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Abstract

INTRODUCTION: Identifying mild cognitive impairment (MCI) patients at risk for
dementia could facilitate early interventions. Using electronic health records (EHRSs),
we developed a model to predict MCI to all-cause dementia (ACD) conversion at 5
years.

METHODS: Cox proportional hazards model was used to identify predictors of ACD
conversion from EHR data in veterans with MCI. Model performance (area under the
receiver operating characteristic curve [AUC] and Brier score) was evaluated on a held-
out data subset.

RESULTS: Of 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had
good discriminative performance (AUC 0.73 [95% confidence interval (Cl) 0.72-0.74]),
and calibration (Brier score 0.18 [95% C1 0.17-0.18]). Age, stroke, cerebrovascular dis-
ease, myocardial infarction, hypertension, and diabetes were risk factors, while body
mass index, alcohol abuse, and sleep apnea were protective factors.

DISCUSSION: EHR-based prediction model had good performance in identifying
5-year MCl to ACD conversion and has potential to assist triaging of at-risk patients.

KEYWORDS
Alzheimer’s disease, dementia, electronic health records, mild cognitive impairment, prediction
modeling, synthetic data

Highlights

» 0Of 59,782 veterans with mild cognitive impairment (MCI), 15,420 (25.8%) converted
to all-cause dementia within 5 years.

* Electronic health record prediction models demonstrated good performance (area
under the receiver operating characteristic curve 0.73; Brier 0.18).

* Age and vascular-related morbidities were predictors of dementia conversion.

» Synthetic datawas comparable to real datain modeling MCl to dementia conversion.
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Key Points

* An electronic health record-based model using demographic and co-morbidity data

had good performance in identifying veterans who convert from mild cognitive
impairment (MCI) to all-cause dementia (ACD) within 5 years.

Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension,
and diabetes were risk factors for 5-year conversion from MCl to ACD.

High body mass index, alcohol abuse, and sleep apnea were protective factors for
5-year conversion from MCl to ACD.

Models using synthetic data, analogs of real patient data that retain the distribu-
tion, density, and covariance between variables of real patient data but are not
attributable to any specific patient, performed just as well as models using real
patient data. This could have significant implications in facilitating widely distributed

computing of health-care data with minimized patient privacy concern that could

1 | BACKGROUND

Mild cognitive impairment (MCI) is a heterogenous syndrome charac-
terized by cognitive impairment that is more than normal aging and
could be an early manifestation of neurodegenerative diseases that
later progress to dementia.! Prior autopsy studies show that the brain
pathology in MCl is intermediate in severity between cognitively nor-
mal controls and patients with more advanced Alzheimer’s disease
(AD), the most common neurodegenerative condition.2% However,
MCI could also be a precursor to other non-AD dementing conditions
such as cerebrovascular disease and Lewy body disease®. Identify-
ing MCI patients at risk of developing dementia could be helpful for
targeting candidates for early treatment especially as promising drugs
that slow the cognitive and pathologic decline, such as lecanemab’,
become increasingly available. It will also allow selection of patients
that are most at risk for participation in clinical trials of new candidate
therapeutics, potentially requiring smaller sample sizes to show ben-
efit, leading to reduced study cost and enhanced research participant
safety.

Existing models to predict dementia, mainly AD, have focused on
neuropsychologic test scores and biomarkers from cerebrospinal fluid
and brain imaging® 10, The generalizability of these models is limited
by the relatively small number of participants and the complex and
sometimes invasive nature of the input variables that are not widely
obtained in clinical practice. Electronic health record (EHR)-based
prediction models of dementia potentially have an advantage in gener-
alizability over existing models because of the large number of unique
patients involved and access to high-dimensional data that are col-
lected during routine clinical encounters>12, The primary aim of the
study is to develop a generalizable EHR-based model to predict MCl to
all-cause dementia (ACD) conversion at 5 years using the large multi-
center Veterans Affairs (VA) health-care database. While EHR-based

accelerate scientific discoveries.

prediction models have advantages due to access to a large dataset,
creating and optimizing these models are constrained by limitation of
access to patient medical records due to privacy concerns. This prob-
lem could be partially addressed by providing wide access to and using
synthetic data to augment model building. Synthetic data are analogs
of original patient data that aim to retain the distribution, density, and
co-variance between variables within clusters of similar patients, but
are not attributable to the original patients'®. However, the valida-
tion of model performance based on EHR synthetic data on various
disease models remains limited'4. A secondary aim of the study is to
compare the performance of MCl to ACD prediction models based on
EHR-derived real patient versus synthetic data.

2 | METHODS
2.1 | Study population

We assembled a retrospective cohort of veterans who were seen Jan-
uary 1, 1999 to December 31, 2016 in the US VA Healthcare System
using an internal cloud analytics environment that hosts a copy of the
Corporate Data Warehouse (CDW), which is a consolidation of data
from disparate sources within the VA into a single coherent data model.
The study protocol was reviewed and approved by the Institutional
Review Board of the Phoenix VA Health Care System with a waiver of
informed consent (Protocol Migrino1593816).

Patients were eligible to enter if they were > 50 years old and
were diagnosed with MCI (Figure 1). Diagnosis of MCI was based on
the patient having International Classification of Diseases Ninth or
Tenth revision (ICD-9 or -10) classification of MCI (Table S1 in support-
ing information) made on two or more separate clinic visits, an entry
criterion based on MVP Cog Working Group validated to have 95%
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specificity based on rigorous chart review!>. The date of initial diag-
nosis of MCl was used as date of diagnosis. Patients with diagnosis of
dementia (Table S1) prior to or up to 6 months after initial MCI diag-
nosis were excluded from analysis. Patients were classified into two
groups based on whether they were (1) diagnosed to have ACD within
5 years after MCl diagnosis (ACD converters) or (2) did not have ACD
diagnosis or were right censored (lost to follow-up or died) within 5
years after MCl diagnosis (ACD non-converters). The alive/dead status
of those lost to follow-up was not determined using separate non-EHR
datasets because the aim of the study was to evaluate the utility of
data derived only from the VA EHR. ACD was defined using the ICD-9
or ICD-10 codes (Table S1) from the VA Centralized Interactive Phe-
nomics Resource (CIPHER) Phenotype 00083 (https://www.research.
va.gov/programs/cipher.cfm)'® validated to have 82% specificity based

onrigorous chart review.

2.2 | Demographic and co-morbid condition
variables

Demographic (age, sex, race, ethnicity, and body mass index [BMI]) and
selected co-morbid conditions were extracted from EHR at the time
of MCI diagnosis and the dataset was locked prior to final analyses.
All race data are self-reported and we used the last self-designation
to group races into the following categories: White, Black or African
American, Asian/Pacific Islander/Native Hawaiian, American Indian or
Alaska Native, and Multiracial/Other (Declined to Answer/Unknown).
If a patient did not have any recorded BMI measurement (2.43%), then
we imputed the mean. Co-morbid conditions were selected a priori
based on previous literature testing these conditions as potential risk
factors for dementia’®~1? and identified using ICD-9 or ICD-10 codes
(Table S1) using criteria for the Charlson Comorbidity Index?°. For
traumatic brain injury (TBI), we used ICD codes from a prior study on
veterans showing association between TBI and later development of
dementia?!. If the condition is not included in the Charlson list, we used
Elixhauser Comorbidity Index?2, CIPHER, or Saunders et al.’s23 study

(hearing loss).
2.3 | Statistical methods
2.3.1 | Descriptive statistics

We randomly partitioned our cohort into a training set (70%) and
test set (30%) for prediction modeling. Descriptive statistics were
stratified by conversion status and reported as frequencies and propor-
tions or medians and interquartile ranges (IQRs). Chi-square tests and
Wilcoxon rank-sum tests were used to evaluate differences between

strata.

2.3.2 | Cox proportional hazards model

Patients were followed from MCl diagnosis (entry age) until they devel-
oped ACD, they were lost to follow-up, died, or 5 years after MCI

Disease Monitoring

RESEARCH IN CONTEXT

1. Systematicreview: We performed an extensive literature
review to identify predictors of dementia conversion and
current dementia prediction modeling approaches. We
also identified previous work done to validate the use of
synthetic data in statistical modeling.

2. Interpretation: Our findings show that routinely col-
lected demographic and co-morbidity data can be used
to predict 5-year conversion from mild cognitive impair-
ment (MCI) to dementia. We also demonstrate that the
predictive models using synthetic data derived from real
patient data perform as well as predictive models from
real patient data.

3. Futuredirections: The MCI to dementia predictive model
derived from electronic health records could be used
to identify high-risk patients for consideration of non-
pharmacologic or new, expensive pharmacologic inter-
ventions. It could also be used to define an enriched
at-risk patient group to target for clinical trials of new
therapies. Importantly, validation of synthetically derived
predictive models could allow widely distributed comput-
ing with minimal risk of privacy breach, reducing barriers
to entry and facilitating scientific discovery.

diagnosis. We used the Kaplan-Meier estimator to estimate the con-
version probability and corresponding 95% confidence interval (Cl)
to ACD at 5 years for our full, real cohort. We used Cox propor-
tional hazards model to estimate the hazard ratio (HR), 95% Cls,
and corresponding P value for the risk of developing ACD for each
co-morbidity and demographic feature. We used backward stepwise
selection on co-morbid predictors to identify a parsimonious model
based on the Akaike information criterion (AIC)2*. The proportional
hazards assumption of the fitted Cox proportional hazard model was
evaluated for each predictor by graphical methods and a formal score
test of B(t).

2.3.3 | Model performance evaluation

We applied the trained Cox model to our held-out test set and esti-
mated the linear predictor score and expected conversion probability
for each observation in our test set. We reported the median and IQR
of the expected conversion probabilities of our test set. Next, we eval-
uated our models’ ability to predict patient ACD conversion at 5 years
through non-parametric inverse probability of censoring weighting
estimation of the time-dependent areas under the receiver operating
characteristic curve (AUCs) and time-dependent Brier scores?>2¢.
Time-dependent AUCs instead of C-index was used because previous

simulation studies demonstrated that the C-index is not an appropriate
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Unique patients in VA
cow
(n = 24,936,924)

years old
(n = 54,465)
At least one MC! diagnosis
(n = 368,189) [ Atleast one ACD diagnosis
prior 10 1% MC diagnosis
(n=94,177)
1% MCI diagnosis after |
12312016
MCI diagnosis prior to e
12312016
(n = 108,452) (e — 2
one MCI diagnosis
1 (n = 35,176)
[NWMMCIWJ
n=1iTh 15t ACD diagnosis between 0 -
]7 0.5 years following 15t MCI
f dagnosis
'f ] (n=9,209) ]
1% ACD diagnosis between | '
0.5 - S years following 1% No ACD diagnosis (including
MCI dagnosis loss to follow up) between 0.5 -
(n = 18,800) ) S years following 1% MC1
diagnosis
Only one ACD dragnosis (n=45711)
(n =3,380)
Al least two ACD diagnoses
ACD converters
ACD non-converters
(n = 15,420) (= 44,362)

FIGURE 1 Flow chart of inclusion and exclusion criteria. ACD, all-cause dementia; CDW, Corporate Data Warehouse; MCI, mild cognitive

impairment; VA, Veterans Affairs

discriminatory measure for evaluating t-year predicted risks due to

biased estimates of mis-specified models2°.

2.4 | Synthetic data generation and model
performance

We evaluated the utility of synthetically derived data for training mod-
els to predict MCI to ACD conversion by repeating our previously
outlined methodology on three synthetic training sets and comparing
the results to our real training set.

2.4.1 | Synthetic patient data generation

We used commercial software (MDClone ADAMS Platform, MDClone
Ltd.) to derive synthetic patient data from CDW. The software is
designed to compute and preserve the original cohort’s statistical
properties and higher-order relationships and to create a synthetic
analog cohort without any one-to-one correspondence between the
original and synthetic patients’®1427. To best mimic the real cohort,
the ADAMS Platform provides the ability to select only those vari-
ables that are relevant to the research question. These comprise input
to the synthetic data generator. The generator first derives a statisti-

cal model of the real patient cohort. The generator then creates new

fictitious (i.e., synthetic) records to fit that model while maintaining
the distribution, density, covariance, and other statistical measures
between similar patients. The outcome is a similar number of synthetic
patient records based on the variables of interest that maintain the
relationship between variables.

2.4.2 | Synthetic versus real data comparisons

We reported the descriptive statistics, estimated Cox proportional
hazard model parameters, and prediction results of our three syn-
thetically derived training sets. The time-dependent AUCs and time-
dependent Brier scores for prediction of ACD conversion at 5 years for
synthetic training sets were compared to the prediction results of our
real training set. Tests of comparisons and estimated pointwise 95%
Cls were derived from the limiting Gaussian processes and estimated
asymptotic variances?>28, We evaluated the correlation between real
and synthetic expected conversion probabilities through R-squared
statistics.

All analyses were performed using R statistical software version
4.2.2 (https://www.R-project.org) with the gmodels, survival, stats,
StepReg, timeROC, and riskregression extension packages. All statis-
tical tests were two-sided; alpha level of 0.05 was used to determine

statistical significance.
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3 | RESULTS

Out of 24,936,924 unique patients from 1999 to 2016, 59,782 patients
met inclusion criteria (Figure 1). Fifteen thousand four hundred twenty
(25.8%) converted to ACD within 5 years, while the rest either did not
have ACD diagnosis, died, or were lost to follow-up within 5 years. The
Kaplan-Meier estimate of 5-year conversion from MCI to ACD was
28.4% (95% Cl 28.0%-28.8%). Median time to conversion was 1.94
(IQR 1.09-3.10) years. Excluding patients with MCI diagnosis before
age 50 years, the median age of MCI diagnosis in the VA cohort was
71.0 (IQR 63.7-80.7) years. MCl patients who converted to ACD were
older than those who did not (Table 1A-B, Table S2 in supporting infor-
mation). The overall cohort was predominantly male and White; male
and White participants had greater representation in ACD converters
than non-converters. There were fewer obese MCI patients who con-
verted to ACD. On univariate analyses, all co-morbid conditions were
significantly different between ACD converters versus non-converters
in the full cohort (Table S3 in supporting information), but in the train-
ing set, co-morbid diabetes showed no significant difference between
the groups (P = 0.09, Table 2A). Cox proportional hazards showed that
increasing age is the strongest independent risk factor for ACD con-
version, with HR of 1.53 (95% Cl 1.26-1.85) in those 55 to 60 years old
(compared to 50-55 years old), going up to HR of 8.94 (95% Cl 7.60-
10.53) in those > 85 years old (Table 3A; a comparison of Full versus
Reduced Model is shown in Table S4 in supporting information). Other
associated independent risk factors include cerebrovascular disease,
stroke, myocardial infarction, hypertension, and diabetes, with HRs
ranging from 1.06 to 1.09, which are less than that for age. Associated
protective factors included high BMI, alcohol abuse, and sleep apnea.
When the model was applied to the test set, the time-dependent AUC
was 0.73 (95% CI 0.72-0.74) and Brier score was 0.18 (95% C1 0.17-
0.18) suggesting good discriminative performance and calibration by
the model (Table 4A, Figure 2).

Univariate analysis showed less TBI co-morbidity in ACD converters
versus non-converters (6.02 vs. 8.89%, P < 0.001; Table S5 in support-
ing information, Table 2A), but multivariable analysis did not reveal TBI
to be an independent risk factor (Table 4A). To explore this further, we
compared the age of MCI patients with TBI versus those without TBI
in the full cohort and found MCI patients with co-morbid TBI were
younger (63.36 [IQR 56.43—70.86] versus 71.81 [IQR 64.53—81.11]
years, P < 0.001). We next performed a comparison between ACD con-
verters and age-matched non-converters in our full cohort and showed
no significant difference in TBI co-morbidity (6.02 vs. 5.68%, P = 0.22;
Table S5).

Synthetic data performance

The demographic profiles of MCI ACD converters versus non-
converters were similar when each of the synthetic datasets was
compared to the real dataset (Table 1 and Table Sé in supporting

information). In similar fashion, the co-morbidity profiles of MCI ACD

Disease Monitoring

converters versus non-converters were similar between each synthetic
dataset compared to the real dataset (Table 2 and Table S7 in sup-
porting information). Cox proportional hazards models of the synthetic
datasets showed similar risk and protective factors for ACD conver-
sion between real and synthetic patient data, with magnitude of HRs
in close approximation (Table 3).

Expected conversion probabilities of our real model were simi-
lar and highly correlated (R2 = 0.99) to all synthetic model values
(Table 4). The predictive models’ time-dependent AUCs (all 0.73) and
time-dependent Brier scores (all 0.18) of synthetic data were also
similar to real data (Table 4, Figure 2).

4 | DISCUSSION

MCI represents the clinical and neuropathologic transition between
the cognitive changes in normal aging and early AD*2 and non-AD
causes of dementia, such as cerebral infarction and neocortical Lewy
bodies®. A meta-analysis of cohort studies shows that ~ 39% of MCI
patients convert to dementia with 34% and 6% converting to AD
and vascular dementia, respectively, with annual conversion rate of
9.6%27. This compares to our 5-year conversion rate to ACD esti-
mate of 28.4%, representing an important subset of MCI patients.
Early identification of MCI patients at risk for developing dementia
could be useful for closer disease surveillance and early initiation
of non-pharmacologic interventions, pharmacologic treatments for
symptomatic relief3® or newer disease-modifying agents, such as
the recently US Food and Drug Administration-approved agent
lecanemab’.

There is consensus that for meaningful disease modification in
AD, treatment should be initiated very early in the preclinical stage,
requiring future clinical trials to have trial-ready cohorts enriched with
identified high-risk participants®!. This could be enhanced by exploit-
ing the EHR with its expansive data obtained during routine clinical
care. We previously demonstrated the utility of an EHR-based machine
learning model to predict AD onset from demographic, diagnostic, and
medication information from patient encounters collected from > 4
million patients, with the model achieving good accuracy (AUC 0.70)*2.
In the current study, we focus on creating a model to predict ACD
conversion within 5 years of MCI diagnosis derived from VA EHR of
close to 25 million patients. Results show that age is the overwhelming
risk factor for MCI to ACD conversion, with HRs of 1.53 from age 55
to 60 to 8.94 in those > 85 years, consistent with prior studies showing
that the greatest risk factor for AD is advanced age®?2, including data
from three large longitudinal studies®. Vascular disease-related
co-morbidities such as stroke, cerebrovascular disease, myocardial
infarction, hypertension, and diabetes are, comparatively, more mod-
est risk factors (HRs 1.06-1.09). Prior epidemiologic, preclinical, and
clinical data also show that vascular disease is strongly associated
with AD3%3>, Unbiased data-driven analyses showed that vascular
dysfunction is the earliest brain pathology in AD%¢ and regional

blood flow differences were shown to discriminate between MCI
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TABLE 2 Co-morbidity data of real and synthetic training set #1.

A. Training set real (n =41,817)

B. Test set real (n = 17,965)

Disease Monitoring

C. Training set synthetic #1 (n = 41,709)

ACD No ACD ACD No ACD ACD No ACD
(n=10,784) (n=31,033) Pvalue (n=4,636) (n=13,329) Pvalue (n=10,729) (n = 30,980) P value
Co-morbidities, no. (%)
Heart failure 1,689 (15.66) 4,636 (14.94) 0.07 750(16.18) 1,967(14.76) 0.02 1,678 (15.64) 4,628 (14.94) 0.08
Renal disease 1,860 (17.25) 4,863(15.67) <0.001 865(18.66) 2,031(15.24) <0.001 1,849(17.23) 4,852 (15.66) <0.001
Rheumaticdisease 468 (4.34) 1,189 (3.83) 0.02 218(4.70) 494 (3.71) 0.003 470 (4.38) 1,175 (3.79) 0.008
Hyperlipidemia 8,704 (80.71) 23,984(77.29) <0.001 3,769(81.30) 10,323(77.45) <0.001 8,642(80.54) 23,908(77.17) <0.001
Sleep apnea 2,300 (21.33) 8,261(26.62) <0.001 1,001(21.59) 3,636(27.28) <0.001 2,291(21.35) 8,247 (26.62) <0.001
Peripheral vascular 2,661 (24.68) 6,490(20.91) <0.001 1,139(24.57) 2,729(20.47) <0.001 2,644 (24.64) 6,483(20.93) <0.001
disease
Peptic ulcer 733(6.80) 1,854(5.97) <0.001 346 (7.46) 788(5.91) <0.001 720(6.71) 1,856 (5.99) 0.008
disease
Atrial fibrillation 1,652 (15.32) 4,104 (13.23) <0.001 782(16.87) 1,725(12.94) <0.001 1,642(15.30) 4,094 (13.22) <0.001
Myocardial 1,283(11.90) 3,175(10.23) <0.001 558(12.04) 1,343(10.08) <0.001 1,267 (11.81) 3,169 (10.23) <0.001
infarction
Hypertension 9,071(84.12) 24,763(79.80) <0.001 3,938(84.94) 10,598(79.51) <0.001 9,003(83.91) 24,694(79.71) <0.001
Cerebrovascular 2,072(19.21) 5,314 (17.12) <0.001 917 (19.78) 2,192(16.45) <0.001 2,052(19.13) 5299(17.12) <0.001
disease no stroke
Stroke 1,057 (9.80) 2,810 (9.06) 0.02 454(9.79)  1,172(8.79) 0.04 1,049 (9.78) 2,807 (9.06) 0.03
Depression 5,702(52.88) 19,260(62.06) <0.001 2,470(53.28) 8,324(62.45) <0.001 5,630(52.48) 19,194(61.96) <0.001
Alcohol abuse 1,675 (15.53) 7,035(22.67) <0.001 689(14.86) 3,068(23.02) <0.001 1,656 (15.44) 7,016 (22.65) <0.001
Liver disease 933(8.65) 3,429(11.05) <0.001 392(8.46)  1,541(11.56) <0.001 927 (8.64) 3,418 (11.03) <0.001
Diabetes 4,296 (39.84) 12,073(38.90) 0.09 1,967 (42.43) 5,125(38.45) <0.001 4,255(39.66) 12,048(38.89) 0.16
Hearing loss 6,160(57.12) 16,071(51.79) <0.001 2,639(56.92) 6,864(51.50) <0.001 6,112(56.97) 16,035(51.76) <0.001
Traumatic brain 636 (5.90) 2,833(9.13) <0.001 292 (6.30) 1,109(8.32) <0.001 614(5.72) 2,807 (9.06) <0.001

injury

Abbreviation: ACD, all-cause dementia.

converters to AD versus non-converters.®”-38 The modest contribution
of vascular-related co-morbidities vis-a-vis age highlights the need
to identify non-traditional novel mechanistic determinants by which
aging induces pathology®?. On the other hand, high BMI was protective
of ACD conversion. This is consistent with prior studies that in late
life, elevated BMI was found to be associated with lower AD risk“°
and slower disease progression in MCI*1. The biological mechanisms
underlying this observation remain unknown with some proposing
changes in behaviors such as eating, decreased energy metabolism
leading to decline in BMI and cognition, and changes in adipose tissue
hormone levels*!. Our data show that alcohol abuse is associated with
~ 6% lower ACD conversion risk. Prior epidemiologic data do not pro-
vide strong evidence that alcohol use affects AD development*? but
interestingly, consumption of wine, but not liquor, beer, or total alcohol,
was associated with lower risk of dementia, although this was confined
to those without the apolipoprotein E &4 allele*3. The mechanistic
basis of our observation on alcohol abuse and ACD conversion should
be investigated further. Additionally, sleep apnea was found to be
protective against ACD conversion. In contrast, a meta-analysis of 14
studies showed that sleep-disordered breathing was associated with

increased risk of cognitive impairment** although it did not address

the role of sleep-disordered breathing in MCl to ACD conversion. The
underlying bases of these discrepant observations need to be explored
further.

TBI is a known dementia risk factor to which veterans are dispro-
portionately exposed*. A prior study by Barnes et al.?! of US veterans
aged > 55 years seen from 2000 to 2003 and followed until 2012
showed that TBI was associated with a 60% higher risk of develop-
ing dementia during the follow-up period compared to those without
TBI. On multivariable analyses, our data did not show that TBI was an
independent positive or negative predictor of MCI to ACD conversion,
although univariate analysis showed fewer TBI in non-converters ver-
sus ACD converters. This discrepancy is likely explained by the younger
age of MCI patients with TBI versus those without, as age is the dom-
inant risk factor for MCI to ACD conversion. Indeed, ACD converters
age-matched with non-converters show no significant difference in
proportion of TBI co-morbidity. It is possible that temporal changes
in intensity of TBI screening and reporting within the VA health care
system (that may lead to underestimation of TBI diagnosis frequency
for older patients) could explain the difference in mean age of MCI
patients with and without TBI co-morbidity and should be explored fur-

ther when evaluating the modulating role of TBI in dementia. When our
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TABLE 3 Cox proportional hazard model for real and synthetic data training sets (backward stepwise selection).

Age MCI DX, years
50-55
55-60
60-65
65-70
70-75
75-80
80-85
> 85

Race
Asian/Pacific?
Black
Native American
Other®
White

Ethnicity

Not Hispanic or
Latino

Hispanic or Latino

Other¢
Sex
Female
Male
BMI
Underweight
Normal
Overweight
Obese
Co-morbidities

Cerebrovascular

disease (no stroke)

Stroke

Myocardial infarction

Hypertension
Diabetes
Alcohol abuse
Sleep apnea

Liver disease

Peripheral vascular

disease
Heart failure
Renal disease
Rheumatic disease

Hyperlipidemia

A. Training Set real

B. Training set synthetic #1

C. Training set synthetic #2

D. Training set synthetic #3

Hazard ratio
(95% Cl)

Pvalue
<0.001
Ref

1.53(1.26-1.85)
2.77(2.34-3.27)*
4.16 (3.54-4.90)
5.99(5.09-7.05)
7.54(6.41-8.87)
8.36(7.11-9.84)
8.94(7.60-10.53)

0.28
0.86(0.73-1.01)
1.02(0.96-1.08)
0.91(0.70-1.18)
1.03(0.96-1.11)

Ref

0.11

Ref

1.00(0.93-1.09)
0.91(0.83-1.00)
0.85
0.99(0.89-1.10)
Ref
<0.001

0.87(0.72-1.06)
Ref

0.87(0.83-0.91)
0.75(0.71-0.79)

1.06(1.01-1.12) 0.03

0.05
0.003
0.005

1.07 (1.01-1.15)
1.09(1.03-1.1¢6)
1.08 (1.02-1.14)
1.06 (1.02-1.10) 0.005
0.94(0.89-0.99) 0.02

0.95(0.91-1.00) 0.06
d

d

Hazard ratio
(95% Cl)

Pvalue
<0.001
Ref
1.53(1.26-1.85
2.84(2.39-3.36)°
4.28(3.63-5.05)
6.19(5.25-7.31)
7.79 (6.61-9.19)
8.71(7.39-10.27)
9.24(7.83-10.90)

0.24
0.86(0.73-1.01)
1.02 (0.96-1.08)
0.90(0.69-1.17)
1.03(0.96-1.08)
Ref

0.11
Ref

1.01(0.93-1.09)
0.91(0.83-1.00)
0.95
1.00(0.90-1.11)
Ref
<0.001

0.87(0.72-1.06)
Ref

0.87(0.83-0.91)
0.74(0.70-0.78)

1.06 (1.00-1.11) 0.04

1.07 (1.00-1.11) 0.05
1.09(1.02-1.15) 0.006
1.07 (1.02-1.13) 0.01
1.05(1.01-1.10) 0.02

(

0.93(0.88-0.99) 0.01
d

d

d

Hazard ratio
(95% Cl)

Pvalue
<0.001
Ref
1.51(1.24-1.82)
2.82(2.38-3.34)?
4.21(3.58-4.9¢6)
6.07(5.15-7.15)
7.62(6.47-8.98)
8.48(7.20-9.99)
9.19(7.78-10.86)

0.27
0.86(0.73-1.01)
1.02 (0.96- 1.08)
0.90(0.69-1.17)
1.03(0.96-1.10)
Ref

0.13
Ref

1.01(0.93-1.09)
0.91(0.83-1.00)
0.90
0.99(0.89-1.11)
Ref
<0.001

0.87(0.71-1.05)
Ref

0.87(0.83-0.91)
0.75(0.71-0.80)

1.06 (1.00-1.12) 0.03

1.08 (1.00-1.15) 0.04
1.10(1.03-1.17) 0.002
1.07 (1.02-1.13) 0.01
1.06 (1.01-1.10) 0.009
0.93(0.88-0.98) 0.007

0.95(0.91-1.00) 0.05
d

d

Hazard ratio
(95% Cl)

Pvalue
<0.001
Ref
1.53(1.26-1.86)
2.86(2.41-3.39)*
4.31(3.65-5.08)
6.18(5.23-7.29)
7.79 (6.60-9.19)
8.67(7.35-10.23)
9.22(7.80-10.88)

0.27
0.86(0.73-1.01)
1.02 (0.96- 1.08)
0.90(0.69-1.18)
1.03(0.96-1.10)
Ref

0.13
Ref

1.00(0.93-1.09)
0.91(0.83-1.00)
0.90
1.00(0.89-1.11)
Ref
<0.001

0.86(0.71-1.05)
Ref

0.87(0.83-0.91)
0.75(0.71-0.79)

1.06 (1.00-1.12) 0.03

1.07 (1.00-1.15) 0.04
1.09 (1.03-1.16) 0.004
1.08(1.02-1.14) 0.008
1.05(1.01-1.10) 0.01
0.94(0.88-0.98) 0.01

0.95(0.91-1.00) 0.06
d

d

(Continues)
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TABLE 3 (Continued)

A. Training Set real

B. Training set synthetic #1

Disease Monitoring

C. Training set synthetic #2 D. Training set synthetic #3

Hazard ratio Pvalue Hazard ratio

Pvalue Hazard ratio Pvalue Hazard ratio P value
(95% Cl) (95% Cl)

(95% Cl) (95% Cl)
Peptic ulcer disease ¢ g
Atrial fibrillation S ¢
Depression d d
Hearing loss d d

Traumatic brain injury ¢

d

d

d

d

d

d

d

d

d

Abbreviations: BMI, body mass index; Cl, confidence interval; DX, diagnosis; MCI, mild cognitive impairment.
2Patients who self-identified as Asian or Native Hawaiian or other Pacific Islander.

bPatients who self-identified as multiracial, declined to answer, unknown by patient, or missing.
“Patients who self-identified as declined to answer, unknown by patient, or missing.

9Not applicable due to variable being removed from final Cox proportional hazards model by selection procedure.

TABLE 4 Performance in ACD prediction at 5 years on real data test set.

Time-dependent AUC (95% CI)

Time-dependent AUC comparisons?,
(difference) [P-value]

Time-dependent brier (95% Cl)

Brier score comparisons?, (difference)
[P-value]

Prediction expected conversion
probability, median (IQR)

Correlation of expected conversion

A. Training set real
0.73(0.72-0.74)
Ref

0.18(0.17-0.18)
Ref

22.52% (27.61)

Ref

B. Training set
synthetic #1

0.73(0.72-0.74)
(<0.001)[P=0.79]

0.18(0.17-0.18)
(<0.001) [P=0.68]

22.45% (27.74)

0.99

C. Training set
synthetic #2

0.73(0.72-0.74)
(<0.001) [P=0.88]

0.18(0.17-0.18)
(<0.001) [P=0.92]

22.45% (27.86)

0.99

D. Training set
synthetic #3

0.73(0.72-0.74)
(<0.001) [P =0.83]

0.18(0.17-0.18)
(<0.001)[P=0.73]

22.46% (27.72)

0.99

probability

Abbreviations: ACD, all-cause dementia; AUC, area under the receiving operator characteristic; Cl, confidence interval; IQR, interquartile range.

2Absolute value of real minus synthetic.

findings are put in the context of the findings of Barnes et al.,2! our data
suggest that once a patient has MCI, TBI status is no longer a modulator
of conversion to ACD within 5 years.

We previously showed that EHR-derived diagnosis of AD performed
well against rigorously adjudicated AD diagnosis from the Michigan
Alzheimer’s Disease Research Center!! and that EHR blood pressure
trajectory records from two large health-care systems could be used
to predict AD'2. Using only demographic and co-morbidity conditions
based on ICD-9/10 codes, our model showed good predictive perfor-
mance for MCI to ACD conversion, demonstrating the feasibility of
computational analyses on large-scale datasets without need for labor-
intensive chart review. However, the utility of EHR datasets in disease
modeling remains limited as data access is restricted to local investi-
gators authorized by institutional regulatory bodies to ensure patient
privacy. This restricts access to the dataset by outside data scientists or
computational resources that could handle the complex analyses using
increasingly sophisticated machine learning approaches. Experience
in genomics research and large-scale clinical trials demonstrates the
advantages of sharing raw data for widely distributed analyses to

develop new models and statistical methods, test reproducibility, and
enhance rigor of scientific discoveries*¢. An “honest broker” system*’
whereby protected health information and clinical data are stored
in separate storage systems to protect patient privacy is a potential
solution to this issue, but this does not eliminate privacy risk and is
associated with great logistical cost. Our results show for the first
time that the MCI to ACD predictive model using a synthetic dataset
derived from real patient data but not attributable to any specific
patient (hence removing data privacy concerns), performed just as well
as the model from real patient data. The implication of this finding is
that EHR-based synthetic datasets can potentially be made available
for widely distributed computing to the scientific community, which
could accelerate scientific discoveries. Models from synthetic data
derived by outside scientists must then be validated using real patient
data by investigators with access to identified patient data to maintain
information security and, importantly, verify clinical validity. Using
synthetic data for model building could lower cost, reduce barriers to
entry, ease external validation using datasets from multiple health-care
systems, and facilitate hypotheses generation of disease mechanisms.
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FIGURE 2 Real and synthetic data model performance. Area
under the receiver operating characteristic curve (AUC) for prediction
of ACD conversion within 5 years of MCI diagnosis using models
trained on real and synthetic data. P value is comparing to AUC of real
model. ACD, all-cause dementia; MCI, mild cognitive impairment

Various health systems are already using synthetic datasets for quality
improvement and medical research.13:14.27:48

A study limitationis the predominance of male and White subjects in
this cohort with potentially greater exposure to traumatic brain injury
and post-traumatic stress disorder in combat veterans and applicabil-
ity to a more diverse patient population or other health-care systems
needs empirical testing. Our prior study showed that the performance
of a machine learning model to predict AD onset using blood pressure
trajectories trained using VA EHR data was similar when applied to
University of Michigan EHR data even though the demographic com-
positions are different!2. Although we used at least two encounters
with ICD codes for MClI that the MVP Cog Working Group validated to

15 arecent study

have 95% specificity based on rigorous chart review
on VA patients showed that deriving MCIl and AD diagnosis using clin-
ical notes captured more MCI and AD cases versus ICD-based codes
alone*? so the model should be validated in the future using clinics’
note-based diagnostic classification. The study is restricted to demo-
graphic and co-morbid conditions and adding data elements easily
extracted from EHR such as vital signs, medication history, procedures
codes, and others could further improve the model. The risk/protective
factors identified represent associational and not necessarily causal
relationships with ACD conversion. Associational relationships may
contain spurious correlations, such as those from collider bias. Inves-
tigating whether EHR data have the potential to provide evidence for
causal relationships between features of interest and ACD conversion
is a topic for future work. We used a linear model and whether syn-
thetic datasets perform as well as real patient datasets in non-linear
models remains to be determined. In similar fashion, the associational

nature of our findings does not imply causation and whether syn-

thetic data can replicate real data in establishing causal relationships
requires future empiric testing and validation. The decision to model
ACD instead of specific type (such as AD) was made in light of the
known difficulty in distinguishing among various dementia syndromes
given the overlap of many common clinical features3?°%>1, the het-
erogeneity of expertise among clinical providers in a large health-care
system making the ICD diagnosis decision, and the heterogeneity of
intensity of diagnostic workup leading to dementia diagnosis. As such,
identified at-risk individuals using the model will require further clini-
cal and laboratory phenotyping to assess candidacy for clinical trials or
specific interventions.

In conclusion, an EHR-derived model predicts MCI to ACD conver-
sion at 5 years with good discriminative performance and calibration.
The predictive model performance is similar when using real patient
data versus synthetic data derived from real patient data. EHR-based
prediction models could be used to identify high-risk MCI patients for

early treatment interventions or clinical trial participation.
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Additional supporting information can be found online in the Support-
ing Information section at the end of this article.
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