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Criticality and chaos in auditory 
and vestibular sensing
Justin Faber 1* & Dolores Bozovic 1,2

The auditory and vestibular systems exhibit remarkable sensitivity of detection, responding to 
deflections on the order of angstroms, even in the presence of biological noise. The auditory system 
exhibits high temporal acuity and frequency selectivity, allowing us to make sense of the acoustic 
world around us. As the acoustic signals of interest span many orders of magnitude in both amplitude 
and frequency, this system relies heavily on nonlinearities and power-law scaling. The vestibular 
system, which detects ground-borne vibrations and creates the sense of balance, exhibits highly 
sensitive, broadband detection. It likewise requires high temporal acuity so as to allow us to maintain 
balance while in motion. The behavior of these sensory systems has been extensively studied in the 
context of dynamical systems theory, with many empirical phenomena described by critical dynamics. 
Other phenomena have been explained by systems in the chaotic regime, where weak perturbations 
drastically impact the future state of the system. Using a Hopf oscillator as a simple numerical model 
for a sensory element in these systems, we explore the intersection of the two types of dynamical 
phenomena. We identify the relative tradeoffs between different detection metrics, and propose that, 
for both types of sensory systems, the instabilities giving rise to chaotic dynamics improve signal 
detection.

Auditory and vestibular systems perform tasks that are crucial for the survival of an animal, enabling it to navi-
gate in space, detect signals from predators or prey, identify and attract potential mates, and communicate with 
members of the same species. To achieve these tasks, the sensory system must detect extremely weak signals, 
extract them from noisy environments, distinguish tones of closely spaced frequencies, and precisely parse 
temporal information. Specifically, near our threshold of hearing, we are able to detect displacements of the 
eardrum smaller than the width of the hydrogen atom1. This detection occurs in the presence of internal ther-
mal fluctuations of equal or higher magnitude. Further, the temporal resolution of humans typically reaches 10 
ms2,3, enabling sound localization through interaural time differences4. Finally, we are able to resolve tones that 
differ in frequency by only a fraction of a percent5. In parallel, the auditory system achieves immense dynamic 
range in both amplitude and frequency of acoustic detection. We are able to detect sounds that span over 12 
orders of magnitude in intensity and 3 orders of magnitude in frequency. These broad ranges are reflected in our 
logarithmic decibel scale for sound intensity and logarithmic spacing of musical intervals.

The remarkable features of the auditory system rely heavily on two factors: active amplification and nonlinear 
response. First, the system has been shown to violate the fluctuation dissipation theorem, indicating that it cannot 
be governed by equilibrium statistical mechanics6. Vast amounts of empirical evidence obtained in vivo demon-
strate that the inner ear expends energy to amplify signals7. Second, compressive nonlinearities in the response 
to external stimuli enable the extensive dynamic range, while maintaining sensitivity to weak signals6,8. These 
nonlinearities have been detected at all scales measured, from individual sensory cells to in vivo phenomena 
known as phantom tones9–11. How the auditory system utilizes energy expenditure and nonlinearities to achieve 
its remarkable detection characteristics, however, remains unknown after more than 7 decades of research12–14.

The theoretical framework for auditory detection that was developed over the past 20 years is based on the 
notion of a dynamical system poised near criticality15, on the verge of autonomous oscillation. The models apply 
the normal form equation for the supercritical Hopf bifurcation to describe the auditory system, and elegantly 
capture the mechanical sensitivity, frequency selectivity, and amplitude-compressive response, thus reproducing 
a broad range of experimental results16,17. In the vicinity of the bifurcation, the system’s sensitivity to external 
signals increases, while the frequency selectivity sharpens, thus pointing to criticality as the optimal regime for 
signal detection18.

However, while proximity to a bifurcation yields many advantages, the description contains an innate con-
straint: at criticality, the system becomes infinitely slow, with transient times diverging as a result of critical 
slowing down. This sluggish behavior poses an undesirable trade-off between the sensitivity of a detector and 
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its speed, and is inconsistent with the high temporal acuity exhibited by our auditory system. Furthermore, at 
the critical point, the system is very sensitive to the effects of stochastic fluctuations, which limits some of the 
advantages observed in the deterministic models. As noise is a ubiquitous component of any biological system, 
and its effects specifically near criticality are not negligible, this constraint limits the advantages of tuning a 
system near a bifurcation point.

An alternate theoretical framework, developed to reconcile the requirement for high sensitivity of detection 
with the need for a rapid temporal response, is based on the notion of chaotic dynamics19. When a system is 
poised in a chaotic regime, even infinitesimally weak external perturbations trigger large changes in the subse-
quent trajectory, thus yielding high sensitivity. As a result of this exponential divergence, the system also responds 
and resets rapidly. Hence, a chaotic system avoids the inherent tradeoff observed with criticality.

In a prior study, we demonstrated experimentally the presence of a chaotic attractor in the innate and driven 
oscillations exhibited by sensory hair cells in vitro20. Using mathematical methods from dynamical systems lit-
erature, we confirmed that the oscillator contains a deterministic component and is not completely dominated 
by biological noise and other stochastic processes. These mathematical methods have also been used to show 
the presence of chaos in experimental recordings of human otoacoustic emissions21.

We note that chaos is typically considered a harmful element in applied mathematics literature, as it limits 
control and predictability. However, it has been proposed to play a potentially helpful role in certain biological 
systems, as it enhances their dynamical complexity22,23. Further, using a numerical model and experimental 
recordings, we showed chaos to be beneficial to individual hair cells, as the instabilities from which chaos arises 
enhance the sensitivity and temporal resolution of the response19. As chaotic regimes can arise in the presence 
of three or more degrees of freedom, we predict that many more examples of living systems utilizing chaotic 
dynamics will be uncovered in the future. This phenomenon is reminiscent of stochastic resonance, a mecha-
nism exhibited by excitable systems, where signal detection is surprisingly improved with the addition of noise. 
Stochastic resonance has been shown to be present in the dynamics of Hopf oscillators24, as well as experimental 
measurements from the bullfrog inner ear25.

In the present work, we aim to compare the relative advantages of criticality versus the instabilities that cause 
chaos, in a theoretical description of auditory and vestibular detection. In particular, we explore the interface 
of these two theoretical models: a system poised near the supercritical Hopf bifurcation and one poised in the 
chaotic regime, as well as the continuum describing transitions between the regimes. To assess separately each of 
the key features exhibited by these sensory systems, we characterize the sensitivity, frequency selectivity, temporal 
acuity, and power-law amplitude response of a Hopf oscillator, near and far from criticality, in the presence and 
absence of chaos. As stochastic fluctuations play a non-negligible role in dynamical systems, we find the relative 
tradeoffs between these detection characteristics in the presence of noise. We then combine these independent 
metrics to propose a simple conceptual framework for auditory and vestibular detection.

Hopf bifurcation and critical slowing down
The inner ear of vertebrates contains a number of end organs that specialize in either auditory or vestibular 
detection, the latter including both translational and rotational movement. While the pathways by which external 
signals reach the inner ear vary, they ultimately result in mechanical vibrations of internal structures; hence, the 
two sensory systems exhibit many features in common. Conversion of mechanical energy of a sound, vibration, 
or acceleration into electrical energy in the form of ionic currents is performed by specialized, sensory hair 
cells of both the auditory and vestibular systems. The hair cell gets its name from the rod-like, inter-connected 
stereocilia that protrude from the apical surface, which are collectively named the hair bundle. An incoming 
stimulus pivots the stereocilia and modulates the open probability of the transduction channels embedded in 
the tips of the stereocilia26,27. In several species, these hair bundles have been shown to exhibit active limit-cycle 
oscillations in the absence of applied stimulus6,28–30. Though the role of these spontaneous hair-bundle oscil-
lations in vivo has yet to be established, they serve as an experimental probe for studying this active system, as 
they lead to sub-nanometer thresholds in vitro31,32.

The Hopf oscillator has been extensively used for modeling and understanding the phenomenon of active, 
spontaneous hair-bundle oscillations, as well as more global features of the auditory and vestibular systems18,33. 
When the system is poised on the verge of instability (near the Hopf bifurcation), it becomes extremely sensi-
tive to small perturbations. In the absence of noise, the amplitude gain of the response diverges as the system 
approaches criticality. The model was shown to capture active amplification and power-law amplitude response 
observed both in vivo and in vitro on a number of different species5.

A Hopf oscillator is described by time-dependent complex variable, z(t), which is governed by a normal form 
equation, which in its simplest version, takes the form:

where µ and ω0 are the control parameter and characteristic frequency of the detector, respectively. F(t) represents 
the external forcing on the system, while η(t) is a stochastic variable, representing thermal noise. This variable 
is complex, with independent real and imaginary parts, both of which have statistics of Gaussian white noise: 
�η(t)� = 0 , �η(t)η(t′)� = 0 , and �η(t)η̄(t ′)� = 4Dδ(t − t ′) , where η̄ is the complex conjugate of η , and D defines 
the noise strength.

In the absence of forcing and noise ( F(t) = D = 0 ), the system can be more easily understood in polar coor-
dinates, by letting z(t) = r(t)eiθ(t) , thereby separating the complex variable into two real variables. This results 
in the pair of equations,

(1)
dz

dt
= (µ+ iω0)z − |z|2z + F(t)+ η(t)
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which describe the amplitude and phase dynamics of the system, respectively. Notice that the instantaneous 
frequency dθdt  is constant, having no dependence on the oscillator’s amplitude, r(t). This defines an isochronous 
oscillator.

The amplitude dynamics are determined by the control parameter, µ . For µ < 0 , the system displays a stable 
fixed point with increasing local stability for more negative values of the control parameter. As the control param-
eter approaches the critical point at µ = 0 , the system loses its local stability at the origin, and stable limit-cycle 
oscillations emerge. For µ > 0 , as this parameter increases, the spontaneous oscillations grow larger, and the local 
stability of the limit cycle increases. Precisely at the critical point, the amplitude gain of the system diverges in 
the absence of noise, as an infinitesimal perturbation causes large-amplitude displacements18 (Fig. S1). For both 
positive and negative values of the control parameter, the amplitude returns to its steady-state exponentially, with 
characteristic time scale proportional to 1/µ (see Supplementary Material). In the vicinity of the bifurcation, the 
linear term becomes vanishingly small, and the system returns to steady-state very slowly, with perturbations 
diminishing according to a power-law. As the control parameter approaches the Hopf bifurcation, this time scale 
diverges without bound at µ = 0 , a dynamical systems phenomenon known as critical slowing down (Fig. S1).

Nonisochronicity and chaos
In several studies of auditory and vestibular systems, a more general version of the Hopf oscillator was 
considered19,34. The equation takes the form

where α and β are introduced to characterize the nonlinearity of the system, while all the other parameters 
carry the same meaning as in the isochronous case previously described. In the absence of stimulus and noise 
( F(t) = D = 0 ), this equation can be written in polar coordinates as

For µ > 0 , a stable limit cycle exists at radius r0 =
√

µ
α

 . The frequency at this limit cycle is 
�0 = ω0 − βr20 = ω0 − βµ/α , where ω0 is the frequency at the Hopf bifurcation. This more general description 
reduces to the traditional, isochronous form when α = 1 and β = 0 . We restrict our analysis to systems with 
α = 1 and vary β to control the level of nonisochronicity. This new parameter causes the frequency of oscillation 
to depend on the amplitude of oscillation. Experimental recordings obtained from in vitro preparations of hair 
cells have shown signatures of nonisochronicity in spontaneously oscillating hair bundles. The coupling between 
frequency and amplitude can be seen through experimental manipulations of the innate limit cycle, such as 
imposing large deflections on the hair bundle35, or by adjusting the calcium concentration of the surrounding 
solution19.

By coupling the radial and phase degrees of freedom, the presence of nonisochronicity ( β  = 0 ) introduces 
significant complexity to the dynamics of this system. It distorts the Lorentzian shape of the frequency response 
curve36 and can even produce branching of this curve, discontinuities, and bistability for a range of frequencies, 
as well as hysteretic behavior in response to frequency sweeps37. The presence of nonisochronicity also makes 
the system susceptible to chaotic dynamics. Chaos in dynamical systems is characterized by extreme sensitiv-
ity to initial conditions and exponential divergence of neighboring trajectories. In the nonisochronous Hopf 
oscillator, chaos can arise from sinusoidal or impulsive external forcing, as well as systems driven purely by 
stochastic white noise19,38.

The rate of divergence of neighboring trajectories is expected to follow |�z(t)| ∝ e�t , where �z(t) is the 
Euclidean distance between two nearby phase-space trajectories, and � is the Lyapunov exponent. Chaotic systems 
are often defined by � > 0 . For quiescent, non-chaotic systems, the Lyapunov exponent is negative and character-
izes the system’s stability, or the rate at which the system returns to equilibrium following a perturbation. For a 
Hopf oscillator with µ < 0 and no forcing or noise, the Lyapunov exponent can be found by expanding around 
the stable fixed point (see Supplementary Material). One finds that in this simple case, � = µ , which indicates 
that the system becomes more stable at the origin for more negative values of µ.

In the absence of noise, as the control parameter crosses from the quiescent to the oscillatory regime, the 
Lyapunov exponent increases to zero and remains there even for ( µ > 0 ). Since perturbations in the phase nei-
ther diverge nor converge, trajectories are neutrally stable along the angular direction of the limit cycle. In the 
presence of noise, analytic approximations often becomes intractable, but numerical simulations yield values of 
the Lyapunov exponent that can be positive, negative, or zero.

For a noisy nonisochronous Hopf oscillator, an analytic approximation can be made in the regime of suffi-
ciently stable limit cycles. In this regime, the Lyapunov exponent shows a simple dependence on both the control 
and nonisochronicity parameters19,

This approximation is particularly useful in weakly chaotic regimes, where numerical simulations are compu-
tationally expensive. We show the robustness of this approximation for sufficiently stable limit cycles, as well as 

(2)
dr

dt
= µr − r

3 and
dθ

dt
= ω0,

(3)
dz

dt
= (µ+ iω0)z − (α + iβ)|z|2z + F(t)+ η(t),

(4)
dr

dt
= µr − αr3 and

dθ

dt
= ω0 − βr2

(5)� ≈
|β|D

µ
.
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the simpler approximation for quiescent systems (Fig. 1A-B). The analytic approximation however breaks down 
as the system approaches criticality from the oscillatory side, because the assumption of a sufficiently stable limit 
cycle is no longer valid. We therefore provide a map of the Lyapunov exponent calculated numerically through-
out the parameter space (Fig. 1C). These calculations serve to show the level of chaos as the system crosses the 
Hopf bifurcation, a regime not explored analytically. Further, this mapping illustrates the connection between 
the Lyapunov exponent and the level of nonisochronicity. Note, however, that the level of chaos depends on the 
noise strength, D, and hence the exact map changes if the noise strength is varied. In the following sections, 
we assess the impact of the control parameter, µ , the nonisochronicity parameter, β , and the noise strength, D.

Mechanical sensitivity and information transfer
Near the Hopf bifurcation, a noiseless system displays immense sensitivity, with the amplitude gain of the 
response diverging precisely at the bifurcation18. However, this compliance also makes the system susceptible to 
stochastic fluctuations. In the oscillatory regime, the detector becomes more resistant to noise, but also harder to 
entrain by external signals. Nonisochronicity can assist detectors in synchronizing to external signals; however, 
this effect can likewise increase susceptibility to external noise and off-resonance stimulus frequencies. We hence 
determine the sensitivity of the Hopf oscillator throughout the µβ-plane and identify the preferred regimes for 
several types of stimulus.

We first consider a weak, single-tone, on-resonance stimulus in the presence of noise. We employ the linear 
response function, χ(�0) , to characterize the sensitivity of the system (see Numerical Methods). For systems 
that exhibit autonomous oscillations, this measure exhibits a spurious non-zero value if the response does not 
synchronize to the signal. To avoid this issue, we ensure that only the phase-locked component is included in the 
calculation. We do this by averaging the responses over many systems, each prepared with different initial phases, 
thereby averaging out any oscillatory component that does not synchronize to the stimulus. It has previously been 
shown that the isochronous Hopf oscillator detects this signal best when poised as far into the oscillatory regime 
as possible39. Our results are consistent with this finding, with even further improvement when the system is 
weakly nonisochronous (Fig. 2). Further, we show that detectors in this regime outperform those in the critical 
regime for all levels of noise considered.

Next, we consider stochastic modulations in the amplitude (AM) and frequency (FM) of this signal (see 
Numerical Methods). Unlike the pure-tone stimulus, these signals carry information in their modulations. We 
therefore think of the detector not only as a mechanical resonator, but also as an information-theoretic receiver. 
We employ transfer entropy as the measure of information captured by the receiver40. This measure is particularly 
useful, as it carries no assumptions about which features of the external signal are important. Instead, it directly 
measures the amount of information transmitted from one process to another, and can even be used to establish 
causality between two processes. For all parameter ranges tested and for both types of modulation, detectors that 
are poised in the oscillatory, nonisochronous regime capture the most information from the applied stimulus. We 
further explored the sensitivity of this detection metric to stochastic fluctuations and found the nonisochronous 
regime to yield more robustness than the critical, isochronous regime (Fig. 2).

Temporal acuity
High temporal acuity is essential for a sensory system to be responsive to brief signals. Further, localization of 
sound by vertebrates relies on interaural time differences as small as a few tens of microseconds, which cor-
respond to temporal differences of just a fraction of a single stimulus cycle. When such small differences are 
biologically meaningful, the system’s response to a stimulus and its subsequent return to steady state must occur 
rapidly. To characterize this temporal acuity, we apply a step stimulus and measure the time the system requires 
to reach its steady-state response, as well as the time it takes to return to its unstimulated steady state after ces-
sation of the signal.

Figure 1.   (A) Lyapunov exponent calculated numerically with β = 5 , for a range of control parameters. (B) 
Lyapunov exponent calculated numerically with µ = 1 , for a range of degrees of nonisochronicity. For (A, B), 
the black curves correspond to the analytic approximations of the Lyapunov exponent. (C) Lyapunov exponent 
calculated numerically throughout the parameter space. The dotted lines correspond to the cross-sections 
plotted in (A, B). For all panels, D = 0.1.
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We previously found that nonisochronicity greatly increases the speed of response to a step stimulus38. These 
results are consistent with experimental measurements that demonstrated a correlation between the speed of 
response and the level of chaos, quantified by the Kolmogorov entropy19. In the present work, we extend our 
analysis to variations in the control parameter and determine the temporal acuity of the Hopf oscillator in the 
µβ-plane. We apply a step stimulus to the detector (Fig. 3A), averaging over many simulations with different 
initial conditions and realizations of noise. This method of calculating the mean response averages out the sto-
chastic fluctuations, as well as any autonomous oscillations that would otherwise obscure slow modulations to 
the mean-field response.

We define the response time ( τon ) to be the time it takes the system to settle to and remain within 4 standard 
deviations of its steady-state mean value following the onset of the step stimulus. Likewise, we define the return 
time ( τoff  ) to be the time it takes the mean response of the system to become indistinguishable (within a standard 
deviation) from its value prior to the stimulus. We consider the limiting factor ( τmax ) to be the maximum of the 
two time constants. For all parameters tested, the return time was the limiting factor (Fig. 3D-F). For simplicity, 
we therefore drop the subscripts and let τ = τmax = τoff .

Stochastic fluctuations not only obscure the mean-field response, but can also distort it. As the noise level 
increases, so does the average amplitude of the system. This increase in the baseline amplitude reduces the dis-
tance traveled by the returning mean response, effectively increasing the speed ( 1

τ
 ) according to our definition. 

We measure the speed of response over five orders of magnitude in noise strength and find that the oscillatory, 
nonisochronous system is faster to return to the baseline than the critical system (Fig. 3B-C). For extremely 
large levels of noise, the effects of critical slowing down are removed. However, the levels of noise sufficient to 
equalize the speed of the two types of systems are so large as to lead to a vast reduction in the sensitivity (Fig. 2A, 
C, and E).

Figure 2.   (A, C, E) Sensitivity metrics for the critical system ( µ = β = 0 , black filled points) and chaotic 
system ( µ = 1,β = 5 , red filled points) for a range of noise strengths. Dotted horizontal lines correspond 
to the value of each metric in the deterministic limit. In (C, E), open points correspond to transfer entropy 
in the reverse direction (response to stimulus) and serve as controls. The grey, shaded regions estimate the 
biological noise level experienced by hair bundles (1–5% of the signal amplitude35). The three stimulus types are 
illustrated above each column: pure tone, frequency modulation (FM), and amplitude modulation (AM). (B, D, 
F) Heatmaps of the three measures throughout the parameter space with D = 10−3 . Cross-sections along the 
colored, dotted lines are shown below.
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Frequency selectivity and broadband detection
Although chaos can make dynamical systems sensitive to small perturbations and external signals, these systems 
tend to synchronize to a broad range of frequencies. This may be a beneficial effect for broadband detectors, 
such as vestibular systems, as it would increase the energy transmitted to the system and likely result in lower 
thresholds of detection. However, for frequency selective detectors, like those of auditory systems, this effect 
may be harmful.

We stimulate the Hopf oscillator with additive Gaussian white noise by adjusting D and measure the power 
spectrum of the response throughout the parameter space (Fig. 4A). As these curves indicate how sharply the 
system filters the white noise, we use them to characterize the frequency selectivity41. We adjust β and ω0 together 
so as to keep the limit-cycle frequency fixed at �0 = ω0 −

βµ
α

= 1 in the deterministic limit. We then introduce 
stochastic white noise into the simulations and calculate the response curves. We observe that the frequency 
selectivity increases with increasing µ and decreasing |β| . Near the Hopf bifurcation, we see that the resonance 
frequency depends on β . This is a consequence of the noise altering the steady-state amplitude, and thereby the 
frequency, in this compliant regime.

To characterize the frequency selectivity of the Hopf oscillator, we employ the quality factor of the response by 
estimating the full width at half the maximum ( �f  ) of the response curves. The unitless quality factor is defined 
as Q =

f0
�f  , where f0 is the peak frequency. As expected, the most frequency selective parameter regime occurs 

at high values of µ and low values of |β| (Fig. 4B). The quality factor is useful for characterizing the frequency 
selectivity of a single-frequency or narrowband detector.

As some auditory and most vestibular systems are responsible for detecting a broader range of frequencies, 
we utilize the threshold bandwidth (BW) for characterizing multi-frequency or broadband detection, a metric 
suggested in39. We estimate this measure by taking the range of frequencies whose Fourier components have 
magnitudes exceeding a given threshold. We choose the threshold to be 0.1, which corresponds to approximately 
a factor of 10 above the noise floor of the critical system. The threshold bandwidth increases with increasing µ , 
as the energy from the spontaneous oscillations amplifies the signal (Fig. 4C). Further, the threshold bandwidth 
initially increases with increasing |β| due to the broadening of the frequency response curves. However, the BW 
then diminishes for very large values of |β| , as the energy becomes so spread out in frequency space that few 
components exceed the threshold.

Figure 3.   (A) Responses of the critical ( µ = β = 0 , black curve) and chaotic ( µ = 1,β = 5 , red curve) systems 
to a step stimulus (illustrated by the blue dashed curve). Response curves represent averages over 64 simulations, 
each with different initial conditions and realizations of noise. The dotted lines indicate the mean amplitude 
prior to the step onset. (B) Response times (open squares) and return times (filled circles) of the critical (black) 
and chaotic (red) systems for several levels of noise. The return time of the critical system rapidly diverges as 
the noise is reduced. Return times longer than 100 cycles are not plotted. The grey, shaded regions estimate the 
biological noise level experienced by hair cells. (C) Same data as (B) but zoomed in and on a linear scale. (D–F) 
Heatmaps of the the speed of response, speed of return, and slower of the two measures. For every combination 
of parameters, the return time exceeded the response time ( τoff > τon ). For all heatmaps, D = 10−3.
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Power‑law scaling of response
The human auditory system can detect a range of stimulus amplitudes spanning over 6 orders of magnitude in 
pressure. This process relies on nonlinearities in order to both amplify weak sounds and attenuate loud sounds, 
thereby protecting the system from damage. These nonlinearities have been measured in vivo through otoacoustic 
emissions and through laser measurements of basilar membrane motion. Further, the attenuation of large ampli-
tudes has been observed in vitro on active hair bundles16. At weak forcing, hair cells display a linear response; as 
the stimulus amplitudes increase, the amplitude response scales as F

1
3 . The linear and 1/3-power-law responses 

are reproduced well by the Hopf oscillator, as either the linear or the cubic term dominates in different regimes. 
Near criticality, the range over which the power law is observed increases.

We have demonstrated that the nonisochronicity parameter, β , improves the sensitivity to weak signals. We 
here show that this parameter also causes stronger attenuation of the response at large stimulus amplitudes. This 
increased attenuation can be understood by calculating the response in the strong-forcing limit, where the cubic 
term dominates (see Supplementary Material). In this limit, the response amplitude is scaled by 1

(α2+β2)
1
6

 . The 

combination of these two effects yields an increase in the range of stimulus levels over which amplitude compres-
sion is observed and, hence, increases the dynamic range of the system. In Fig. 5A-C, we show that a nonisoch-
ronous oscillator compresses its response over a range that is more than an order of magnitude larger than in 
the isochronous case. To quantify this compression, we define the dynamic range of the system as

where Fsync is the minimum forcing amplitude required for the response of the system to synchronize to an 
external sinusoidal signal in the deterministic limit. F10×sync represents the forcing amplitude required to elicit 
an amplitude response 10 times as large as the amplitude response at Fsync . Therefore, the dynamic range, γ , 
measures how many decades of forcing strength span one decade of the response amplitude. We illustrate how 
this metric is calculated in Fig. 5D. For quiescent systems, we define Fsync to be the forcing required to elicit an 
amplitude response of 0.01. For a linear system, we would find γ = 1 , while for a system that responds according 
to the 1/3-power-law, we would expect γ = 3.

In the deterministic limit, the dynamic range can be approximated analytically as

for µ > 0 and |�ω| > 0 . The supplementary material outlines this analytical calculation and discusses the 
dynamic range in the quiescent regime. We compare this approximation to numerical simulations in Fig. 5E-
F. This approximation, which predicts that nonisochronicity increases the dynamic range monotonically with 
increasing |β| , shows good agreement with numerical data in the deterministic limit. However, in the presence 
of noise, this approximation breaks down for large values of |β| and for systems near the Hopf bifurcation. In 

(6)γ = log10

[

F10×sync

Fsync

]

(7)γ = 3+ log10

[

µ

|�ω|

(

1+
(β

α

)2
)]

Figure 4.   (A) Power spectral density of the system through the parameter space, in response to white noise 
stimulus. All curves are normalized to their peak values and plotted on a linear scale. (B) Heatmap of the quality 
factor as measured from the response curves. (C) Heatmap of the threshold bandwidth, indicating the frequency 
range for which the Fourier-component amplitudes of the response exceed 0.1. For all panels, D = 0.01 . Cross-
sections of the heatmaps are shown on the right.
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the oscillatory regime, we instead observe a peak in the dynamic range as a function of |β| , consistent with the 
previously discussed values of |β| that lead to maximal sensitivity.

Combining all response metrics
The best choice of parameters depends heavily on the application of the signal detector and the desired speci-
fications. For single-frequency or narrowband detectors, it may be favorable to have the quality factor of the 
response as high as possible. However, for a broadband detector, a large quality factor would be unfavorable, as 
it would attenuate frequencies that should be captured. We note that there exists a spectrum of desired capabili-
ties of signal detectors and no single metric can fully characterize the performance. We therefore incorporate 
all seven measures into a single score, which can be weighted in accordance with the application of the system. 
We first define the vector

where the elements of this vector are the on-resonance linear response, transfer entropy from FM stimulus, 
transfer entropy from AM stimulus, quality factor, threshold bandwidth, speed of response, and dynamic range, 
respectively. Each element is linearly scaled such that its range runs from 0 to 1 at the minimum and maximum 
values in the parameter space. To better illustrate the optimal regime, we scale the measures such that they satu-
rate at the 90th percentile of their distributions. In the supplementary material, we vary this saturation point to 
show that it has a negligible effect on our results (Figs. S3-S4). We then define the detection index to be the sum 
of the elements in v , scaled by relative weights of importance,

where w is a vector whose values represent the relative weights of importance of the measures.
The detection index could exhibit multiple optima, dependent on the desired specifications, or it could 

increase indefinitely with either µ or β , thus yielding no optimum. From the biological perspective, not only do 
auditory and vestibular sensors have different demands, but moreover, the same end organs from different species 
are likely to be optimized for different environments and various conspecific calls. Furthermore, even the same 
system may self tune into different regimes when placed in different acoustic surroundings. These variations 

(8)v =
[

χ̃ (ω0), T̃EFM , T̃EAM , Q̃, ˜BW , 1̃
τ
, γ̃

]

,

(9)detection index = w · v,

Figure 5.   Response amplitude from a pure-tone stimulus for on-resonance (A) and detuned (B, C) stimulus 
frequencies as indicated in each panel. Blue, orange, and red curves correspond to β = 0 , 2, and 5, respectively. 
Black dashed lines indicate linear growth, while pink dashed lines indicate power-law growth with |z(ω)| ∝ F

1
3 . 

For (A–C), µ = 1 and D = 0 . (D) Illustration of how the dynamic range, γ , is calculated. (E) Dynamic range 
as a function of β for several fixed values of µ . Solid curves correspond to the analytic calculation, while circles 
and crosses correspond to simulations with D = 0 and D = 0.001 , respectively. (F) Heatmap of the dynamic 
range throughout parameter space, calculated from numerical simulations with D = 0.001 . For (E, F), we use a 
detuning of ω = 1.01�0.
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can readily be captured by the appropriate selection of the weighting factor, w . We show a possible selection of 
weights that illustrates how a frequency-selective auditory organ may optimize its performance, and a selection 
of weighting factors to describe the performance of a broadband detector. In the supplementary material, we 
present additional weight choices for both types of detector (Figs. S3–S4).

A narrowband detector should prioritize the linear response function at resonance, the quality factor of the 
response, the dynamic range, the speed of response, and the transfer entropy from a narrowband FM signal. Since 
a large threshold bandwidth would be harmful to this detector’s purpose, we set its weight to zero and use the 
weight vector, w = 1

5 [1, 1, 0, 1, 0, 1, 1] . Using these weights, we find that the detection index appears to increase 
indefinitely with increasing µ , but peaks at small |β| when µ is fixed (Fig. 6C).

We now consider a broadband detector, where the threshold bandwidth is important instead of the quality 
factor. The detector should be sensitive to signal modulations and be able to detect transient signals composed of 
many frequencies. In this case, the information captured by signal modulations is valuable, as well as the speed 
of response. We therefore choose the weight vector, w = 1

4 [0, 1, 1, 0, 1, 1, 0] . The performance of this detector 
varies in a manner similar to the narrowband detector in that it continues to improve deeply into the oscillatory 
regime. However, a higher degree of nonisochronicity is preferable (Fig. 7C).

Discussion
We have determined the performance of the Hopf oscillator as a signal detector throughout its parameter space, 
by varying both the proximity to criticality and the degree of nonisochronicity. To the best of our knowledge, the 
intersection of these two properties has not previously been studied in the context of signal detection. We first 
calculated the Lyapunov exponent of the system in the µβ-plane, near the Hopf bifurcation, characterizing the 
level of chaos induced by noise. We showed the breakdown of a previous analytic approximation as the system 
approaches the Hopf bifurcation. Instead of diverging, the Lyapunov exponent decreases to zero continuously 
and becomes negative for µ < 0 , as is expected for dynamics near a fixed point. This allows us to correlate the 
degree of chaos with the nonisochronicity parameter, β.

Providing the oscillator with several types of stimulus, we demonstrated that the sensitivity and temporal 
acuity of the nonisochronous system can exceed that of the critical system, regardless of the level of external 
noise. Further, we showed that the nonisochronous system compresses the response of the system to large-
amplitude signals, due to the increase in magnitude of the cubic parameter. This increases the dynamic range of 
stimulus amplitudes that the system can safely detect. All three of these measures (sensitivity, temporal acuity, 

Figure 6.   (Narrowband detector) The heatmaps of the five metrics of importance are shown in the top row. 
These metrics are plotted as functions of the level of chaos for µ ≈ 0.14 (A) and µ ≈ 1.57 (B), as indicated by 
the yellow, dotted lines in the top panels. (C) Detection index from incorporating the five measures with equal 
weights, w = 1

5
[1, 1, 0, 1, 0, 1, 1] . Cross-sections of the heatmap at the dotted lines are shown to the right. For all 

measures shown, the noise strength was set to D = 10−3 , with the exception of Q̃ , where the noise was regarded 
as an external stimulus. In this case, D = 0.01.
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and amplitude compression) have been shown to be important aspects for signal detection by the auditory and 
vestibular systems.

The favorable parameter regime for frequency selectivity, when assessed in isolation, depends heavily on 
the specific application of the detector. The tuning curves broaden as the system approaches criticality from the 
oscillatory side, and when the level of nonisochronicity is increased. The most sharply-tuned detectors can be 
found when the system is isochronous and as far into the oscillatory regime as possible. Hence, the only one 
of our metrics that is monotonically degraded by nonisochronicity is the quality factor. However, the speed of 
response, 1/τ , monotonically increases with increasing levels of nonisochronicity. The other five metrics are non-
monotonically improved by nonisochronicity. For fixed µ , each of these metrics can exhibit a peak as a function 
of β or the Lyapunov exponent (Figs. 6-7).

When considering all of the measures together, the prefered parameter regime reflects the biological applica-
tion of the detector and the desired specifications. The various requirements for auditory and vestibular detec-
tion have been previously explored with a numerical model of an individual hair cell bundle. In that study, the 
mechanical load of the system was shown to greatly influence the response metrics42. In the present work, we 
aim to understand the effects of nonisochronicity and criticality considering two scenarios. The first is a single-
frequency or narrowband detector. When incorporating all of the relevant measures for this detector, we find 
that the preferred regime is in the oscillatory state, as far from the Hopf bifurcation as possible, and with a small 
amount of nonisochronicity. In this regime, the innate dynamics are weakly chaotic. We propose that this regime 
would be well-suited for frequency-selective auditory systems. For the second scenario, we consider a system 
designed to detect as broad a range of frequencies as possible, and capture information from transient stimuli, 
which tend to contain many frequencies. In this case, we also find that the preferred regime is as deeply into 
the oscillatory regime as possible, but with a large degree of nonisochronicity. We propose that this regime is 
well-suited for vestibular systems.

Overall, we show that all detection metrics, other than the quality factor, are enhanced by the presence of 
nonisochronicity. Specifically, the issue of critical slowing down is removed, while sensitivity is enhanced. Hence, 
this tradeoff inherent in critical systems is resolved, and evaluating different regimes of detection - broadband 
versus frequency selective - changes only the preferred level of β . Finally, high performance is achieved, not at 
a specific point, but rather in a broad range of parameter space, which would endow the biological system with 
flexibility and robustness, and obviate the need for extremely precise fine-tuning of parameters or the need for 
dynamical feedback on any of them43.

Figure 7.   (Broadband detector) The heatmaps of the four metrics of importance are shown in the top row. 
These metrics are plotted as functions of the level of chaos for µ ≈ 0.43 (A) and µ ≈ 1.57 (B), as indicated by 
the yellow, dotted lines in the top panels. (C) Detection index from incorporating the four measures with equal 
weights, w = 1

4
[0, 1, 1, 0, 1, 1, 0] . Cross-sections of the heatmap at the dotted lines are shown to the right. For 

all measures shown, the noise strength was set to D = 10−3 , with the exception of ˜BW , where the noise was 
regarded as an external stimulus. In this case, D = 0.01.
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We note that nonisochronicity and chaos are common elements in high-dimensional dynamical systems 
that contain nonlinearities, regardless of the presence of stochastic processes. A previous numerical study of 
a deterministic Hopf oscillator found that chaos appears upon introducing a feedback equation on the con-
trol parameter44. We later demonstrated that this system shows improved sensitivity in this chaotic regime20. 
Chaos was also found in a 12-dimensional numerical model of hair cells41, and its presence was associated with 
enhanced compliance to step-like stimuli. As an additional demonstration, we show that the Rössler attractor45 
is most sensitive to weak signals when poised in the weakly chaotic regime (see Supplementary Material, Figs. 
S5-S6). We expect chaotic dynamics to be present in other detailed models of auditory and vestibular systems, 
as they are both high dimensional and nonlinear.

The current study considers only single Hopf oscillators, representing individual sensory elements. While the 
sensory hair bundles of certain species are free-standing46, hair bundles of most vestibular and auditory organs 
studied display some degree of mechanical coupling to each other. The strength and extent of this coupling varies 
greatly for different specializations of the sensory organ47. Considering the diverse configurations of mechanical 
coupling, we have focused this study solely on the ability of individual Hopf oscillators to detect external signals. 
Understanding the joint effects of chaos and criticality on a single oscillator is important for understanding the 
full coupled system.

However, we point out two issues of individual detectors that have been shown to resolve in the coupled sys-
tem. The first is the smearing out of the critical point in the presence of noise (Fig. S1). It has been shown that, 
although noise removes criticality in the individual Hopf oscillator, it can be restored in the coupled system48. 
Second, although nonisochronicity deteriorates the frequency selectivity of individual detectors, it can be restored 
in arrays of coupled detectors, provided that the elements synchronize to each other49.

Nonisochronicity is often excluded from simple numerical models of these sensory systems. It greatly 
increases the complexity of the system, leading to multi-stability and a chaotic response to various types of 
signals19,38, including white noise. Further, the nonisochronous term in the Hopf oscillator was shown to lead to 
violation of a generalized version of the fluctuation dissipation theorem, breaking any simple relations between 
the system’s sensitivity to stimulus and susceptibility to stochastic fluctuations50. In the isochronous picture, 
poising a system near the Hopf bifurcation can be beneficial. The transfer entropy is maximized (Fig. 2), and 
the system can achieve large, entrained responses to weak signals, provided that the noise is sufficiently weak. 
However, to make the system robust to noise, it must reside in the oscillatory regime, thereby utilizing the energy 
of the autonomous motion to amplify the signal. This results in a tradeoff along the control-parameter axis, 
leading to an optimal value for µ , where the system is close enough to the bifurcation to entrain to a signal, but 
oscillatory enough to be robust to noise39.

However, when nonisochronicity is introduced, this prefered parameter choice moves deeply into the oscil-
latory regime, while the entrainability can then be controlled by β . This parameter can be adjusted to increase 
the detection capabilities of the system, with different preferred values that depend on the specific application 
of the system. We also note that this parameter controls the degree of synchronization in an array of coupled 
Hopf oscillators51. We therefore propose that, in addition to proximity to a critical point, nonisochronicity is an 
essential element in the dynamics of auditory and vestibular systems. This instability, which gives rise to chaotic 
dynamics, also greatly improves the performance and robustness of the Hopf oscillator as a signal detector. We 
speculate that nonisochronicity and chaos are important characteristics of other biological systems evolved for 
signal detection, as well as systems that exhibit synchronization of their active components.

Numerical methods
Stochastic differential equations were solved using Heun’s method with time steps ranging from 2π × 10−4 to 
2π × 10−3.

Response amplitude and linear response function
To determine phase-locked amplitude, we first compute the average response to a sinusoidal stimulus of 64 
systems, each prepared with different initial phases uniformly spaced across the deterministic limit cycle. This 
method ensures that any non-synchronized oscillations at the stimulus frequency will average to zero, and only 
signals that lock to the stimulus will be counted toward the response. We then fit a sinusoid to the mean response 
with frequency fixed to the stimulus frequency. We define the phase-locked amplitude as the amplitude of this 
fit. We then compute the linear response function by dividing this response amplitude by the forcing amplitude.

Frequency‑modulated (FM) and amplitude‑modulated (AM) stimuli
The frequency-modulated forcing takes the form

where ψ(t) is the instantaneous phase of the stimulus, and we set F0 = 0.1 . The instantaneous stimulus frequency 
is centered at �0 , with additive stochastic fluctuations,

where ηf (t) is low-pass filtered Gaussian white noise (pink noise) with a brick-wall cutoff frequency of �0 . We 
let the standard deviation of this variable equal 0.3×�0 . We can then calculate the instantaneous phase of the 
stimulus,

(10)FFM(t) = F0e
iψ(t),

(11)ω(t) = �0 + ηf (t),
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Information production is determined solely by the frequency modulator, ηf (t) . This method of generating the 
signal does not influence the amplitude and allows us to examine the effects of information transmission through 
frequency modulation alone.

Similarly, amplitude-modulated signals take the form

where ηa(t) is low-pass filtered Gaussian white noise (pink noise) with a brick-wall cutoff frequency of �0 . We 
set the mean and standard deviation of this stochastic amplitude modulator to be 0 and 0.5, respectively.

Transfer entropy
The transfer entropy40 from process J to process I is defined as

where i(k)n = (in, . . . , in−k+1) are the k most recent states of process I. Therefore, p(in+1 | i
(k)
n , j

(l)
n ) is the conditional 

probability of finding process I in state in+1 at time n+ 1 , given that the previous k states of process I were i(k)n  and 
that the previous l states of process J were j(l)n  . The summation runs over all points in the time series and over all 
accessible states of both processes. The transfer entropy measures how much one’s ability to predict the future of 
process I is improved upon learning the history of process J. The measure is asymmetric upon switching I and 
J, as information transfer between two processes is not necessarily symmetric. For stimulus-response data, this 
asymmetry allows for control tests by measuring the transfer entropy from the response to the stimulus, which 
should be zero. The choice of k and l has little effect on the results, so we select k = l = 5 , and sample the 5 points 
such that they span one mean period of the system. We discretize the signal into 4 amplitude bins, however, 
similar results were obtained when using 2 bins.

Return time
We determine the return time, τ , by calculating the average response from 64 simulations to a large-amplitude 
step stimulus,

where �(t) is the Heaviside step function, and we set F0 = 5 , ton = 1 , and toff = 2 . We define the return time as 
the time it takes the mean response of the system to return to a value within a standard deviation of the mean 
steady-state amplitude, as measured by the data prior to the step onset.

Quality factor and threshold bandwidth
To estimate the quality factor of the system response, we stimulate with additive white Gaussian noise ( D = 0.01 ), 
and calculate the average power spectrum over 60 simulations, each with different initial conditions and realiza-
tions of noise. This produces a smooth curve, which can then be used to estimate the full width at half maximum 
and the quality factor of the response. We then use this curve to calculate threshold bandwidth by determining 
the range of frequencies for which the Fourier amplitudes exceed a threshold of 0.1. This threshold was chosen 
as it is approximately an order of magnitude above the noise floor of the critical system.

Data availability
The Python code used for performing the analysis and generating the figures is available online: https://​github.​
com/​jfabe​r3/​Criti​cality-​and-​Chaos.​git.
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