in clinical trials for treating 
multiple cancers, including metastatic breast cancer, rectal can
cer, squamous cell carcinoma, and prostate cancer (Table 1).

4. Mechanistic elucidation of the drug candidates

Zebrafish are optimal for studying complex molecular mechan
isms that impact organ and system development. Zhu et al. 
investigated the spatial and temporal role of an activated ana
plastic lymphoma kinase (ALK) mutation to neuroblastoma 
pathogenesis [15]. Their results demonstrated the prosurvival 
effects of the ALK F1174L mutation that collaborates with 
MYCN in tumor development, providing implications for targeted 
therapy. Additionally, compared to in-vitro systems, zebrafish 
offer a wider range of phenotypes that aid mechanistic studies 
of drug candidates. For example, fumagillin, an anti-angiogenic 
natural product that inhibits methionine aminopeptidase type 2 
enzyme, induced a gastrulation phenotype in zebrafish embryos 
like those caused by gene mutations in the noncanonical Wnt5 
pathway [16]. This led to further elucidation of the mechanism of 
action of fumagillin and the discovery of the targetability of the 
noncanonical Wnt signaling pathway in cancer angiogenesis [16].

5. Lead optimization

Zebrafish are suitable for pharmacokinetics and pharmacody
namics studies using mass spectroscopy and liquid/gas chro
matography [6,9]. Therefore, an ADMET profile of selected 
drugs can be generated using zebrafish. This shows the strong 
potential of using zebrafish as a platform for structural-activity 
relationship studies and drug optimization, another vital step 
in drug discovery [9]. Hence, zebrafish can facilitate the devel
opment of the drug prototype into those possessing optimal 
potency, bioavailability, and minimal toxicity.

6. Lead prioritization for mammalian testing

Mammalian models, particularly mice, are the current gold 
standard of preclinical testing. However, murine models of 
cancer are time-consuming to study and are often kept in an 
artificial sterile environment. Due to cost and regulatory con
straints, murine experiments, including toxicity studies, are 
mostly short-term and predict clinical outcomes inconsistently. 
On the other hand, the predictability of zebrafish for various 
toxicity parameters has been validated, with sufficient to good 
accuracy of 60–100% [17]. Examples of these include cardio
toxicity, developmental toxicity, and seizure liability. The 

zebrafish is thus suitable for in vivo toxicity screens, which 
should complement and precede mammalian studies to elim
inate toxic compounds early on and save costs.

Efficacy is another major reason for drug candidate attrition 
in the drug discovery process. Indeed, an estimated 40–50% of 
drug failure is due to a lack of clinical efficacy [18]. As none of 
the animal models can perfectly simulate human diseases, 
employing multiple in vivo systems in preclinical studies can 
help increase the confidence of a drug candidate. The zebra
fish is suitable for this purpose as its physiology and patho
physiology are highly conserved. It can sometimes simulate 
drug effects in humans better than mice do, as shown in the 
study of thalidomide’s ability to cause morphological limb 
defects in zebrafish while lacking any teratogenic effects in 
mice [9]. Combined with the ease to assess the ADMET profiles 
of drugs, zebrafish can ascertain and prioritize drug candidates 
for further testing in mammalian models.

7. Zebrafish avatars to advance precision medicine

Over the past 10 years, precision medicine has emerged to perso
nalize and improve treatment for cancer patients. Cancer avatars, 
which historically rely on in vitro organoids and mice xenografts, 
serve as a key tool to predict responses and select drugs for 
individual patients. However, these avatars have substantial lim
itations including biological fidelity and logistical constraints in 
cost and time [2,19]. Zebrafish avatars can overcome the limitation 
of in vitro organoid models by simulating complex physiological 
environments. Additionally, due to their high fecundity and small 
size, zebrafish cancer avatars can complement murine models 
with increased statistical outputs, reduced patient tissue usage, 
and rapid readouts [19]. Currently, zebrafish avatars are often 
established through transplanting patient-derived tumor samples 
into zebrafish embryos. High throughput screening with a variety 
of therapeutic agents is then conducted and readouts are often 
available within just 4–7 days, enabling the selection of high- 
efficacy treatments to guide clinical decisions.

Despite being relatively new, the predictability of zebrafish 
avatars has been validated in several types of cancers, such as 
lung cancer, breast cancer, colorectal cancer, and leukemia [20]. 
Recent work demonstrated that zebrafish avatars can faithfully 
recapitulate radiosensitivity of colorectal cancer and chemosensi
tivity of both breast cancer and colorectal cancer in patients [20]. 
Yan et al. discovered the combination therapy of Olaparib and 
Temozolomide against human rhabdomyosarcoma while validat
ing the biological fidelity of immunodeficient adult zebrafish xeno
grafts [21]. This work subsequently led to the initiation of a clinical 
trial (NCT01858168). In addition, a trial enrolling 120 cancer 
patients is currently ongoing to evaluate the ability of zebrafish 
PDXs to predict individual responses (NCT03668418). This trial is 
expected to provide valuable insights into the overall utility of 
zebrafish cancer avatars, highlighting their potential in precision 
medicine [19].

8. Expert opinion

The zebrafish has demonstrated its unique strengths in cancer 
research and its suitability to improve the process of drug 
discovery and development. For instance, it can speed up 
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the discovery of drug targets and the identification of ther
apeutic leads through phenotypic screens. With its high repro
ducibility, mechanistic studies in this versatile organism can 
dissect complex oncogenic pathways and facilitate the selec
tion of combination treatments in a cost-effective manner. The 
rapid embryonic development of zebrafish can be leveraged 
to filter out toxic drug candidates and increase success rates of 
preclinical and clinical testing. Unlike mice, zebrafish are raised 
in a non-sterile environment. They also manifest telomere 
shortening, a feature central to human cancer biology yet 
lacking in mice. Therefore, zebrafish aptly complement the 
murine models for preclinical testing to decrease the failure 
rates of drug candidates in clinical trials. Recent evidence 
emerging from zebrafish avatars also supports their utility in 
precision medicine to help stratify patient populations for 
personalized treatment.

The application of zebrafish in drug discovery and development 
is still in its early stages, having only been introduced into cancer 
research in the past two decades. As zebrafish are vertebrates, but 
not mammals, hesitation in their inclusion in preclinical testing and 
doubts about their relevance to patients still require additional 
evidence to be overcome. In addition, even though zebrafish can 
be used to study ADMET of drugs, their pharmacokinetics may be 
different from those in humans and should be compared carefully. 
Despite concerns about potential unphysiological responses in 
zebrafish avatars, studies show that fish tolerate 32–34°C, 
a temperature conducive to human tumor cell growth.

Future technological advances, such as the generation of fish 
suited to live at 37°C, will optimize the utility of zebrafish avatars. 
Pairing zebrafish with other model systems should hasten the 
process of drug discovery while increasing its success rates. 
Enhanced communications among the zebrafish research com
munity, the industry, funding agencies, and policymakers will help 
steer and prioritize translational research using this model system. 
We hope that the accumulated scientific evidence collected 
through collaboration between academia and industry will soon 
convince policymakers to favor zebrafish as an essential tool for 
drug discovery and development.
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