O 0o NOULL b~ W

10
11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Enhancing Risk Assessment in Natural Gas Pipelines Using A Fuzzy-Aggregation Approach

Supported by Expert Elicitation

Yasir Mahmood?, Ying Huang, Ph.D.?"; Nita Yodo, Ph.D.3; Eakalak Khan, Ph.D.*
! Graduate Research Assistant, Department of Civil, Construction, and Environmental Engineering, North Dakota
State University, Fargo, ND 58102
2 professor, Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo,
ND 58102 (Corresponding author), ying.huang@ndsu.edu
3 Assistant Professor, Department of Industrial and Manufacturing Engineering, North Dakota State
University, Fargo, ND 58102
4Professor, Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas,
Las Vegas, NV 89154

ABSTRACT:

Although the natural gas pipeline network is the most efficient and secure transportation mode
for natural gas, yet it is always susceptible to various external and internal risk factors. It is vital to address
the associated risk factors such as corrosion, third-party interference, natural disasters, and equipment
faults that may lead to pipeline leakage or failure. The conventional quantitative risk assessment
techniques require massive historical failure data that is sometimes unavailable or vague. Experts or
researchers in the same field can always provide insights into the latest failure assessment picture. In this
paper, fuzzy set theory is employed by getting the expert elicitation through linguistic variables to obtain
the failure probability of the Top Event (pipeline failure). By applying a combination of T- and S-Norms, the
fuzzy-aggregation approach can enable the most conservative risk failure assessment. The findings from
this study showed that internal factors, including material faults and operational errors, significantly
impact the pipeline failure integrity. Future directions should include sensitivity analyses to address the

uncertainty in data to ensure the reliability of assessment results.

Practical Applications
Natural gas pipelines are efficient and reliable transportation modes. The integrity of these valuable

assets is threatened by various risks such as corrosion, environmental factors, human errors, and
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mechanical faults. For newly developed or less monitored pipeline networks, historical data is either
unavailable or faulty. To overcome this shortcoming, experts from pipeline networks can provide
invaluable insight by providing their expert opinion. This study uses the expert’s elicitation by applying a
fuzzy aggregation approach to predict the pipeline failure probability. The finding of this study confirmed
that material faults and operational errors are the most critical risk factors leading to pipeline failure. The
results of this study can be used to develop effective mitigation strategies for pipeline networks to

minimize future failures.

Keywords: Failure factors, Fuzzy set theory, Cause and effect, Pipeline failure, External and internal failure

factors, Corrosion

Introduction

Natural gas is one of the significant components of the energy sector that meets the requirements
of power plants, industries, and residential areas (Liu & Bao, 2022). Natural gas accounts for 24 percent
of world energy consumption, and pipelines are necessary for transporting and distributing it over long
distances (Ding & Yu, 2005). In the United States, natural gas is transported through a highly integrated
pipeline network, which serves three purposes, including collection from the source, transmission to
target areas, and distribution to end users (Gharabagh et al., 2009). About 4.8 million km (3 million miles)
of pipeline networks connect consumers with natural gas production and storage areas. Approximately
77.7 million consumers received 781.6 billion cubic meter (27.6 trillion cubic feet) of natural gas during
2021 through the natural gas transportation network (Han & Weng, 2011). Being the most secure and
cost-effective means of transportation for natural gas, pipeline networks have expanded exponentially to
transport enormous quantities of natural gas from production sites to end users. However, these
networks also may pose a significant threat to the safety of users and the environment being exposed to

several internal and external risk factors (Ding & Yu, 2005). The most well-known risk factors are leakages,
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explosions, sabotage, environmental disasters, and health concerns (Gharabagh et al., 2009). Specifically,
as the Pipeline and Hazardous Materials Safety Administration (PHMSA) reported, a pipeline rupture may
result in catastrophic consequences, including injuries, deaths, revenue losses, and environmental
damage. Since 2003, 660 pipeline incidents have been reported in the United States, resulting in 252
fatalities and 1,081 injuries (Pahlevan et al., 2019). For public safety and environmental protection,
preventing these incidents and minimizing their consequences are crucial.

PHMSA's pipeline incident data indicates five significant causes contributing to pipeline incidents,
including corrosion, equipment failures, third-party damage, incorrect operations, and material
failures(@USDOT, 2023; Tan et al., 2021). While addressing the associated risks, it is imperative to
consider all possible variables that threaten the pipeline network’s integrity. Mainly, risks in pipeline
applications can be categorized into two main types including external factors encompassing elements
like corrosion, third-party interference, and natural disasters (earthquakes, floods, lightning, and
temperature variations) and internal factors that involve construction, material, design faults, and
incorrect operations (Yeganeh et al., 2022).Therefore, natural gas pipeline networks need risk
assessments to identify potential hazards, evaluate their impacts, and take preventative measures.

Term risk assessment describes how different variables, basic events (BEs), or causes threaten the
integrity of pipelines, leading to failures commonly known as effects. Pipeline risk management involves
evaluating the likelihood and consequences of incidents or failures in pipeline networks (Sheng et al.,
2021). Many techniques for risk assessment of pipeline networks, including qualitative, quantitative, and
index modeling have been explored (Han & Weng, 2011). Traditional pipeline risk assessment methods
use quantitative data and deterministic models by estimating the potential consequences of an event and
calculating the associated risks. Event Tree Analysis (ETA), Fault Tree Analysis (FTA) (Pahlevan et al., 2019),
Hazard and Operability (HAZOP) studies (Jabbari et al., 2021), and Failure Modes and Effects Analysis

(FEMA) are commonly used traditional methods . Although these methods yield valuable models and
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provide an excellent tool for risk assessment, they have significant limitations since they cannot account
for uncertainties, subjective judgments, and complex interactions between factors that impact risks (Hong
et al.,, 2023).

Quantitative Risk Assessment (QRA) analyzes pipeline incidents using mathematical models and
statistical data to determine their likelihood and potential consequences. QRA methods usually include
Probabilistic Risk Assessment (PRA) and Monte Carlo simulation (Younesi Heravi et al., 2022). Although
QRA has been widely used in pipeline safety assessments, it may not effectively account for emerging risks
and uncertainties as it relies heavily on historical data. Index Modeling is yet another technique for risk
assessment in which various risk factors are assigned numerical values, such as pipeline age, condition,
proximity to population centers, and environmental sensitivity (Sheng et al., 2021). These factors are often
combined into risk indices or scores to prioritize pipeline segments for further assessment or
maintenance. Although Index Modeling can be quick and cost-effective, sometimes complex interactions
may oversimplify risks (Tan et al., 2022). For instance, using soil pH and failure due to external coating as
a risk indicator could underestimate risks.

Expert elicitation is a hybrid risk assessment technique involving gathering and integrating knowledge
and expertise from subject matter experts (Zhang & Thai, 2016). This approach can be beneficial when
dealing with complex systems, especially when no historical data is available, and uncertainties play a
significant role in understanding and characterizing risks. It aims to assess and quantify risks associated
with specific systems or processes (Salah & Moselhi, 2016). Risk assessment in pipelines often involves
subjective judgments and uncertainties, such as the probability of rare events or human error. By eliciting
expert opinion and insights, non-quantifiable knowledge, that cannot be quantified, is captured, and
expert judgments can be represented and managed to handle inherent uncertainty (Sheng et al., 2021).
Fuzzy Set Theory (FST) is a mathematical approach to evaluate and address risks based on uncertainty and

imprecision. It is difficult to distinguish between low, medium, and high risks in many real-world
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situations, and risks can have varying degrees of severity or likelihood (Younesi Heravi et al., 2022). With
fuzzy logic, uncertainties can be dealt with more nuancedly. Risks are classified into multiple categories
simultaneously instead of rigid categories like true or false (Moein Younesi Heravi, 2023).

Using the FST, risks can be represented and analyzed flexibly because the boundaries between risk
levels are unclear and overlapping. Risks are multifaceted, and it is difficult to quantify or categorize them
in a traditional binary fashion when associated with complex systems and decision-making processes
(Salah & Moselhi, 2016). This approach facilitates a more holistic assessment of risks by considering the
broader context and interdependencies of risk factors. Pipeline experts can provide detailed insights into
challenges and vulnerabilities (Ren et al., 2009). Emerging risks and unique circumstances are particularly
beneficial when using this approach, and input from domain experts and regular updates make expert
elicitation adaptable to these changes. In addition, this can bridge the gap by combining qualitative and
guantitative approaches as experts can provide qualitative insights while quantifying their judgments
(Yeganeh et al., 2022).

Researchers have used FST for risk assessments to assess the risks associated with different variables.
Using the Fuzzy Inference System, Raeihagh et al. developed a model to quantify the risks associated with
sour gas pipelines, ensuring improved safety measures with applicability limited to sour gas pipelines
(Raeihagh et al., 2020). Babaeian et al. proposed a semi-quantitative Risk-based inspection (RBI) by
concluding that corrosion and erosion are the critical risk factors leading to the failure of gas pressure
reduction station equipment for gas pipeline networks (Babaeian et al., 2023). Wen et al. proposed a
hybrid machine learning model to assess the risks due to landslides by combining traditional assessment
methods with machine learning. Although risks related to sour gas can be assessed using this method but
risk assessment due to landslide comes in different domain and may not be applicable to most common
natural gas pipeline risks (Wen et al., 2023). By combining the fuzzy technique for Order Preference by

Similarities to Ideal Solution (TOPSIS) and cloud inference, Liang et al. proposed a methodology for
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integrated risk assessment, and findings indicate polyethylene gas pipelines work effectively in urban
settings. One possible limitation is that this methodology is primarily suitable for urban areas, potentially
excluding consideration for pipelines made of other material types (Liang et al., 2022). Chen et al.
introduced a method for classifying pipelines in high-risk regions based on failure scenarios and subjective
data. They found that risk assessment in such areas is applicable when enough data is available (Chen et
al., 2022). Using subtractive clustering fuzzy logic for risk assessment, Osman and Shehadeh investigated
interstate pipelines. The study used hypothetical data to assess the risks associated with interstate
pipelines, demonstrating its potential in pipeline risk assessment. However, it is important to note that
since the modeling relied on hypothetical data, its accuracy may be limited in real life (Osman & Shehadeh,
2022). Using fuzzy Analytical Hierarchy Processes (AHP), Jabbari et al. (2021) assessed the risks of fire,
explosion, and toxic gas release. Through this model, safety managers received valuable data for decision-
making (Jabbari et al., 2021). Based on fuzzy AHP, Ba et al. developed a corrosion risk assessment model
by validating its effectiveness using a case study. The developed model used expert data only, which may
introduce subjectivity (Ba et al., 2022). Zhang et al. introduced Fuzzy Bayesian networks (FBN) to assess
the safety of heavy oil pipelines. The lack of data was addressed using FBN, which provided a valid model
for risk assessment (Zhang et al., 2019). Pahlevan et al. analyzed the consequences of offshore pipeline
failure using a fuzzy approach. Risk assessment of offshore pipelines was streamlined with a systematic
approach (Pahlevan et al., 2019). Using Pythagorean fuzzy sets, Oz et al. assessed the risk of clearing and
grading processes in natural gas pipeline projects by facilitating risk assessment in pipeline construction
through a decision support system, but its relevance was mainly in pipeline construction (Oz et al., 2019).
Yu et al. developed a fuzzy fault tree approach for assessing leakage risk in submarine pipelines but the
applicability of the approach to pipelines in other setting is not known (Yu et al., 2019).

Due to several key benefits, FST can also be used to assess the risk of pipelines through expert

elicitation. Subjective expertise can be incorporated, which is helpful when historical data is faulty or



147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

unreliable, thus enhancing the accuracy of assessments (Hawari et al., 2018). Due to the complex and
evolving nature of pipeline risk assessments, FST is ideally suited to coping with uncertainty and
vagueness, allowing experts to define membership functions for input variables simplifies complexity and
facilitates adaptability (Guo et al., 2021). Additionally, due to the interdisciplinary nature of this method,
practical evaluation is ensured by bringing together experts from diverse backgrounds. Despite a lack of
historical data, it provides transparent decision-making, facilitates risk communication, and can be applied
even when no historical data is available. Expert elicitation with FST enables informed decision-making
and proactive risk management during pipeline operations, making it a valuable tool for risk assessment
(Baetal., 2022).

As traditional risk assessment methods like QRA and FEMA heavily rely on quantitative data, historical
records, and precise numerical values to evaluate the likelihood and consequences of different risk
factors, there is a need for an alternative risk assessment methodology to bridge these gaps due to the
dynamic risk factors, inherent uncertainties, and data limitations associated with natural gas pipeline
networks. This paper introduces a fuzzy-aggregation-based expert elicitation approach to address this
challenge by leveraging FST and expert opinions. The presented method provides a comprehensive risk
assessment framework that thrives in data-scarce or data-uncertain environments. The methodology
incorporates linguistic variables using membership functions and fuzzy-aggregation techniques to
accommodate inherent uncertainties that quantitative data may not capture. Natural gas infrastructure
will benefit from this innovative approach by improving safety, optimizing resource allocation, and guiding
informed decisions. Specifically, this paper will meet the above-mentioned goal through creating a
probabilistic questionnaire for expert elicitation, collecting expert opinions using the questionnaire, and
applying a fuzzy-aggregation approach to quantify failure probabilities. This fuzzy-aggregation-based
expert elicitation methodology is applied to assess the cause-and-effect relation leading to pipeline failure

as a Top Event (TE).
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This paper adopts the following structure. A fuzzy-aggregation approach is described in Step 2 to elicit
expert opinions about the occurrence probabilities of BEs. After applying the proposed approach to
Midwest region pipeline networks of the United States, next section reports the application methodology.
Considering the findings, later proposed approach's applicability and results is discussed, while last section
provides the conclusions.

Fuzzy aggregation approach

The proposed fuzzy aggregation procedure for expert elicitation is illustrated in Figure 1 to determine
the likelihood of failure probabilities. It consists of three steps including the meticulous formulation of
guestionnaire, the systematic gathering of expert opinions, and the robust fuzzy aggregation process. The
following subsections explain these steps, detailing the effectiveness of this proposed methodology.
Meticulous Questionnaire Formulation

Determination of BEs

The first step of a risk assessment methodology is to identify and characterize the fundamental
components of risk or BEs. Based on the literature review and discussion with experts from the pipeline
industry, sixteen BEs have been determined that potentially contribute to pipeline failure (Bertuccio &
Moraleda, 2012; Hassan et al., 2022; Kabir et al., 2016). These BEs include transmitted material, soil pH,
cathodic protection, external coating, earthquake, flood, thunder/lightning, temperature variation, third-
party interference, material type, construction fault, material fault, design fault, and incorrect operation
(Liu et al., 2020). Figure 2 represents the cause-and-effect relationship between the BEs and their relation
to intermediate events (IEs), finally leading to pipeline failure, denoted as TE. Tier 2 and Tier 3 are the IEs
getting influenced by BEs situated in Tier 3. The cumulative failure probabilities of IEs lead to pipeline

failure (TE) in the risk assessment model.
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Development of the cause-and-effect relation

After finalizing the determination of BEs, a cause-and-effect relationship needs to be established. For
establishing the interactions and their influence on TE, BEs are examined, and causal relation is affirmed
either directly or indirectly (Yu et al., 2023). For instance, as a direct representation of cause-and-effect
relation, pipeline failure could occur due to external factors such as internal coatings, resulting in internal
corrosion. It is crucial to distinguish stress corrosion cracking from typical external and internal corrosion
processes. Unlike traditional forms of corrosion, stress corrosion cracking is a distinct phenomenon caused
by a combination of tensile stress, susceptible material, and a corrosive environment. It often occurs in
materials under mechanical stress, such as pipelines, and can lead to catastrophic failures without visible
corrosion signs. Therefore, stress corrosion cracking is not categorized as external or internal corrosion.
However, stress corrosion cracking can compromise the structural integrity of the pipeline, potentially
creating pathways for external corrosion to occur over time due to exposure to environmental factors. So,
while stress corrosion itself does not cause external corrosion, it can indirectly contribute to conditions
conducive to external corrosion. To establish this indirect cause-and-effect relation, stress corrosion and
cracking are not directly linked to external corrosion; rather, they are associated with external factors that
ultimately result in pipeline failure.

Pressure reduction stations, an integral component of natural gas pipeline networks, are susceptible
to failure when expansion valves, regulators, or relief devices malfunction. As part of failure analysis,
equipment failure accounts for the malfunctioning of these components (Howard et al., 2011; Nasser et
al.,, 2021; Xu et al.,, 2022). Corrosion and erosion are indirect factors contributing to the failure of
equipment in pressure reduction stations (Babaeian et al., 2023). Degradation and failure of materials are
accelerated by environmental factors such as extreme weather events, earthquakes, or soil erosion.
Weather conditions such as heavy rainfall or flooding can cause pipeline components to corrode, making

them more susceptible to failure. Additionally, seismic events can damage pressure reduction equipment,
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compromising its integrity and reliability. Pressure reduction stations fail due to indirect causes such as
environmental factors and equipment malfunctions (Xu et al., 2022). The indirect causal relationship
between corrosion, mechanical faults, and environmental factors contributing to and leading to pressure
reduction station equipment failure is shown in Figure 3.
Questionnaire formulation

In this step, expert opinions are gathered and a quantitative analysis is conducted on various risk
factors. Unlike previous steps of risk assessment, this involves the use of a survey questionnaire designed
to capture insights from domain experts in the pipeline industry. Within this questionnaire, experts employ
linguistic variables, spanning from "Very Low" to "Very High," to provide nuanced responses (Jamshidi et
al.,, 2013). For instance, external corrosion is an outcome of external failure coating due to surface
exposure. In this particular question, experts are asked to provide their input based on their experience
and knowledge. Another example is third-party interference, experts are asked to provide their opinion
using their background knowledge to predict the pipeline failure due to external interference. To quantify
fuzzy possibilities and probabilities through defuzzification, FST is applied. FST serves to systematically
capture and process expert knowledge and opinions as expressed in the survey questionnaire. Ultimately,
this step allows for the quantitative evaluation of the risk profile of the pipeline system.
Systematic Experts’ Opinions Gathering

Experts’ knowledge and experience are invaluable to assess the associated pipeline risks. Expert
opinions are gathered and analyzed in this phase to develop a systematic analysis method. A
comprehensive risk assessment of pipeline infrastructure can only be possible through analyzing these

expert opinions, which are vital in quantitatively evaluating the BEs and their interconnectedness.

Selection of experts
The process of opinion-gathering hinges upon selecting experts who possess a deep understanding of

pipeline failure, risk assessment methodologies, and related fields of natural gas pipeline operations. For
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this study, individuals are chosen based on their practical experience and industry knowledge. A thorough
selection process is employed to select a panel of experts based on their professional positions,
experience, education, and age, as outlined in Table 1 (Leonardo Leoni, 2023). Although experience
accounts for professional involvement with duration, age still is considered as one influencing factor as it
may provide additional insight into how industry practices and technologies have changed over time and
age may influence cognitive abilities, including adaptability, learning capacity, and decision-making, which
affect expert judgment quality and reliability. Within the expert pool, these criteria ensure the inclusion
of diverse perspectives and experiences so that accurate and credible experts influence the risk

assessment decisions.

Expert opinion elicitation

Risk assessment techniques by obtaining expert opinions and judgments provide valuable insight,
especially if historical data is limited or unavailable. Informed decisions are based on domain experts’
knowledge, reducing risk by leveraging their expertise and experience. To extract valuable insights from
the panel of experts, a thorough process of eliciting expert opinions was conducted. These experts were
consulted and surveyed systematically, each tailored to specific aspects of the risk assessment process.
Using linguistic variables such as "Very Low," "Low," "Fairly Low," "Medium," "Fairly High," "High," and
"Very High," experts assess the likelihood and severity of each BE. Experts communicated risk assessments
nuancedly by utilizing these linguistic variables to consider the inherent uncertainties and complexity
associated with pipeline risk.

Iterative and collaborative approaches were used to elicit expert opinions. Using their extensive
knowledge and experience, experts provided detailed explanations for their assessments. Experts differ
in the depth of their knowledge, so weighing factors should be considered when determining their primary

status. When evaluating an expert's status, professional characteristics, qualifications, and experience are
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considered. This study assessed four types of weights: professional position, education, experience, and
age to weigh the BEs (Shan et al., 2017). Weighing factors and scores assigned are shown in Table 1.
Outlier treatment and weighing

Expert opinions play a significant role in the credibility and quality of risk assessment methodologies.
For accurate risk assessment, it is crucial to identify outliers before deciding whether to include or exclude
them from the dataset (Nooghabi, 2019). An outlier is a data point that deviates significantly from the rest
of the dataset. Outliers occur by measurement or data collection errors, unknown underlying patterns, or
incorrect assumptions about data distribution (Tang et al., 2015). In risk assessment, outliers are always
an issue that needs to be addressed before proceeding with data analysis. There are two main reasons for
the occurrence of outliers. First, expert opinions differ significantly, especially when determining the
likelihood of rare and severe events. It is imperative to recognize that one expert's assessment may be
accurate while another may be completely different from the first. Secondly, being an outlier means that
the questionnaire can be complex for some experts to comprehend, which can be considered an unknown
factor affecting an expert's decision. Those errors can also appear as outliers if they are introduced
inadvertently (Bhargavi & Sireesha, 2022). Analyzing data with outliers is always problematic because
skewness always causes the data to be imbalanced resulting in unrealistic results (Zijlstra et al., 2011).

This study uses interquartile range (IQR) criteria to derive the most comprehensive aggregated
probability by incorporating a range of viewpoints and excluding extreme values. IQR is calculated by
subtracting the first quartiles from the third quartiles, and outliers are detected by adding 1.5 times the
IQR to the third quartile and deducting 1.5 times the IQR from the first quartile. Any data point outside
this range is considered an outlier (Jeong et al., 2017). Outliers are more likely to be excluded if using this
method of outlier detection instead of only using absolute criteria, which leads to a more comprehensive
and accurate analysis of the data. Aside from being more straightforward to implement, IQR criteria are

also more reliable since they do not rely on a fixed threshold and consider the entire data set. Since IQR



288

289

290

2901
292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

criteria can be used to explain outliers and provide meaningful insights, they are also easier to interpret
(Greco et al., 2023).
Fuzzy aggregation approach

Fuzzy Set Theory (FST)

Zadeh (1965) presented the FST as a tool for subjective judgment related to vagueness, ambiguity,
and multi-criteria decision-making (MCDM) (Zadeh, 1965). The FST allows for a more nuanced and flexible
representation of uncertainty in decision-making. The fuzzy numbers introduced in this approach are used
to quantify and describe the uncertainty associated with imprecise values within the framework of
traditional set theory. In this way, uncertain information can be represented more flexibly (Zhang et al.,
2016). Fuzzy logic-based approaches handle uncertainty and imprecision in data and reasoning. This
technique is helpful when there is uncertainty with traditional binary or Boolean logic, which describes
only true or false states (Liang et al., 2022).

As part of the FST, imprecise data, subjective assessments, and linguistic terms are considered to
represent and account for uncertainties and vague information. To capture uncertainties associated with
pipeline risk factors, fuzzy sets can be used instead of crisp values to model membership degrees of belief.
Pipeline risks can be assessed qualitatively or subjectively utilizing this method, such as corrosion rates,
natural disasters and equipment faults (Yu et al., 2021). Using fuzzy sets, we can represent various levels
of risk, including very low, low, medium, high, and very high. In a more advanced decision-making
approach, it is possible to consider multiple pipeline risk factors (Kabir et al., 2016).

A fuzzy set consists of objects without well-defined boundaries that separate them. Among the
members of a fuzzy set, there may be a degree of partial membership or uncertainty. A range of relevance
or connection may exist between objects within a set (Kabir et al., 2016). A fuzzy number is used in the
FST to represent inherent subjectivity and imprecision in expert judgment. A membership function

establishes a relationship between an ambiguous quantity, such as the probability of an event or a root
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node. Membership functions quantify a fuzzy set's relevance or membership to that set, ranging between
0 and 1 with 0 being the very low and 1 very high. A fuzzy number, either regular, bound, or convex, can
express the vagueness of natural language using linguistic variables. Linguistic variables are usually
represented by trapezoidal fuzzy numbers (TFZs) or triangular fuzzy numbers (TpFNs) (Zarei et al., 2019).
Since TpFNs and TFZs are characterized by linear membership functions, this study utilizes TpFNs since
they are versatile and easy to operate, providing advantages over other membership functions.
Conversion of linguistic terms to fuzzy numbers

A failure probability estimate is based on expert elicitation and FST for basic root events (causes). The
likelihood of the top event "pipeline failure" can be determined by analyzing the root events and
determining their prior probabilities (Eleye-Datubo et al., 2008). Effective risk management strategies are
expected to be developed and implemented based on this information to identify the most critical root
events and their effects. Besides reducing the risk associated with the studied system, FST ensures accurate
and reliable estimates. Table 2 explains the seven scale linguistic variables, their fuzzy membership values,

and possible descriptions of each term.

As illustrated in Figure 4, TpFNs represent linguistic terms and their corresponding membership
functions. These membership functions address the vagueness associated with linguistic terms by
graphically representing the values associated with each set. This graphical transition between the value
of zero and one helps determine a term’s membership in a set by indicating whether it is a member.
Fuzzy Possibilities (FPs) calculations

Although there are many techniques to calculate FPs, fuzzy linear opinion pool is a simple yet effective
method and is therefore used for this study. This method combines multiple experts' opinions to
determine if the probability of an event or outcome can be determined by agreement or an aggregate
estimate. Expert opinions are categorized using weights assigned to each source, which are aggregated to

calculate the final results. It integrates opinions to arrive at an assessment and indicates the degree to
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which an expert believes a particular outcome or event will occur (Thakur et al., 2022). Equation (1) can
be used to calculate FPs:

FPs = 271'1:1 Winj , j=123, .., m. (1)

In Equation 1, Aj is the linguistic value derived from expert j about event i, FPs is the fuzzy possibility
representing the aggregated fuzzy value of event i, and W, is the weighing score of expert j about event /
if there are n total events and m total experts. Table 1 describes the different criteria for experts and their

relevant scores based on their position, education, experience, and age.

Defuzzification

Defuzzification is the process of transforming fuzzy sets into crisp values, creating a more efficient and
effective decision-making process. This method involves converting fuzzy sets, which represent uncertain
information, into crisp values that are more suitable for decision-making. Defuzzification methods include
the maximum or mean-maximum method, the weighted average method, and the center of area (CoA). A
standard defuzzification method is the CoA, which calculates the crisp value from a fuzzy set. Trapezoidal
fuzzy numbers (TpFNs) or triangular fuzzy numbers (TFZs), Gaussian, and sigmoid membership functions

can be used to represent linguistic terms (S, 2023; Zarei et al., 2019).

TpFZs are employed in this study to de-fuzzify and convert trapezoidal shapes into crisp values
describing fuzzy set membership functions. Figure 5 illustrates the CoA method using TpZFs, which have
four dimensions: the left shoulder, the rising edge, the falling edge, and the right shoulder, represented by
a1, az, as, and a4. The following equation represents the CoA defuzzification method (Sugeno & Kang,
1986):

- e w
In Equation 2, u(x) represents the aggregated membership function, x is the output variable, and X

represents the de-fuzzified output. For a given input variable x, the TpZFs (x) can be defined as follows

(Natarajan, 2011).
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u(x) = 0, For x < a; or x > Qy;

_ (x—aq) .
u(x) = o —ay’ Fora; <x < ay;
n(x) = 1, Fora, <x < as; (3)
(ay — x)
n(x) = —(a4 .y For azx < ay.

where the membership of fuzzy input variable x is represented by u(x) in the fuzzy set. Depending on how
strongly an input variable has been included in the fuzzy set, the degree of membership can range from 0
to 1. A value of 0 indicates impossibility, and 1 shows certainty.
Calculating FPr

An FPris a way of representing probabilities that capture the uncertainty associated with the likelihood
of an event in the context of fuzzy sets or fuzzy logic. A fuzzy arithmetic operation and a fuzzy inference
technique can be used to calculate FPr (S, 2023). FPr distributions, or fuzzy numbers, are derived by
incorporating input uncertainty and propagating it to estimate the FPr distributions. In this study,

Onisawa's function was used to convert FPs into FPr (Onisawa, 1988):

1 .
FPr — {m—K if FPs # 0 (4)
0if FPs =0
1
where, K = [(=)|" x 2.301.

Equation (4) calculates K using the FPs value obtained from Equation (1). To introduce non-linearity,
which is desirable for certain applications, and show direct one-to-one mappings between possibility and
probability, Onisawa's function used the exponent of 1/3. Based on empirical rules for specific scaling or
normalization, a constant of 2.301 is used (ONISAWA, 1988).

Fuzzy “AND” (T-Norm) and “OR” (S-Norm) operators
Fuzzy “AND” (T-Norm) operators assess all conditions collectively to determine their degree of

fulfillment, calculated as the minimum of their fuzzy probabilities by considering all conditions together.
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This approach quantifies the contribution of each condition or factor to risk assessment. For instance,
applying the fuzzy “AND” operator, the minimum (MIN) of these fuzzy probabilities for BEs corrosion,
maintenance quality, and environmental conditions is considered. The risk associated with this minimum
operation reflects the contribution of all three BEs’ conditions. Conversely, the fuzzy “OR” (S-Norm)
operators determine the extent to which at least one condition has been met by calculating the maximum
of the BEs’ fuzzy probabilities. Unlike the fuzzy “AND” operator, the maximum of the fuzzy probabilities is
taken as a result of each condition when applying the fuzzy “OR” operator. These two operators enable
handling complex, uncertain, data and reasoning by accommodating degrees of truth and membership
(Shi et al., 2014).

“AND” operators promote conservative decision-making by requiring both conditions to be true for
the overall condition to be considered, and the result becomes more confident, decreasing the likelihood
of making risky choices. However, when a more lenient approach is permitted, the “AND” operator may
lead to excessively pessimistic decisions, reducing the possibility of positive outcomes or missing out on
opportunities. The “OR” operator allows for inclusiveness and adaptability in decision-making by allowing
either condition to be true and providing additional decision-making flexibility. It is suitable where strict
criteria are not necessary, and adopting a more accommaodating approach can be advantageous. Although
the use of these operators is at the discretion of the decision-makers, however, using these operators
requires a thorough understanding of the problem because “AND” is more conservative and cautious,
while “OR” is more flexible and tolerant (Gupta & Qi, 1991).

Application of Fuzzy-aggregation approach using PHMSA data and domain expert elicitation in
the Midwest USA

To validate the developed fuzzy-aggregation approach for assessing the risk involved in pipeline
networks, this study analyzed the natural gas pipeline risk in Midwest USA using PHMSA historical

database from 2010 to 2022. The historical data was employed to calculate CPr. While, to calculate the
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FPr, domain experts from the Midwest region were also elicited in the data analysis process to supplement
the factors for which historical data is scarce (Database, 2023). A sole focus of this study is the elicitation
of expert data to evaluate the proposed model and description of CPr is to compare the effectiveness of

the approach.

Calculation of expert’s weighing score
Each variable received in linguistic terms was added to the total weight using Equation (2), and
weighing values were calculated using Equation (3). Expert elicitation received from experts showing their

professional position, experience, education, age, and weighing score and value are shown in Table 3.

Calculation of CPr and FPr

A CPr reflects the likelihood of an event or outcome based on historical data. Each risk factor is
considered individually and its corresponding CPr is calculated. Dataset from PHMSA contains information
about pipeline incidents, failure modes, and contributing factors (Database, 2023). The dataset was
carefully reviewed and preprocessed before analysis to ensure data quality and integrity. In this process,
the data was cleaned, missing values were addressed, and the consistency of variables was verified. Table
4 shows the CPr calculated from the historical data for the Midwest region and based on the pre-
processed dataset, CPr is calculated for pipeline network risk factors and failure modes.

To calculate the FPr through expert elicitation, a survey questionnaire was formulated using Qualtrics
based on variables explained in Section 2.3.1. and submitted for formal approval by the Institutional
Review Board (IRB). After the IRB approval, the survey questionnaire was sent to fifty experts in the field
and academia with expertise and experience in pipeline networks. The experts were selected based on
their cutting edge research reports submitted to the PHMSA for the last five years, 2018-2023 (Database,
2023).

A few reminders later, fifteen responses were received, but after reviewing, it was realized that they

needed to be sorted according to their completeness. Outliers were identified using the IQR technique to
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make the responses fit for analysis. Five responses were declared outliers due to inconsistent points
outside the o + 1. Therefore, only ten complete responses from the Midwest region have been considered
for conducting for calculation of FPr. As these responses come from experts from industry and academia
with different backgrounds and areas of specialization, they cover various aspects of the problem.

A significant difference exists between crisp failure probabilities derived from PHMSA data and
corresponding FPr derived from expert elicitation, as shown in Table 5. Uncertainty introduces
considerable ambiguity in risk analysis, and lack of failure probability data, inherent ambiguity, and
imprecise information lead to underestimating or overestimating risks. (Zarei et al., 2019). Secondly,
enhanced safety measures at gas facilities play a crucial role, and due to technological advances,
preventive measures, and other factors, recent years have seen substantial improvement in safety levels.
(Ramzali et al., 2015). As a result, databases such as PHMSA often present failure data that remains static
over time and fails to adequately represent recent advancements in component reliability. Consequently,
fuzzy failure probabilities are anticipated to yield results more reflective of the nuanced and evolving
safety environment, in contrast to the reliance on rigidly crisp probabilities. Figure 6 explains the
comparison of FPr calculated through expert elicitation for sixteen BEs.

Employment of Fuzzy-logic Operators

Before employing T-Norms (fuzzy “AND” operators) or S-Norms (fuzzy “OR” operators), logical
relationships are considered to decide the use of sixteen BEs. The T-Norm is used in strict conjunction
when all conditions must be met simultaneously for an event to occur. For instance, failure due to
transmitted material will cause failure of internal coating and eventually lead to internal corrosion. On the
contrary, S-Norm is used as a permissive conjunction when at least one associated condition is satisfied
e.g., soil pH, failure due to cathodic protection, and failure of external coating, if any of the conditions is

met, it will lead to external corrosion. (Singh et al., 2022). Based on the same rules, Table 6 shows the
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application of both operators for the fuzzy-aggregation approach. When the T-Norm is used, it will ensure
the conservative approach by taking the minimum value out of two failure probabilities.

Figure 7 describes the graphical representation of the fuzzy logic operator for risk assessment
probability for TE. For BE1 and 2, T-Norm is used by assuming that transmitted material and failure of
internal coating are expected to happen simultaneously or that transmitted material is the root cause for
the occurrence of internal corrosion. External corrosion may occur due to poor soil conditions or external
coating failure, suggesting employing S-Norm. For natural disasters, T-Norm is used because typically
inclement weather, lightning/ thunder, and flood happen simultaneously, leading to natural disasters.
Different faults are independent, suggesting using S-Norm leading to IE faults. To ensure risk is
represented conservatively and realistically, the T-Norm is used for external factors probability
determination. For IEs, internal corrosion, external corrosion, soil pH, stress corrosion cracking, natural
disasters, and third-party interference, all critical conditions must be met simultaneously for the event to
be deemed probable. S-Norm allows for a more realistic representation of "Internal Factors" probabilities
by aligning with the logic that any critical condition can independently lead to the top event. Finally, as
part of the risk assessment process, T-Norm calculates the probability of pipeline failure since it captures

the logic that for the TE to occur, a combination of external and internal factors must occur simultaneously.

Results and discussion

In this study, the pipeline risk assessment model, a fuzzy-aggregation approach, is employed to
calculate the risk probability of pipeline failure as TE. The model integrates sixteen BEs into four IEs, i.e.,
internal corrosion, external corrosion, natural disaster, and faults in the first step. BE 1 and 2 yielded a
failure probability of 0.005 for internal corrosion using T-Norm. BE 3,4 and 5 resulted in a failure score of
0.0132 for external corrosion using S-Norm. The output for IE 3 (Natural disaster), using BE 6,7,8 and 9, is
0.0011 using T-Norm. For IE 4, we used S-Norm for BE 12, 13, and 14, which yielded a failure probability

of 0.0098. IEs calculation depicts the membership values for "External Factors" and "Internal Factors,"
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which encompass events related to external risks such as corrosion, third-party interference, and natural
disasters. The calculated membership value for "External Factors" is 0.0011, indicating a low but non-
negligible likelihood of external factors collectively leading to pipeline failure. Internal factors represent
internal risks like material faults and operational errors. The calculated membership value for "Internal
Factors" is 0.0098, signifying a higher likelihood of internal risk factors contributing to pipeline failure.
Higher probability explains that risks contributing to human error or design faults are more significant than
external factors and require deliberate attention to reduce the risk of TE occurrence. Table 7 describes the
calculation for TE occurrence. TE results explain the final risk probability for Pipeline Failure. Applying the
AND operator to the membership values of "External Factors" and "Internal Factors," a failure probability
value of 0.0011 is calculated. This value represents the likelihood of external and internal risk factors
coinciding with a pipeline failure event.

Interpreting these results is crucial in understanding the overall risk assessment and its implications.
The nearly identical membership values for "External Factors" and "Internal Factors" (0.0011 and 0.0098,
respectively) indicate that both external and internal factors play a crucial role in pipeline failure. This
balanced contribution suggests that risk mitigation efforts should consider internal and external factors.

T-Norm or “AND” tends to be more conservative because it takes the minimum value, assuming
the smallest possibility or the most pessimistic estimate. It focuses on the lower bounds of
confidence and is associated with a safer, more cautious approach. On the contrary, S-Norm or
“OR” tends to be less conservative because it takes the maximum value, assuming the largest
possibility or the most optimistic estimate. It's risk-acceptant and may be perceived as less

cautious or safe. The higher membership value for "Internal Factors" implies that internal risks, such as
material faults and operational errors, may significantly impact pipeline failure. This sensitivity
underscores the importance of rigorous quality control, maintenance, and operating procedures. The

lower membership value for "External Factors" suggests that while external risks like corrosion and natural
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disasters are significant, the pipeline may have some resilience against them. Protective measures such
as coatings and monitoring systems effectively reduce the likelihood of external factors leading to failure.
Based on these results, risk mitigation strategies should focus on maintaining the integrity of internal
factors, reducing the impact of external factors, and ensuring a comprehensive risk management plan that
addresses both types of risks.

A fuzzy-aggregation approach using fuzzy logic operators offers several advantages over traditional
binary methods for assessing natural gas pipeline risk. Fuzzy logic captures the interaction between risk
factors and models their dependencies, which is ideal for assessing pipeline failure risks. This approach
avoids the potential pitfalls of overestimation and underestimation that binary methods can face due to
their balanced consideration of internal and external risk factors. The conservative estimation approach
ensures a realistic and cautious risk assessment by combining T-Norms (AND operators) with S-Norms (OR
operators). Consequently, the method avoids risk exaggeration while accommodating subtle shifts in risk
conditions, thereby offering a balanced assessment that is both reliable and accurate.

This balanced assessment informs practical maintenance and design decisions for pipeline networks.
The calculated probabilities derived from this approach offer valuable insights into maintenance
prioritization and design enhancements. Prioritizing maintenance activities based on calculated
probabilities allows for optimal resource allocation, reducing the likelihood of unplanned downtime or
incidents. Moreover, insights from these probabilities inform the design and construction of new pipeline
infrastructure or the retrofitting of existing systems. Design enhancements may include redundant safety
features, optimized material selection, or advanced monitoring systems, all aimed at mitigating identified
risks. By leveraging the calculated probabilities from the fuzzy-aggregation approach, pipeline operators
can proactively manage risks, allocate resources efficiently, and enhance the overall safety and reliability

of pipeline networks.



520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

The results of this fuzzy-aggregation approach analysis provided valuable insight into data refinement
efforts and can be used to identify the key factors contributing to uncertainty. Acknowledging the
variability of calculated probabilities over time and as the pipeline degrades, it is recognized that these
probabilities are not fixed values and can dynamically change based on evolving pipeline conditions.
Pressure reduction stations are a crucial part of the natural gas pipeline system and are
vulnerable to failure due to faulty expansion valves, regulators, and relief devices. The analysis
incorporates equipment failure and environmental factors to assess malfunction risk.
Environmental factors can exacerbate equipment degradation, increasing its susceptibility to
failure. Corrosion of pipeline components, particularly in severe weather conditions, further
heightens the risk. Additionally, seismic events threaten pressure reduction equipment's
integrity and reliability. The failure probability of 0.6% arising from third-party interference endorsed

the implementation of ASME B31.8 by designing a higher-class location which will reduce the risk of
leakage or rupture by minimizing the corrosion or overpressure to a considerable limit. Observation of
ASME B31.8 helps to reduce the risk of leaks, ruptures, and other failures by enhancing public safety and
environmental protection. Adherence to these standards is also crucial for the safe and reliable operation
of natural gas pipeline networks by promoting industry best practices and regulatory compliance.
Cost-benefit analysis is crucial for pipeline risk assessment models as it helps quantify the economic
implications of safety measures versus potential risks. This also helps decision-makers identify optimal
strategies to mitigate risks while maximizing cost-effectiveness and ensuring resource allocation aligns
with safety priorities. There is a notable absence of a cost-and-benefit analysis within the research which
is attributed to the lack of data from the PHMSA database, which hindered the authors' ability to conduct

such an analysis.
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Conclusions and Future Work

In this paper, a practical approach to modeling pipeline risk assessment complexity and uncertainty
has been developed by combining fuzzy aggregation with expert elicitation. Using qualitative methods,
such as probability factors, pipeline risks are assessed more nuancedly than binary methods, which only
determine success or failure. Further contributions from this study are summarized as follows:

e  The results indicate that both internal and external risk factors influence pipeline failures. Internal
factors, such as material faults and operational errors, cause more pipeline failures due to human
errors and manufacturing faults.

e By analyzing internal factors, it is evident that material faults and operational errors are the most
critical factors leading to pipeline failures. The findings of this study show that it is imperative to
address the risks associated with external risk factors such as corrosion, third-party interference, and
natural disasters.

e  This study shows that qualitative methods provide a better understanding of pipeline risks and
facilitate decision-making. With crucial insights into natural gas pipeline risk profiles, the
investigation will significantly improve pipeline safety and reliability.

e In addition to promoting the development and maintenance of natural gas pipelines, the model can
provide a base for research on mitigating pipeline risks and informing policymakers about potential
risks.

e The proposed framework can assess potential risks associated with soil characteristics,
environmental factors, and material faults. Further, it can evaluate the effectiveness of various
mitigation measures, such as leak detection and corrosion control, by highlighting the corrosion risks
by pipeline operators in the form of expert elicitation.

There is potential for improvements in several areas in this field, such as conducting sensitivity

analyses to address the concerns about uncertainty in data to ensure the reliability of assessment results,
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and including more diverse expert views considering gender and ethnic diversity, etc. Efforts can be made
to minimize the inaccuracies in the input data by enhancing the data collection and monitoring process.
Developing novel methods to account for dependencies is possible, providing a more precise
representation of complex systems. Further validation with empirical data is necessary to ensure the
model's practical applicability. Furthermore, refinement techniques can make the quantification process
more robust and consistent. Conducting targeted studies and risk assessments by including pressure
reduction stations can help fill the knowledge gaps and inform decision-making processes aimed at
enhancing safety and reliability. To ensure public safety and promote environmental sustainability and
efficiency in natural gas transportation, future studies should incorporate the guidelines and requirements
outlined in ASME B31.8. Future works may also include the cost-benefit analysis for these invaluable assets

to facilitate the decision-makers for the best implementation of these risk assessment models.
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774  Tables

775  Table 1. Weighing scores are given to experts based on their characteristics.

Criterion Description Score Criterion Description Score

Sr./Jr. academic 5 <5 2
Professional Engineer 4 5-9 2
Position Technician 3 Experience 10-19 3
Operator 3 20-30 4
Other 2 >30 5
Ph.D. 5 <30 2
Masters 4 Age 30-39 3
Education Bachelor 3 40-50 4
Social degree 3 >50 5

High school 2

Other 2
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Table 2. Explanation of linguistic variables and membership function with possible description (Guo et

al., 2021).

Linguistic Fuzzy membership Description

variables function

Very Low 0 0 0.1 0.2 Indicates an extremely low level of risk that the likelihood of

(VL) an adverse event or the severity of its consequences is
extremely unlikely or negligible.

Low (L) 0.1 0.2 0.2 0.3 Signifiesa relatively low level of risk that the likelihood of an
adverse event or the severity of its consequences is low but
not as negligible as in the case of "very low."

FairlyLow 0.2 0.3 0.4 0.5 Amoderatelylow level of risk means that the likelihood of an

(FL) adverse event or the severity of its consequences is
somewhat higher than "low" but remains at a reasonably
manageable level.

Medium 04 05 0.5 0.6 Amoderate levelof risk means that the likelihood of an

(M) adverse event or the severity of its consequences is neither
too high nor too low, falling within an average range.

Fairly High 05 0.6 0.7 0.8 A moderately high level of risk means that the likelihood of

(FH) an adverse event or the severity of its consequences is
somewhat higher than "medium" but still manageable.

High (H) 0.7 0.8 0.8 0.9 Asignificantlevel of risk means that the likelihood of an
adverse event or the severity of its consequences is
considerably higher, demanding increased attention and
comprehensive risk management strategies.

Very High 0.8 0.9 1 1  Anextremely high level of risk means that the likelihood of an

(VH) adverse event or the severity of its consequences is

significantly elevated, requiring immediate action and
extensive risk mitigation efforts.




780  Table 3. Expert's details and corresponding weight for the Midwest region.

Expert Professional Education Experience Age Weighing Weighing

Position Level (Years) Score value
= 5 5 2 3 15 0.0904
E2 5 5 2 5 17 0.1024
E3 4 5 4 4 17 0.1024
E4 4 5 5 5 19 0.1145
ES 5 5 3 3 16 0.0964
E6 5 5 2 3 15 0.0904
E7 5 5 3 4 17 0.1024
E8 5 5 3 4 17 0.1024
E9 5 5 3 3 16 0.0964
E10 4 3 5 5 17 0.1024
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782  Table 4. CPr based on PHMSA historical data for the Midwest region.

Attribute Basic Event Frequency CPr (%)
Internal corrosion Failure due to transmitted material (BE 1)
Failure of internal coating (BE 2) 1 0.3
Soil pH (BE 3)
External corrosion Failure of cathodic protection (BE 4)
Failure of external coating (BE 5) 17 4.8
Failure due to earthquake (BE 6) No data
. Flood (BE 7) 10 2.8
Natural Disaster Thunder/ lightning (BE 8) 14 4
Temperature variation (BE 9) 9 2.6
Third-party interference third-party interference (BE 10) 117 33.3
Stress corrosion cracking  Stress corrosion cracking (BE 11) No data
Construction fault (BE 12) 21 6
Faults Material fault (BE 13) 20 5.7
Design fault (BE 14) No data
Material defect Incorrect operation (BE 15) No data
Design fault Material type (BE 16) No data
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Table 5. Calculations of FPs and FPr for BEs.

BEs Fuzzy aggregation number K- Value FPs FPr (%)
BE1 0.37 0.46 0.565 0.68 2.24 0.5188 0.57
BE2 0.28 0.42 0.585 0.71 2.30 0.4988 0.5
BE3 0.36 0.505 0.685 0.82 2.03 0.5925 0.93
BE4 0.44 0.545 0.66 0.77 2.00 0.6038 1
BES 0.42 0.57 0.74 0.86 1.88 0.6475 1.32
BE6 0.12 0.2 0.31 0.44 3.22 0.2675 0.14
BE7 0.22 0.33 0.45 0.56 2.67 0.3900 0.14
BES8 0.12 0.18 0.28 0.42 3.32 0.2500 0.11
BE9S 0.28 0.4 0.535 0.65 241 0.4663 0.24
BE10 0.44 0.565 0.69 0.79 1.95 0.6213 0.6
BE11 0.28 0.4 0.555 0.69 2.36 0.4813 0.53
BE12 0.37 0.54 0.725 0.84 1.96 0.6188 0.32
BE13 0.31 0.43 0.55 0.65 2.35 0.4850 0.28
BE14 0.33 0.515 0.705 0.81 2.04 0.5900 0.65
BE15 0.42 0.57 0.735 0.85 1.89 0.6438 0.98
BE16 0.19 0.355 0.53 0.64 2.53 0.4288 0.45
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Table 6. Application of fuzzy-logic operators.

Level

T-Norms (fuzzy “AND” operator)

S-Norms (fuzzy “OR” operator)

Third tier (BEs)

e Failure due to transmitted material
e Failure of internal coating

e Soil pH
e Failure of cathodic protection
e Failure of external coating

e Failure due to earthquake
e Flood

e Thunder/ lightning

e Temperature variation

e Construction fault
e Material fault
Design fault

Second tier (IEs)

e Internal corrosion

e External corrosion

e Soil pH

e Stress corrosion cracking
e Natural disaster

e Third-party interference

Material type
Faults
Incorrect operation

Top Event (Pipeline
failure)

e External factors
e Internal factors
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Table 7. Calculation of failure probability for TE.

BEs  IEs IEs TE
BEL  IE1=
............................................. BE1MBE2 < MIN [1 0.0057). 1 (0.0050)] -
BE2  0.0050
IE 2=
BE3UBE4UBES = MAX [y (0.0093), 1 IE 5=
(0.0100), 1 (0.0132)] = 0.0132 IELNIE2 N BE1ONIE 3
ABE11 = MIN [
BE6 (0.0050), 1 (0.0060), 1
(0.0132), 1 (0.0053), 4 TE=
IE 3= (0.0011)] = 0.0011 IESNIE6 = MIN
BE6NBE7NBESNBEY = MIN [ (0.0014), (0.0098, 0.0011) =
(0.0014), u (0.0011), 1 (0.0024)] = 0.0011 0.0011

BE11

BE12

IE 4=
BE12UBE13UBE14 = MAX [ (0.0032),
(0.0028),  (0.0065)] = 0.0065

BE16

IE 6=

BE15UIE4UBE16 = MAX
[1 (0.0098), u (0.0065),
u (0.0045)] = 0.0098
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Figure 7.

Fuzzy aggregation technique to determine the probability of failure incidents.

Cause-and-effect variables leading to natural gas pipeline failure are represented in three tiers.

Indirect causal relation of risk factor responsible for pressure reduction station failure.

Linguistic terms with corresponding fuzzy membership functions.

Trapezoidal fuzzy number A™.

Comparison of FPr using expert elicitation.

Graphical representation of fuzzy logic operator.



