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ABSTRACT: 12 

Although the natural gas pipeline network is the most efficient and secure transportation mode 13 

for natural gas, yet it is always susceptible to various external and internal risk factors. It is vital to address 14 

the associated risk factors such as corrosion, third-party interference, natural disasters, and equipment 15 

faults that may lead to pipeline leakage or failure. The conventional quantitative risk assessment 16 

techniques require massive historical failure data that is sometimes unavailable or vague. Experts or 17 

researchers in the same field can always provide insights into the latest failure assessment picture.  In this 18 

paper, fuzzy set theory is employed by getting the expert elicitation through linguistic variables to obtain 19 

the failure probability of the Top Event (pipeline failure). By applying a combination of T- and S-Norms, the 20 

fuzzy-aggregation approach can enable the most conservative risk failure assessment. The findings from 21 

this study showed that internal factors, including material faults and operational errors, significantly 22 

impact the pipeline failure integrity. Future directions should include sensitivity analyses to address the 23 

uncertainty in data to ensure the reliability of assessment results.  24 

Practical Applications 25 

Natural gas pipelines are efficient and reliable transportation modes. The integrity of these valuable 26 

assets is threatened by various risks such as corrosion, environmental factors, human errors, and 27 
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mechanical faults. For newly developed or less monitored pipeline networks, historical data is either 28 

unavailable or faulty. To overcome this shortcoming, experts from pipeline networks can provide 29 

invaluable insight by providing their expert opinion. This study uses the expert’s elicitation by applying a 30 

fuzzy aggregation approach to predict the pipeline failure probability. The finding of this study confirmed 31 

that material faults and operational errors are the most critical risk factors leading to pipeline failure. The 32 

results of this study can be used to develop effective mitigation strategies for pipeline networks to 33 

minimize future failures. 34 
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Introduction 37 

Natural gas is one of the significant components of the energy sector that meets the requirements 38 

of power plants, industries, and residential areas (Liu & Bao, 2022). Natural gas accounts for 24 percent 39 

of world energy consumption, and pipelines are necessary for transporting and distributing it over long 40 

distances (Ding & Yu, 2005). In the United States, natural gas is transported through a highly integrated 41 

pipeline network, which serves three purposes, including collection from the source, transmission to 42 

target areas, and distribution to end users (Gharabagh et al., 2009). About 4.8 million km (3 million miles) 43 

of pipeline networks connect consumers with natural gas production and storage areas. Approximately 44 

77.7 million consumers received 781.6 billion cubic meter (27.6 trillion cubic feet) of natural gas during 45 

2021 through the natural gas transportation network (Han & Weng, 2011). Being the most secure and 46 

cost-effective means of transportation for natural gas, pipeline networks have expanded exponentially to 47 

transport enormous quantities of natural gas from production sites to end users. However, these 48 

networks also may pose a significant threat to the safety of users and the environment being exposed to 49 

several internal and external risk factors (Ding & Yu, 2005).  The most well-known risk factors are leakages, 50 



explosions, sabotage, environmental disasters, and health concerns (Gharabagh et al., 2009). Specifically, 51 

as the Pipeline and Hazardous Materials Safety Administration (PHMSA) reported, a pipeline rupture may 52 

result in catastrophic consequences, including injuries, deaths, revenue losses, and environmental 53 

damage. Since 2003, 660 pipeline incidents have been reported in the United States, resulting in 252 54 

fatalities and 1,081 injuries (Pahlevan et al., 2019). For public safety and environmental protection, 55 

preventing these incidents and minimizing their consequences are crucial.  56 

PHMSA’s pipeline incident data indicates five significant causes contributing to pipeline incidents, 57 

including corrosion, equipment failures, third-party damage, incorrect operations, and material 58 

failures(@USDOT, 2023; Tan et al., 2021). While addressing the associated risks, it is imperative to 59 

consider all possible variables that threaten the pipeline network’s integrity. Mainly, risks in pipeline 60 

applications can be categorized into two main types including external factors encompassing elements 61 

like corrosion, third-party interference, and natural disasters (earthquakes, floods, lightning, and 62 

temperature variations) and internal factors that involve construction, material, design faults, and 63 

incorrect operations (Yeganeh et al., 2022).Therefore, natural gas pipeline networks need risk 64 

assessments to identify potential hazards, evaluate their impacts, and take preventative measures.   65 

Term risk assessment describes how different variables, basic events (BEs), or causes threaten the 66 

integrity of pipelines, leading to failures commonly known as effects. Pipeline risk management involves 67 

evaluating the likelihood and consequences of incidents or failures in pipeline networks (Sheng et al., 68 

2021). Many techniques for risk assessment of pipeline networks, including qualitative, quantitative, and 69 

index modeling have been explored (Han & Weng, 2011). Traditional pipeline risk assessment methods 70 

use quantitative data and deterministic models by estimating the potential consequences of an event and 71 

calculating the associated risks. Event Tree Analysis (ETA), Fault Tree Analysis (FTA) (Pahlevan et al., 2019), 72 

Hazard and Operability (HAZOP) studies (Jabbari et al., 2021), and Failure Modes and Effects Analysis 73 

(FEMA) are commonly used traditional methods . Although these methods yield valuable models and 74 



provide an excellent tool for risk assessment, they have significant limitations since they cannot account 75 

for uncertainties, subjective judgments, and complex interactions between factors that impact risks (Hong 76 

et al., 2023).  77 

Quantitative Risk Assessment (QRA) analyzes pipeline incidents using mathematical models and 78 

statistical data to determine their likelihood and potential consequences. QRA methods usually include 79 

Probabilistic Risk Assessment (PRA) and Monte Carlo simulation (Younesi Heravi et al., 2022). Although 80 

QRA has been widely used in pipeline safety assessments, it may not effectively account for emerging risks 81 

and uncertainties as it relies heavily on historical data. Index Modeling is yet another technique for risk 82 

assessment in which various risk factors are assigned numerical values, such as pipeline age, condition, 83 

proximity to population centers, and environmental sensitivity (Sheng et al., 2021). These factors are often 84 

combined into risk indices or scores to prioritize pipeline segments for further assessment or 85 

maintenance. Although Index Modeling can be quick and cost-effective, sometimes complex interactions 86 

may oversimplify risks (Tan et al., 2022). For instance, using soil pH and failure due to external coating as 87 

a risk indicator could underestimate risks.  88 

Expert elicitation is a hybrid risk assessment technique involving gathering and integrating knowledge 89 

and expertise from subject matter experts (Zhang & Thai, 2016). This approach can be beneficial when 90 

dealing with complex systems, especially when no historical data is available, and uncertainties play a 91 

significant role in understanding and characterizing risks. It aims to assess and quantify risks associated 92 

with specific systems or processes (Salah & Moselhi, 2016). Risk assessment in pipelines often involves 93 

subjective judgments and uncertainties, such as the probability of rare events or human error. By eliciting 94 

expert opinion and insights, non-quantifiable knowledge, that cannot be quantified, is captured, and 95 

expert judgments can be represented and managed to handle inherent uncertainty (Sheng et al., 2021). 96 

Fuzzy Set Theory (FST) is a mathematical approach to evaluate and address risks based on uncertainty and 97 

imprecision. It is difficult to distinguish between low, medium, and high risks in many real-world 98 



situations, and risks can have varying degrees of severity or likelihood (Younesi Heravi et al., 2022). With 99 

fuzzy logic, uncertainties can be dealt with more nuancedly. Risks are classified into multiple categories 100 

simultaneously instead of rigid categories like true or false (Moein Younesi Heravi, 2023). 101 

Using the FST, risks can be represented and analyzed flexibly because the boundaries between risk 102 

levels are unclear and overlapping. Risks are multifaceted, and it is difficult to quantify or categorize them 103 

in a traditional binary fashion when associated with complex systems and decision-making processes 104 

(Salah & Moselhi, 2016). This approach facilitates a more holistic assessment of risks by considering the 105 

broader context and interdependencies of risk factors. Pipeline experts can provide detailed insights into 106 

challenges and vulnerabilities (Ren et al., 2009). Emerging risks and unique circumstances are particularly 107 

beneficial when using this approach, and input from domain experts and regular updates make expert 108 

elicitation adaptable to these changes. In addition, this can bridge the gap by combining qualitative and 109 

quantitative approaches as experts can provide qualitative insights while quantifying their judgments  110 

(Yeganeh et al., 2022).  111 

Researchers have used FST for risk assessments to assess the risks associated with different variables. 112 

Using the Fuzzy Inference System, Raeihagh et al. developed a model to quantify the risks associated with 113 

sour gas pipelines, ensuring improved safety measures with applicability limited to sour gas pipelines 114 

(Raeihagh et al., 2020). Babaeian et al. proposed a semi-quantitative Risk-based inspection (RBI) by 115 

concluding that corrosion and erosion are the critical risk factors leading to the failure of gas pressure 116 

reduction station equipment for gas pipeline networks (Babaeian et al., 2023). Wen et al. proposed a 117 

hybrid machine learning model to assess the risks due to landslides by combining traditional assessment 118 

methods with machine learning. Although risks related to sour gas can be assessed using this method but 119 

risk assessment due to landslide comes in different domain and may not be applicable to most common 120 

natural gas pipeline risks (Wen et al., 2023). By combining the fuzzy technique for Order Preference by 121 

Similarities to Ideal Solution (TOPSIS) and cloud inference, Liang et al. proposed a methodology for 122 



integrated risk assessment, and findings indicate polyethylene gas pipelines work effectively in urban 123 

settings. One possible limitation is that this methodology is primarily suitable for urban areas, potentially 124 

excluding consideration for pipelines made of other material types (Liang et al., 2022). Chen et al. 125 

introduced a method for classifying pipelines in high-risk regions based on failure scenarios and subjective 126 

data. They found that risk assessment in such areas is applicable when enough data is available (Chen et 127 

al., 2022). Using subtractive clustering fuzzy logic for risk assessment, Osman and Shehadeh investigated 128 

interstate pipelines. The study used hypothetical data to assess the risks associated with interstate 129 

pipelines, demonstrating its potential in pipeline risk assessment. However, it is important to note that 130 

since the modeling relied on hypothetical data, its accuracy may be limited in real life (Osman & Shehadeh, 131 

2022). Using fuzzy Analytical Hierarchy Processes (AHP), Jabbari et al. (2021) assessed the risks of fire, 132 

explosion, and toxic gas release. Through this model, safety managers received valuable data for decision-133 

making (Jabbari et al., 2021). Based on fuzzy AHP, Ba et al. developed a corrosion risk assessment model 134 

by validating its effectiveness using a case study. The developed model used expert data only, which may 135 

introduce subjectivity (Ba et al., 2022). Zhang et al.  introduced Fuzzy Bayesian networks (FBN) to assess 136 

the safety of heavy oil pipelines. The lack of data was addressed using FBN, which provided a valid model 137 

for risk assessment (Zhang et al., 2019). Pahlevan et al. analyzed the consequences of offshore pipeline 138 

failure using a fuzzy approach. Risk assessment of offshore pipelines was streamlined with a systematic 139 

approach (Pahlevan et al., 2019). Using Pythagorean fuzzy sets, Oz et al. assessed the risk of clearing and 140 

grading processes in natural gas pipeline projects by facilitating risk assessment in pipeline construction 141 

through a decision support system, but its relevance was mainly in pipeline construction (Oz et al., 2019). 142 

Yu et al. developed a fuzzy fault tree approach for assessing leakage risk in submarine pipelines but the 143 

applicability of the approach to pipelines in other setting is not known (Yu et al., 2019).  144 

Due to several key benefits, FST can also be used to assess the risk of pipelines through expert 145 

elicitation. Subjective expertise can be incorporated, which is helpful when historical data is faulty or 146 



unreliable, thus enhancing the accuracy of assessments (Hawari et al., 2018). Due to the complex and 147 

evolving nature of pipeline risk assessments, FST is ideally suited to coping with uncertainty and 148 

vagueness, allowing experts to define membership functions for input variables simplifies complexity and 149 

facilitates adaptability (Guo et al., 2021). Additionally, due to the interdisciplinary nature of this method, 150 

practical evaluation is ensured by bringing together experts from diverse backgrounds. Despite a lack of 151 

historical data, it provides transparent decision-making, facilitates risk communication, and can be applied 152 

even when no historical data is available. Expert elicitation with FST enables informed decision-making 153 

and proactive risk management during pipeline operations, making it a valuable tool for risk assessment 154 

(Ba et al., 2022).  155 

As traditional risk assessment methods like QRA and FEMA heavily rely on quantitative data, historical 156 

records, and precise numerical values to evaluate the likelihood and consequences of different risk 157 

factors, there is a need for an alternative risk assessment methodology to bridge these gaps due to the 158 

dynamic risk factors, inherent uncertainties, and data limitations associated with natural gas pipeline 159 

networks. This paper introduces a fuzzy-aggregation-based expert elicitation approach to address this 160 

challenge by leveraging FST and expert opinions. The presented method provides a comprehensive risk 161 

assessment framework that thrives in data-scarce or data-uncertain environments. The methodology 162 

incorporates linguistic variables using membership functions and fuzzy-aggregation techniques to 163 

accommodate inherent uncertainties that quantitative data may not capture. Natural gas infrastructure 164 

will benefit from this innovative approach by improving safety, optimizing resource allocation, and guiding 165 

informed decisions. Specifically, this paper will meet the above-mentioned goal through creating a 166 

probabilistic questionnaire for expert elicitation, collecting expert opinions using the questionnaire, and 167 

applying a fuzzy-aggregation approach to quantify failure probabilities. This fuzzy-aggregation-based 168 

expert elicitation methodology is applied to assess the cause-and-effect relation leading to pipeline failure 169 

as a Top Event (TE).  170 



This paper adopts the following structure. A fuzzy-aggregation approach is described in Step 2 to elicit 171 

expert opinions about the occurrence probabilities of BEs. After applying the proposed approach to 172 

Midwest region pipeline networks of the United States, next section reports the application methodology. 173 

Considering the findings, later proposed approach's applicability and results is discussed, while last section 174 

provides the conclusions. 175 

Fuzzy aggregation approach 176 

The proposed fuzzy aggregation procedure for expert elicitation is illustrated in Figure 1 to determine 177 

the likelihood of failure probabilities. It consists of three steps including the meticulous formulation of 178 

questionnaire, the systematic gathering of expert opinions, and the robust fuzzy aggregation process. The 179 

following subsections explain these steps, detailing the effectiveness of this proposed methodology. 180 

Meticulous Questionnaire Formulation 181 

Determination of BEs 182 

The first step of a risk assessment methodology is to identify and characterize the fundamental 183 

components of risk or BEs. Based on the literature review and discussion with experts from the pipeline 184 

industry, sixteen BEs have been determined that potentially contribute to pipeline failure (Bertuccio & 185 

Moraleda, 2012; Hassan et al., 2022; Kabir et al., 2016). These BEs include transmitted material, soil pH, 186 

cathodic protection, external coating, earthquake, flood, thunder/lightning, temperature variation, third-187 

party interference, material type, construction fault, material fault, design fault, and incorrect operation 188 

(Liu et al., 2020). Figure 2 represents the cause-and-effect relationship between the BEs and their relation 189 

to intermediate events (IEs), finally leading to pipeline failure, denoted as TE. Tier 2 and Tier 3 are the IEs 190 

getting influenced by BEs situated in Tier 3. The cumulative failure probabilities of IEs lead to pipeline 191 

failure (TE) in the risk assessment model. 192 



Development of the cause-and-effect relation 193 

After finalizing the determination of BEs, a cause-and-effect relationship needs to be established. For 194 

establishing the interactions and their influence on TE, BEs are examined, and causal relation is affirmed 195 

either directly or indirectly (Yu et al., 2023). For instance, as a direct representation of cause-and-effect 196 

relation, pipeline failure could occur due to external factors such as internal coatings, resulting in internal 197 

corrosion. It is crucial to distinguish stress corrosion cracking from typical external and internal corrosion 198 

processes. Unlike traditional forms of corrosion, stress corrosion cracking is a distinct phenomenon caused 199 

by a combination of tensile stress, susceptible material, and a corrosive environment. It often occurs in 200 

materials under mechanical stress, such as pipelines, and can lead to catastrophic failures without visible 201 

corrosion signs. Therefore, stress corrosion cracking is not categorized as external or internal corrosion. 202 

However, stress corrosion cracking can compromise the structural integrity of the pipeline, potentially 203 

creating pathways for external corrosion to occur over time due to exposure to environmental factors. So, 204 

while stress corrosion itself does not cause external corrosion, it can indirectly contribute to conditions 205 

conducive to external corrosion. To establish this indirect cause-and-effect relation, stress corrosion and 206 

cracking are not directly linked to external corrosion; rather, they are associated with external factors that 207 

ultimately result in pipeline failure.  208 

Pressure reduction stations, an integral component of natural gas pipeline networks, are susceptible 209 

to failure when expansion valves, regulators, or relief devices malfunction. As part of failure analysis, 210 

equipment failure accounts for the malfunctioning of these components (Howard et al., 2011; Nasser et 211 

al., 2021; Xu et al., 2022). Corrosion and erosion are indirect factors contributing to the failure of 212 

equipment in pressure reduction stations (Babaeian et al., 2023). Degradation and failure of materials are 213 

accelerated by environmental factors such as extreme weather events, earthquakes, or soil erosion. 214 

Weather conditions such as heavy rainfall or flooding can cause pipeline components to corrode, making 215 

them more susceptible to failure. Additionally, seismic events can damage pressure reduction equipment, 216 



compromising its integrity and reliability. Pressure reduction stations fail due to indirect causes such as 217 

environmental factors and equipment malfunctions (Xu et al., 2022). The indirect causal relationship 218 

between corrosion, mechanical faults, and environmental factors contributing to and leading to pressure 219 

reduction station equipment failure is shown in Figure 3. 220 

Questionnaire formulation 221 

In this step, expert opinions are gathered and a quantitative analysis is conducted on various risk 222 

factors. Unlike previous steps of risk assessment, this involves the use of a survey questionnaire designed 223 

to capture insights from domain experts in the pipeline industry. Within this questionnaire, experts employ 224 

linguistic variables, spanning from "Very Low" to "Very High," to provide nuanced responses (Jamshidi et 225 

al., 2013). For instance, external corrosion is an outcome of external failure coating due to surface 226 

exposure. In this particular question, experts are asked to provide their input based on their experience 227 

and knowledge. Another example is third-party interference, experts are asked to provide their opinion 228 

using their background knowledge to predict the pipeline failure due to external interference. To quantify 229 

fuzzy possibilities and probabilities through defuzzification, FST is applied. FST serves to systematically 230 

capture and process expert knowledge and opinions as expressed in the survey questionnaire. Ultimately, 231 

this step allows for the quantitative evaluation of the risk profile of the pipeline system.  232 

Systematic Experts’ Opinions Gathering 233 

Experts’ knowledge and experience are invaluable to assess the associated pipeline risks. Expert 234 

opinions are gathered and analyzed in this phase to develop a systematic analysis method. A 235 

comprehensive risk assessment of pipeline infrastructure can only be possible through analyzing these 236 

expert opinions, which are vital in quantitatively evaluating the BEs and their interconnectedness. 237 

Selection of experts 238 

The process of opinion-gathering hinges upon selecting experts who possess a deep understanding of 239 

pipeline failure, risk assessment methodologies, and related fields of natural gas pipeline operations. For 240 



this study, individuals are chosen based on their practical experience and industry knowledge. A thorough 241 

selection process is employed to select a panel of experts based on their professional positions, 242 

experience, education, and age, as outlined in Table 1 (Leonardo Leoni, 2023). Although experience 243 

accounts for professional involvement with duration, age still is considered as one influencing factor as it 244 

may provide additional insight into how industry practices and technologies have changed over time and 245 

age may influence cognitive abilities, including adaptability, learning capacity, and decision-making, which 246 

affect expert judgment quality and reliability. Within the expert pool, these criteria ensure the inclusion 247 

of diverse perspectives and experiences so that accurate and credible experts influence the risk 248 

assessment decisions.  249 

Expert opinion elicitation 250 

Risk assessment techniques by obtaining expert opinions and judgments provide valuable insight, 251 

especially if historical data is limited or unavailable. Informed decisions are based on domain experts’ 252 

knowledge, reducing risk by leveraging their expertise and experience. To extract valuable insights from 253 

the panel of experts, a thorough process of eliciting expert opinions was conducted. These experts were 254 

consulted and surveyed systematically, each tailored to specific aspects of the risk assessment process. 255 

Using linguistic variables such as "Very Low," "Low," "Fairly Low," "Medium," "Fairly High," "High," and 256 

"Very High," experts assess the likelihood and severity of each BE. Experts communicated risk assessments 257 

nuancedly by utilizing these linguistic variables to consider the inherent uncertainties and complexity 258 

associated with pipeline risk. 259 

Iterative and collaborative approaches were used to elicit expert opinions. Using their extensive 260 

knowledge and experience, experts provided detailed explanations for their assessments. Experts differ 261 

in the depth of their knowledge, so weighing factors should be considered when determining their primary 262 

status. When evaluating an expert's status, professional characteristics, qualifications, and experience are 263 



considered. This study assessed four types of weights: professional position, education, experience, and 264 

age to weigh the BEs (Shan et al., 2017). Weighing factors and scores assigned are shown in Table 1.  265 

Outlier treatment and weighing 266 

Expert opinions play a significant role in the credibility and quality of risk assessment methodologies. 267 

For accurate risk assessment, it is crucial to identify outliers before deciding whether to include or exclude 268 

them from the dataset (Nooghabi, 2019). An outlier is a data point that deviates significantly from the rest 269 

of the dataset. Outliers occur by measurement or data collection errors, unknown underlying patterns, or 270 

incorrect assumptions about data distribution (Tang et al., 2015). In risk assessment, outliers are always 271 

an issue that needs to be addressed before proceeding with data analysis. There are two main reasons for 272 

the occurrence of outliers. First, expert opinions differ significantly, especially when determining the 273 

likelihood of rare and severe events. It is imperative to recognize that one expert's assessment may be 274 

accurate while another may be completely different from the first. Secondly, being an outlier means that 275 

the questionnaire can be complex for some experts to comprehend, which can be considered an unknown 276 

factor affecting an expert's decision. Those errors can also appear as outliers if they are introduced 277 

inadvertently (Bhargavi & Sireesha, 2022). Analyzing data with outliers is always problematic because 278 

skewness always causes the data to be imbalanced resulting in unrealistic results (Zijlstra et al., 2011). 279 

This study uses interquartile range (IQR) criteria to derive the most comprehensive aggregated 280 

probability by incorporating a range of viewpoints and excluding extreme values. IQR is calculated by 281 

subtracting the first quartiles from the third quartiles, and outliers are detected by adding 1.5 times the 282 

IQR to the third quartile and deducting 1.5 times the IQR from the first quartile. Any data point outside 283 

this range is considered an outlier (Jeong et al., 2017). Outliers are more likely to be excluded if using this 284 

method of outlier detection instead of only using absolute criteria, which leads to a more comprehensive 285 

and accurate analysis of the data. Aside from being more straightforward to implement, IQR criteria are 286 

also more reliable since they do not rely on a fixed threshold and consider the entire data set. Since IQR 287 



criteria can be used to explain outliers and provide meaningful insights, they are also easier to interpret 288 

(Greco et al., 2023). 289 

Fuzzy aggregation approach 290 

Fuzzy Set Theory (FST) 291 

Zadeh (1965) presented the FST as a tool for subjective judgment related to vagueness, ambiguity, 292 

and multi-criteria decision-making (MCDM) (Zadeh, 1965). The FST allows for a more nuanced and flexible 293 

representation of uncertainty in decision-making. The fuzzy numbers introduced in this approach are used 294 

to quantify and describe the uncertainty associated with imprecise values within the framework of 295 

traditional set theory. In this way, uncertain information can be represented more flexibly (Zhang et al., 296 

2016). Fuzzy logic-based approaches handle uncertainty and imprecision in data and reasoning. This 297 

technique is helpful when there is uncertainty with traditional binary or Boolean logic, which describes 298 

only true or false states (Liang et al., 2022). 299 

As part of the FST, imprecise data, subjective assessments, and linguistic terms are considered to 300 

represent and account for uncertainties and vague information. To capture uncertainties associated with 301 

pipeline risk factors, fuzzy sets can be used instead of crisp values to model membership degrees of belief. 302 

Pipeline risks can be assessed qualitatively or subjectively utilizing this method, such as corrosion rates, 303 

natural disasters and equipment faults (Yu et al., 2021). Using fuzzy sets, we can represent various levels 304 

of risk, including very low, low, medium, high, and very high. In a more advanced decision-making 305 

approach, it is possible to consider multiple pipeline risk factors (Kabir et al., 2016). 306 

A fuzzy set consists of objects without well-defined boundaries that separate them. Among the 307 

members of a fuzzy set, there may be a degree of partial membership or uncertainty. A range of relevance 308 

or connection may exist between objects within a set (Kabir et al., 2016). A fuzzy number is used in the 309 

FST to represent inherent subjectivity and imprecision in expert judgment. A membership function 310 

establishes a relationship between an ambiguous quantity, such as the probability of an event or a root 311 



node. Membership functions quantify a fuzzy set's relevance or membership to that set, ranging between 312 

0 and 1 with 0 being the very low and 1 very high. A fuzzy number, either regular, bound, or convex, can 313 

express the vagueness of natural language using linguistic variables. Linguistic variables are usually 314 

represented by trapezoidal fuzzy numbers (TFZs) or triangular fuzzy numbers (TpFNs) (Zarei et al., 2019). 315 

Since TpFNs and TFZs are characterized by linear membership functions, this study utilizes TpFNs since 316 

they are versatile and easy to operate, providing advantages over other membership functions. 317 

Conversion of linguistic terms to fuzzy numbers 318 

A failure probability estimate is based on expert elicitation and FST for basic root events (causes). The 319 

likelihood of the top event "pipeline failure" can be determined by analyzing the root events and 320 

determining their prior probabilities (Eleye-Datubo et al., 2008). Effective risk management strategies are 321 

expected to be developed and implemented based on this information to identify the most critical root 322 

events and their effects. Besides reducing the risk associated with the studied system, FST ensures accurate 323 

and reliable estimates. Table 2 explains the seven scale linguistic variables, their fuzzy membership values, 324 

and possible descriptions of each term.  325 

As illustrated in Figure 4, TpFNs represent linguistic terms and their corresponding membership 326 

functions. These membership functions address the vagueness associated with linguistic terms by 327 

graphically representing the values associated with each set. This graphical transition between the value 328 

of zero and one helps determine a term’s membership in a set by indicating whether it is a member. 329 

Fuzzy Possibilities (FPs) calculations 330 

Although there are many techniques to calculate FPs, fuzzy linear opinion pool is a simple yet effective 331 

method and is therefore used for this study. This method combines multiple experts' opinions to 332 

determine if the probability of an event or outcome can be determined by agreement or an aggregate 333 

estimate. Expert opinions are categorized using weights assigned to each source, which are aggregated to 334 

calculate the final results. It integrates opinions to arrive at an assessment and indicates the degree to 335 



which an expert believes a particular outcome or event will occur (Thakur et al., 2022). Equation (1) can 336 

be used to calculate FPs: 337 

𝐹𝑃𝑠 =  ∑ 𝑊𝑗𝐴𝑖𝑗
𝑛
𝑖=1  ,  j = 1,2,3, …., m.                 (1) 338 

In Equation 1, Aij is the linguistic value derived from expert j about event i, FPs is the fuzzy possibility 339 

representing the aggregated fuzzy value of event i, and Wj is the weighing score of expert j about event I 340 

if there are n total events and m total experts. Table 1 describes the different criteria for experts and their 341 

relevant scores based on their position, education, experience, and age. 342 

Defuzzification 343 

Defuzzification is the process of transforming fuzzy sets into crisp values, creating a more efficient and 344 

effective decision-making process. This method involves converting fuzzy sets, which represent uncertain 345 

information, into crisp values that are more suitable for decision-making. Defuzzification methods include 346 

the maximum or mean-maximum method, the weighted average method, and the center of area (CoA). A 347 

standard defuzzification method is the CoA, which calculates the crisp value from a fuzzy set. Trapezoidal 348 

fuzzy numbers (TpFNs) or triangular fuzzy numbers (TFZs), Gaussian, and sigmoid membership functions 349 

can be used to represent linguistic terms (S, 2023; Zarei et al., 2019).  350 

TpFZs are employed in this study to de-fuzzify and convert trapezoidal shapes into crisp values 351 

describing fuzzy set membership functions. Figure 5 illustrates the CoA method using TpZFs, which have 352 

four dimensions: the left shoulder, the rising edge, the falling edge, and the right shoulder, represented by 353 

a1, a2, a3, and a4. The following equation represents the CoA defuzzification method (Sugeno & Kang, 354 

1986): 355 

   𝑋 =  
∫ 𝜇(𝑥)𝑥𝑑𝑥 

∫ 𝜇(𝑥) 
.      (2) 356 

In Equation 2, µ(x) represents the aggregated membership function, x is the output variable, and X 357 

represents the de-fuzzified output. For a given input variable x, the TpZFs (x) can be defined as follows 358 

(Natarajan, 2011). 359 



where the membership of fuzzy input variable x is represented by µ(x) in the fuzzy set. Depending on how 360 

strongly an input variable has been included in the fuzzy set, the degree of membership can range from 0 361 

to 1. A value of 0 indicates impossibility, and 1 shows certainty. 362 

Calculating FPr 363 

An FPr is a way of representing probabilities that capture the uncertainty associated with the likelihood 364 

of an event in the context of fuzzy sets or fuzzy logic. A fuzzy arithmetic operation and a fuzzy inference 365 

technique can be used to calculate FPr (S, 2023). FPr distributions, or fuzzy numbers, are derived by 366 

incorporating input uncertainty and propagating it to estimate the FPr distributions. In this study, 367 

Onisawa's function was used to convert FPs into FPr (Onisawa, 1988): 368 

  FPr =  {
1

10𝐾  𝑖𝑓 𝐹𝑃𝑠 ≠ 0

0 𝑖𝑓 𝐹𝑃𝑠  = 0
,                     (4) 369 

where,  𝐾 =  [(
1−FPs

FPs
)]

1

3 × 2.301. 370 

Equation (4) calculates K using the FPs value obtained from Equation (1). To introduce non-linearity, 371 

which is desirable for certain applications, and show direct one-to-one mappings between possibility and 372 

probability, Onisawa's function used the exponent of 1/3. Based on empirical rules for specific scaling or 373 

normalization, a constant of 2.301 is used (ONISAWA, 1988). 374 

Fuzzy “AND” (T-Norm) and “OR” (S-Norm) operators 375 

Fuzzy “AND” (T-Norm) operators assess all conditions collectively to determine their degree of 376 

fulfillment, calculated as the minimum of their fuzzy probabilities by considering all conditions together. 377 

µ(𝑥) =  0,                   𝐹𝑜𝑟 𝑥 < 𝑎1 𝑜𝑟 𝑥 > 𝑎4;  
 
 
 

(3) 

µ(𝑥) =
(𝑥 − 𝑎1)

(𝑎2 − 𝑎1)
,         𝐹𝑜𝑟 𝑎1 ≤ 𝑥 ≤ 𝑎2; 

µ(𝑥) =  1,                        𝐹𝑜𝑟 𝑎2 < 𝑥 ≤  𝑎3; 

µ(𝑥) =
(𝑎4  −  𝑥)

(𝑎4  −  𝑎3)
,           𝐹𝑜𝑟 𝑎3𝑥 ≤ 𝑎4. 



This approach quantifies the contribution of each condition or factor to risk assessment. For instance, 378 

applying the fuzzy “AND” operator, the minimum (MIN) of these fuzzy probabilities for BEs corrosion, 379 

maintenance quality, and environmental conditions is considered. The risk associated with this minimum 380 

operation reflects the contribution of all three BEs’ conditions. Conversely, the fuzzy “OR” (S-Norm) 381 

operators determine the extent to which at least one condition has been met by calculating the maximum 382 

of the BEs’ fuzzy probabilities. Unlike the fuzzy “AND” operator, the maximum of the fuzzy probabilities is 383 

taken as a result of each condition when applying the fuzzy “OR” operator. These two operators enable 384 

handling complex, uncertain, data and reasoning by accommodating degrees of truth and membership 385 

(Shi et al., 2014).  386 

“AND” operators promote conservative decision-making by requiring both conditions to be true for 387 

the overall condition to be considered, and the result becomes more confident, decreasing the likelihood 388 

of making risky choices. However, when a more lenient approach is permitted, the “AND” operator may 389 

lead to excessively pessimistic decisions, reducing the possibility of positive outcomes or missing out on 390 

opportunities. The “OR” operator allows for inclusiveness and adaptability in decision-making by allowing 391 

either condition to be true and providing additional decision-making flexibility. It is suitable where strict 392 

criteria are not necessary, and adopting a more accommodating approach can be advantageous. Although 393 

the use of these operators is at the discretion of the decision-makers, however, using these operators 394 

requires a thorough understanding of the problem because “AND” is more conservative and cautious, 395 

while “OR” is more flexible and tolerant (Gupta & Qi, 1991). 396 

Application of Fuzzy-aggregation approach using PHMSA data and domain expert elicitation in 397 

the Midwest USA 398 

To validate the developed fuzzy-aggregation approach for assessing the risk involved in pipeline 399 

networks, this study analyzed the natural gas pipeline risk in Midwest USA using PHMSA historical 400 

database from 2010 to 2022. The historical data was employed to calculate CPr. While, to calculate the 401 



FPr, domain experts from the Midwest region were also elicited in the data analysis process to supplement 402 

the factors for which historical data is scarce (Database, 2023). A sole focus of this study is the elicitation 403 

of expert data to evaluate the proposed model and description of CPr is to compare the effectiveness of 404 

the approach.  405 

Calculation of expert’s weighing score 406 

Each variable received in linguistic terms was added to the total weight using Equation (2), and 407 

weighing values were calculated using Equation (3). Expert elicitation received from experts showing their 408 

professional position, experience, education, age, and weighing score and value are shown in Table 3.  409 

Calculation of CPr and FPr  410 

A CPr reflects the likelihood of an event or outcome based on historical data. Each risk factor is 411 

considered individually and its corresponding CPr is calculated. Dataset from PHMSA contains information 412 

about pipeline incidents, failure modes, and contributing factors (Database, 2023). The dataset was 413 

carefully reviewed and preprocessed before analysis to ensure data quality and integrity. In this process, 414 

the data was cleaned, missing values were addressed, and the consistency of variables was verified. Table 415 

4 shows the CPr calculated from the historical data for the Midwest region and based on the pre-416 

processed dataset, CPr is calculated for pipeline network risk factors and failure modes. 417 

To calculate the FPr through expert elicitation, a survey questionnaire was formulated using Qualtrics 418 

based on variables explained in Section 2.3.1. and submitted for formal approval by the Institutional 419 

Review Board (IRB). After the IRB approval, the survey questionnaire was sent to fifty experts in the field 420 

and academia with expertise and experience in pipeline networks. The experts were selected based on 421 

their cutting edge research reports submitted to the PHMSA for the last five years, 2018-2023 (Database, 422 

2023).  423 

A few reminders later, fifteen responses were received, but after reviewing, it was realized that they 424 

needed to be sorted according to their completeness. Outliers were identified using the IQR technique to 425 



make the responses fit for analysis. Five responses were declared outliers due to inconsistent points 426 

outside the σ ± 1. Therefore, only ten complete responses from the Midwest region have been considered 427 

for conducting for calculation of FPr. As these responses come from experts from industry and academia 428 

with different backgrounds and areas of specialization, they cover various aspects of the problem.  429 

A significant difference exists between crisp failure probabilities derived from PHMSA data and 430 

corresponding FPr derived from expert elicitation, as shown in Table 5. Uncertainty introduces 431 

considerable ambiguity in risk analysis, and lack of failure probability data, inherent ambiguity, and 432 

imprecise information lead to underestimating or overestimating risks. (Zarei et al., 2019). Secondly, 433 

enhanced safety measures at gas facilities play a crucial role, and due to technological advances, 434 

preventive measures, and other factors, recent years have seen substantial improvement in safety levels. 435 

(Ramzali et al., 2015). As a result, databases such as PHMSA often present failure data that remains static 436 

over time and fails to adequately represent recent advancements in component reliability. Consequently, 437 

fuzzy failure probabilities are anticipated to yield results more reflective of the nuanced and evolving 438 

safety environment, in contrast to the reliance on rigidly crisp probabilities. Figure 6 explains the 439 

comparison of FPr calculated through expert elicitation for sixteen BEs.  440 

Employment of Fuzzy-logic Operators 441 

Before employing T-Norms (fuzzy “AND” operators) or S-Norms (fuzzy “OR” operators), logical 442 

relationships are considered to decide the use of sixteen BEs. The T-Norm is used in strict conjunction 443 

when all conditions must be met simultaneously for an event to occur. For instance, failure due to 444 

transmitted material will cause failure of internal coating and eventually lead to internal corrosion. On the 445 

contrary, S-Norm is used as a permissive conjunction when at least one associated condition is satisfied 446 

e.g., soil pH, failure due to cathodic protection, and failure of external coating, if any of the conditions is 447 

met, it will lead to external corrosion. (Singh et al., 2022). Based on the same rules, Table 6 shows the 448 



application of both operators for the fuzzy-aggregation approach. When the T-Norm is used, it will ensure 449 

the conservative approach by taking the minimum value out of two failure probabilities. 450 

Figure 7 describes the graphical representation of the fuzzy logic operator for risk assessment 451 

probability for TE. For BE1 and 2, T-Norm is used by assuming that transmitted material and failure of 452 

internal coating are expected to happen simultaneously or that transmitted material is the root cause for 453 

the occurrence of internal corrosion. External corrosion may occur due to poor soil conditions or external 454 

coating failure, suggesting employing S-Norm. For natural disasters, T-Norm is used because typically 455 

inclement weather, lightning/ thunder, and flood happen simultaneously, leading to natural disasters. 456 

Different faults are independent, suggesting using S-Norm leading to IE faults. To ensure risk is 457 

represented conservatively and realistically, the T-Norm is used for external factors probability 458 

determination. For IEs, internal corrosion, external corrosion, soil pH, stress corrosion cracking, natural 459 

disasters, and third-party interference, all critical conditions must be met simultaneously for the event to 460 

be deemed probable. S-Norm allows for a more realistic representation of "Internal Factors" probabilities 461 

by aligning with the logic that any critical condition can independently lead to the top event. Finally, as 462 

part of the risk assessment process, T-Norm calculates the probability of pipeline failure since it captures 463 

the logic that for the TE to occur, a combination of external and internal factors must occur simultaneously.  464 

Results and discussion 465 

In this study, the pipeline risk assessment model, a fuzzy-aggregation approach, is employed to 466 

calculate the risk probability of pipeline failure as TE. The model integrates sixteen BEs into four IEs, i.e., 467 

internal corrosion, external corrosion, natural disaster, and faults in the first step. BE 1 and 2 yielded a 468 

failure probability of 0.005 for internal corrosion using T-Norm. BE 3,4 and 5 resulted in a failure score of 469 

0.0132 for external corrosion using S-Norm. The output for IE 3 (Natural disaster), using BE 6,7,8 and 9, is 470 

0.0011 using T-Norm. For IE 4, we used S-Norm for BE 12, 13, and 14, which yielded a failure probability 471 

of 0.0098. IEs calculation depicts the membership values for "External Factors" and "Internal Factors," 472 



which encompass events related to external risks such as corrosion, third-party interference, and natural 473 

disasters. The calculated membership value for "External Factors" is 0.0011, indicating a low but non-474 

negligible likelihood of external factors collectively leading to pipeline failure. Internal factors represent 475 

internal risks like material faults and operational errors. The calculated membership value for "Internal 476 

Factors" is 0.0098, signifying a higher likelihood of internal risk factors contributing to pipeline failure. 477 

Higher probability explains that risks contributing to human error or design faults are more significant than 478 

external factors and require deliberate attention to reduce the risk of TE occurrence. Table 7 describes the 479 

calculation for TE occurrence. TE results explain the final risk probability for Pipeline Failure. Applying the 480 

AND operator to the membership values of "External Factors" and "Internal Factors," a failure probability 481 

value of 0.0011 is calculated. This value represents the likelihood of external and internal risk factors 482 

coinciding with a pipeline failure event.  483 

Interpreting these results is crucial in understanding the overall risk assessment and its implications. 484 

The nearly identical membership values for "External Factors" and "Internal Factors" (0.0011 and 0.0098, 485 

respectively) indicate that both external and internal factors play a crucial role in pipeline failure. This 486 

balanced contribution suggests that risk mitigation efforts should consider internal and external factors. 487 

T-Norm or “AND” tends to be more conservative because it takes the minimum value, assuming 488 

the smallest possibility or the most pessimistic estimate. It focuses on the lower bounds of 489 

confidence and is associated with a safer, more cautious approach. On the contrary, S-Norm or 490 

“OR” tends to be less conservative because it takes the maximum value, assuming the largest 491 

possibility or the most optimistic estimate. It's risk-acceptant and may be perceived as less 492 

cautious or safe. The higher membership value for "Internal Factors" implies that internal risks, such as 493 

material faults and operational errors, may significantly impact pipeline failure. This sensitivity 494 

underscores the importance of rigorous quality control, maintenance, and operating procedures. The 495 

lower membership value for "External Factors" suggests that while external risks like corrosion and natural 496 



disasters are significant, the pipeline may have some resilience against them. Protective measures such 497 

as coatings and monitoring systems effectively reduce the likelihood of external factors leading to failure. 498 

Based on these results, risk mitigation strategies should focus on maintaining the integrity of internal 499 

factors, reducing the impact of external factors, and ensuring a comprehensive risk management plan that 500 

addresses both types of risks.  501 

A fuzzy-aggregation approach using fuzzy logic operators offers several advantages over traditional 502 

binary methods for assessing natural gas pipeline risk. Fuzzy logic captures the interaction between risk 503 

factors and models their dependencies, which is ideal for assessing pipeline failure risks. This approach 504 

avoids the potential pitfalls of overestimation and underestimation that binary methods can face due to 505 

their balanced consideration of internal and external risk factors. The conservative estimation approach 506 

ensures a realistic and cautious risk assessment by combining T-Norms (AND operators) with S-Norms (OR 507 

operators). Consequently, the method avoids risk exaggeration while accommodating subtle shifts in risk 508 

conditions, thereby offering a balanced assessment that is both reliable and accurate.  509 

This balanced assessment informs practical maintenance and design decisions for pipeline networks. 510 

The calculated probabilities derived from this approach offer valuable insights into maintenance 511 

prioritization and design enhancements. Prioritizing maintenance activities based on calculated 512 

probabilities allows for optimal resource allocation, reducing the likelihood of unplanned downtime or 513 

incidents. Moreover, insights from these probabilities inform the design and construction of new pipeline 514 

infrastructure or the retrofitting of existing systems. Design enhancements may include redundant safety 515 

features, optimized material selection, or advanced monitoring systems, all aimed at mitigating identified 516 

risks. By leveraging the calculated probabilities from the fuzzy-aggregation approach, pipeline operators 517 

can proactively manage risks, allocate resources efficiently, and enhance the overall safety and reliability 518 

of pipeline networks. 519 



The results of this fuzzy-aggregation approach analysis provided valuable insight into data refinement 520 

efforts and can be used to identify the key factors contributing to uncertainty. Acknowledging the 521 

variability of calculated probabilities over time and as the pipeline degrades, it is recognized that these 522 

probabilities are not fixed values and can dynamically change based on evolving pipeline conditions. 523 

Pressure reduction stations are a crucial part of the natural gas pipeline system and are 524 

vulnerable to failure due to faulty expansion valves, regulators, and relief devices. The analysis 525 

incorporates equipment failure and environmental factors to assess malfunction risk. 526 

Environmental factors can exacerbate equipment degradation, increasing its susceptibility to 527 

failure. Corrosion of pipeline components, particularly in severe weather conditions, further 528 

heightens the risk. Additionally, seismic events threaten pressure reduction equipment's 529 

integrity and reliability. The failure probability of 0.6% arising from third-party interference endorsed 530 

the implementation of ASME B31.8 by designing a higher-class location which will reduce the risk of 531 

leakage or rupture by minimizing the corrosion or overpressure to a considerable limit. Observation of 532 

ASME B31.8 helps to reduce the risk of leaks, ruptures, and other failures by enhancing public safety and 533 

environmental protection. Adherence to these standards is also crucial for the safe and reliable operation 534 

of natural gas pipeline networks by promoting industry best practices and regulatory compliance. 535 

Cost-benefit analysis is crucial for pipeline risk assessment models as it helps quantify the economic 536 

implications of safety measures versus potential risks. This also helps decision-makers identify optimal 537 

strategies to mitigate risks while maximizing cost-effectiveness and ensuring resource allocation aligns 538 

with safety priorities. There is a notable absence of a cost-and-benefit analysis within the research which 539 

is attributed to the lack of data from the PHMSA database, which hindered the authors' ability to conduct 540 

such an analysis. 541 



Conclusions and Future Work 542 

In this paper, a practical approach to modeling pipeline risk assessment complexity and uncertainty 543 

has been developed by combining fuzzy aggregation with expert elicitation. Using qualitative methods, 544 

such as probability factors, pipeline risks are assessed more nuancedly than binary methods, which only 545 

determine success or failure. Further contributions from this study are summarized as follows:  546 

• The results indicate that both internal and external risk factors influence pipeline failures. Internal 547 

factors, such as material faults and operational errors, cause more pipeline failures due to human 548 

errors and manufacturing faults.  549 

• By analyzing internal factors, it is evident that material faults and operational errors are the most 550 

critical factors leading to pipeline failures. The findings of this study show that it is imperative to 551 

address the risks associated with external risk factors such as corrosion, third-party interference, and 552 

natural disasters.  553 

• This study shows that qualitative methods provide a better understanding of pipeline risks and 554 

facilitate decision-making. With crucial insights into natural gas pipeline risk profiles, the 555 

investigation will significantly improve pipeline safety and reliability.  556 

• In addition to promoting the development and maintenance of natural gas pipelines, the model can 557 

provide a base for research on mitigating pipeline risks and informing policymakers about potential 558 

risks.  559 

• The proposed framework can assess potential risks associated with soil characteristics, 560 

environmental factors, and material faults. Further, it can evaluate the effectiveness of various 561 

mitigation measures, such as leak detection and corrosion control, by highlighting the corrosion risks 562 

by pipeline operators in the form of expert elicitation. 563 

There is potential for improvements in several areas in this field, such as conducting sensitivity 564 

analyses to address the concerns about uncertainty in data to ensure the reliability of assessment results, 565 



and including more diverse expert views considering gender and ethnic diversity, etc. Efforts can be made 566 

to minimize the inaccuracies in the input data by enhancing the data collection and monitoring process. 567 

Developing novel methods to account for dependencies is possible, providing a more precise 568 

representation of complex systems. Further validation with empirical data is necessary to ensure the 569 

model's practical applicability. Furthermore, refinement techniques can make the quantification process 570 

more robust and consistent. Conducting targeted studies and risk assessments by including pressure 571 

reduction stations can help fill the knowledge gaps and inform decision-making processes aimed at 572 

enhancing safety and reliability. To ensure public safety and promote environmental sustainability and 573 

efficiency in natural gas transportation, future studies should incorporate the guidelines and requirements 574 

outlined in ASME B31.8. Future works may also include the cost-benefit analysis for these invaluable assets 575 

to facilitate the decision-makers for the best implementation of these risk assessment models. 576 
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Tables 774 

Table 1. Weighing scores are given to experts based on their characteristics. 775 

Criterion Description Score Criterion Description Score 

 
Professional 

Position 

Sr./Jr. academic 5  
 

Experience 

<5 2 

Engineer 4 5-9 2 

Technician 3 10-19 3 

Operator 3 20-30 4 

Other 2 >30 5 

 
 

Education 

Ph.D. 5  
Age 

<30 2 

Masters 4 30-39 3 

Bachelor 3 40-50 4 

Social degree 3 >50 5 

High school 2 
 

  
Other 2 
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Table 2. Explanation of linguistic variables and membership function with possible description (Guo et 777 

al., 2021). 778 

Linguistic 
variables 

Fuzzy membership 
function 

Description 

Very Low 
(VL) 

0 0 0.1 0.2 Indicates an extremely low level of risk that the likelihood of 
an adverse event or the severity of its consequences is 
extremely unlikely or negligible. 

Low (L) 0.1 0.2 0.2 0.3 Signifies a relatively low level of risk that the likelihood of an 
adverse event or the severity of its consequences is low but 
not as negligible as in the case of "very low." 

Fairly Low 
(FL) 

0.2 0.3 0.4 0.5 A moderately low level of risk means that the likelihood of an 
adverse event or the severity of its consequences is 
somewhat higher than "low" but remains at a reasonably 
manageable level. 

Medium 
(M) 

0.4 0.5 0.5 0.6 A moderate level of risk means that the likelihood of an 
adverse event or the severity of its consequences is neither 
too high nor too low, falling within an average range. 

Fairly High 
(FH) 

0.5 0.6 0.7 0.8 A moderately high level of risk means that the likelihood of 
an adverse event or the severity of its consequences is 
somewhat higher than "medium" but still manageable. 

High (H) 0.7 0.8 0.8 0.9 A significant level of risk means that the likelihood of an 
adverse event or the severity of its consequences is 
considerably higher, demanding increased attention and 
comprehensive risk management strategies. 

Very High 
(VH) 

0.8 0.9 1 1 An extremely high level of risk means that the likelihood of an 
adverse event or the severity of its consequences is 
significantly elevated, requiring immediate action and 
extensive risk mitigation efforts. 
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Table 3. Expert's details and corresponding weight for the Midwest region. 780 

Expert 
Professional 

Position 
Education 

Level 
Experience 

Age 
(Years) 

Weighing 
Score 

Weighing 
value 

E1 5 5 2 3 15 0.0904 

E2 5 5 2 5 17 0.1024 

E3 4 5 4 4 17 0.1024 

E4 4 5 5 5 19 0.1145 

E5 5 5 3 3 16 0.0964 

E6 5 5 2 3 15 0.0904 

E7 5 5 3 4 17 0.1024 

E8 5 5 3 4 17 0.1024 

E9 5 5 3 3 16 0.0964 

E10 4 3 5 5 17 0.1024 
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Table 4. CPr based on PHMSA historical data for the Midwest region. 782 

Attribute Basic Event Frequency CPr (%) 

Internal corrosion 
Failure due to transmitted material (BE 1) 

1 0.3 Failure of internal coating (BE 2) 

External corrosion 

Soil pH (BE 3) 

17 4.8 

Failure of cathodic protection (BE 4) 

Failure of external coating (BE 5) 

Natural Disaster 

Failure due to earthquake (BE 6) No data 

Flood (BE 7) 10 2.8 

Thunder/ lightning (BE 8) 14 4 

Temperature variation (BE 9) 9 2.6 

Third-party interference third-party interference (BE 10) 117 33.3 

Stress corrosion cracking Stress corrosion cracking (BE 11) No data 

Faults 

Construction fault (BE 12) 21 6 

Material fault (BE 13) 20 5.7 

Design fault (BE 14) No data 

Material defect Incorrect operation (BE 15) No data 

Design fault Material type (BE 16) No data 
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Table 5. Calculations of FPs and FPr for BEs. 784 

BEs Fuzzy aggregation number K- Value FPs FPr (%) 

BE1 0.37 0.46 0.565 0.68 2.24 0.5188 0.57 

BE2 0.28 0.42 0.585 0.71 2.30 0.4988 0.5 

BE3 0.36 0.505 0.685 0.82 2.03 0.5925 0.93 

BE4 0.44 0.545 0.66 0.77 2.00 0.6038 1 

BE5 0.42 0.57 0.74 0.86 1.88 0.6475 1.32 

BE6 0.12 0.2 0.31 0.44 3.22 0.2675 0.14 

BE7 0.22 0.33 0.45 0.56 2.67 0.3900 0.14 

BE8 0.12 0.18 0.28 0.42 3.32 0.2500 0.11 

BE9 0.28 0.4 0.535 0.65 2.41 0.4663 0.24 

BE10 0.44 0.565 0.69 0.79 1.95 0.6213 0.6 

BE11 0.28 0.4 0.555 0.69 2.36 0.4813 0.53 

BE12 0.37 0.54 0.725 0.84 1.96 0.6188 0.32 

BE13 0.31 0.43 0.55 0.65 2.35 0.4850 0.28 

BE14 0.33 0.515 0.705 0.81 2.04 0.5900 0.65 

BE15 0.42 0.57 0.735 0.85 1.89 0.6438 0.98 

BE16 0.19 0.355 0.53 0.64 2.53 0.4288 0.45 
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Table 6. Application of fuzzy-logic operators. 786 

Level T-Norms (fuzzy “AND” operator) S-Norms (fuzzy “OR” operator) 

Third tier (BEs) 

• Failure due to transmitted material 

• Failure of internal coating 

• Soil pH 

• Failure of cathodic protection  

• Failure of external coating  

• Failure due to earthquake  

• Flood 

• Thunder/ lightning 

• Temperature variation 

• Construction fault 

• Material fault 

• Design fault 

Second tier (IEs) • Internal corrosion 

• External corrosion 

• Soil pH 

• Stress corrosion cracking 

• Natural disaster 

• Third-party interference 

• Material type 

• Faults 

• Incorrect operation 

Top Event (Pipeline 
failure) 

• External factors 

• Internal factors 
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Table 7. Calculation of failure probability for TE. 788 

BEs IEs IEs TE 

BE1 IE 1= 
BE1∩BE2 = MIN [µ (0.0057), µ (0.0050)] = 
0.0050 

IE 5= 
IE1∩IE2 ∩ BE10∩IE 3 
∩BE11 = MIN [µ 
(0.0050), µ (0.0060), µ 
(0.0132), µ (0.0053), µ 
(0.0011)] = 0.0011  

TE= 
IE5∩IE6 = MIN 
(0.0098, 0.0011) = 
0.0011 

BE2 

BE3 IE 2= 
BE3∪BE4∪BE5 = MAX [µ (0.0093), µ 
(0.0100), µ (0.0132)] = 0.0132 

BE4 

BE5 

BE6 BE6 

BE7 
IE 3= 
BE6∩BE7∩BE8∩BE9 = MIN [µ (0.0014), µ 
(0.0014), µ (0.0011), µ (0.0024)] = 0.0011 

BE8 

BE9 

BE10 

BE11 BE11 

BE12 BE12 
IE 6= 
BE15∪IE4∪BE16 = MAX 
[µ (0.0098), µ (0.0065), 
µ (0.0045)] = 0.0098  

BE13 IE 4= 
BE12∪BE13∪BE14 = MAX [µ (0.0032), µ 
(0.0028), µ (0.0065)] = 0.0065 

BE14 

BE15 

BE16 BE16 
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List of figure captions 790 

Figure 1. Fuzzy aggregation technique to determine the probability of failure incidents. 791 

Figure 2. Cause-and-effect variables leading to natural gas pipeline failure are represented in three tiers. 792 

Figure 3. Indirect causal relation of risk factor responsible for pressure reduction station failure. 793 

Figure 4. Linguistic terms with corresponding fuzzy membership functions. 794 

Figure 5. Trapezoidal fuzzy number A˜. 795 

Figure 6. Comparison of FPr using expert elicitation. 796 

Figure 7. Graphical representation of fuzzy logic operator. 797 


