

1 **Enhancing Risk Assessment in Natural Gas Pipelines Using A Fuzzy-Aggregation Approach**
2 **Supported by Expert Elicitation**

3 Yasir Mahmood¹, Ying Huang, Ph.D.^{2*}; Nita Yodo, Ph.D.³; Eakalak Khan, Ph.D.⁴

4 ¹Graduate Research Assistant, Department of Civil, Construction, and Environmental Engineering, North Dakota
5 State University, Fargo, ND 58102

6 ²Professor, Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo,
7 ND 58102 (Corresponding author), ying.huang@ndsu.edu

8 ³Assistant Professor, Department of Industrial and Manufacturing Engineering, North Dakota State
9 University, Fargo, ND 58102

10 ⁴Professor, Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas,
11 Las Vegas, NV 89154

12 **ABSTRACT:**

13 Although the natural gas pipeline network is the most efficient and secure transportation mode
14 for natural gas, yet it is always susceptible to various external and internal risk factors. It is vital to address
15 the associated risk factors such as corrosion, third-party interference, natural disasters, and equipment
16 faults that may lead to pipeline leakage or failure. The conventional quantitative risk assessment
17 techniques require massive historical failure data that is sometimes unavailable or vague. Experts or
18 researchers in the same field can always provide insights into the latest failure assessment picture. In this
19 paper, fuzzy set theory is employed by getting the expert elicitation through linguistic variables to obtain
20 the failure probability of the Top Event (pipeline failure). By applying a combination of T- and S-Norms, the
21 fuzzy-aggregation approach can enable the most conservative risk failure assessment. The findings from
22 this study showed that internal factors, including material faults and operational errors, significantly
23 impact the pipeline failure integrity. Future directions should include sensitivity analyses to address the
24 uncertainty in data to ensure the reliability of assessment results.

25 **Practical Applications**

26 Natural gas pipelines are efficient and reliable transportation modes. The integrity of these valuable
27 assets is threatened by various risks such as corrosion, environmental factors, human errors, and

28 mechanical faults. For newly developed or less monitored pipeline networks, historical data is either
29 unavailable or faulty. To overcome this shortcoming, experts from pipeline networks can provide
30 invaluable insight by providing their expert opinion. This study uses the expert's elicitation by applying a
31 fuzzy aggregation approach to predict the pipeline failure probability. The finding of this study confirmed
32 that material faults and operational errors are the most critical risk factors leading to pipeline failure. The
33 results of this study can be used to develop effective mitigation strategies for pipeline networks to
34 minimize future failures.

35 **Keywords:** Failure factors, Fuzzy set theory, Cause and effect, Pipeline failure, External and internal failure
36 factors, Corrosion

37 **Introduction**

38 Natural gas is one of the significant components of the energy sector that meets the requirements
39 of power plants, industries, and residential areas (Liu & Bao, 2022). Natural gas accounts for 24 percent
40 of world energy consumption, and pipelines are necessary for transporting and distributing it over long
41 distances (Ding & Yu, 2005). In the United States, natural gas is transported through a highly integrated
42 pipeline network, which serves three purposes, including collection from the source, transmission to
43 target areas, and distribution to end users (Gharabagh et al., 2009). About 4.8 million km (3 million miles)
44 of pipeline networks connect consumers with natural gas production and storage areas. Approximately
45 77.7 million consumers received 781.6 billion cubic meter (27.6 trillion cubic feet) of natural gas during
46 2021 through the natural gas transportation network (Han & Weng, 2011). Being the most secure and
47 cost-effective means of transportation for natural gas, pipeline networks have expanded exponentially to
48 transport enormous quantities of natural gas from production sites to end users. However, these
49 networks also may pose a significant threat to the safety of users and the environment being exposed to
50 several internal and external risk factors (Ding & Yu, 2005). The most well-known risk factors are leakages,

51 explosions, sabotage, environmental disasters, and health concerns (Gharabagh et al., 2009). Specifically,
52 as the Pipeline and Hazardous Materials Safety Administration (PHMSA) reported, a pipeline rupture may
53 result in catastrophic consequences, including injuries, deaths, revenue losses, and environmental
54 damage. Since 2003, 660 pipeline incidents have been reported in the United States, resulting in 252
55 fatalities and 1,081 injuries (Pahlevan et al., 2019). For public safety and environmental protection,
56 preventing these incidents and minimizing their consequences are crucial.

57 PHMSA's pipeline incident data indicates five significant causes contributing to pipeline incidents,
58 including corrosion, equipment failures, third-party damage, incorrect operations, and material
59 failures(@USDOT, 2023; Tan et al., 2021). While addressing the associated risks, it is imperative to
60 consider all possible variables that threaten the pipeline network's integrity. Mainly, risks in pipeline
61 applications can be categorized into two main types including external factors encompassing elements
62 like corrosion, third-party interference, and natural disasters (earthquakes, floods, lightning, and
63 temperature variations) and internal factors that involve construction, material, design faults, and
64 incorrect operations (Yeganeh et al., 2022).Therefore, natural gas pipeline networks need risk
65 assessments to identify potential hazards, evaluate their impacts, and take preventative measures.

66 Term risk assessment describes how different variables, basic events (BEs), or *causes* threaten the
67 integrity of pipelines, leading to failures commonly known as *effects*. Pipeline risk management involves
68 evaluating the likelihood and consequences of incidents or failures in pipeline networks (Sheng et al.,
69 2021). Many techniques for risk assessment of pipeline networks, including qualitative, quantitative, and
70 index modeling have been explored (Han & Weng, 2011). Traditional pipeline risk assessment methods
71 use quantitative data and deterministic models by estimating the potential consequences of an event and
72 calculating the associated risks. Event Tree Analysis (ETA), Fault Tree Analysis (FTA) (Pahlevan et al., 2019),
73 Hazard and Operability (HAZOP) studies (Jabbari et al., 2021), and Failure Modes and Effects Analysis
74 (FMEA) are commonly used traditional methods . Although these methods yield valuable models and

75 provide an excellent tool for risk assessment, they have significant limitations since they cannot account
76 for uncertainties, subjective judgments, and complex interactions between factors that impact risks (Hong
77 et al., 2023).

78 Quantitative Risk Assessment (QRA) analyzes pipeline incidents using mathematical models and
79 statistical data to determine their likelihood and potential consequences. QRA methods usually include
80 Probabilistic Risk Assessment (PRA) and Monte Carlo simulation (Younesi Heravi et al., 2022). Although
81 QRA has been widely used in pipeline safety assessments, it may not effectively account for emerging risks
82 and uncertainties as it relies heavily on historical data. Index Modeling is yet another technique for risk
83 assessment in which various risk factors are assigned numerical values, such as pipeline age, condition,
84 proximity to population centers, and environmental sensitivity (Sheng et al., 2021). These factors are often
85 combined into risk indices or scores to prioritize pipeline segments for further assessment or
86 maintenance. Although Index Modeling can be quick and cost-effective, sometimes complex interactions
87 may oversimplify risks (Tan et al., 2022). For instance, using soil pH and failure due to external coating as
88 a risk indicator could underestimate risks.

89 Expert elicitation is a hybrid risk assessment technique involving gathering and integrating knowledge
90 and expertise from subject matter experts (Zhang & Thai, 2016). This approach can be beneficial when
91 dealing with complex systems, especially when no historical data is available, and uncertainties play a
92 significant role in understanding and characterizing risks. It aims to assess and quantify risks associated
93 with specific systems or processes (Salah & Moselhi, 2016). Risk assessment in pipelines often involves
94 subjective judgments and uncertainties, such as the probability of rare events or human error. By eliciting
95 expert opinion and insights, non-quantifiable knowledge, that cannot be quantified, is captured, and
96 expert judgments can be represented and managed to handle inherent uncertainty (Sheng et al., 2021).
97 Fuzzy Set Theory (FST) is a mathematical approach to evaluate and address risks based on uncertainty and
98 imprecision. It is difficult to distinguish between low, medium, and high risks in many real-world

99 situations, and risks can have varying degrees of severity or likelihood (Younesi Heravi et al., 2022). With
100 fuzzy logic, uncertainties can be dealt with more nuancedly. Risks are classified into multiple categories
101 simultaneously instead of rigid categories like true or false (Moein Younesi Heravi, 2023).

102 Using the FST, risks can be represented and analyzed flexibly because the boundaries between risk
103 levels are unclear and overlapping. Risks are multifaceted, and it is difficult to quantify or categorize them
104 in a traditional binary fashion when associated with complex systems and decision-making processes
105 (Salah & Moselhi, 2016). This approach facilitates a more holistic assessment of risks by considering the
106 broader context and interdependencies of risk factors. Pipeline experts can provide detailed insights into
107 challenges and vulnerabilities (Ren et al., 2009). Emerging risks and unique circumstances are particularly
108 beneficial when using this approach, and input from domain experts and regular updates make expert
109 elicitation adaptable to these changes. In addition, this can bridge the gap by combining qualitative and
110 quantitative approaches as experts can provide qualitative insights while quantifying their judgments
111 (Yeganeh et al., 2022).

112 Researchers have used FST for risk assessments to assess the risks associated with different variables.
113 Using the Fuzzy Inference System, Raeihagh et al. developed a model to quantify the risks associated with
114 sour gas pipelines, ensuring improved safety measures with applicability limited to sour gas pipelines
115 (Raeihagh et al., 2020). Babaeian et al. proposed a semi-quantitative Risk-based inspection (RBI) by
116 concluding that corrosion and erosion are the critical risk factors leading to the failure of gas pressure
117 reduction station equipment for gas pipeline networks (Babaeian et al., 2023). Wen et al. proposed a
118 hybrid machine learning model to assess the risks due to landslides by combining traditional assessment
119 methods with machine learning. Although risks related to sour gas can be assessed using this method but
120 risk assessment due to landslide comes in different domain and may not be applicable to most common
121 natural gas pipeline risks (Wen et al., 2023). By combining the fuzzy technique for Order Preference by
122 Similarities to Ideal Solution (TOPSIS) and cloud inference, Liang et al. proposed a methodology for

123 integrated risk assessment, and findings indicate polyethylene gas pipelines work effectively in urban
124 settings. One possible limitation is that this methodology is primarily suitable for urban areas, potentially
125 excluding consideration for pipelines made of other material types (Liang et al., 2022). Chen et al.
126 introduced a method for classifying pipelines in high-risk regions based on failure scenarios and subjective
127 data. They found that risk assessment in such areas is applicable when enough data is available (Chen et
128 al., 2022). Using subtractive clustering fuzzy logic for risk assessment, Osman and Shehadeh investigated
129 interstate pipelines. The study used hypothetical data to assess the risks associated with interstate
130 pipelines, demonstrating its potential in pipeline risk assessment. However, it is important to note that
131 since the modeling relied on hypothetical data, its accuracy may be limited in real life (Osman & Shehadeh,
132 2022). Using fuzzy Analytical Hierarchy Processes (AHP), Jabbari et al. (2021) assessed the risks of fire,
133 explosion, and toxic gas release. Through this model, safety managers received valuable data for decision-
134 making (Jabbari et al., 2021). Based on fuzzy AHP, Ba et al. developed a corrosion risk assessment model
135 by validating its effectiveness using a case study. The developed model used expert data only, which may
136 introduce subjectivity (Ba et al., 2022). Zhang et al. introduced Fuzzy Bayesian networks (FBN) to assess
137 the safety of heavy oil pipelines. The lack of data was addressed using FBN, which provided a valid model
138 for risk assessment (Zhang et al., 2019). Pahlevan et al. analyzed the consequences of offshore pipeline
139 failure using a fuzzy approach. Risk assessment of offshore pipelines was streamlined with a systematic
140 approach (Pahlevan et al., 2019). Using Pythagorean fuzzy sets, Oz et al. assessed the risk of clearing and
141 grading processes in natural gas pipeline projects by facilitating risk assessment in pipeline construction
142 through a decision support system, but its relevance was mainly in pipeline construction (Oz et al., 2019).
143 Yu et al. developed a fuzzy fault tree approach for assessing leakage risk in submarine pipelines but the
144 applicability of the approach to pipelines in other setting is not known (Yu et al., 2019).

145 Due to several key benefits, FST can also be used to assess the risk of pipelines through expert
146 elicitation. Subjective expertise can be incorporated, which is helpful when historical data is faulty or

147 unreliable, thus enhancing the accuracy of assessments (Hawari et al., 2018). Due to the complex and
148 evolving nature of pipeline risk assessments, FST is ideally suited to coping with uncertainty and
149 vagueness, allowing experts to define membership functions for input variables simplifies complexity and
150 facilitates adaptability (Guo et al., 2021). Additionally, due to the interdisciplinary nature of this method,
151 practical evaluation is ensured by bringing together experts from diverse backgrounds. Despite a lack of
152 historical data, it provides transparent decision-making, facilitates risk communication, and can be applied
153 even when no historical data is available. Expert elicitation with FST enables informed decision-making
154 and proactive risk management during pipeline operations, making it a valuable tool for risk assessment
155 (Ba et al., 2022).

156 As traditional risk assessment methods like QRA and FEMA heavily rely on quantitative data, historical
157 records, and precise numerical values to evaluate the likelihood and consequences of different risk
158 factors, there is a need for an alternative risk assessment methodology to bridge these gaps due to the
159 dynamic risk factors, inherent uncertainties, and data limitations associated with natural gas pipeline
160 networks. This paper introduces a fuzzy-aggregation-based expert elicitation approach to address this
161 challenge by leveraging FST and expert opinions. The presented method provides a comprehensive risk
162 assessment framework that thrives in data-scarce or data-uncertain environments. The methodology
163 incorporates linguistic variables using membership functions and fuzzy-aggregation techniques to
164 accommodate inherent uncertainties that quantitative data may not capture. Natural gas infrastructure
165 will benefit from this innovative approach by improving safety, optimizing resource allocation, and guiding
166 informed decisions. Specifically, this paper will meet the above-mentioned goal through creating a
167 probabilistic questionnaire for expert elicitation, collecting expert opinions using the questionnaire, and
168 applying a fuzzy-aggregation approach to quantify failure probabilities. This fuzzy-aggregation-based
169 expert elicitation methodology is applied to assess the cause-and-effect relation leading to pipeline failure
170 as a Top Event (TE).

171 This paper adopts the following structure. A fuzzy-aggregation approach is described in Step 2 to elicit
172 expert opinions about the occurrence probabilities of BEs. After applying the proposed approach to
173 Midwest region pipeline networks of the United States, next section reports the application methodology.
174 Considering the findings, later proposed approach's applicability and results is discussed, while last section
175 provides the conclusions.

176 **Fuzzy aggregation approach**

177 The proposed fuzzy aggregation procedure for expert elicitation is illustrated in Figure 1 to determine
178 the likelihood of failure probabilities. It consists of three steps including the meticulous formulation of
179 questionnaire, the systematic gathering of expert opinions, and the robust fuzzy aggregation process. The
180 following subsections explain these steps, detailing the effectiveness of this proposed methodology.

181 **Meticulous Questionnaire Formulation**

182 **Determination of BEs**

183 The first step of a risk assessment methodology is to identify and characterize the fundamental
184 components of risk or BEs. Based on the literature review and discussion with experts from the pipeline
185 industry, sixteen BEs have been determined that potentially contribute to pipeline failure (Bertuccio &
186 Moraleda, 2012; Hassan et al., 2022; Kabir et al., 2016). These BEs include transmitted material, soil pH,
187 cathodic protection, external coating, earthquake, flood, thunder/lightning, temperature variation, third-
188 party interference, material type, construction fault, material fault, design fault, and incorrect operation
189 (Liu et al., 2020). Figure 2 represents the cause-and-effect relationship between the BEs and their relation
190 to intermediate events (IEs), finally leading to pipeline failure, denoted as TE. Tier 2 and Tier 3 are the IEs
191 getting influenced by BEs situated in Tier 3. The cumulative failure probabilities of IEs lead to pipeline
192 failure (TE) in the risk assessment model.

193 **Development of the cause-and-effect relation**

194 After finalizing the determination of BEs, a cause-and-effect relationship needs to be established. For
195 establishing the interactions and their influence on TE, BEs are examined, and causal relation is affirmed
196 either directly or indirectly (Yu et al., 2023). For instance, as a direct representation of cause-and-effect
197 relation, pipeline failure could occur due to external factors such as internal coatings, resulting in internal
198 corrosion. It is crucial to distinguish stress corrosion cracking from typical external and internal corrosion
199 processes. Unlike traditional forms of corrosion, stress corrosion cracking is a distinct phenomenon caused
200 by a combination of tensile stress, susceptible material, and a corrosive environment. It often occurs in
201 materials under mechanical stress, such as pipelines, and can lead to catastrophic failures without visible
202 corrosion signs. Therefore, stress corrosion cracking is not categorized as external or internal corrosion.
203 However, stress corrosion cracking can compromise the structural integrity of the pipeline, potentially
204 creating pathways for external corrosion to occur over time due to exposure to environmental factors. So,
205 while stress corrosion itself does not cause external corrosion, it can indirectly contribute to conditions
206 conducive to external corrosion. To establish this indirect cause-and-effect relation, stress corrosion and
207 cracking are not directly linked to external corrosion; rather, they are associated with external factors that
208 ultimately result in pipeline failure.

209 Pressure reduction stations, an integral component of natural gas pipeline networks, are susceptible
210 to failure when expansion valves, regulators, or relief devices malfunction. As part of failure analysis,
211 equipment failure accounts for the malfunctioning of these components (Howard et al., 2011; Nasser et
212 al., 2021; Xu et al., 2022). Corrosion and erosion are indirect factors contributing to the failure of
213 equipment in pressure reduction stations (Babaeian et al., 2023). Degradation and failure of materials are
214 accelerated by environmental factors such as extreme weather events, earthquakes, or soil erosion.
215 Weather conditions such as heavy rainfall or flooding can cause pipeline components to corrode, making
216 them more susceptible to failure. Additionally, seismic events can damage pressure reduction equipment,

217 compromising its integrity and reliability. Pressure reduction stations fail due to indirect causes such as
218 environmental factors and equipment malfunctions (Xu et al., 2022). The indirect causal relationship
219 between corrosion, mechanical faults, and environmental factors contributing to and leading to pressure
220 reduction station equipment failure is shown in Figure 3.

221 **Questionnaire formulation**

222 In this step, expert opinions are gathered and a quantitative analysis is conducted on various risk
223 factors. Unlike previous steps of risk assessment, this involves the use of a survey questionnaire designed
224 to capture insights from domain experts in the pipeline industry. Within this questionnaire, experts employ
225 linguistic variables, spanning from "Very Low" to "Very High," to provide nuanced responses (Jamshidi et
226 al., 2013). For instance, external corrosion is an outcome of external failure coating due to surface
227 exposure. In this particular question, experts are asked to provide their input based on their experience
228 and knowledge. Another example is third-party interference, experts are asked to provide their opinion
229 using their background knowledge to predict the pipeline failure due to external interference. To quantify
230 fuzzy possibilities and probabilities through defuzzification, FST is applied. FST serves to systematically
231 capture and process expert knowledge and opinions as expressed in the survey questionnaire. Ultimately,
232 this step allows for the quantitative evaluation of the risk profile of the pipeline system.

233 **Systematic Experts' Opinions Gathering**

234 Experts' knowledge and experience are invaluable to assess the associated pipeline risks. Expert
235 opinions are gathered and analyzed in this phase to develop a systematic analysis method. A
236 comprehensive risk assessment of pipeline infrastructure can only be possible through analyzing these
237 expert opinions, which are vital in quantitatively evaluating the BEs and their interconnectedness.

238 **Selection of experts**

239 The process of opinion-gathering hinges upon selecting experts who possess a deep understanding of
240 pipeline failure, risk assessment methodologies, and related fields of natural gas pipeline operations. For

241 this study, individuals are chosen based on their practical experience and industry knowledge. A thorough
242 selection process is employed to select a panel of experts based on their professional positions,
243 experience, education, and age, as outlined in Table 1 (Leonardo Leoni, 2023). Although experience
244 accounts for professional involvement with duration, age still is considered as one influencing factor as it
245 may provide additional insight into how industry practices and technologies have changed over time and
246 age may influence cognitive abilities, including adaptability, learning capacity, and decision-making, which
247 affect expert judgment quality and reliability. Within the expert pool, these criteria ensure the inclusion
248 of diverse perspectives and experiences so that accurate and credible experts influence the risk
249 assessment decisions.

250 **Expert opinion elicitation**

251 Risk assessment techniques by obtaining expert opinions and judgments provide valuable insight,
252 especially if historical data is limited or unavailable. Informed decisions are based on domain experts'
253 knowledge, reducing risk by leveraging their expertise and experience. To extract valuable insights from
254 the panel of experts, a thorough process of eliciting expert opinions was conducted. These experts were
255 consulted and surveyed systematically, each tailored to specific aspects of the risk assessment process.
256 Using linguistic variables such as "Very Low," "Low," "Fairly Low," "Medium," "Fairly High," "High," and
257 "Very High," experts assess the likelihood and severity of each BE. Experts communicated risk assessments
258 nuancedly by utilizing these linguistic variables to consider the inherent uncertainties and complexity
259 associated with pipeline risk.

260 Iterative and collaborative approaches were used to elicit expert opinions. Using their extensive
261 knowledge and experience, experts provided detailed explanations for their assessments. Experts differ
262 in the depth of their knowledge, so weighing factors should be considered when determining their primary
263 status. When evaluating an expert's status, professional characteristics, qualifications, and experience are

264 considered. This study assessed four types of weights: professional position, education, experience, and
265 age to weigh the BEs (Shan et al., 2017). Weighing factors and scores assigned are shown in Table 1.

266 **Outlier treatment and weighing**

267 Expert opinions play a significant role in the credibility and quality of risk assessment methodologies.
268 For accurate risk assessment, it is crucial to identify outliers before deciding whether to include or exclude
269 them from the dataset (Nooghabi, 2019). An outlier is a data point that deviates significantly from the rest
270 of the dataset. Outliers occur by measurement or data collection errors, unknown underlying patterns, or
271 incorrect assumptions about data distribution (Tang et al., 2015). In risk assessment, outliers are always
272 an issue that needs to be addressed before proceeding with data analysis. There are two main reasons for
273 the occurrence of outliers. First, expert opinions differ significantly, especially when determining the
274 likelihood of rare and severe events. It is imperative to recognize that one expert's assessment may be
275 accurate while another may be completely different from the first. Secondly, being an outlier means that
276 the questionnaire can be complex for some experts to comprehend, which can be considered an unknown
277 factor affecting an expert's decision. Those errors can also appear as outliers if they are introduced
278 inadvertently (Bhargavi & Sireesha, 2022). Analyzing data with outliers is always problematic because
279 skewness always causes the data to be imbalanced resulting in unrealistic results (Zijlstra et al., 2011).

280 This study uses interquartile range (IQR) criteria to derive the most comprehensive aggregated
281 probability by incorporating a range of viewpoints and excluding extreme values. IQR is calculated by
282 subtracting the first quartiles from the third quartiles, and outliers are detected by adding 1.5 times the
283 IQR to the third quartile and deducting 1.5 times the IQR from the first quartile. Any data point outside
284 this range is considered an outlier (Jeong et al., 2017). Outliers are more likely to be excluded if using this
285 method of outlier detection instead of only using absolute criteria, which leads to a more comprehensive
286 and accurate analysis of the data. Aside from being more straightforward to implement, IQR criteria are
287 also more reliable since they do not rely on a fixed threshold and consider the entire data set. Since IQR

288 criteria can be used to explain outliers and provide meaningful insights, they are also easier to interpret
289 (Greco et al., 2023).

290 **Fuzzy aggregation approach**

291 **Fuzzy Set Theory (FST)**

292 Zadeh (1965) presented the FST as a tool for subjective judgment related to vagueness, ambiguity,
293 and multi-criteria decision-making (MCDM) (Zadeh, 1965). The FST allows for a more nuanced and flexible
294 representation of uncertainty in decision-making. The fuzzy numbers introduced in this approach are used
295 to quantify and describe the uncertainty associated with imprecise values within the framework of
296 traditional set theory. In this way, uncertain information can be represented more flexibly (Zhang et al.,
297 2016). Fuzzy logic-based approaches handle uncertainty and imprecision in data and reasoning. This
298 technique is helpful when there is uncertainty with traditional binary or Boolean logic, which describes
299 only true or false states (Liang et al., 2022).

300 As part of the FST, imprecise data, subjective assessments, and linguistic terms are considered to
301 represent and account for uncertainties and vague information. To capture uncertainties associated with
302 pipeline risk factors, fuzzy sets can be used instead of crisp values to model membership degrees of belief.
303 Pipeline risks can be assessed qualitatively or subjectively utilizing this method, such as corrosion rates,
304 natural disasters and equipment faults (Yu et al., 2021). Using fuzzy sets, we can represent various levels
305 of risk, including very low, low, medium, high, and very high. In a more advanced decision-making
306 approach, it is possible to consider multiple pipeline risk factors (Kabir et al., 2016).

307 A fuzzy set consists of objects without well-defined boundaries that separate them. Among the
308 members of a fuzzy set, there may be a degree of partial membership or uncertainty. A range of relevance
309 or connection may exist between objects within a set (Kabir et al., 2016). A fuzzy number is used in the
310 FST to represent inherent subjectivity and imprecision in expert judgment. A membership function
311 establishes a relationship between an ambiguous quantity, such as the probability of an event or a root

312 node. Membership functions quantify a fuzzy set's relevance or membership to that set, ranging between
313 0 and 1 with 0 being the very low and 1 very high. A fuzzy number, either regular, bound, or convex, can
314 express the vagueness of natural language using linguistic variables. Linguistic variables are usually
315 represented by trapezoidal fuzzy numbers (TFZs) or triangular fuzzy numbers (TpFNs) (Zarei et al., 2019).
316 Since TpFNs and TFZs are characterized by linear membership functions, this study utilizes TpFNs since
317 they are versatile and easy to operate, providing advantages over other membership functions.

318 **Conversion of linguistic terms to fuzzy numbers**

319 A failure probability estimate is based on expert elicitation and FST for basic root events (causes). The
320 likelihood of the top event "pipeline failure" can be determined by analyzing the root events and
321 determining their prior probabilities (Eleye-Datubo et al., 2008). Effective risk management strategies are
322 expected to be developed and implemented based on this information to identify the most critical root
323 events and their effects. Besides reducing the risk associated with the studied system, FST ensures accurate
324 and reliable estimates. Table 2 explains the seven scale linguistic variables, their fuzzy membership values,
325 and possible descriptions of each term.

326 As illustrated in Figure 4, TpFNs represent linguistic terms and their corresponding membership
327 functions. These membership functions address the vagueness associated with linguistic terms by
328 graphically representing the values associated with each set. This graphical transition between the value
329 of zero and one helps determine a term's membership in a set by indicating whether it is a member.

330 **Fuzzy Possibilities (FPs) calculations**

331 Although there are many techniques to calculate FPs, fuzzy linear opinion pool is a simple yet effective
332 method and is therefore used for this study. This method combines multiple experts' opinions to
333 determine if the probability of an event or outcome can be determined by agreement or an aggregate
334 estimate. Expert opinions are categorized using weights assigned to each source, which are aggregated to
335 calculate the final results. It integrates opinions to arrive at an assessment and indicates the degree to

336 which an expert believes a particular outcome or event will occur (Thakur et al., 2022). Equation (1) can
337 be used to calculate FPs:

$$338 \quad FPs = \sum_{i=1}^n W_j A_{ij}, \quad j = 1, 2, 3, \dots, m. \quad (1)$$

339 In Equation 1, A_{ij} is the linguistic value derived from expert j about event i , FPs is the fuzzy possibility
340 representing the aggregated fuzzy value of event i , and W_j is the weighing score of expert j about event i
341 if there are n total events and m total experts. Table 1 describes the different criteria for experts and their
342 relevant scores based on their position, education, experience, and age.

343 **Defuzzification**

344 Defuzzification is the process of transforming fuzzy sets into crisp values, creating a more efficient and
345 effective decision-making process. This method involves converting fuzzy sets, which represent uncertain
346 information, into crisp values that are more suitable for decision-making. Defuzzification methods include
347 the maximum or mean-maximum method, the weighted average method, and the center of area (CoA). A
348 standard defuzzification method is the CoA, which calculates the crisp value from a fuzzy set. Trapezoidal
349 fuzzy numbers (TpFNs) or triangular fuzzy numbers (TFZs), Gaussian, and sigmoid membership functions
350 can be used to represent linguistic terms (S, 2023; Zarei et al., 2019).

351 TpFZs are employed in this study to de-fuzzify and convert trapezoidal shapes into crisp values
352 describing fuzzy set membership functions. Figure 5 illustrates the CoA method using TpZFs, which have
353 four dimensions: the left shoulder, the rising edge, the falling edge, and the right shoulder, represented by
354 a_1, a_2, a_3 , and a_4 . The following equation represents the CoA defuzzification method (Sugeno & Kang,
355 1986):

$$356 \quad X = \frac{\int \mu(x) x dx}{\int \mu(x)}. \quad (2)$$

357 In Equation 2, $\mu(x)$ represents the aggregated membership function, x is the output variable, and X
358 represents the de-fuzzified output. For a given input variable x , the TpZFs (x) can be defined as follows
359 (Natarajan, 2011).

$$\begin{aligned}
 \mu(x) &= 0, & \text{For } x < a_1 \text{ or } x > a_4; \\
 \mu(x) &= \frac{(x - a_1)}{(a_2 - a_1)}, & \text{For } a_1 \leq x \leq a_2; \\
 \mu(x) &= 1, & \text{For } a_2 < x \leq a_3; \\
 \mu(x) &= \frac{(a_4 - x)}{(a_4 - a_3)}, & \text{For } a_3 < x \leq a_4.
 \end{aligned} \tag{3}$$

360 where the membership of fuzzy input variable x is represented by $\mu(x)$ in the fuzzy set. Depending on how
 361 strongly an input variable has been included in the fuzzy set, the degree of membership can range from 0
 362 to 1. A value of 0 indicates impossibility, and 1 shows certainty.

363 **Calculating FPr**

364 An FPr is a way of representing probabilities that capture the uncertainty associated with the likelihood
 365 of an event in the context of fuzzy sets or fuzzy logic. A fuzzy arithmetic operation and a fuzzy inference
 366 technique can be used to calculate FPr (S, 2023). FPr distributions, or fuzzy numbers, are derived by
 367 incorporating input uncertainty and propagating it to estimate the FPr distributions. In this study,
 368 Onisawa's function was used to convert FPs into FPr (Onisawa, 1988):

$$\text{FPr} = \begin{cases} \frac{1}{10^K} \text{ if } \text{FPs} \neq 0 \\ 0 \text{ if } \text{FPs} = 0 \end{cases}, \tag{4}$$

$$\text{where, } K = \left[\left(\frac{1 - \text{FPs}}{\text{FPs}} \right) \right]^{\frac{1}{3}} \times 2.301.$$

371 Equation (4) calculates K using the FPs value obtained from Equation (1). To introduce non-linearity,
 372 which is desirable for certain applications, and show direct one-to-one mappings between possibility and
 373 probability, Onisawa's function used the exponent of 1/3. Based on empirical rules for specific scaling or
 374 normalization, a constant of 2.301 is used (ONISAWA, 1988).

375 **Fuzzy “AND” (T-Norm) and “OR” (S-Norm) operators**

376 Fuzzy “AND” (T-Norm) operators assess all conditions collectively to determine their degree of
 377 fulfillment, calculated as the minimum of their fuzzy probabilities by considering all conditions together.

378 This approach quantifies the contribution of each condition or factor to risk assessment. For instance,
379 applying the fuzzy “AND” operator, the minimum (MIN) of these fuzzy probabilities for BEs corrosion,
380 maintenance quality, and environmental conditions is considered. The risk associated with this minimum
381 operation reflects the contribution of all three BEs’ conditions. Conversely, the fuzzy “OR” (S-Norm)
382 operators determine the extent to which at least one condition has been met by calculating the maximum
383 of the BEs’ fuzzy probabilities. Unlike the fuzzy “AND” operator, the maximum of the fuzzy probabilities is
384 taken as a result of each condition when applying the fuzzy “OR” operator. These two operators enable
385 handling complex, uncertain, data and reasoning by accommodating degrees of truth and membership
386 (Shi et al., 2014).

387 “AND” operators promote conservative decision-making by requiring both conditions to be true for
388 the overall condition to be considered, and the result becomes more confident, decreasing the likelihood
389 of making risky choices. However, when a more lenient approach is permitted, the “AND” operator may
390 lead to excessively pessimistic decisions, reducing the possibility of positive outcomes or missing out on
391 opportunities. The “OR” operator allows for inclusiveness and adaptability in decision-making by allowing
392 either condition to be true and providing additional decision-making flexibility. It is suitable where strict
393 criteria are not necessary, and adopting a more accommodating approach can be advantageous. Although
394 the use of these operators is at the discretion of the decision-makers, however, using these operators
395 requires a thorough understanding of the problem because “AND” is more conservative and cautious,
396 while “OR” is more flexible and tolerant (Gupta & Qi, 1991).

397 **Application of Fuzzy-aggregation approach using PHMSA data and domain expert elicitation in
398 the Midwest USA**

399 To validate the developed fuzzy-aggregation approach for assessing the risk involved in pipeline
400 networks, this study analyzed the natural gas pipeline risk in Midwest USA using PHMSA historical
401 database from 2010 to 2022. The historical data was employed to calculate CPr. While, to calculate the

402 FPr, domain experts from the Midwest region were also elicited in the data analysis process to supplement
403 the factors for which historical data is scarce (Database, 2023). A sole focus of this study is the elicitation
404 of expert data to evaluate the proposed model and description of CPr is to compare the effectiveness of
405 the approach.

406 **Calculation of expert's weighing score**

407 Each variable received in linguistic terms was added to the total weight using Equation (2), and
408 weighing values were calculated using Equation (3). Expert elicitation received from experts showing their
409 professional position, experience, education, age, and weighing score and value are shown in Table 3.

410 **Calculation of CPr and FPr**

411 A CPr reflects the likelihood of an event or outcome based on historical data. Each risk factor is
412 considered individually and its corresponding CPr is calculated. Dataset from PHMSA contains information
413 about pipeline incidents, failure modes, and contributing factors (Database, 2023). The dataset was
414 carefully reviewed and preprocessed before analysis to ensure data quality and integrity. In this process,
415 the data was cleaned, missing values were addressed, and the consistency of variables was verified. Table
416 4 shows the CPr calculated from the historical data for the Midwest region and based on the pre-
417 processed dataset, CPr is calculated for pipeline network risk factors and failure modes.

418 To calculate the FPr through expert elicitation, a survey questionnaire was formulated using Qualtrics
419 based on variables explained in Section 2.3.1. and submitted for formal approval by the Institutional
420 Review Board (IRB). After the IRB approval, the survey questionnaire was sent to fifty experts in the field
421 and academia with expertise and experience in pipeline networks. The experts were selected based on
422 their cutting edge research reports submitted to the PHMSA for the last five years, 2018-2023 (Database,
423 2023).

424 A few reminders later, fifteen responses were received, but after reviewing, it was realized that they
425 needed to be sorted according to their completeness. Outliers were identified using the IQR technique to

426 make the responses fit for analysis. Five responses were declared outliers due to inconsistent points
427 outside the $\sigma \pm 1$. Therefore, only ten complete responses from the Midwest region have been considered
428 for conducting for calculation of FPr. As these responses come from experts from industry and academia
429 with different backgrounds and areas of specialization, they cover various aspects of the problem.

430 A significant difference exists between crisp failure probabilities derived from PHMSA data and
431 corresponding FPr derived from expert elicitation, as shown in Table 5. Uncertainty introduces
432 considerable ambiguity in risk analysis, and lack of failure probability data, inherent ambiguity, and
433 imprecise information lead to underestimating or overestimating risks. (Zarei et al., 2019). Secondly,
434 enhanced safety measures at gas facilities play a crucial role, and due to technological advances,
435 preventive measures, and other factors, recent years have seen substantial improvement in safety levels.
436 (Ramzali et al., 2015). As a result, databases such as PHMSA often present failure data that remains static
437 over time and fails to adequately represent recent advancements in component reliability. Consequently,
438 fuzzy failure probabilities are anticipated to yield results more reflective of the nuanced and evolving
439 safety environment, in contrast to the reliance on rigidly crisp probabilities. Figure 6 explains the
440 comparison of FPr calculated through expert elicitation for sixteen BEs.

441 **Employment of Fuzzy-logic Operators**

442 Before employing T-Norms (fuzzy “AND” operators) or S-Norms (fuzzy “OR” operators), logical
443 relationships are considered to decide the use of sixteen BEs. The T-Norm is used in strict conjunction
444 when all conditions must be met simultaneously for an event to occur. For instance, failure due to
445 transmitted material will cause failure of internal coating and eventually lead to internal corrosion. On the
446 contrary, S-Norm is used as a permissive conjunction when at least one associated condition is satisfied
447 e.g., soil pH, failure due to cathodic protection, and failure of external coating, if any of the conditions is
448 met, it will lead to external corrosion. (Singh et al., 2022). Based on the same rules, Table 6 shows the

449 application of both operators for the fuzzy-aggregation approach. When the T-Norm is used, it will ensure
450 the conservative approach by taking the minimum value out of two failure probabilities.

451 Figure 7 describes the graphical representation of the fuzzy logic operator for risk assessment
452 probability for TE. For BE1 and 2, T-Norm is used by assuming that transmitted material and failure of
453 internal coating are expected to happen simultaneously or that transmitted material is the root cause for
454 the occurrence of internal corrosion. External corrosion may occur due to poor soil conditions or external
455 coating failure, suggesting employing S-Norm. For natural disasters, T-Norm is used because typically
456 inclement weather, lightning/ thunder, and flood happen simultaneously, leading to natural disasters.
457 Different faults are independent, suggesting using S-Norm leading to IE faults. To ensure risk is
458 represented conservatively and realistically, the T-Norm is used for external factors probability
459 determination. For IEs, internal corrosion, external corrosion, soil pH, stress corrosion cracking, natural
460 disasters, and third-party interference, all critical conditions must be met simultaneously for the event to
461 be deemed probable. S-Norm allows for a more realistic representation of "Internal Factors" probabilities
462 by aligning with the logic that any critical condition can independently lead to the top event. Finally, as
463 part of the risk assessment process, T-Norm calculates the probability of pipeline failure since it captures
464 the logic that for the TE to occur, a combination of external and internal factors must occur simultaneously.

465 **Results and discussion**

466 In this study, the pipeline risk assessment model, a fuzzy-aggregation approach, is employed to
467 calculate the risk probability of pipeline failure as TE. The model integrates sixteen BEs into four IEs, i.e.,
468 internal corrosion, external corrosion, natural disaster, and faults in the first step. BE 1 and 2 yielded a
469 failure probability of 0.005 for internal corrosion using T-Norm. BE 3,4 and 5 resulted in a failure score of
470 0.0132 for external corrosion using S-Norm. The output for IE 3 (Natural disaster), using BE 6,7,8 and 9, is
471 0.0011 using T-Norm. For IE 4, we used S-Norm for BE 12, 13, and 14, which yielded a failure probability
472 of 0.0098. IEs calculation depicts the membership values for "External Factors" and "Internal Factors,"

473 which encompass events related to external risks such as corrosion, third-party interference, and natural
474 disasters. The calculated membership value for "External Factors" is 0.0011, indicating a low but non-
475 negligible likelihood of external factors collectively leading to pipeline failure. Internal factors represent
476 internal risks like material faults and operational errors. The calculated membership value for "Internal
477 Factors" is 0.0098, signifying a higher likelihood of internal risk factors contributing to pipeline failure.
478 Higher probability explains that risks contributing to human error or design faults are more significant than
479 external factors and require deliberate attention to reduce the risk of TE occurrence. Table 7 describes the
480 calculation for TE occurrence. TE results explain the final risk probability for Pipeline Failure. Applying the
481 AND operator to the membership values of "External Factors" and "Internal Factors," a failure probability
482 value of 0.0011 is calculated. This value represents the likelihood of external and internal risk factors
483 coinciding with a pipeline failure event.

484 Interpreting these results is crucial in understanding the overall risk assessment and its implications.
485 The nearly identical membership values for "External Factors" and "Internal Factors" (0.0011 and 0.0098,
486 respectively) indicate that both external and internal factors play a crucial role in pipeline failure. This
487 balanced contribution suggests that risk mitigation efforts should consider internal and external factors.
488 T-Norm or "AND" tends to be more conservative because it takes the minimum value, assuming
489 the smallest possibility or the most pessimistic estimate. It focuses on the lower bounds of
490 confidence and is associated with a safer, more cautious approach. On the contrary, S-Norm or
491 "OR" tends to be less conservative because it takes the maximum value, assuming the largest
492 possibility or the most optimistic estimate. It's risk-acceptant and may be perceived as less
493 cautious or safe. The higher membership value for "Internal Factors" implies that internal risks, such as
494 material faults and operational errors, may significantly impact pipeline failure. This sensitivity
495 underscores the importance of rigorous quality control, maintenance, and operating procedures. The
496 lower membership value for "External Factors" suggests that while external risks like corrosion and natural

497 disasters are significant, the pipeline may have some resilience against them. Protective measures such
498 as coatings and monitoring systems effectively reduce the likelihood of external factors leading to failure.
499 Based on these results, risk mitigation strategies should focus on maintaining the integrity of internal
500 factors, reducing the impact of external factors, and ensuring a comprehensive risk management plan that
501 addresses both types of risks.

502 A fuzzy-aggregation approach using fuzzy logic operators offers several advantages over traditional
503 binary methods for assessing natural gas pipeline risk. Fuzzy logic captures the interaction between risk
504 factors and models their dependencies, which is ideal for assessing pipeline failure risks. This approach
505 avoids the potential pitfalls of overestimation and underestimation that binary methods can face due to
506 their balanced consideration of internal and external risk factors. The conservative estimation approach
507 ensures a realistic and cautious risk assessment by combining T-Norms (AND operators) with S-Norms (OR
508 operators). Consequently, the method avoids risk exaggeration while accommodating subtle shifts in risk
509 conditions, thereby offering a balanced assessment that is both reliable and accurate.

510 This balanced assessment informs practical maintenance and design decisions for pipeline networks.
511 The calculated probabilities derived from this approach offer valuable insights into maintenance
512 prioritization and design enhancements. Prioritizing maintenance activities based on calculated
513 probabilities allows for optimal resource allocation, reducing the likelihood of unplanned downtime or
514 incidents. Moreover, insights from these probabilities inform the design and construction of new pipeline
515 infrastructure or the retrofitting of existing systems. Design enhancements may include redundant safety
516 features, optimized material selection, or advanced monitoring systems, all aimed at mitigating identified
517 risks. By leveraging the calculated probabilities from the fuzzy-aggregation approach, pipeline operators
518 can proactively manage risks, allocate resources efficiently, and enhance the overall safety and reliability
519 of pipeline networks.

520 The results of this fuzzy-aggregation approach analysis provided valuable insight into data refinement
521 efforts and can be used to identify the key factors contributing to uncertainty. Acknowledging the
522 variability of calculated probabilities over time and as the pipeline degrades, it is recognized that these
523 probabilities are not fixed values and can dynamically change based on evolving pipeline conditions.
524 Pressure reduction stations are a crucial part of the natural gas pipeline system and are
525 vulnerable to failure due to faulty expansion valves, regulators, and relief devices. The analysis
526 incorporates equipment failure and environmental factors to assess malfunction risk.
527 Environmental factors can exacerbate equipment degradation, increasing its susceptibility to
528 failure. Corrosion of pipeline components, particularly in severe weather conditions, further
529 heightens the risk. Additionally, seismic events threaten pressure reduction equipment's
530 integrity and reliability. The failure probability of 0.6% arising from third-party interference endorsed
531 the implementation of ASME B31.8 by designing a higher-class location which will reduce the risk of
532 leakage or rupture by minimizing the corrosion or overpressure to a considerable limit. Observation of
533 ASME B31.8 helps to reduce the risk of leaks, ruptures, and other failures by enhancing public safety and
534 environmental protection. Adherence to these standards is also crucial for the safe and reliable operation
535 of natural gas pipeline networks by promoting industry best practices and regulatory compliance.

536 Cost-benefit analysis is crucial for pipeline risk assessment models as it helps quantify the economic
537 implications of safety measures versus potential risks. This also helps decision-makers identify optimal
538 strategies to mitigate risks while maximizing cost-effectiveness and ensuring resource allocation aligns
539 with safety priorities. There is a notable absence of a cost-and-benefit analysis within the research which
540 is attributed to the lack of data from the PHMSA database, which hindered the authors' ability to conduct
541 such an analysis.

542 **Conclusions and Future Work**

543 In this paper, a practical approach to modeling pipeline risk assessment complexity and uncertainty
544 has been developed by combining fuzzy aggregation with expert elicitation. Using qualitative methods,
545 such as probability factors, pipeline risks are assessed more nuancedly than binary methods, which only
546 determine success or failure. Further contributions from this study are summarized as follows:

547 • The results indicate that both internal and external risk factors influence pipeline failures. Internal
548 factors, such as material faults and operational errors, cause more pipeline failures due to human
549 errors and manufacturing faults.

550 • By analyzing internal factors, it is evident that material faults and operational errors are the most
551 critical factors leading to pipeline failures. The findings of this study show that it is imperative to
552 address the risks associated with external risk factors such as corrosion, third-party interference, and
553 natural disasters.

554 • This study shows that qualitative methods provide a better understanding of pipeline risks and
555 facilitate decision-making. With crucial insights into natural gas pipeline risk profiles, the
556 investigation will significantly improve pipeline safety and reliability.

557 • In addition to promoting the development and maintenance of natural gas pipelines, the model can
558 provide a base for research on mitigating pipeline risks and informing policymakers about potential
559 risks.

560 • The proposed framework can assess potential risks associated with soil characteristics,
561 environmental factors, and material faults. Further, it can evaluate the effectiveness of various
562 mitigation measures, such as leak detection and corrosion control, by highlighting the corrosion risks
563 by pipeline operators in the form of expert elicitation.

564 There is potential for improvements in several areas in this field, such as conducting sensitivity
565 analyses to address the concerns about uncertainty in data to ensure the reliability of assessment results,

566 and including more diverse expert views considering gender and ethnic diversity, etc. Efforts can be made
567 to minimize the inaccuracies in the input data by enhancing the data collection and monitoring process.
568 Developing novel methods to account for dependencies is possible, providing a more precise
569 representation of complex systems. Further validation with empirical data is necessary to ensure the
570 model's practical applicability. Furthermore, refinement techniques can make the quantification process
571 more robust and consistent. Conducting targeted studies and risk assessments by including pressure
572 reduction stations can help fill the knowledge gaps and inform decision-making processes aimed at
573 enhancing safety and reliability. To ensure public safety and promote environmental sustainability and
574 efficiency in natural gas transportation, future studies should incorporate the guidelines and requirements
575 outlined in ASME B31.8. Future works may also include the cost-benefit analysis for these invaluable assets
576 to facilitate the decision-makers for the best implementation of these risk assessment models.

577 **Acknowledgments**

578 This work was partially supported the National Science Foundation under EPSCoR RII Track-2 Program
579 award # OIA-2119691 and CMMI-1750316 and U. S. Department of Transportation PHMSA under Grant
580 No. 693JK3250009CAAP. The findings and opinions presented in this manuscript are those of the authors
581 only and do not necessarily reflect the perspective of the sponsors.

582 **Data Availability Statement**

583 The data, models, or code that support the findings of this study are available from the corresponding
584 author upon reasonable request.

585 The following symbols are used in this paper: Σ : summation; \int : Integral; $<$: Less than; $>$: greater than.

586 **References**

587 @USDOT. (2023). Pipeline Incident 20 Year Trends. *Pipeline and Hazardous Materials Safety*
588 *Administration*.

589 Ba, Z. N., Wang, Y., Fu, J., & Liang, J. W. (2022). Corrosion Risk Assessment Model of Gas Pipeline Based
590 on Improved AHP and Its Engineering Application. *Arabian Journal for Science and Engineering*,
591 47(9), 10961-10979. <https://doi.org/10.1007/s13369-021-05496-9>

592 Babaeian, A., Eslami, A., Ashrafizadeh, F., Golozar, M. A., Samadzadeh, M., & Abbasian, F. (2023). Risk-
593 based inspection (RBI) of a gas pressure reduction station. *Journal of Loss Prevention in the*
594 *Process Industries*, 84, Article 105100. <https://doi.org/10.1016/j.jlp.2023.105100>

595 Bertuccio, I., & Moraleda, M. V. B. (2012). Risk assessment of corrosion in oil and gas pipelines using
596 fuzzy logic. *Corrosion Engineering Science and Technology*, 47(7), 553-558.
597 <https://doi.org/10.1179/1743278212y.0000000028>

598 Bhargavi, M. V., & Sireesha, V. (2022). A COMPARATIVE STUDY FOR STATISTICAL OUTLIER DETECTION
599 USING COLON CANCER DATA. *Advances and Applications in Statistics*, 72(1), 41-54.
600 <https://doi.org/10.17654/0972361722003>

601 Chen, K., Shi, N., Lei, Z. J., Chen, X., Qin, W., Wei, X., & Liu, S. H. (2022). Risk Classification of Shale Gas
602 Gathering and Transportation Pipelines Running through High Consequence Areas. *Processes*,
603 10(5), Article 923. <https://doi.org/10.3390/pr10050923>

604 Database, P. (2023). *Research & Development Program Awards*.
605 <https://primis.phmsa.dot.gov/matrix/Home.rdm?s=0AA84A79392244DFBB1C54EA2C31B836>

606 Ding, Y. H., & Yu, D. T. (2005). Estimation of failure probability of oil and gas transmission pipelines by
607 fuzzy fault tree analysis. *Journal of Loss Prevention in the Process Industries*, 18(2), 83-88.
608 <https://doi.org/10.1016/j.jlp.2004.12.003>

609 Eleye-Datubo, A. G., Wall, A., & Wang, J. (2008). Marine and offshore safety assessment by incorporative
610 risk modeling in a fuzzy-Bayesian network of an induced mass assignment paradigm. *Risk
611 Analysis*, 28(1), 95-112. <https://doi.org/10.1111/j.1539-6924.2008.01004.x>

612 Gharabagh, M. J., Asilian, H., Mortasavi, S. B., Mogaddam, A. Z., Hajizadeh, E., & Khavanin, A. (2009).
613 Comprehensive risk assessment and management of petrochemical feed and product
614 transportation pipelines. *Journal of Loss Prevention in the Process Industries*, 22(4), 533-539.
615 <https://doi.org/10.1016/j.jlp.2009.03.008>

616 Greco, L., Luta, G., & Wilcox, R. (2023). On testing the equality between interquartile ranges.
617 *Computational Statistics*. <https://doi.org/10.1007/s00180-023-01415-8>

618 Guo, X. X., Jie, J., Khan, F., & Ding, L. (2021). Fuzzy Bayesian network based on an improved similarity
619 aggregation method for risk assessment of storage tank accident (vol 144, pg 242, 2020). *Process
620 Safety and Environmental Protection*, 149, 1031-1031.
621 <https://doi.org/10.1016/j.psep.2021.03.047>

622 Gupta, M. M., & Qi, J. (1991). DESIGN OF FUZZY-LOGIC CONTROLLERS BASED ON GENERALIZED T-
623 OPERATORS. *Fuzzy Sets and Systems*, 40(3), 473-489. [https://doi.org/10.1016/0165-0114\(91\)90173-n](https://doi.org/10.1016/0165-0114(91)90173-n)

625 Han, Z. Y., & Weng, W. G. (2011). Comparison study on qualitative and quantitative risk assessment
626 methods for urban natural gas pipeline network. *Journal of Hazardous Materials*, 189(1-2), 509-
627 518. <https://doi.org/10.1016/j.jhazmat.2011.02.067>

628 Hassan, S., Wang, J., Kontovas, C., & Bashir, M. (2022). An assessment of causes and failure likelihood of
629 cross-country pipelines under uncertainty using bayesian networks. *Reliability Engineering &
630 System Safety*, 218, Article 108171. <https://doi.org/10.1016/j.ress.2021.108171>

631 Hawari, A., Alkadour, F., Elmasry, M., & Zayed, T. (2018). Condition assessment model for sewer pipelines
632 using fuzzy-based evidential reasoning. *Australian Journal of Civil Engineering*, 16(1), 23-37.
633 <https://doi.org/10.1080/14488353.2018.1444333>

634 Hong, B. Y., Shao, B. W., Guo, J., Fu, J. Z., Li, C. C., & Zhu, B. K. (2023). Dynamic Bayesian network risk
635 probability evolution for third-party damage of natural gas pipelines. *Applied Energy*, 333, Article
636 120620. <https://doi.org/10.1016/j.apenergy.2022.120620>

637 Howard, C., Oosthuizen, P., & Peppley, B. (2011). An investigation of the performance of a hybrid
638 turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations.
639 *Applied Thermal Engineering*, 31(13), 2165-2170.
640 <https://doi.org/10.1016/j.applthermaleng.2011.04.023>

641 Jabbari, M., Gholamnia, R., Esmaeili, R., Kouhpaee, H., & Pourtaghi, G. (2021). Risk assessment of fire,
642 explosion and release of toxic gas of Siri-Assalouyeh sour gas pipeline using fuzzy analytical
643 hierarchy process. *Helijon*, 7(8), Article e07835. <https://doi.org/10.1016/j.helijon.2021.e07835>

644 Jamshidi, A., Yazdani-Chamzini, A., Yakhchali, S. H., & Khaleghi, S. (2013). Developing a new fuzzy
645 inference system for pipeline risk assessment. *Journal of Loss Prevention in the Process
646 Industries*, 26(1), 197-208. <https://doi.org/10.1016/j.jlp.2012.10.010>

647 Jeong, J., Park, E., Han, W. S., Kim, K., Choung, S., & Chung, I. M. (2017). Identifying outliers of non-
648 Gaussian groundwater state data based on ensemble estimation for long-term trends. *Journal of
649 Hydrology*, 548, 135-144. <https://doi.org/10.1016/j.jhydrol.2017.02.058>

650 Kabir, G., Sadiq, R., & Tesfamariam, S. (2016). A fuzzy Bayesian belief network for safety assessment of oil
651 and gas pipelines. *Structure and Infrastructure Engineering*, 12(8), 874-889.
652 <https://doi.org/10.1080/15732479.2015.1053093>

653 Leonardo Leoni, F. D. C. (2023). Integration of fuzzy reliability analysis and consequence simulation to
654 conduct risk assessment. *Journal of Loss Prevention in the Process Industries*, 83(1), 15.
655 <https://doi.org/https://doi.org/10.1016/j.jlp.2023.105081>

656 Liang, X. B., Ma, W. F., Ren, J. J., Dang, W., Wang, K., Nie, H. L., . . . Yao, T. (2022). An integrated risk
657 assessment methodology based on fuzzy TOPSIS and cloud inference for urban polyethylene gas
658 pipelines. *Journal of Cleaner Production*, 376, Article 134332.
659 <https://doi.org/10.1016/j.jclepro.2022.134332>

660 Liu, Q., Yu, H. Y., Zhu, G. C., Wang, P. B., & Song, S. Y. (2020). Investigation on leakage cause of oil pipeline
661 in the west oilfield of China. *Engineering Failure Analysis*, 113, Article 104552.
662 <https://doi.org/10.1016/j.engfailanal.2020.104552>

663 Liu, Y. M., & Bao, Y. (2022). Review on automated condition assessment of pipelines with machine
664 learning. *Advanced Engineering Informatics*, 53, Article 101687.
665 <https://doi.org/10.1016/j.aei.2022.101687>

666 Moein Younesi Heravi, A. Y. S. B. R. (2023). Using Fuzzy Approach in Determining Critical Parameters for
667 Optimum Safety Functions in Mega Projects (Case Study: Iran's Construction Industry) |
668 SpringerLink. *Frontiers in Nature-Inspired Industrial Optimization*, 1, 183-200.
669 https://doi.org/10.1007/978-981-16-3128-3_10

670 Nasser, A. H. A., Ndalila, P. D., Mawugbe, E. A., Kouame, M. E., Paterne, M. A., & Li, Y. X. (2021).
671 Mitigation of Risks Associated with Gas Pipeline Failure by Using Quantitative Risk Management
672 Approach: A Descriptive Study on Gas Industry. *Journal of Marine Science and Engineering*, 9(10),
673 Article 1098. <https://doi.org/10.3390/jmse9101098>

674 Natarajan, P. P. a. G. (2011). *An Appropriate Method for Real Life Fuzzy Transportation Problems*.
675 International Journal of Information Sciences and Application. <http://www.irphouse.com>

676 Nooghabi, M. J. (2019). On detecting outliers in the Pareto distribution. *Journal of Statistical
677 Computation and Simulation*, 89(8), 1466-1481.
678 <https://doi.org/10.1080/00949655.2019.1586903>

679 Onisawa, T. (1988). AN APPROACH TO HUMAN RELIABILITY IN MAN-MACHINE SYSTEMS USING ERROR
680 POSSIBILITY. *Fuzzy Sets and Systems*, 27(2), 87-103. [https://doi.org/10.1016/0165-0114\(88\)90140-6](https://doi.org/10.1016/0165-0114(88)90140-6)

682 Osman, A., & Shehadeh, M. (2022). Risk assessment of interstate pipelines using a fuzzy-clustering
683 approach. *Scientific Reports*, 12(1), Article 13750. <https://doi.org/10.1038/s41598-022-17673-3>

684 Oz, N. E., Mete, S., Serin, F., & Gul, M. (2019). Risk assessment for clearing and grading process of a
685 natural gas pipeline project: An extended TOPSIS model with Pythagorean fuzzy sets for
686 prioritizing hazards. *Human and Ecological Risk Assessment*, 25(6), 1615-1632.
687 <https://doi.org/10.1080/10807039.2018.1495057>

688 Pahlevan, A., Lavasani, S., Omidvari, M., & Arjmandi, R. (2019). Fuzzy analyses of adverse consequences
689 resulted from offshore pipeline failure. *International Journal of Environmental Science and*
690 *Technology*, 16(10), 5643-5656. <https://doi.org/10.1007/s13762-018-1908-3>

691 Raeihagh, H., Behbahaninia, A., & Aleagha, M. M. (2020). Risk assessment of sour gas inter-phase
692 onshore pipeline using ANN and fuzzy inference system - Case study: The south pars gas field.
693 *Journal of Loss Prevention in the Process Industries*, 68, Article 140438.
694 <https://doi.org/10.1016/j.jlp.2020.140438>

695 Ramzali, N., Lavasani, M. R. M., & Ghodousi, J. (2015). Safety barriers analysis of offshore drilling system
696 by employing Fuzzy Event Tree Analysis. *Safety Science*, 78, 49-59.
697 <https://doi.org/10.1016/j.ssci.2015.04.004>

698 Ren, J., Jenkinson, I., Wang, J., Xu, D. L., & Yang, J. B. (2009). An Offshore Risk Analysis Method Using
699 Fuzzy Bayesian Network. *Journal of Offshore Mechanics and Arctic Engineering-Transactions of*
700 *the Asme*, 131(4), Article 041101. <https://doi.org/10.1115/1.3124123>

701 S, E. (2023). Project Scheduling Method Using Triangular Intuitionistic Fuzzy Numbers and Triangular
702 Fuzzy Numbers. *Applied Mathematical Sciences*, 9(4), 13.
703 <https://doi.org/http://dx.doi.org/10.12988/ams.2015.410852>

704 Salah, A., & Moselhi, O. (2016). Risk identification and assessment for engineering procurement
705 construction management projects using fuzzy set theory. *Canadian Journal of Civil Engineering*,
706 43(5), 429-442. <https://doi.org/10.1139/cjce-2015-0154>

707 Shan, X., Liu, K., & Sun, P. L. (2017). Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy
708 Bayesian Network with a Bow-Tie Model. *Scientific Programming*, 2017, Article 3639524.
709 <https://doi.org/10.1155/2017/3639524>

710 Sheng, K., Lai, X. L., Chen, Y., Jiang, J. C., & Zhou, L. (2021). Risk Assessment of Urban Gas Pipeline Based
711 on Different Unknown Measure Functions. *Tehnicki Vjesnik-Technical Gazette*, 28(5), 1605-1614.
712 <https://doi.org/10.17559/tv-20201021110548>

713 Shi, L., Shuai, J., & Xu, K. (2014). Fuzzy fault tree assessment based on improved AHP for fire and
714 explosion accidents for steel oil storage tanks. *Journal of Hazardous Materials*, 278, 529-538.
715 <https://doi.org/10.1016/j.jhazmat.2014.06.034>

716 Singh, K., Kaushik, M., & Kumar, M. (2022). Integrating β -cut interval based fuzzy fault tree analysis with
717 Bayesian network for criticality analysis of submarine pipeline leakage: A novel approach.
718 *Process Safety and Environmental Protection*, 166, 189-201.
719 <https://doi.org/10.1016/j.psep.2022.07.058>

720 Sugeno, M., & Kang, G. T. (1986). FUZZY MODELING AND CONTROL OF MULTILAYER INCINERATOR. *Fuzzy*
721 *Sets and Systems*, 18(3), 329-345. [https://doi.org/10.1016/0165-0114\(86\)90010-2](https://doi.org/10.1016/0165-0114(86)90010-2)

722 Tan, X., Fan, L., Huang, Y., & Bao, Y. (2021). Detection, visualization, quantification, and warning of pipe
723 corrosion using distributed fiber optic sensors. *Automation in Construction*, 132, Article 103953.
724 <https://doi.org/10.1016/j.autcon.2021.103953>

725 Tan, X., Guo, P. W., Zou, X. X., & Bao, Y. (2022). Buckling detection and shape reconstruction using strain
726 distributions measured from a distributed fiber optic sensor. *Measurement*, 200, Article 111625.
727 <https://doi.org/10.1016/j.measurement.2022.111625>

728 Tang, G. T., Pei, J., Bailey, J., & Dong, G. Z. (2015). Mining multidimensional contextual outliers from
729 categorical relational data. *Intelligent Data Analysis*, 19(5), 1171-1192.
730 <https://doi.org/10.3233/ida-150764>

731 Thakur, P., Kizielewicz, B., Gandotra, N., Shekhovtsov, A., Saini, N., & Salabun, W. (2022). The Group
732 Decision-Making Using Pythagorean Fuzzy Entropy and the Complex Proportional Assessment.
733 *Sensors*, 22(13), Article 4879. <https://doi.org/10.3390/s22134879>

734 Wen, H. J., Liu, L., Zhang, J. L., Hu, J. W., & Huang, X. M. (2023). A hybrid machine learning model for
735 landslide-oriented risk assessment of long-distance pipelines. *Journal of Environmental
736 Management*, 342, Article 118177. <https://doi.org/10.1016/j.jenvman.2023.118177>

737 Xu, Y. D., Liu, Z. J., Zhou, D. M., Tian, J. J., & Zhu, X. L. (2022). Vibration characteristics of pressure
738 pipelines at pumping stations and optimized design for vibration attenuation. *Water Supply*,
739 22(1), 990-1003. <https://doi.org/10.2166/ws.2021.220>

740 Yeganeh, A., Heravi, M. Y., Razavian, S. B., Behzadian, K., & Shariatmadar, H. (2022). Applying a new
741 systematic fuzzy FMEA technique for risk management in light steel frame systems [research-
742 article]. *Journal of Asian Architecture and Building Engineering*, 21(6), 10.
743 <https://doi.org/JAABE2102085CM.R2>

744 Younesi Heravi, M., Yeganeh, A., & Razavian, S. B. (2022). - Using Fuzzy Approach in Determining Critical
745 Parameters for Optimum Safety Functions in Mega Projects (Case Study: Iran's Construction
746 Industry). - 200.

747 Yu, J. X., Chen, H. C., Yu, Y., & Yang, Z. L. (2019). A weakest t-norm based fuzzy fault tree approach for
748 leakage risk assessment of submarine pipeline. *Journal of Loss Prevention in the Process
749 Industries*, 62, Article 103968. <https://doi.org/10.1016/j.jlp.2019.103968>

750 Yu, Q. Y., Hou, L., Li, Y. H., Cai, C., & Amer Soc Mech, E. (2021). FAILURE ASSESSMENT OF GAS PIPELINE
751 BASED ON FUZZY BAYESIAN NETWORK AND AHP. *Proceedings of Asme 2021 Pressure Vessels and
752 Piping Conference (Pvp2021)*, Vol 5, Article V005t07a015.

753 Yu, Q. Y., Hou, L., Li, Y. H., Chai, C., Yang, K., & Liu, J. Q. (2023). Pipeline Failure Assessment Based on
754 Fuzzy Bayesian Network and AHP. *Journal of Pipeline Systems Engineering and Practice*, 14(1),
755 Article 04022059. [https://doi.org/10.1061/\(asce\)ps.1949-1204.0000698](https://doi.org/10.1061/(asce)ps.1949-1204.0000698)

756 Zadeh, L. A. (1965). FUZZY SETS. *Information and Control*, 8(3), 338-353. [https://doi.org/10.1016/s0019-9958\(65\)90241-x](https://doi.org/10.1016/s0019-9958(65)90241-x)

757 Zarei, E., Khakzad, N., Cozzani, V., & Reniers, G. (2019). Safety analysis of process systems using Fuzzy
758 Bayesian Network (FBN). *Journal of Loss Prevention in the Process Industries*, 57, 7-16.
759 <https://doi.org/10.1016/j.jlp.2018.10.011>

760 Zhang, G. Z., & Thai, V. V. (2016). Expert elicitation and Bayesian Network modeling for shipping
761 accidents: A literature review. *Safety Science*, 87, 53-62.
762 <https://doi.org/10.1016/j.ssci.2016.03.019>

763 Zhang, L. M., Wu, X. G., Qin, Y. W., Skibniewski, M. J., & Liu, W. L. (2016). Towards a Fuzzy Bayesian
764 Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage. *Risk
765 Analysis*, 36(2), 278-301. <https://doi.org/10.1111/risa.12448>

766 Zhang, P., Qin, G. J., & Wang, Y. H. (2019). Risk Assessment System for Oil and Gas Pipelines Laid in One
767 Ditch Based on Quantitative Risk Analysis. *Energies*, 12(6), Article 981.
768 <https://doi.org/10.3390/en12060981>

769 Zijlstra, W. P., van der Ark, L. A., & Sijtsma, K. (2011). Outliers in Questionnaire Data: Can They Be
770 Detected and Should They Be Removed? *Journal of Educational and Behavioral Statistics*, 36(2),
771 186-212. <https://doi.org/10.3102/1076998610366263>

772

773

774 **Tables**

775 **Table 1.** Weighing scores are given to experts based on their characteristics.

Criterion	Description	Score	Criterion	Description	Score
Professional Position	Sr./Jr. academic	5	Experience	<5	2
	Engineer	4		5-9	2
	Technician	3		10-19	3
	Operator	3		20-30	4
	Other	2		>30	5
Education	Ph.D.	5	Age	<30	2
	Masters	4		30-39	3
	Bachelor	3		40-50	4
	Social degree	3		>50	5
	High school	2			
	Other	2			

776

777 **Table 2.** Explanation of linguistic variables and membership function with possible description (Guo et
 778 al., 2021).

Linguistic variables	Fuzzy membership function					Description
Very Low (VL)	0	0	0.1	0.2		Indicates an extremely low level of risk that the likelihood of an adverse event or the severity of its consequences is extremely unlikely or negligible.
Low (L)	0.1	0.2	0.2	0.3		Signifies a relatively low level of risk that the likelihood of an adverse event or the severity of its consequences is low but not as negligible as in the case of "very low."
Fairly Low (FL)	0.2	0.3	0.4	0.5		A moderately low level of risk means that the likelihood of an adverse event or the severity of its consequences is somewhat higher than "low" but remains at a reasonably manageable level.
Medium (M)	0.4	0.5	0.5	0.6		A moderate level of risk means that the likelihood of an adverse event or the severity of its consequences is neither too high nor too low, falling within an average range.
Fairly High (FH)	0.5	0.6	0.7	0.8		A moderately high level of risk means that the likelihood of an adverse event or the severity of its consequences is somewhat higher than "medium" but still manageable.
High (H)	0.7	0.8	0.8	0.9		A significant level of risk means that the likelihood of an adverse event or the severity of its consequences is considerably higher, demanding increased attention and comprehensive risk management strategies.
Very High (VH)	0.8	0.9	1	1		An extremely high level of risk means that the likelihood of an adverse event or the severity of its consequences is significantly elevated, requiring immediate action and extensive risk mitigation efforts.

Table 3. Expert's details and corresponding weight for the Midwest region.

Expert	Professional Position	Education Level	Experience	Age (Years)	Weighing Score	Weighing value
E1	5	5	2	3	15	0.0904
E2	5	5	2	5	17	0.1024
E3	4	5	4	4	17	0.1024
E4	4	5	5	5	19	0.1145
E5	5	5	3	3	16	0.0964
E6	5	5	2	3	15	0.0904
E7	5	5	3	4	17	0.1024
E8	5	5	3	4	17	0.1024
E9	5	5	3	3	16	0.0964
E10	4	3	5	5	17	0.1024

Table 4. CPr based on PHMSA historical data for the Midwest region.

Attribute	Basic Event	Frequency	CPr (%)
Internal corrosion	Failure due to transmitted material (BE 1)		
	Failure of internal coating (BE 2)	1	0.3
	Soil pH (BE 3)		
External corrosion	Failure of cathodic protection (BE 4)		
	Failure of external coating (BE 5)	17	4.8
	Failure due to earthquake (BE 6)		No data
Natural Disaster	Flood (BE 7)	10	2.8
	Thunder/ lightning (BE 8)	14	4
	Temperature variation (BE 9)	9	2.6
Third-party interference	third-party interference (BE 10)	117	33.3
Stress corrosion cracking	Stress corrosion cracking (BE 11)		No data
	Construction fault (BE 12)	21	6
	Material fault (BE 13)	20	5.7
Faults	Design fault (BE 14)		No data
	Incorrect operation (BE 15)		No data
	Material type (BE 16)		No data

Table 5. Calculations of FPs and FPr for BEs.

BEs	Fuzzy aggregation number				K- Value	FPs	FPr (%)
BE1	0.37	0.46	0.565	0.68	2.24	0.5188	0.57
BE2	0.28	0.42	0.585	0.71	2.30	0.4988	0.5
BE3	0.36	0.505	0.685	0.82	2.03	0.5925	0.93
BE4	0.44	0.545	0.66	0.77	2.00	0.6038	1
BE5	0.42	0.57	0.74	0.86	1.88	0.6475	1.32
BE6	0.12	0.2	0.31	0.44	3.22	0.2675	0.14
BE7	0.22	0.33	0.45	0.56	2.67	0.3900	0.14
BE8	0.12	0.18	0.28	0.42	3.32	0.2500	0.11
BE9	0.28	0.4	0.535	0.65	2.41	0.4663	0.24
BE10	0.44	0.565	0.69	0.79	1.95	0.6213	0.6
BE11	0.28	0.4	0.555	0.69	2.36	0.4813	0.53
BE12	0.37	0.54	0.725	0.84	1.96	0.6188	0.32
BE13	0.31	0.43	0.55	0.65	2.35	0.4850	0.28
BE14	0.33	0.515	0.705	0.81	2.04	0.5900	0.65
BE15	0.42	0.57	0.735	0.85	1.89	0.6438	0.98
BE16	0.19	0.355	0.53	0.64	2.53	0.4288	0.45

786 **Table 6.** Application of fuzzy-logic operators.

Level	T-Norms (fuzzy "AND" operator)	S-Norms (fuzzy "OR" operator)
	<ul style="list-style-type: none"> • Failure due to transmitted material • Failure of internal coating 	<ul style="list-style-type: none"> • Soil pH • Failure of cathodic protection • Failure of external coating
Third tier (BEs)	<ul style="list-style-type: none"> • Failure due to earthquake • Flood • Thunder/ lightning • Temperature variation 	<ul style="list-style-type: none"> • Construction fault • Material fault • Design fault
Second tier (IEs)	<ul style="list-style-type: none"> • Internal corrosion • External corrosion • Soil pH • Stress corrosion cracking • Natural disaster • Third-party interference 	<ul style="list-style-type: none"> • Material type • Faults • Incorrect operation
Top Event (Pipeline failure)	<ul style="list-style-type: none"> • External factors • Internal factors 	

788 **Table 7.** Calculation of failure probability for TE.

BEs	IEs	IEs	TE
BE1	IE 1=		
	BE1 \cap BE2 = MIN [μ (0.0057), μ (0.0050)] =		
BE2	0.0050		
BE3	IE 2=		
BE4	BE3 \cup BE4 \cup BE5 = MAX [μ (0.0093), μ	IE 5=	
BE5	(0.0100), μ (0.0132)] = 0.0132	IE1 \cap IE2 \cap BE10 \cap IE 3	
BE6	BE6	\cap BE11 = MIN [μ	
BE7		(0.0050), μ (0.0060), μ	
BE8	IE 3=	(0.0132), μ (0.0053), μ	TE=
BE9	BE6 \cap BE7 \cap BE8 \cap BE9 = MIN [μ (0.0014), μ	(0.0011)] = 0.0011	IE5 \cap IE6 = MIN
BE10	(0.0014), μ (0.0011), μ (0.0024)] = 0.0011		(0.0098, 0.0011) =
BE11	BE11		0.0011
BE12	BE12		
BE13	IE 4=	IE 6=	
BE14	BE12 \cup BE13 \cup BE14 = MAX [μ (0.0032), μ	BE15 \cup IE4 \cup BE16 = MAX	
BE15	(0.0028), μ (0.0065)] = 0.0065	[μ (0.0098), μ (0.0065),	
BE16	BE16	μ (0.0045)] = 0.0098	

790 **List of figure captions**

791 **Figure 1.** Fuzzy aggregation technique to determine the probability of failure incidents.

792 **Figure 2.** Cause-and-effect variables leading to natural gas pipeline failure are represented in three tiers.

793 **Figure 3.** Indirect causal relation of risk factor responsible for pressure reduction station failure.

794 **Figure 4.** Linguistic terms with corresponding fuzzy membership functions.

795 **Figure 5.** Trapezoidal fuzzy number A^{\sim} .

796 **Figure 6.** Comparison of FPr using expert elicitation.

797 **Figure 7.** Graphical representation of fuzzy logic operator.