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Abstract. The unsupervised anomaly detection problem holds great
importance but remains challenging to address due to the myriad of data
possibilities in our daily lives. Currently, distinct models are trained for
different scenarios. In this work, we introduce a reconstruction-based
anomaly detection structure built on the Latent Space Denoising Dif-
fusion Probabilistic Model (LDM). This structure effectively detects
anomalies in multi-class situations. When normal data comprises multi-
ple object categories, existing reconstruction models often learn identical
patterns. This leads to the successful reconstruction of both normal and
anomalous data based on these patterns, resulting in the inability to dis-
tinguish anomalous data. To address this limitation, we implemented the
LDM model. Its process of adding noise effectively disrupts identical pat-
terns. Additionally, this advanced image generation model can generate
images that deviate from the input. We have further proposed a classi-
fication model that compares the input with the reconstruction results,
tapping into the generative power of the LDM model. Our structure has
been tested on the MNIST and CIFAR-10 datasets, where it surpassed
the performance of state-of-the-art reconstruction-based anomaly detec-
tion models.
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1 Introduction

The field of anomaly detection [2,17] has gained substantial popularity in recent
years, as techniques in this domain are increasingly applied across various sectors.
The advent of deep learning has significantly enhanced our capacity to represent
complex data. This advancement facilitates improved feature representation for
high-dimensional, graph, or spatial data in anomaly detection. Currently, we
observe the utilization of anomaly detection in areas such as medical data anal-
ysis, risk management, and Al safety, to name a few. In most real-world applica-
tions, access to anomalous data is not feasible, and normal data often comprises
various types of objects. For instance, in invasive species detection, access to
anomaly data is limited, and the normal dataset includes different local animal
species.
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Many contemporary anomaly detection algorithms are designed for one-class
anomaly detection. In this approach, the model is trained on samples from a
particular class. The model learns a probability density function that captures
behavior for that specific class. Samples from other classes are considered anoma-
lies, regardless of whether they belong to normal data or not. For multi-class
anomaly detection, a model should learn a probability density function for all
classes to delineate the boundaries of all normal data.

In this study, we aim to construct an unsupervised anomaly detection model
capable of identifying anomalies across various normal object classes. Specifi-
cally, the training data consists of normal samples from several different object
categories. During both training and inference processes, we do not have access
to the category labels of any samples in the training data.

A commonly adopted methodology in anomaly detection involves the use
of image or feature reconstruction. This approach assumes that a well-tuned
model can consistently generate normal samples, even in the presence of potential
anomalies in the input data. However, many widely used reconstruction networks
often fail to meet the stringent requirements of this task. This failure is evidenced
by an observed “identity shortcut” pattern. This shortcut leads to the direct
replication of the input, potentially allowing for the accurate replication of even
anomalous samples and, consequently, hampering their detection.

This challenge becomes more pronounced in contexts where the normal
data distribution is inherently complex. When attempting to construct a uni-
fied model capable of reconstructing a broad range of objects, the model must
endeavor to understand the joint distribution. Resorting to an “identity short-
cut” might be a simpler path, but it compromises the model’s effectiveness in
anomaly detection.

The ever-increasing volume of digital data necessitates the development of
sophisticated probabilistic models to handle inherent noise and distortion. Dif-
fusion Denoising Probabilistic Models (DDPM), a unique category within these
models, provide an innovative approach to the information bottleneck problem.
Trained to systematically de-noise corrupted inputs, these models reshape the
strategy for noise management. Unlike traditional models where the bottleneck
is an intrinsic property, DDPM views the bottleneck as an externally adjustable
feature during model inference. While previous studies have explored DDPMs as
autoencoders with externally adjustable bottlenecks, none have harnessed this
property for reconstruction-based anomaly detection. This paper aims to fill
this void, delving into novel insights and methodologies to leverage DDPMs for
enhanced anomaly detection.

In this work, we proposed a multi-class anomaly detection structure based on
the LDM model. We examined the use of latent space within the DDPM frame-
work and developed a classification model that utilizes the generative capabilities
of the diffusion model. This is to determine whether the input and reconstructed
image belong to the same category.
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2 Related Work

2.1 Anomaly Detection

The anomaly detection problem has a long research history. Classic anomaly
detection techniques include the Gaussian Distribution estimation method
[22,26], Mahalanobis distance [13], mixture distribution [7] and nonparamet-
ric density estimation [5]. With the advancement of deep learning and machine
learning techniques, recent anomaly detection models are now based on deep
learning structures. For example, one-class classification-based methods such as
v-SVC [21], and Support Vector Data Description (SVDD) [23] train a deep
neural network to map a set of data instances into a sphere of minimal volume,
assessing whether test samples conform to the training data. Knowledge distilla-
tion methods [28,29] assist in understanding the frequency of various underlying
patterns in the data.

2.2 Reconstruction Models

The basic idea of reconstruction methods is to learn a model which optimized to
reconstruct all normal data instance and detection the anomalous data instance
by high reconstruction error.

The objective function of reconstruction models can be shown as ¢() : X —
X which is a feature mapping from data to itself. It includes two steps, the
encoding step

z2 = e (33; 96) (1)
and the decoding step
& = ¢a (2;04) (2)

Autoencoder networks are the most frequently used algorithms in reconstruc-
tion models. They utilize various types of neural networks to encode the input
data and then decode it for recovery. Originally, autoencoders were used for
dimension reduction [11,24]. However, nowadays, they have become the most
popular algorithms employed in anomaly detection [3,4,32]. The reconstruction
loss function is used to learn the parameters of both networks. To represent the
low-dimensional feature space, a bottleneck network is typically used.

To minimize the reconstruction error and detect anomalous data, features
extracted in the latent space should be highly relevant to normal data instances.
Only in this manner will the reconstruction error of an anomalous data instance
be significantly higher than the reconstruction error of normal data. Conse-
quently, the reconstruction error can be used as an anomaly score.

Several innovative types of autoencoders have been developed to enhance
feature representations. The denoising autoencoder [27] s designed to train on
corrupted data instances, making it robust against minor variations. The sparse
autoencoder [16] aims to increase sparsity in the hidden layer, retaining only
the top K most active units. The contractive autoencoder [18] is proposed to be
robust against minor variations around its neighbors.
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2.3 GAN Based Models

AnoGAN [20] is an example of the first usage of GAN in anomaly detection.
Similar with the autoencoder, the training process is only focus on normal data
instance. The main idea is that given input data instances x, try to find out z in
the latent feature space of the generative network G in order to make G(z) and
x as similar as possible. The training of GAN in only normal data will let the
generator learn the underlying distribution of normal data. Once an anomalous
image is encoded, the reconstruction result will be a normal image generated by
G. The difference between input image and reconstruction image will show the
anomalous area.

Many other GAN based anomaly detection methods have been introduced
based on different GAN architectures. For example, EBGAN [31] first introduced
BiGAN architecture in anomaly detection based on the idea from [10], f-AnoGAN
[20] which uses Wasserstein GAN [1] to replace the standard GAN in anomaly
detection.

3 Method

3.1 Diffusion Models

The basic design of diffusion models are based on two Markov chains. Given
any data xg ~ ¢ (xg), the first Markov chain is called the forward chain, which
transfer the data into noise. Standard Gaussian noise is typical choice when using
the diffusion model because of its unique properties. The forward Markov chain
uses T steps, with Gaussian noise added into the data for each step.

q(zy | 2421) =N (CCt; vi- ﬂtxt—laﬂtl) (3)

where t = 1,2,...,T and § € [0, 1] denotes the noise variance schedule. From the
equation above, given data xy and step t, we can get the distribution of a noise
image

q(z¢ | mo) = N (24 Varao, (1 — ax) I) (4)

where here we use a; represent [[_, (1 — )

The other Markov chain represents the reverse process, which begins from
the standard Gaussian noise image and keeps adding small amount of noise in
order to recover the input data. This process begins at the point

p(zr) = N (27;0,1) (5)
And small amount of Gaussian noise will be added onto the image step by step.

po (xe—1 | 2) = N (2-15 o (4,1) , Do (4, 1)) (6)
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where pp and ¥_0 are the mean value and standard variation of the Gaus-
sian noise added in each step. In order to reverse the forward process, we set

Yo (¢, t) = B¢ and pp should estimate \/% (:z:t — %e), thus we can set

po (x4,t) = \/10[7 (xt — \/%69 (!Et,t)) (7)

In order to estimate ey (x4, t), a U-net is built to minimize the objective function

L = B 1) zomgteo).cxnion |Ie = €0 (@0,8)]] (8)

where € ~ N(0,I). From equation above, the U-net model is trained so that,
given any input z;, the output of the U-net model should be equal to N(0,1) In
the inference process we can get

T = \/107)5 (xt — %&teg (xt,t)) + Bz (9)

3.2 Architecture with Latent Diffusion Models

As depicted in Fig. 1 our multi-class anomaly detection model comprises three
components: a compression model, a diffusion network, and a classification net-
work. The compression model compresses the image into a lower-dimensional
space. The diffusion network reconstructs the latent space of normal data, while
the classification network determines whether the input and output of the com-
pression model belong to the same class. An anomaly class is detected if the
input and output are classified into different classes.

Compression Model. The input of compression model is the original image
z, the compression procedure can be expressed as z = F(z), and the decode
procedure can be denoted as 2’ = D(z). The architecture of our compression
model, based on work [8], trains an autoencoder considering both perceptual loss
and adversarial objectives. Therefore, during the image compression, it accounts
for not only pixel-wise information but also the composition of image parts from
a codebook constructed by the image.

Utilizing a compression model before the diffusion model in anomaly detec-
tion provides several benefits:

i The computational complexity during the training of the diffusion model is
reduced since this model operates in the latent space.

ii The latent space prevents the DDPM reconstruction structure from encoun-
tering the “identity shortcut” issue, which arises when the network consis-
tently produces a copy of the input data.

iii A compression model allows for flexibility in choosing an appropriate latent
space for the DDPM process. Typically, both the input and output of the
autoencoder should depict the original image. In this study, however, we’'ve
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Fig. 1. An overview of our framework, which comprises a compression model, a diffu-
sion model, and a classification model. The compression model constructs an encoder
and decoder to create a latent space. The diffusion model continuously adds noise dur-
ing the forward process and estimates the input latent data in the reverse process. The
classification model determines whether the input image and the reversed input image
belong to the same class.

also experimented with transforming the autoencoder’s output into an edge
label, a change that can reduce the propensity for the structure to fall into
the “identity shortcut” issue.

Diffusion Model. The input of the diffusion model is the latent space vector
z from compression model. Then following the forward process of the DDPM
from Eq.4. Given any time ¢ € [0, T], the latent space z; can be calculate by

zt = 20V 0 + V1 — oy (10)
where ¢, ~ N(0,1).

With the ¢t becomes larger and larger, more and more Gaussian noise is added
into the image and the latent vector z; loose its original spatial structure and
looks near the Gaussian noise. In the reverse process, we can follow the Eq.9.
We need to train the U-net model e(z,t) in order to let it predict the noise e.

In our anomaly task, the result of DDPM reconstruction should be the same
with input latent vector z if it is a latent representation from normal data.
In practice, the reconstruction could keep the similarity of input if the reverse
process begins from time ¢t. As the choice of ¢t becomes larger, the output would
become more random and lose the ability to keep the input similarity even it
comes from a normal data instance.



Latent Diffusion Based Multi-class Anomaly Detection 493

<«<— | Decoder <«—

T Zy 2 2p
Normal —
—> | Encoder ——>

T 2y 21 27T
Abnormal —

<«— | Decoder <«—
z Z0 Z1 noise

Fig. 2. Illustration of the training process within the classification model. If the
reversed input equals the forward diffusion process, the input image and reversed image
are considered to belong to the same class. If the reversed input equals random noise,
the input image and reversed image are considered to belong to different classes.

Classification Model. As illustrated in Fig. 2 the classification network deter-
mines whether the input image and the reconstructed image belong to the same
category. The classification network takes in a channel-wise concatenation of the
input image xg and the reconstruction estimation Zy. A CNN-based architecture
is employed for this classification network. One challenge in this classification is
that we only have access to normal data instances, providing us with only positive
labels. To obtain negative labels, for each training data input xy we reconstruct
x(, by reversing the DDPM process from a random noise latent space.

4 Experiment

4.1 Datasets and Metrics

Datasets. This research primarily employs two datasets: MNIST [14] and
CIFAR-10 [12]. MNIST is an extensive database of handwritten digits, ranging
from 0 to 9, with images sized at 28 x 28 pixels. CIFAR-10 is a widely-recognized
image classification dataset containing ten distinct object categories, each image
being 32 x 32 x 3 in size.

For anomaly detection studies associated with both datasets, the prevalent
approach is the one-versus-rest scenario. In this, one object category is treated
as normal data, while the others are deemed anomalies. Notably, prior literature
hasn’t explored the MNIST dataset in a many-versus-one scenario. In this set-
ting, models are trained on nine categories as normal data, with the remaining
category considered anomalous. For the CIFAR-10 dataset, Semantic AD [6] has
tackled the many-versus-one scenario using transfer learning. Meanwhile, UniAD
[30] employed an embedding method in a many-versus-many context.

In our study, we explore the many-versus-one setting for the MNIST dataset
and delve into the many-versus-many scenario for the CIFAR-10 dataset, employ-
ing a fundamentally distinct approach.
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Metrics. In this paper, all the experiments are using the Area Under the
Receiver Operating Curve (AUROC) as the evaluation metric. AUROC scored
is defined based on False Positive Rate (FPR) and True Positive Rate (TPR).

FP
FPR= —— 11
R FP+TN (11)
TP
TPR= —— 12
R TP+ FN (12)

where F'P represents false positive, TN represents true negative, T P represents
true positive and F'N represents false negative.

4.2 Reconstruction Selection

Reconstruction-based anomaly detection algorithms are one of the most
researched topics in anomaly detection. Numerous studies [15,20,27] have been
developed in recent years. The primary assumption behind using a reconstruc-
tion model is that the reconstruction distribution should closely match the nor-
mal distribution. This assumption rarely fails under the one-versus-rest setting
because learning the distribution of one category is typically straightforward.
However, in a many-versus-one setting or many-versus-many setting, normal
data includes different object categories, making the distribution challenging
to describe. Often, the reconstruction-based model falls victim to the “iden-
tity shortcut” issue, where the output always attempts to replicate the input,
regardless of the context.

Diffusion models show immense potential in image generation. Because the
forward process of diffusion involves adding noise to the image, the reverse

Normal Data

Anomalies
(same dataset)

Anomalies
'different dataset)

Fig. 3. Reconstructions using our model trained on the MNIST dataset, excluding all
instances of the digit ‘0’. The figure depicts reconstruction results for normal data,
anomalies from the same dataset, and anomalies from a different dataset.
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process becomes unstable. This instability can be beneficial, as it can prevent
the model from taking the “identity shortcut” when evaluating an anomalous
instance. However, it can also cause the reconstructed version of normal data to
differ from the input. As seen in Fig.3 the reconstruction results change from
timestamps 0 to 500. The stability of the reconstruction of normal data starts
deteriorating after the diffusion timestamp 200. Yet, the reconstruction results
for anomalies begin to deviate from the input even before the diffusion times-
tamp 200. Therefore, we have chosen diffusion timestamp 200 in this study to
effectively detect anomalous data.

4.3 Anomaly Detection on MNIST

For our MNIST experiments, we adopted a many-versus-one setting. In each iter-
ation, one digit was designated as anomalous data while our model was trained
using images of the remaining nine digits. The architecture of the compression
and diffusion models is grounded on the Latent Diffusion Model [19]. For the
compression model, we employed a 3-layer autoencoder with channel sizes of
[64, 128, 256]. This model compresses the image from a size of 32 x 32 down
to a 8 x 8 x 3 latent space, and it also incorporates a VQ-regularization [25]
term. Subsequently, the diffusion training is facilitated by a 3-layer U-net model
with channel sizes [224, 448, 672]. For classification, we deployed the ResNet-18
model. The input to this classifier is a concatenation of the original and the
reconstructed image. As observed from Table 1 when our model is compared to
three other reconstruction-based anomaly detection methodologies, our method
consistently outperforms the others. Specifically, across all ten experiments, our
model ranked as the most effective in nine out of the ten anomaly detection
tests.

Table 1. AUROC score of anomaly detection on MNIST dataset

Anomaly digit | 0 1 2 3 4 5 6 7 8 9
Autoencoder |53.1/60.262.2|57.8|55.2|56.9|56.3|50.3|63.1|51.2
AnnoDDPM | 57.0 | 54.6 | 57.3|51.0 | 54.8 | 57.360.9 | 53.1 | 58.9 | 52.1
DDPM [9] 65.061.4 67.5|65.8/59.9|65.5|61.5|51.2|61.552.1
Our Method |64.9|73.2|72.6|/69.7|69.7 68.7|68.0 72.6 | 71.5|56.3

Table 2. AUROC score of anomaly detection on CIFAR-10 dataset

Anomaly classes | {01234} | {23456} | {45678} | {67890}
Autoencoder 50.4 51.4 60.8 51.2
AnnoDDPM 52.3 56.4 54.7 56.2
DDPM 57.6 51.8 54.6 53.3
Our Method 64.5 60.1 54.0 57.4
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4.4 Anomaly Detection on CIFAR-10

For the CIFAR-10 dataset, our experimental approach was grounded in the
many-versus-many setting. In each iteration, we designated five distinct classes
as the ‘normal’ dataset and the remaining five as ‘anomalous’ datasets. To clarify,
in Table 2, the numerals 0 through 9 respectively symbolize the classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

The architectural foundation of our model for the CIFAR-10 dataset remains
consistent with that employed for the MNIST dataset. However, our results on
the CIFAR-10 were not as promising as those on the MNIST. Even though our
model still surpassed other existing reconstruction-based algorithms, the perfor-
mance decrement can primarily be attributed to the less stable reconstruction
results on the CIFAR-10 dataset.

This instability might arise due to CIFAR-10 images being more com-
plex and diverse in content than MNIST’s handwritten digits. Thus, while
our model demonstrates superiority over other reconstruction-based approaches,
there remains a potential for refining and optimizing it further, especially when
tackling complex datasets like CIFAR-10.

5 Conclusion

Tackling multi-class anomaly detection is a formidable challenge, given the intri-
cate distribution characterizing normal data. Our approach, anchored in the
latent diffusion model, underscores the promise and efficacy of this method for
addressing such anomaly detection challenges. Notably, our model presents a
remedy to the identity-shortcut predicament that frequently plagues conven-
tional reconstruction-based anomaly detection mechanisms. A promising frontier
for ensuing research in this domain is delving deeper into methodologies that can
further stabilize the reverse process in diffusion during anomaly detection tasks.
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