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The remarkable signal-detection capabilities of the auditory and vestibular
systems have been studied for decades. Much of the conceptual framework
that arose from this research has suggested that these sensory systems rest
on the verge of instability, near a Hopf bifurcation, in order to explain the
detection specifications. However, this paradigm contains several unresolved
issues. Critical systems are not robust to stochastic fluctuations or imprecise
tuning of the system parameters. Further, a system poised at criticality exhibits
a phenomenon known in dynamical systems theory as critical slowing down,
where the response time diverges as the system approaches the critical point.
An alternative description of these sensory systems is based on the notion of
chaotic dynamics, where the instabilities inherent to the dynamics produce high
temporal acuity and sensitivity to weak signals, even in the presence of noise. This
alternative description resolves the issues that arise in the criticality picture. We
review the conceptual framework and experimental evidence that supports the
use of chaos for signal detection by these systems, and propose future validation
experiments.
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1 Introduction

The ability of the auditory system to respond to sound waves that elicit only angstroms
of mechanical displacement in the sensory cells has been a subject of research for many
decades (1-5). Experiments performed on many scales, from molecular studies to in vivo
measurements, have revealed the presence of multiple energy-consuming mechanisms that
amplify the responsiveness to weak signals, mediate adaptation on different timescales,
maintain concentration gradients, and generally provide active feedback dynamics (6-9).
While the specific biophysical mechanisms of amplification may vary across the species,
the presence of some active process seems to be ubiquitous, and the resulting nanoscale
sensitivity prevalent. A common feature of all auditory end organs is that the sensory cells
are immersed in an aqueous environment, and hence their stereociliary bundles are subject
to stochastic noise and the resulting viscous damping. Thus, the sensitivity of detection
must be considered not only in terms of amplification of weak signals, but in the context of
extracting signals from equal or higher levels of noise.

Nonlinear response has likewise been demonstrated in the dynamics of individual
hair cells (10-12), semi-intact end organs, and otoacoustic emissions of live animals
(13, 14). The nonlinearity is closely linked to and dependent upon the active
process, as it vanishes with metabolic disruption. Further, it is dominant at weak
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signals, indicative of an essential nonlinearity. These empirical data
have motivated theoretical models based on nonlinear dynamics,
which have proposed that the hair cell can be described as an
active oscillator positioned near a supercritical Hopf bifurcation
(15-17). Proximity to a critical point has been shown to capture
the nonlinearity, amplification, frequency selectivity, and ability
to exhibit autonomous oscillation (18-21). In the vicinity of this
bifurcation, the response of the system is generic, not dependent on
the microscopic mechanisms governing the active oscillator. Thus,
the behavior of complex numerical models near criticality can be
captured by the normal form equation for the Hopf bifurcation
(22). Consistent with a large body of experimental evidence, this
theoretical framework provides a powerful paradigm for describing
the dynamics of the auditory system, with the hair cell as the
key element.

While criticality provides many advantages, several limitations
arise in the full characterization of the response of this
dynamical system. Firstly, criticality is only optimal in a noiseless,
deterministic system. In this regime, the bifurcation point provides
maximal amplification, and as the system crosses into the
oscillatory, limit-cycle regime, its sensitivity is degraded. In the
presence of noise, criticality is removed, in the sense that a singular
point dividing the quiescent and oscillatory regimes is replaced
by a gradual transition (23). The regime around the critical point
still exhibits many features of criticality, such as amplification
and nonlinear response. However, in the presence of noise, it was
shown that a stable limit cycle, rather than proximity to bifurcation,
provides maximal sensitivity (24).

Secondly, a noiseless system poised exactly at the supercritical
Hopf bifurcation would exhibit a phenomenon known as critical
slowing down (25), where infinitely long transient times of the
response arrise from the loss of local stability. Thus, when
the system is maximally sensitive, it is also maximally slow.
For a model of the auditory system, this limitation is highly
significant, as experimental studies have shown that many
phenomena, such as localization of sound in space, require
temporal acuity that reaches 10 microseconds (26, 27). In the
presence of noise, critical slowing down is reduced, but so is
the sensitivity. The inherent tradeoff between the sensitivity and
speed of response persists, posing a highly undesirable tradeoft for
auditory detection.

Nonlinear dynamics theory provides another class of systems,
that does not rely on criticality to achieve sensitivity. Chaotic
attractors have received much attention in mathematics and
physics literature, as they provide intricate fractal patterns in
their trajectories, exhibit universal phenomena, and model the
behaviors of systems as far ranging as lasers, transistors, mercury
films, and others (25). Of relevance to biology are several key
features of chaotic systems. First, they require only three degrees
of freedom to arise in a dynamical system. As biology typically
involves a multiplicity of interacting active processes, one expects
many more dimensions than three to characterize its dynamics,
making the occurrence of chaos easily feasible. Secondly, chaos
reconciles sensitivity of detection with temporal resolution. In fact,
the very definition of chaos relies on this feature: the trajectories of
a chaotic system diverge exponentially as a result of infinitesimally
small perturbation. This divergence of trajectories thus reflects the
sensitivity of response and imposes no tradeoff with its speed.
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Furthermore, while chaotic dynamics can be obscured by the
presence of noise, their key features are not removed. On the
contrary, certain dynamical systems that show stable limit cycles
when noiseless can be rendered chaotic by the introduction of
stochastic fluctuations (28). Specifically, the theoretical model for
the Hopf bifurcation, in its most general form, exhibits a chaotic
regime in the presence of noise (29). This regime would enable the
system to exhibit its requisite sensitivity as well as maintain rapid
response, achieving these features in the presence of noise levels
comparable to those expected in biological tissue.

2 Chaos in hair-bundle dynamics

Most theoretical and experimental studies of chaos in the
auditory and vestibular systems have focused on the sensory
elements - individual hair cells. As these sensory cells exhibit
all of the key signatures of the active, nonlinear response that
characterizes hearing, they provide a natural starting point for
the analysis of underlying dynamics. However, defining features
of chaos have traditionally been explored in theoretical models,
mostly deterministic in nature, as they can be difficult to identify
even in numerical simulations that introduce stochastic elements.
Hence, proving the presence of chaos in experimental systems
poses a challenge, due to the presence of thermal fluctuations
and limitations in measurement precision and duration (30, 31).
For instance, the standard metric for quantifying chaos in a
numerical model is the Lyapunov exponent, which quantifies the
divergence rate of neighboring trajectories and estimates how
rapidly uncertainties in the present state of a system diverge.
Extracting the Lyapunov exponent from experimental data can
prove unreliable, as the presence of noise limits measurement
precision, thereby obscuring the degree of separation of two phase-
space trajectories.

Despite the challenges, time-series analysis techniques have
been developed in applied mathematics, which can identify the
presence of chaos in experimental recordings and even quantify
its degree. Specifically, a fruitful approach for the analysis of
experimental data is to identify a transition to the chaotic
regime, usually through variation of an experimental parameter.
Transitions to chaos tend to arise from one of several well-known
routes. The period-doubling route has been identified in stimulated
squid giant axons (32), while the quasiperiodic route has been
shown to occur in the intervals between heartbeats, at the onset of
cardiac fibrillation (33, 34).

Identifying these transitions involves taking “snapshots” of
the system through the use of Poincaré maps. For example,
in the case of heartbeats, one may capture the time interval
between two subsequent heartbeats (I,) and form a scatter plot
against each interval that follows (I,,+1). Regular heartbeats would
correspond to a single cluster of points in this plane. Multiple
clusters of points would indicate occasional skipping of beats, or
some form of mode-locking behavior. Alternatively, a ring-like
structure in this Poincaré map would indicate the presence of two
incommensurate frequencies (quasiperiodicity) in the dynamics.
Quasiperiodic dynamics correspond to trajectories on the surface of
a 2-torus, where the ringlike structure represents a cross-section of
the torus. A common route to chaos in dynamical systems theory is

frontiersin.org


https://doi.org/10.3389/fneur.2024.1444617
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Faber and Bozovic

10.3389/fneur.2024.1444617

B Cc D E
h Iz 15
= (%)
¥ 100 A/ “ 8 0.4+ “ 0o
~ s % =~ b °
. < S
g 10 5 o) n 0.2 4 > “
S 71 = )
[a] 4
g 1 T T T 0 / 0.0 T 0 T T
0 10 20 30 40 0 2n 0.0 0.5 2n
21 7 2m Y
o S
I 100 - /\ N 3 o &®
~ + 2 - = ?O )
E 10 < A : s %
£ 14/ = °
[a] _ 18%
@ 0.1 +——— 0 / 0 S
0 10 20 30 40 0 2n 0 2n
2n _ov\ 21 A o, 0, ©
N P / £ ° ;‘
T 100 - $ — - 2 — 8o
T 10 i < f = <
4 < H S —
: s/ : i 3
= 1 _M\,\\ 1 = .,‘ ®
[a)] i, 4
g 0.1 T T T 0 "‘.{ T T 0 T .I
0 10 20 30 40 In 0 2n 0.1 0.2 0 2n
Frequency (Hz) 6n 1, (sec) 65
FIGURE 1
(A) Traces and power spectral density of spontaneous hair-bundle oscillations under various calcium concentrations of the endolymph. From top to
bottom: 100 uM (low calcium), 250 uM (natural calcium), and 325 uM (high calcium). Oscillation intervals are illustrated in the top trace. (B)
Illustrations of the torus-breakdown transition to chaos from top to bottom. (C) Circle maps corresponding to the Poincaré maps in (B). The 1-to-1
relationship in the top panel is indicative of non-chaotic dynamics, while the other two panels are indicative of chaos. (D) Experimental
measurements of oscillation intervals from a hair bundle with the three calcium concentrations in (A) during an off-resonance stimulus. (E) Circle
maps corresponding to the Poincaré maps in (D). The 1-to-1 relationship in the top panel (low calcium) is indicative of non-chaotic dynamics, while
the other two panels are indicative of chaos. Data was reproduced from (29) with permission.

torus breakdown, where the surface of the torus loses smoothness,
giving rise to chaotic dynamics (35).

The approach of utilizing Poincaré maps was performed on
spontaneously oscillating hair bundles of the bullfrog sacculus,
in order to identify chaos in the dynamics of individual sensory
hair cells (36). The calcium concentration and viscosity of the
endolymph solution surrounding the hair bundles were varied, as
these have been shown to influence the regularity of oscillations
(37). In Figure 1A, we show traces of hair-bundle spontaneous
oscillations for three choices of endolymph calcium concentration.
For low values of the calcium concentration, the hair bundles
exhibit regular oscillations and a tall, narrow peak in the power
spectrum. However, as the calcium concentration is increased, the
oscillations become more irregular and more chaotic (29).

An external, sinusoidal stimulus was then introduced to the
system. Variation in the amplitude of this stimulus was used to
control the system, with large amplitudes causing entrainment of
the hair bundle and resulting in limit-cycle dynamics. In Figure 1B,
we illustrate the anticipated Poincaré maps for a quasiperiodic
transition to chaos via torus breakdown. The smoothness of the
torus can be tested using circle maps, where the angle each point
makes with the I,-axis is plotted against the angle of the point
that follows. Smoothness can be identified if there is a 1-to-1
relationship in the circle map, such that the points follow an
invertible, monotonic function (Figure 1C) (35). The experimental
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data shown in Figures 1D, E indicates that for low calcium
concentrations, the hair bundle exhibits limit-cycle dynamics.
However, for natural and high calcium concentrations, the system
exhibits chaotic dynamics.

Though the Poincaré maps are useful for identifying chaos,
they provide no information about the degree of chaoticity. The
Kolmogorov entropy provides a useful metric for quantifying
chaos, with larger values corresponding to more limited
predictability (38, 39). Closely related to the Lyapunov exponents
of a dynamical system, this information-theoretic metric quantifies
how rapidly phase-space information is lost with time, due to the
expansion of uncertainties (40). While Lyapunov exponents track
the divergence of distances between neighboring trajectories, the
Kolmogorov entropy tracks expansion rates of volumes confining
local neighborhoods of the phase space. Though its algorithmic
implementation is more complex than that of the Lyapunov
exponent, measuring the Kolmogorov entropy of time-series data
does not rely on extremely high measurement precision. Instead,
the phase space is partitioned into discrete bins, and the flow
of trajectories through these bins is used to calculate the rate at
which the probability distribution of local trajectories spreads
out. This metric was implemented to quantify the level of chaos
in hair-bundle dynamics. As expected, increasing the calcium
concentration of the endolymph increased the Kolmogorov
entropy (29).
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FIGURE 2

(A) Phase-locked amplitude gain for weak sinusoidal stimulus, presented at the characteristic frequency of the bundle. (B) Transfer entropy from
burst-noise stimulus to the hair bundle response. (C) mean, steady-state displacement induced on the hair bundle from a step stimulus, averaged
over ~200 steps. (D) Response time to the step stimulus, characterized by fitting the mean response to an exponential function and extracting the
decay time. The black, dashed curves in (A-C) represent the noise floors associated with each metric. In (C, D), the red circles, and purple squares
represent stimulus steps in the channel-opening and channel-closing direction, respectively. All measurements were performed on the same hair
cell. Stimulus waveforms used for each metric are illustrated above each panel. Data was reproduced from (29) with permission.

O
w)

H
H

’g ﬁ’ 2201 4
— 20 A i *a, \GJ’ 15 -
‘é + % E g
o 10+ -l'.
$ 101 =2 4 .
oL/ - o
& Ll g o] e
[= N I -l & 0=

0 T T T
05 06 0.7 08 0.9
Kolmogorov entropy (bits/T)

05 06 0.7 08 0.9
Kolmogorov entropy (bits/T)

3 Signal detection by chaotic
oscillators

Exploiting the instabilities of chaotic systems in the design
of sensitive signal detectors was proposed decades ago (41, 42).
This idea was likewise tested on a detailed biophysical model
of hair-cell response, which was shown to be most sensitive to
a step-like stimulus when the system was poised in the chaotic
regime (28). Subsequent theoretical studies further demonstrated
that a simple dynamical systems model of a hair cell, based on
a generalized form of the Hopf bifurcation, greatly benefits from
the chaotic regime, providing signal detection that is more robust
to thermal noise than the equivalent system poised at criticality
(23). To test these theoretical predictions on live and biologically
functional hair cells, the level of chaos was first measured from long
recordings of spontaneous hair-bundle oscillations. At the end of
each recording, the hair bundle was stimulated with an external
signal, and its responsiveness was measured. Thus, the level of
chaos observed in the innate dynamics of a hair bundle could
be directly related to its responsiveness to an external mechanical
stimulus. The level of chaos was then adjusted though variation of
the calcium concentration or viscosity of the endolymph, and the
identical experimental protocol was repeated (29).

To characterize the hair-bundle sensitivity, several metrics
were used. First, a pure tone was applied, and the amplitude
gain was measured at the stimulus frequency (Figure 2A). This
metric is appropriate for the frequency-selective detectors of the
auditory system. Telegraphic noise (burst noise) was also applied
to the bundle (Figure 2B). This allowed for calculation of the
transfer entropy, a metric that quantifies how much information
the receiver obtains about the stimulus (43). The advantage of this
metric is that it makes no assumptions about what components
of the signal are relevant, such as the amplitude, frequency, or
phase. Instead it directly measures how much information about
the stimulus is encoded in the response. Lastly, a step-function
stimulus was repeatedly applied to the bundle (Figure 2C), and the
mean displacement of the response was calculated. This metric is
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appropriate for characterizing broadband detection by vestibular
systems, as step functions are transient and contain a broad range
of frequencies in their Fourier representation. All three of these
metrics showed enhanced responsiveness in the chaotic regime
and exhibited a single peak as a function of the Kolmogorov
entropy. These experimental results are consistent with theoretical
predictions, which demonstrated that optimal signal detection
occurs in the weakly chaotic regime (23, 29).

The speed of response could also be extracted from these
experimental recordings, providing a measure of the temporal
acuity of individual hair bundles. Using multiple repetitions of
a step-function stimulus, the responses were averaged to reveal
an exponentially decaying function. The timescale obtained from
exponential fits to the data yielded the response time (Figure 2D).
For all of the hair cells measured, the speed of response increased
monotonically with increasing levels of chaos. These results are
consistent with analytic calculations of the phenomenological Hopf
model for hair cells (44).

The monotonic increase in temporal acuity with increasing
level of chaos, combined with the optimum observed in the
sensitivity metrics, suggests that the preferred level of chaos
for signal detection depends on the specific application and
requirements for the detector. For example, a recent theoretical
study, which considered many detection metrics, proposed that
weakly chaotic oscillators perform best as auditory detectors,
while strongly chaotic oscillators are best suited for vestibular
detection (23).

4 Mechanically-coupled chaotic
oscillators

According to a theoretical study, the only detection metric that
is degraded by the presence of chaos is the frequency selectivity
of the system, as quantified by the quality factor of the response
(23). This is to be expected of chaotic oscillators, as they tend to
exhibit broad ranges of frequencies in their Fourier representation
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and are susceptible to entrainment within this frequency range.
While this poses no tradeoffs for the broadband detectors of
vestibular systems, it raises the question of how auditory systems
achieve their frequency selectivity if they are comprised of chaotic
oscillators. One possible resolution to the issue of frequency
selectivity was proposed in a recent study (45), which demonstrated
that mechanically coupled, active oscillators are more likely to
synchronize when they are individually chaotic. This study also
confirmed that the increase in synchronization susceptibility
was accompanied by an increase in frequency selectivity of the
full, coupled system. Though the individual detectors were not
frequency selective, when many synchronize their autonomous
motion, they form a sharply-tuned, frequency-selective system.
Mechanical coupling between hair cells is present in both auditory
and vestibular systems, and the strength and extent of this coupling
varies between species and depends on the function of the sensory
system (46). This raises the possibility that chaotic dynamics can
persist in large arrays of coupled hair cells, and that specific
morphology of the overlying structures fine-tunes the level of chaos
and the emergent detection characteristics of the full system.

5 Discussion

Our theoretical studies have prioritized the inclusion of
stochastic noise in measurements of sensitivity, as it drastically
affects the performance of signal detectors and can qualitatively
alter the conclusions as to which regime in parameter space yields
optimal detection. Furthermore, we propose that both theoretical
and experimental studies can benefit from using information
theoretic metrics to characterize the response of a hair bundle.
These metrics allow one to assess how external stimuli impact
the dynamics of a cell, beyond the effects on its mechanical
compliance. For example, transfer entropy provides a particularly
useful measure for characterizing the sensitivity of hair cells, as it
caries no assumptions of which signal features are neurologically
meaningful.

We note that the experimental measurements of chaotic
dynamics have thus far been performed only on hair cells of
the amphibian sacculus, a primarily vestibular end organ. Our
theoretical studies, however, suggest that the benefits entailed in
chaotic dynamics may be far more generic and hence applicable to
other systems as well. Vertebrate species indeed exhibit a diverse
range of sensory organs, specialized to perform both auditory
and vestibular tasks. While the morphology of their macroscopic
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