Cellular Chaos: Statistically Self-Similar
Structures based on Chaos Game
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We present a novel methodology to generate mechanical
structures based on fractal geometry by using the chaos
game, which generates self-similar point sets within a
polygon.  Using the Voronoi decomposition of these
points, we are able to generate groups of self-similar
structures that can be related back to their chaos game
parameters, namely the polygonal domain, fractional dis-
tance, and number of samples. Our approach explores the
use of forward design of generative structures, which in
some cases can be easier to use for designing than inverse
generative design techniques. To this end, the central hy-
pothesis of our work is that structures generated using the
chaos game can generate families of self-similar struc-
tures that, while not identical, exhibit similar mechanical
behavior in a statistical sense. We present a systematic
study of these self-similar structures through modal anal-
ysis and tensile loading and demonstrate a preliminary
confirmation of our hypothesis.

1 INTRODUCTION
Generative design of engineered structures is now
a popular area of research spanning domains including
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structural mechanics, acoustics, and thermo-fluidics. In
a typical generative structural design workflow, the de-
signer defines a spatial domain along with some mechan-
ical conditions and constraints, and the modeling system
generates a population of feasible structural alternatives
to choose from. A fundamental requirement for a such a
workflow is the ability to generate families of structures
that possess shared behavioral (e.g. thermal, mechanical,
etc.) characteristics making each structure “distinct but
feasible”. However, the generation of the alternatives, al-
most always, requires solving an inverse structural prob-
lem which is both conceptually and computationally chal-
lenging [1, 2, 3].

The objective of this work is to develop and inves-
tigate a forward-design methodology for generating fam-
ilies of structures that, while not identical, exhibit simi-
lar mechanical behavior in a statistical sense. More im-
portantly, we seek a methodology that offers explicit pa-
rameters to control the mechanical behavior of a struc-
tural system. To achieve these goals, we introduce an
algorithm to generate a new class of structures, namely
self-similar structures, inspired by fractal geometry. Our
methodology is based on the well-known fractal algo-



VTR
SR

Point Generation

Q
—

(c) Area Based
Line Thickening

(b) Voronoi of
Generated Points

Fig. 1.

(d) Adding Grips

(e) Modal Analysis Results

The method used to generate the points (a), Voronoi Decomposition (b), and the resulting structure(c). In order to test the

structure we add grip sections on the exterior of the structure with small gaps between adjacent grips (d). To evaluate the structures
we utilized modal analysis (e). The parameters used for generation are n = 3, A = 0.5, and t = 750.

rithm known as the chaos game, which is a simple and
powerful method to generate fractal geometry. Using
point-sets generated from the chaos game, our methodol-
ogy utilizes the well-known Voronoi tessellation to gen-
erate self-similar structures with statistically shared me-
chanical behavior (Figure 1).

1.1 Rationale & Background

Fractals offer a unique property that helps generate
similar structures since fractals can be defined as con-
sisting of smaller parts similar to themselves, commonly
called recursive self-similarity [4]. Self-similarity is an
important property of natural structures (e.g. trees, nacre
structures, etc.) and is particularly useful in structural de-
sign problems [5, 6]. However, much of the literature
primarily uses L-systems and grammar-based algorithms
[7, 5]. The common approach of investigation in these
approaches is to determine the right parameters for the al-
gorithm to generate the optimal structure for a given ap-
plication rather than explore methods to generate an entire
design space of potentially feasible designs. As a result,
very little is explored or understood regarding stochas-
tic similarity in mechanical or other physical properties
of structures generated using existing fractal-based struc-
tural design.

In contrast to prior works, our objective is to embody
the idea of generating populations of feasible alternatives
rather than generating one optimal solution to a structural
problem. In order to achieve this objective, we identify
the chaos game as a potent direction for algorithmic inves-
tigation of self-similar structure generation. Chaos game
is a well-known iterative process that can be used to create
fractal geometry in the form of point-sets through repet-
itive and randomized generation of points using a polyg-
onal domain [8, 9]. Chaos game has been used in the
biomedical field [10, 11], plant modeling [12], and com-
puter graphics [4].

In order to understand why chaos game is an inter-
esting direction, let us consider a simple example — the
Sierpinski gasket. A typical way to generate the Sier-
pinski gasket is through iterative subdivision using L-
systems and turtle graphics [13]. However, the Sierpinski
triangle can also be generated by using the chaos game by
starting with a triangle and generating a series of points
based on randomized linear interpolation with the ver-
tices of the triangle (Figure 3). What is critical to note
here is that while the L-systems approach gives the ex-
act geometry of the gasket for each iteration, the chaos
game only does so in the limiting case (i.e. when the
number of iterations tend to infinity). This has two impli-
cations. First, the number of iterations in the chaos game
controls the level of subdivisions for the gasket. Second,
even for the same number of finite iterations, one gets a
completely different point-set because of randomization.
In conjunction, both these implications mean that for a
given polygon (a triangle in this case), an entire family
of geometrically similar point distributions (and therefore
structures) can be generated by using merely a few pa-
rameters (the number of iterations and the interpolation
parameter). The question is whether this geometric simi-
larity carries forward into mechanical behavior.

1.2 Technical Approach

Chaos game is an iterative method that generates
self-similar point-sets in the limiting case within a polyg-
onal domain. By computing Voronoi tessellations on
these point-sets, our method generates mechanical struc-
tures that adopt the self-similarity of the point-sets result-
ing in the fractal distribution of local stiffness.

Our work aims to generate families of non-identical
structures with similar mechanical behavior, which are
generated in the same manner. In this way, our process
is a generative method to create structures. Furthermore,
each family is uniquely identifiable from the parameters



of the chaos game, namely, the polygonal domain, point
interpolation distance, and the number of samples. We
present a systematic study of these self-similar structures
through modal analysis and demonstrate a preliminary
confirmation of our hypothesis.

2 RELATED WORK

Our work spans multiple overlapping fields of re-
search in structural design each of which is quite exten-
sive. Here, we discuss works that are either methodolog-
ically or contextually relevant to our work.

2.1 Unit-cell Structural Design

Structural design has a rich history with several algo-
rithms that seek to develop structural systems with spe-
cific physical properties. For example, work by Chu et al.
[14] considers the design of cellular structures especially
for additive manufacturing. Similarly, we see several
works that focus on lattice structures for creating auxetic
(negative Poisson’s ratio) structures [15, 16, 17]. What is
common in these approaches is that they are based on ar-
rangements of some or the other form of a unit cell (often
symmetric) and the arrangements are constrained accord-
ing to some underlying grid-structure. The idea is that
one can tune macro- and meso-scale properties by vary-
ing a few parameters pertaining to the unit cell geometry
[18]. However, the design of the unit-cell, in itself, is not
a trivial task. In fact, it is either ad hoc and based on trial-
and-error or requires significant expertise and intuition.

2.2 Topology Optimization

Another widely practiced research direction in this
regard is that of topology optimization, wherein the typi-
cal goal is to optimize (maximize or minimize) a specific
criterion specified by the designer [19, 20]. In these cases,
the designer explicitly defines the mechanical loads, con-
straints, and boundary conditions, and a computer gener-
ates a single structure that meets the criteria with the set
conditions. In these cases, only a single optimal design
is generated, and if the designer needs a different struc-
ture, the design problem must be redefined. There are
also works is based on using topology optimization com-
bined with generative design based on L-Systems for the
creation of graph-based structures [21, 22].

2.3 Learning-based Structural Design

Many recent works consider the inverse design ap-
proach using machine learning methods to generate 2D
structures with tunable properties [23]. Recently, we

see topology optimization approaches in conjunction with
deep learning methods such as convolutional neural net-
works (CNN) [24] to generate multi-scale structures span-
ning micro- and macro-scales. Genetic algorithms have
also been used to create optimal designs using a Pareto
frontier and multiple objectives [25]. There has also been
uses of machine learning algorithms in order to optimize
biologically inspired patterns [26].

2.4 Voronoi-based Cellular Structures

One method to create a large number of patterns re-
volves around using Voronoi decomposition of points in
order to obtain cellular structures. One area that has
used this is the design of 2D infill structures for 3D
printing[27]. In a similar manner 3D Voronoi decompo-
sition can be used to create 3D printed structures with
anisotropic behavior which can be helpful in certain ap-
plication with uneven or varied loading conditions present
[28]. Another way that Voronoi decomposition has been
used is to generate foam structures which has application
in many different areas such as topological interlocking
and energy absorption [29]. One interesting application
is in 2.5D tile generation wherein different 2D Voronoi
layers are stacked on top of one another to create a 3D
structure from 2D Voronoi decomposition [30]. Voronoi
decomposition has also been used to create metamaterial
structures which be very beneficial since they do not rely
on the design of a single unit cell but rather the design of
the Voronoi sites [31, 32].

2.5 Fractal-based Structural Design

The chaos game has been used to explore the me-
chanical properties of fractals when applied as lattice
structures [33, 34, 35]. This is done by geometrically
defining a structure through lengths, widths, and thick-
nesses, which can be modified to change mechanical be-
havior. Similar works have done experiments on hierar-
chical structures, which can be defined by self similarly
at multiple dimensions [36, 37, 38].

2.6 Our Work

Our work leverages the strength of fractal-based ap-
proaches (especially the chaos game) for inducing con-
trollable stochastic variability along with Voronoi-based
approaches for elegant topology generation for structure
generation. This powerful combination provides advan-
tages over prior approaches by introducing an intuitive
way for both parametric control as well as structure gen-
eration. In effect, this provides us a means for direct cre-
ation of entire families of structures that behave in some
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Fig. 2. The method used to generate structures for tensile testing through the use of periodic wallpaper pattern (a) where each
polygon is used to generate chaos points(b). The chaos points are used with Voronoi and to create a structure and grips (c,d). This

structure can be used to simulate under tensile loading (e).
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Fig. 3. Creation of Points Using Chaos Game Algorithm where
n=3and A = 0.5

stochastically similar manner without the need for inverse
design.

3 CONCEPTUAL PRELIMINARIES

The chaos theory has been used to define a method
for creating fractals, commonly called the chaos game
[39, 40, 41]. The chaos game is an algorithm used to
generate a fractal that is described as an Iterative Func-
tion System, which is a set of pairs of linear mappings
[39, 40]. Many different fractals can be generated us-
ing different parameters one of the most common is the
Sierpinski triangle [41, 42]. The same process can be used
to create the Sierpinski pentagon as well as 3D shapes
such as the Menger sponge and Sierpifiski pyramid.

3.1 Chaos Game

The chaos game’s process to generate fractals is
defined as follows (Figure 3). Consider a polygon,
P, where n is the number of vertices of the polygon.
The polygon’s vertices are defined by the set of points
{p1,p2,...,pn}. For each vertex, the value of p; =
(cosb;, sinb;), where ; = 27*1 This creates a regu-
lar polygon with » number of vertices. Consider a ran-
domly placed point ¢y € R?. We define a function
R(n) : [1,n] => ¢ which provides the random inte-
ger, i, from 1 to n. The ¢-th vertex of P,, which is p;,

3 Edges
Distance 0.50 Distance 0.75

8 Edges
Distance 0.50 Distance 0.75

500
Points

o

%

1000
Points

Fig. 4. Structures generated using different combinations of pa-
rameter sets are shown here. The effects of varying number of
vertices (n), number of points (), and fractional distance moved
along the line (\) on the generated points and structures are dis-
played.

is chosen using this function. Using this randomly se-
lected vertex, p;, and the randomly chosen point, qg, a
new point can be defined using the following equation
q1 := qo + A(p; — qo), where X is the fractional distance
moved along the line connecting the vertex, p;, and the
initial point, o, and defined as A € [0,1]. This process
can now be repeated for the new point, ¢;. Using t to
represent the current iteration, the following equation for



finding the next point can be defined.

Qi+1 < Q¢ + )‘(pR(n) —qt) (1)

3.2 Parameters

This gives three parameters for the chaos game: n,
A, and t. The first parameter n is the number of ver-
tices of the polygon. These vertices are often called at-
tractors in previous literature [39]. Using different poly-
gons changes the options available for p; and the possi-
ble values of ¢; (Figure 4). The second parameter is A, or
the fractional distance moved along the line connecting p;
and ¢;. The fractional distance moved along the line, A is
confined to be between 0 and 1. When A = 0, ¢;4+1 = ¢4,
conversely when A = 1, ¢4+1 = p;. This means that if
A is closer to 1, the points will be clustered towards the
vertices of the polygon, while if A = 0, the points will
be more clustered in the center of the polygon (Figure 4).
The third parameter is 7', the number of iterations being
run. The current iteration, ¢, is defined as ¢t € [to,T],
where to > 0 and 7' is the number of iterations. Since the
initial point gg is not guaranteed to be within the polygon,
several initial iterations are done before the number of
iterations starts counting(), and all points generated be-
fore ¢y are ignored. Changing the number of points gen-
erated changes how densely the polygon is filled, which
changes the structure being generated and how that struc-
ture may react when tested (Figure 4).

3.3 Generating Points

By defining all three parameters, a set of points can
be generated using the defined algorithm (Figure 3). The
set of points is defined as S := {q;}, where all ¢; are
inside the main polygon. The set of points will be called
the chaos sites. These chaos sites can be used to create
the structures being studied (Figure 1a).

Since the number of points being generated is finite,
getting different sets of points with the same parameters
is likely since the starting random point differs each time.
Additionally, successive iterations of R(n) return differ-
ent chosen points each time, even if the initial point is the
same. It is for this reason that this process is generative
since, for the same set of parameters, there will be a dif-
ferent (but similar) set of points generated (Figure 5). Dif-
ferent sets of parameters will also result in very different
sets of points (Figure 4). For example, five runs with the
polygon being a triangle, fractional distance moved along
the line being 0.5, and the number of points being 750
will produce five triangles that have a statistically similar
clustering of points, but the structure will not be the same
across all five runs (Figure 5).
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Fig. 5. Five different runs for the same set of parameters pro-
duce similar, but not identical points and Voronoi decomposition.
This process demonstrates how the method is generative. Two
different sets of parameters are shown here.

The polygon used for the chaos game does not have
to be a regular polygon like P,. Wallpaper symme-
tries can be used to create a pattern of identical poly-
gons that can be used as the input polygon for the chaos
game. Wallpaper symmetries create a set of points by
rotating and translating a starting point throughout a do-
main. Voronoi decomposition can be used on these start-
ing points to create the set of polygons (Figure 2a). A set
of chaos sites, S, can now be generated for this polygon.
Furthermore, it is also possible to create S*, which is de-
fined as the union of multiple S (Figure 2b), in doing so
S* is generative in the same way since it is the combina-
tion of multiple generative sets. S* is also a set of chaos
sites and can be treated in a similar manner to S during
structure creation.

4 STRUCTURE GENERATION METHODOL-
0GY
The chaos sites, S or S*, generated using the Chaos
Game algorithm can be used to create a structure. The
methodology used to generate this structure has two main
components: (1) computing a Voronoi tessellation of .S or
S*, (2) thickening the edges of the Voronoi tessellation.

4.1 Voronoi Decomposition

To create our structures, a Voronoi tessellation is cal-
culated for the chaos sites, S or S*, creating a set of cells
for the structure. Note that the distribution of points in S
is an approximation of some fractal geometry. As a result,



the tessellation of this set results in a partition wherein
the cell areas are distributed in a manner inversely pro-
portional to the point density thereby giving the struc-
tural a fractal-like property, meaning cell areas are small
where there is a high density of points. For modal testing,
the unbounded cells resulting from Voronoi tessellation
are trimmed according to the polygonal domain boundary
(Figure 1b). For tensile testing, the unbounded cells re-
sulting from Voronoi tessellation are trimmed according
to the edges of the wallpaper symmetry (Figure 2c).

4.2 Edge Thickening

Given a Voronoi tessellation of the polygonal do-
main, our next step is to thicken the edges in the tessel-
lation. As such, this can simply be achieved by creat-
ing offset polygons for each Voronoi cell in the tessella-
tion. However, an important consideration here is that the
fractal-like distribution of the chaos sites results in a high
variation in the areas of the Voronoi cells. Therefore, we
employ an adaptive strategy wherein, we determine the
offset for each cell based on the measure of the cell ar-
eas normalized with respect to largest and smallest cells
in the tessellation (Figure 1c). Specifically, we begin by
computing the maximum and minimum cells areas (A4, 4z
and A,,;, respectively. For a given Voronoi cell with an
area A, we then compute the normalized area, A, as fol-
lows (Equation 2):

. A— Ay
A= min o)
Amaz - Amzn ( )

Consider an edge e shared by two Voronoi cells f;
and f;. Then, the thickness of the edge is given by
Te = w1 + wy, where w; and wj is the offset applied to
fi and f;. Note that for a non-adaptive thickening, this
would simply amount to 7. = 2w where w; = wy = w
is a constant offset. However, in our adaptive case, the
idea is to compute the offset based on the normalized ar-
eas. For this, we define w4, and wi,,;,, as the maximum
and minimum possible polygon offsets respectively. For
a cell f; with normalized area fli, the offset w; is calcu-
lated by linearly interpolating between the offset limits as
(Equation 3):

wy = A4; (wmaac - w'min) + Wmin 3)

Therefore, the thickness of an edge shared by two
Voronoi cells f; and f; with normalized areas A; and A;,
the thickness 7. = (/L + flj)(wmam — Wmin) T 2Wmin-

4.3 Grip Generation

In our work, we specifically aim to investigate our
shape generation methodology in terms of comparing
structures based on their natural frequencies and under
tensile loading. In order to do so, we implemented a grip
generation step in our computational framework in order
to apply fixed or forced displacements during simulation.
This is primarily done to ensure the application of appro-
priate boundary conditions for our analysis. Having said
this, this is not a fundamentally necessary step toward the
generation of the actual self-similar structure and we have
added it for completeness.

In the case of modal testing, we first generate an out-
ward offset for the polygonal domain. This results in a
region between the original and the offset polygon. We
then split this region into n pieces (where n is the number
of sides of the domain) simply by connecting each pair
of corresponding vertices in the two polygons. This re-
sults in n distinct grips rather than a single body (Figure
1d). For tensile testing, a square is used to define the do-
main for the structure. Then, we take this square domain
and add solid regions to the right and left sides with small
thickness so as to not influence the mechanical behavior
of the part (Figure 2 d). After the grips have been added,
the sample is extruded and triangulated to make it a 3D
structure.

5 EXPERIMENTAL DESIGN

The central claim behind our method is that the geo-
metric similarities induced by each family of parameters
of the chaos game reflects in several mechanical proper-
ties. In order to investigate this claim, we conducted a
series of numerical experiments wherein we used modal
analysis and tensile loading as the mechanical properties
to measure. For modal analysis, the idea was to perform
comparative statistical analyses of natural frequencies of
structures across different selective parameter families
(polygonal domain — n, number of iterations — 7', frac-
tional distance — A). For tensile loading, our goal was
to compare stress and deformation behavior across struc-
tures generated with multiple different wallpaper symme-
tries as well as across the chaos parameters. Below, we
provided details regarding the design of our experiments.

5.1 Modal Analysis

We chose modal analysis as our first context for
two reasons, First, it gives us a concrete physical con-
text (vibrations of a dynamical system) which we can
easily quantify in terms of natural frequencies. Second,
the modes of a structural system are fundamentally con-
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Fig. 6. Different parameters for shape generation are shown
here. The deformation of the first 4 modes is also shown with
the scale bar showing the total deformation in meters. The grips
shown in the generated structure are disconnected by a small
margin.

nected to the geometry and topology of the system. Con-
sequently, this would allow us to make objective compar-
isons of the mechanical behavior of each structure by ex-
amining the natural frequencies and mode shapes of each
geometry [43, 44]. Based on these reasons, modal anal-
ysis is an ideal candidate for a preliminary exploration
of how statistical shape similarities can carry over to me-
chanical properties.

We implemented our experiments using ANSYS us-
ing APDL. Each grip’s nodes are fixed which prevents the
grips from moving, allowing only the inside structure to
be examined with the modal analysis. Once the grips are
fixed, the modal analysis is performed, and the results can
be analyzed.

5.2 Tensile Loading

In order to test the mechanical response under load-
ing, we use tensile testing to evaluate if the proposed
method could be a viable generative design technique for
3D printing infills. In order to test this, we first start with

a periodic pattern generated using wallpaper symmetries,
the polygons of the resulting periodic pattern can then be
input to the chaos games to create S, and all chaos sites
can be combined together to create S*. S* is used along
with Voronoi to create a structure. In this manner, the
number of vertices used in the chaos game is fixed by
the chosen wallpaper symmetry. Note that all the chaos
sites S that comprise S* use the same parameters, which
makes each set S distinct but generated with the same pa-
rameters.

To perform these experiments, we used ANSYS
APDL, where the structure was assumed to be a 2D pla-
nar structure with thickness. The grip on one side is then
defined to be fixed, and a forced displacement is applied
to the grip on the other end. After running the simulation,
all nodes’ Von-Mises stress and deformation values are
exported and stored for analysis.

5.3 Hypothesis

We predict that using the same parameters, the gen-
erated structures will not have statistically different me-
chanical properties over multiple iterations. This hypoth-
esis aims to test if the parameter space defined by the
chaos game and using our generation methodology results
in structures that belong to the same family which could
all be feasible design solutions. Ultimately this would
show that our methodology is a generative process for
creating structures.

If the previous statement holds true, we expect that
as we change A then there should be a linear relation-
ship in the frequency magnitude. This relationship can
be expected because A is the distance moved along a line
connected the randomly selected polygon point and the
previous point. For this reason we expect a linear rela-
tionship between A and the magnitude of the frequency.

5.3.1 Modal Analysis

To test the hypothesis that structures generated with
the same set of parameters will have statistically similar
results, the same set of parameters was simulated 100 it-
erations. The parameters n, A, and ¢ were set to 3 ver-
tices, 0.5 fractional distance moved along the line, and
750 points, respectively. The first ten natural frequencies
were found for each of the 100 runs in order for compar-
ison. For each shape generated, we recorded 10 natural
frequencies along with the deformation of the shape.

To test the hypothesis that A and the resulting fre-
quencies were related, a second experimental setup was
devised where the number of points was set to 750 and
the value of A would be the following: 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9. For each polygon, we recorded
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5 natural frequencies along with the deformation of the
shape for 25 iterations. Additionally the values of n were
chosen to be 3, 5, 6, and 8.

5.3.2 Tensile Testing Analysis

With tensile loading, there are many more parameters
to measure as opposed to modal analysis, since we impose
a displacement into the structure we chose to measure
the stress characteristics of the part, specifically the Von-
Mises stress distribution, which is a measure of equiva-
lent stress. Since the maximum stress is sensitive to sharp
corners, we compare the average stress on the nodes for
each structure. With tensile loading of parts, we predict
that parts generated with the same parameters will exhibit
statistically similar behavior when comparing the average
stress. We further posit that the average stress values will
be dependant on the wallpaper symmetry (which controls
the shape and the variable ), meaning that for different
wallpaper symmetries the values of average stress may be
very different. The wallpaper symmetries chosen are p2,
p3, p4, and p6, which only require rotation of a single
starting point and copying (Figure 11.

For each test the porosity was also calculated so as to
be compared if necessary and was calculated as the ratio
of empty volume to total volume and is represented as a
decimal.

6 RESULTS
6.1 Modal Testing

The aim of the first test was to determine if structures
with the same set of parameters have statistically similar
results, in this case, natural frequencies. One hundred it-
erations were run for a single set of parameters, and the
first ten natural frequencies were compared. A one-way
ANOVA shows that the null hypothesis is rejected. In
other words, there is a significant difference in the popula-
tion means of the data. This, in turn, supports our central
hypothesis that geometric similarities induced by identi-
cal parameters also exhibit similar mechanical properties.
This is further reinforced by the low standard deviations
for each given population (Table 1). An interesting obser-
vation is that the standard deviations generally increase as
the frequency increases, which can be seen as the standard
deviation of frequency 1 is 2.04H z, and for frequency 10
itis 13.06 H z. As modal frequency increases, the magni-
tude of the frequencies begin to pair off with one another,
with frequency 1 being the exception as it is the only cat-
egory dissimilar to the other frequencies (Figure 7). We
can observe this pairing-off effect in frequencies 2 and 3,
which have similar results at near a frequency of 440H z,
and frequencies 4, 5, and 6, which also share similar re-
sults near a frequency of 700H z. Frequencies 7, 8, 9,
and 10 also pair together at a value around 1000H z. An
interesting observation is that at higher frequency num-
bers, the number of frequencies in a pair increases with
the first pairing only containing two modes, the second
has three, and the third pairing having four pairs. Since
many of these frequencies pair together, we used a two-
sample t-test in order to verify that these frequencies are
from two independent populations and not samples from
a single population. In each case, the p-value for com-
parison was < 0.005 showing that it is likely that the
pairing originates from two separate populations. Simi-
larly to the pairing behavior of the frequencies, it can be
observed that the standard deviations of the different fre-
quency groups pair together, with the first pairing having
a standard near 3.4H z and the second pairing having a
standard deviation near 7H z.

For experiment 2, we tested if the fractional distance
moved along the line, A, has a linear relationship with
the frequency. For each of the different polygons tested,
we conducted a two-way ANOVA, which showed that the
null hypothesis was rejected in each case, meaning that
there are significant differences in mean values for A and
frequency number. Additionally, the tests showed that
there is an interaction between the two factors. Some gen-
eral results were found for all the polygons tested. There
appears to be a distance at which each frequency value
peaks for each polygon (Figure 8). For example, in the



Frequency Number 1 2 3 5 6 7 8 9 10
Mean (H z) 209.5 | 438.0 | 443.9 | 687.3 | 703.3 | 713.2 | 994.5 | 1006.7 | 1022.7 | 1043.7
Standard Deviation (Hz) | 2.04 | 3.61 | 322 | 7.63 | 7.05 | 6.68 | 8.69 7.30 8.43 13.06

Table 1.

triangle (n = 3), the frequency values peak at A = 0.4.
Also, the lowest frequency value for the structures tested
tends to occur at A = 0.9 (Figure 8). Further, frequencies
1-3 change less as X increases from one value to the next,
while frequencies 4-5 change more as \ increases.

6.1.1 Triangle

For the triangle structures (n = 3), the frequency
magnitudes tend to form pairs at many values of A (Figure
8). This can be seen as frequency 1 is often dissimilar to
the other values, and frequencies 2 and 3 are often close
in magnitude. In a similar manner, frequencies 4 and 5
tend to pair together. For the triangle structures, the pair-
ings stay consistent up to A = 0.6; afterward, the pairings
are no longer similar to A < 0.6. Further, for A = 0.9, the
magnitudes of all five frequencies are close; however, the
t-test comparison determined that each frequency likely
belongs to its own population. For A = 0.1, the standard
deviation of the frequency values is higher than the stan-
dard deviations of the same frequencies for the other A
values. More specifically, the standard deviations of fre-
quencies 4 and 5 are higher than those of frequencies 4
and 5 for the other A values. The magnitude of the fre-
quency values peak near A = 0.4, afterwards, there is a
steady decrease in the values. The magnitudes of the first
five frequencies are also higher than the magnitudes of the
other polygons, with a maximum near 8504 z.

6.1.2 Pentagon

For the pentagon structures (n = 5), the frequency
magnitudes form similar pairs to the triangle structures,
except the pairings stay consistent up to A = 0.8 (Fig-
ure 8). Further, for A = 0.9 the magnitudes of all
the frequencies except frequency 1 are close in magni-
tude, similar to what was observed with the triangle at
A = 0.7. The magnitude of the frequency values peaks
near A = 0.5. Overall, standard deviations are small for
the pentagon structures. The magnitudes of all the fre-
quency values are smaller than their counterparts (same A
and frequency number) for the triangle structures, appear-
ing to be around half the magnitude in most cases. The
maximum frequency value is around 400H z.

After 100 runs with the same input parameters, the average and standard deviation are shown.

6.1.3 Hexagon

The frequency magnitudes for the hexagon structures
(n = 6) follow the same pairing as the pentagon but stay
consistent longer, including A = 0.9 (Figure 8), which
is the highest value of A that maintains the pairing. The
magnitude of the frequency values peaks around A = 0.5,
with a maximum frequency value of around 350H z. Fre-
quencies 4 and 5 at A = 0.1 and A = 0.9 have a higher
standard deviation than the other frequency standard de-
viations. For 0.2 through 0.8 fractional distance moved
along the line (A = 0.2 — 0.8), the standard deviations
of the magnitudes of the frequencies are smaller in com-
parison with the previous values. The hexagon structures
also tend to have lower frequency magnitudes than their
counterparts for the pentagon and triangle; however, there
is not as steep of a decrease from pentagon to hexagon as
there was from triangle to pentagon.

6.1.4 Octagon

The same pairing seen before in the other structures
occurs for the octagon structure (n = 8) (Figure 8). The
pairings stay consistent up to and including 0.9 fractional
distance moved along the line (A = 0.9), just like the
hexagon structures. Frequencies 4 and 5 also do not drop
in magnitude as much from A = 0.7 to A = 0.9 as they
did for the hexagon structures. The magnitude of the fre-
quency values peak near A = 0.5, similar to the pen-
tagon and hexagon. The octagon structures also tend to
have lower frequency magnitudes than their counterparts
for the hexagon. For 0.7 through 0.9 fractional distance
moved along the line (A = 0.7 — 0.9), the magnitudes
of frequency 1 are close to each other. This same pattern
occurs for frequencies 2 and 3.

Some interesting general results can also be noted.
There seems to be a point where the distance along the
line starts affecting the frequency values less (Figure 8).
For the pentagon, hexagon, and octagon structures where
A = 0.7 — 0.9, the magnitudes for frequency 1 are
similar. For the hexagon and octagon structures where
A = 0.7 — 0.9, the magnitudes for frequencies 2-3 are
similar. Also, as the number of vertices, n, increases,
the pairings stay consistent for higher values of A\ (Figure
8). For the triangle, the pairings are only consistent up to
A = 0.5, while for the octagon, the pairings are consistent




up to A = 0.9. Further, as the number of vertices, n, in-
creases, the magnitude of the frequency values decreases
except for when pairing happens (Figure 8). For example,
frequency 1 for A = 0.1 for the triangle is higher than fre-
quency 1 for A = 0.1 for the pentagon, which is higher
than frequency 1 for A = 0.1 for the octagon. However
for A = 0.9, since the triangle (n = 3) does not have
pairing at this A, the magnitudes of frequencies 2 and 3
actually increase for the pentagon (n = 5) because pair-
ing occurs.

The results can also be visualized by analyzing the
mode shapes and displacement of the structure at the fre-
quencies found (Figure 6). Several interesting results
were found. For frequency 1 with all the polygons, the
largest displacement occurred in the center of the struc-
ture. For frequencies 2 and 3 for all the polygons, there
is a hill (positive displacement in z) on one side, while
there is a valley (negative displacement in z) on the other
side. Frequencies 2 and 3 have similar-looking structural
displacements, but the hills and valleys are located in dif-
ferent sections. The displacement of the triangle structure
for frequency 4 does not look like the displacement of
the pentagon and octagon structures for frequency 4. The
triangle structure has three hills located near the vertices
and one valley located in the center of the structure. The
pentagon and hexagon structures have two hills and two
valleys and appear similar to each other.

6.2 Tensile Testing

We also conducted a tensile testing experiment on
four wallpaper symmetry patterns. A two-way ANOVA
for thirty samples at various and 7' showed that the null
hypothesis can be rejected, meaning that there are signif-
icant differences between the mean values for both A and
the number of points 7T". The test also showed that the in-
teraction between the two variables is significant. In gen-
eral, the porosity values were within 0.1 when compared
across the same number of points and the same symmetry
and across the same \. There were only a few exceptions
with the p6 symmetry, which had different porosity val-
ues, which can be observed in the appendix (Table 2).

Some interesting general observations were found.
In general, as the number of points increases for a given
A, the average stress also increases (Figure 12). Also for
the p2, p3, and p4 symmetries, this increase appears to be
greater when A = 0.4 or A = 0.6 than when A = 0.2 or
A = 0.8. For the p6 wallpaper symmetry, when A = 0.6,
the overall average stress increases less as the number of
points increases.

In general, each symmetry tended to have a A at
which the maximum average stress occurred (Figure 12).

This maximum point seems to occur at A = 0.4 for p6
symmetries and the p2 symmetry at 300 points, at A\ = 0.6
for the p2, p3, and p4 symmetries, and at A = 0.8 for the
p6 symmetry at 100 points.

6.2.1 p2 Symmetry

The maximum for the p2 wallpaper symmetry occurs
near A = 0.5 for all values of T" (Figure 12 and 9). Across
all the values of 7', the magnitudes of average Von Mises
stress values for A = 0.4 and A = 0.6 are similar. Fur-
ther, the distribution of the average stress appears to be
parabolic as the fractional distance along the line, J, in-
creases. A = (0.2 has the lowest average stress, increasing
when A = 0.4. It stays about the same when A = 0.6 and
then decreases when A = 0.8. As the number of points
increases, the average stress also increases. For example,
when A = 0.2 and n = 100, the average stress is lower
than when n = 200, which are both lower than n = 300.

6.2.2 p3 Symmetry

For the p3 wallpaper symmetry, the maximum values
for the wallpaper symmetries appear to occur around \ =
0.6 for all the number of points generated (Figure 12 and
10). The average stress values start at the lowest value
when A = 0.2 and increases as A increases. The stress
value when A = 0.8 is lower than when A = 0.6 for all
of the values 7". When A = 0.2 and A = 0.8, the increase
in the average stress as 7" increases is less than when \ =
0.4 and A = 0.6. The mean of the average stress for
A = 0.2 only increases by about 0.75 MPa, but increases
by about 3 MPa for A = 0.4. Further, it increases by
about 3 MPa for A = 0.6 and only 0.5 MPa for A = 0.8.
Finally, as the number of points generated(7") increases,
the average stress also increases, which is a similar result
to the p2 wallpaper symmetry.

6.2.3 p4 Symmetry

For the p4 wallpaper symmetry, the distribution of
the average stress as \ increases is similar to the distribu-
tion for the p3 wallpaper symmetry. When A = 0.2, the
average stress is at its lowest value for all the values of T’
(Figure 12 and 9). The average stress increases as A in-
creases from 0.2 to 0.4 to 0.6. When \ = 0.6, the average
stress value appears to reach a maximum value. The trend
is the same for all values of 7" tested. Similar to both the
p2 and p3 wallpaper symmetries, the average stress in-
creases for a given A as the number of points increases.
Similar to the p3 wallpaper symmetry, the difference of
the average stress values across varying 7' is larger when
A=0.4and A = 0.6 than A = 0.2 and A = 0.8. The av-
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Fig. 8. The first five frequencies found for the structures generated with the fractional distance moved, A varying from 0.1 — 0.9 by
an interval of 0.1. Each set of parameters was run 25 times and the box plots for each frequency number at each distance are shown.

erage stress only increases by about 1 MPa when A = 0.2
and 0.8 MPa when A = 0.8, but increases by 3 MPa when
A = 0.4 and 2 MPa when A = 0.6.

6.2.4 p6 Symmetry

For the p6 wallpaper symmetry, unlike the p2, p3,
and p4 symmetries, the \ at which the maximum average
stress occurs changes depending on 7'. For T' = 100, the
maximum occurs when A\ = 0.8 (Figure 12 and 10). For
both T = 200, 300, the maximum average stress occurs
when A = 0.4. Further, for T' = 300, the average stress
at A = 0.4 is larger than the average stress when A =
0.8 by a larger amount than 7' = 200. The difference
between the average stress for 7' = 300 when A = 0.4
and A = 0.8 is near 3.5 MPa, but is only around 1 MPa
for T' = 200. There is also very little change between the
average stress values when A = 0.8 as 7" increases. There
is a similar occurrence when A = 0.6, but the change is

slightly larger. However, when A = 0.2 and A = 0.4, the
average stress increases as the number of points increases,
similar to the p2, p3, and p4 wallpaper symmetries.

7 DISCUSSION
7.1 Connecting Mechanics to Geometry
7.1.1 Modal Testing

We observe a strong connection between mechanical
properties and the chaos game parameters. For example,
an increase in the number of vertices of the polygon gen-
erally decreases the magnitude of the modal frequencies.
We also observe a non-linear relationship between A and
frequency which was not expected since A only changes
the distance along a line. This was most notable in the
triangle and pentagon case where A = 0.9 results in a
similar behavior for all frequency values. These overar-
ching observations strongly indicate a fundamental con-
nection between the geometric parameters and mechani-
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Fig. 10. An example of several structures with P6 and P3 symmetries and their resulting deformation after tensile loading.
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metries used in this work are shown with p2, p3, p4, and p6

cal response, at least for natural frequencies.

7.1.2  Tensile Testing

Similar to the modal testing, there is a strong con-
nection between the mechanical properties and the chaos
parameters. In this case, the number of edges and their
locations were controlled by the starting wallpaper sym-
metry, while the number of points and \ are input param-
eters.
We can draw several interesting observations and conclu-
sions from the results. A large number of chaos sites can
be visualized at the maximum average stress observed in
the results (Figure 13). This shows at A = 0.5 for p2,
which is where the maximum average stress occurs. The
structure does not appear to be a fractal by looking at the
sites. This is because the \ value is too large for the small
edges of the polygon. However, for p3 at A = 0.6, the
shape appears to be a fractal and has some self-similarity,
but near the short edges, it appears to be just a cluster of
points. For the p4 pattern, A = .6 the points look like a
fractal structure and are similar to a Sierpinski pentagon,
with the only difference being that the p4 pentagon is not
a regular pentagon. A very interesting observation is that
for the p6 pattern (which produced an equilateral triangle)
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Fig. 12. The average stress for all the tensile tested parts is shown separated by the symmetry type, number of points (1°), and A.
Each parameter set was run 30 times, and the box plots are shown with any outliers also represented by points.

the maximum average stress fluctuates between A = .4
and A = .6 depending on the number of points. When
A = .5, the structure is the Sierpinski triangle, and the
other lambda values also exhibit points that can be easily
recognized as a fractal set of points. All symmetries other
than p6 are not regular polygons, with the p4 polygon be-
ing close to a regular pentagon.

Another interesting link between A and the average stress
is that all of the structures have the minimum average
stress at A = 0.2. At this value of A, the chaos sites
have very little resemblance to a fractal structure and are
seemingly random. This is an interesting observation as
the structures are similar to stochastic structures.
Because of this, we believe that there is a fundamental
link between the degree to which a polygon is a regular
polygon and the A at which the maximum average stress
occurs.

7.2 Behavioral Patterns
7.2.1 Modal Testing

One behavioral pattern we observe is that a value of
A at which the frequencies appear to reach a maximum
value. This is related to how sensitive a given polygon
(n) is to the A value. For example, while A = 0.5,n = 3
results in a Sierpiriski triangle, A = 0.5,n = 8 (i.e. oc-
tagon) has no discernible fractal (Figure 4). Furthermore,
for the triangle there is a decrease in modal frequencies
only near A = 0.5 (i.e. the Sierpinski triangle case).
For an octagon and triangle at A = 0.75 there is a clear
fractal structure appearing which may relate to the de-
crease in the modal frequencies observed in octagon be-
fore A = 0.75. In another example, we find that forn = 5
(i.e. a pentagon), the Sierpinski-type fractal occurs only
at A = % This could be a reason why there is a decrease
in the modal frequencies near A\ = % for the pentagon.

Another behavioral pattern that we observed oc-
curred in nearly all of the structures was that of the pairing



Fig. 13. The fractal pattern at the maximum value for each wallpaper symmetry are shown, specifically p2 at A = 0.5, p3 at

A=0.6,p4at A = 0.6,and p6 at A = 0.5.

of the results. This can first be observed in our first exper-
iment wherein the second and third natural frequencies
have close mean values while the fourth, fifth, and sixth
frequencies form another cluster of close mean values
(Table 1). Similarly, we observed the clustering of mean
values for several other cases as well (Figure 8). The only
structures where this pairing did not occur was for high
values of ) in the triangle and pentagon in order to vali-
date that each member of a pairing originated from a sep-
arate population, a t-value comparison was conducted. In
every case, the p < 0.05 means that there is reason to
believe that members of a pairing originate from different
populations. The largest p-values that we found in our
selective t-tests was p = 0.04 for (n = 6, A = 0.5) be-
tween fourth and fifth natural frequencies. Similarly, we
get p = .03 for (n = 3,\ = 0.9) and (n = 5, = 0.9)
between fourth and fifth frequencies. Even here, note
that the p-value is safely below the threshold of p < .05.
While we cannot posit the reason for these relatively close
distributions, we do observe visual similarity in terms of
the deformation across the first few modes. For exam-
ple, the second and third natural frequencies generally
display high qualitative similarity for each polygonal do-
main (Figure 6).

7.2.2 Tensile Testing

From the results, all tests have several commonal-
ities. The first behavioral pattern we observe is that
the minimum average stress for every set occurs when
A = 0.2. All the wallpaper symmetries have an increase
in the average stress when A increases to 0.4 from 0.2,
but as A increases more, the different wallpaper symme-
tries behave differently.
Another behavioral pattern that is observed is that the
maximum average stress happens when 0.4 < X < 0.6

in all but one of the test cases. For the p2 wallpaper sym-
metry, the maximum average stress occurs near A = 0.5.
For the p3 and p4 wallpaper symmetries, the maximum
average stress occurs near A = 0.6. For the p6 wallpaper
symmetry, the maximum average stress occurs at A = 0.8
for T' = 100 and then A = 0.4 for T' = 200 and 7" = 300.
This could be because the points become less clustered
as A increases (Figure 13). When A is closer to 0, the
points do not move much at each iteration and therefore
do not cluster much (Figure 4). When A is closer to 1, the
points are clustered near the vertices of the polygon. This
clustering could create a region that is more resistant to
stress, which could increase the maximum average stress.
This could be a potential reason why the maximum aver-
age stress occurs when 0.4 < A < 0.6 for all but one of
the test cases.

Another similarity between the tests is that as lambda in-
creases, there is a near-parabolic curve for the average
stress in each symmetry except for p6. Meaning that there
is an increase in average stress up to the maximum and
then a decrease in average stress. The reason that this
pattern may not exist in p6 could be due to the fact that
it is a regular triangle, and this causes p6 not to follow
the same pattern. This difference could also be due to
the fact of having non-similar porosity values. The final
behavioral pattern that is observed is that the p3 and p6
symmetries have a larger spread of values for the average
stress than the p2 and p4 symmetries. The p2 and p4 sym-
metries only have a spread of around 6 MPa and 7 MPa,
respectively. However, the p3 and p6 symmetries have a
spread of around 8 MPa and 10 MPa, respectively.

7.3 Limitations and Future work
There are several questions that require further ex-
ploration in this work. First, there are several variations to



the chaos game with extended rules for point generation.
One example is applying a preference model during the
random selection of polygonal vertices that leads to new
types of structures emerging. For example, a rule could
be that a vertex cannot be chosen twice in a row. Given
that this is a rich design space, further expansive investi-
gation is needed to explore this aspect further. Secondly,
while we have shown chaos sites for non-regular identical
polygons, a wide range of other non-regular non-identical
polygons can be explored and create different properties.
Adding to this, an obvious extension would be to consider
arbitrary 2D domains wherein we can apply our method
to triangulated domains. Thirdly, it is important to eval-
uate our current structures for different multi-physical re-
sponses. Another intriguing future direction is to extend
the idea to 3D structures. Interestingly, this can be easily
done since the chaos game works even for selective 3D
polyhedral domains. As a result, it would be interesting
to explore sponge-type as well as frame-type structures
in 3D domains based on using the edges and faces of 3D
Voronoi cells. Overall, we see an immense potential for
self-similar structures in generative design.

8 CONCLUSION

In this paper, we introduced a forward-design ap-
proach for generative statistically self-similar structures
based on fractal geometry. Using a combination of chaos
game and Voronoi tessellation, we show that it is pos-
sible to generate families of structures whose geomet-
ric similarities carry forward in terms of mechanical re-
sponse. Using our method, we demonstrated this within
the concrete context of natural modes and tensile testing
of the structures generated. Our experiments conclusively
show that the parameters of the chaos game offer a con-
trolled way to tune the mechanical response and enable
the generation of populations of shapes rather than a sin-
gle optimal shape. We further demonstrated tractable re-
lationships across different parameters (especially frac-
tional distance) of the chaos game. This is an essential
requirement for a generative design workflow. We believe
that this work is merely a starting point for a potentially
rich research direction in the domain of generative struc-
tural design.

A APPENDIX

We have included the average porosity values and the
stand deviation for the structures generated and tensile
tested.
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