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HEREDITARY ATOMICITY IN INTEGRAL DOMAINS

JIM COYKENDALL, FELIX GOTTI, AND RICHARD ERWIN HASENAUER

Abstract. If every subring of an integral domain is atomic, we say that the latter is hereditarily
atomic. In this paper, we study hereditarily atomic domains. First, we characterize when certain
direct limits of Dedekind domains are Dedekind domains in terms of atomic overrings. Then we
use this characterization to determine the fields that are hereditarily atomic. On the other hand,
we investigate hereditary atomicity in the context of rings of polynomials and rings of Laurent
polynomials, characterizing the fields and rings whose rings of polynomials and rings of Laurent
polynomials, respectively, are hereditarily atomic. As a result, we obtain two classes of hereditarily
atomic domains that cannot be embedded into any hereditarily atomic field. By contrast, we show
that rings of power series are never hereditarily atomic. Finally, we make some progress on the still
open question of whether every subring of a hereditarily atomic domain satisfies ACCP.

1. Introduction

An integral domain R is said to be atomic if every nonzero nonunit of R factors into irreducibles.
Given that many relevant classes of commutative rings, including Krull domains and Noetherian
domains, are atomic, the property of being atomic has been largely investigated in commutative
ring theory. Since the appearance of the paper [28], where A. Grams studies ascending chains of
principal ideals in atomic integral domains, special attention has been given to atomicity in connection
to ascending chains of ideals. The study of atomicity was significantly stimulated in 1990 by the
paper [1], where D. D. Anderson, D. F. Anderson, and M. Zafrullah introduce the bounded and finite
factorization properties, which are properties that refine the class of atomic domains based on the
notion of factorizations. Noetherian and Krull domains naturally fit in the proposed refinement, as
they satisfy the bounded and the finite factorization properties, respectively (see [1, Proposition 2.2
and page 14], [4, Theorem 2], and [29, Theorem 5]).

Most of the important ring-theoretical properties of integral domains, including being Krull and
being Noetherian, are not inherited by subrings. In [21], R. Gilmer investigates integral domains whose
subrings are Noetherian, concluding with a full characterization. Here we adopt the same methodology,
but we replace the property of being Noetherian by the property of being atomic. Accordingly, we say
that an integral domain R is hereditarily atomic if every subring of R is atomic. It is worth noticing
that the property of being atomic is way more subtle than that of being Noetherian. For instance, in
contrast to the latter, the former is not preserved under localization [19, page 189] and it does not
transfer to polynomial rings [37]. So, unlike the Noetherian counterpart, a full characterization of the
hereditarily atomic domains seems to be highly difficult to establish. Having said that, here we offer
what may be the first step towards a full classification, and we hope that our results shed some light
upon a better understanding of hereditary atomicity in integral domains.
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In Section 4, we give a full characterization of the fields that are hereditarily atomic. We prove that
a field F of characteristic zero is hereditarily atomic if and only if F is an algebraic extension of Q
and the integral closure of Z in F is a Dedekind domain. We also establish a parallel characterization
for fields of positive characteristic. In our way to establish these characterizations, directed systems
of integral domains (Rγ)γ∈Γ, where Rα ⊆ Rβ is integral and [qf(Rα) : qf(Rβ)] is finite when α ≤ β,
played an important role (here qf(R) denotes the quotient field of R); we call them integral directed
systems. We have found atomic conditions under which the union of an integral directed system of
Dedekind domains is a Dedekind domain; we observe that, unlike for Prüfer domains, the directed
union of Dedekind domains may not be a Dedekind domain.

In contrast to Section 4, the primary purpose of Section 5 is to provide classes of hereditarily
atomic integral domains whose quotient fields are not hereditarily atomic. To achieve this, we consider
hereditary atomicity in rings of polynomials and rings of Laurent polynomials. First, we determine
the fields whose rings of polynomials are hereditarily atomic. Then we characterize the rings whose
rings of Laurent polynomials are hereditarily atomic: it turns out that such rings are precisely the
algebraic extensions of finite fields. We also prove that no ring of power series can be hereditarily
atomic.

In Section 6, we study the condition of being hereditarily ACCP. As for atomicity, we say that an
integral domain R is hereditarily ACCP if every subring of R satisfies the ascending chain condition on
principal ideals (ACCP). We conclude the paper exploring the following still open question: Is every
hereditarily atomic domain hereditarily ACCP? We conjecture that this is, in fact, the case. Then
we prove that the conjecture actually holds for several subclasses of atomic domains, while profiling
some general properties of a potential counterexample should it exist.

2. Background

Following standard notation, we let Z, Q, R, and C denote the set of integers, rational numbers,
real numbers, and complex numbers, respectively. Also, we let N and N0 denote the sets of positive
and nonnegative integers, respectively, while we let P denote the set of primes. For p ∈ P and n ∈ N,
we let Fpn be the finite field of cardinality pn. In addition, for a, b ∈ Z with a ≤ b, we let !a, b" denote
the set of integers between a and b, that is, !a, b" = {n ∈ Z | a ≤ n ≤ b}. Finally, for S ⊆ R and
r ∈ R, we set S≥r = {s ∈ S | s ≥ r} and S>r = {s ∈ S | s > r}.

Let R be an integral domain. Throughout this paper, R∗ and R× stand for the multiplicative
monoid and the group of units of R, respectively. Also, we let qf(R) stand for the quotient field of R.
If R ⊆ S is an extension of integral domains, we let RS denote the integral closure of R in S, and
we let R denote the integral closure of R in qf(R). An overring of R is an intermediate ring of the
ring extension R ⊆ qf(R). We let I (R) denote the set of all irreducibles of R, and R is said to be
antimatter if I (R) is empty. Following P. M. Cohn [9], we say that R is atomic if every nonzero
nonunit element of R factors into irreducibles. The class of atomic domains includes important classes
of rings such as Noetherian domains and Krull domains [1, Proposition 2.2]. We say that R satisfies
the ascending chain condition on principal ideals (or ACCP) if every increasing sequence of principal
ideals of R (under inclusion) eventually stabilizes. One can readily check that every integral domain
satisfying ACCP is atomic. The converse does not hold in general (see [7, 27, 28, 38]). Here we
introduce the following related notion.

Definition 2.1. An integral domain R is called hereditarily atomic if every subring of R is atomic.
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Although every hereditarily atomic domain is clearly atomic, the converse does not hold (see Exam-
ple 3.4). As mentioned in the introduction, the primary purpose of this paper is to study hereditarily
atomic domains.

Because most of the monoids we are interested in here are multiplicative monoids of integral do-
mains, within the scope of this paper a monoid is a cancellative and commutative semigroup with an
identity element denoted by 1. The quotient monoid Rred := R∗/R× is clearly reduced (i.e., its only
unit is 1). We denote the free commutative monoid on I (Rred) by Z(R) and call it the factorization
monoid of R. Let π : Z(R) → Rred be the unique monoid homomorphism fixing the set I (Rred). For
z = a1 · · · aℓ ∈ Z(R), where a1, . . . , aℓ ∈ I (Rred), we call z a factorization and say that |z| := ℓ is the
length of z. For every r ∈ R∗, set

Z(r) := ZR(r) := π−1(rR×) and L(r) := LR(r) := {|z| | z ∈ Z(r)}.

Clearly, R is atomic if and only if Z(r) is nonempty for every r ∈ R∗. Following [1], we say that R
is a bounded factorization domain (or a BFD) provided that R is atomic and L(r) is finite for every
r ∈ R∗. It is not hard to show that every BFD satisfies ACCP (see [18, Corollary 1.3.3]).

Recall that R is a valuation domain if any two (principal) ideals of R are comparable. It is well
known that R is a valuation domain if and only if there exist a totally ordered additive group G
and a surjective group homomorphism v : qf(R)× → G such that R = {r ∈ qf(R) | v(x) ≥ 0} and
v(x + y) ≥ min{v(x), v(y)} for all x, y ∈ qf(R)× with x + y ̸= 0. In this case, G is unique up to
isomorphism and is called the value group of R. A valuation domain is Noetherian if and only if it is a
discrete valuation ring (DVR) [32, Theorem 5.18]. A valuation domain R with value group G is called
discrete provided that its value group G is discrete, namely, the positive cone of G has a minimum
element. Note that DVRs are special cases of discrete valuations.

Dedekind domains and almost Dedekind domains play an important role in some of the results we
will establish later. Recall that an almost Dedekind domain is an integral domain whose localizations
at maximal ideals are DVRs. Thus, an almost Dedekind domain is a Dedekind domain if and only if
it is Noetherian. Unlike Dedekind domains, almost Dedekind domains are not necessarily atomic (see
[28]). Prüfer domains will also be important in the next section. Recall that a Prüfer domain is an
integral domain where every nonzero finitely generated ideal is invertible. It is well known and not hard
to verify that every almost Dedekind domain is a Prüfer domain. Unlike almost Dedekind domains,
Prüfer domains may have dimension greater than one: the ring consisting of all entire functions on
the complex plane is an infinite-dimension Prüfer domain that is not atomic [14, Section 8.1] and,
therefore, non-Noetherian. Prüfer domains are non-Noetherian versions of Dedekind domains: as for
almost Dedekind domains, a Prüfer domain is a Dedekind domain if and only if it is Noetherian (see
[32, Corollary 6.7]).

Some examples we provide here are based on monoid rings. Let M be an additive monoid. We
let M• and U(M) denote the set of nonzero elements of M and the group of invertible elements of M ,
respectively. The difference group of M (sometimes called the Grothendieck group of M) is the unique
abelian group gp(M) up to isomorphism satisfying that any abelian group containing a homomorphic
image of M will also contain a homomorphic image of gp(M). We say that M is torsion-free if the
group gp(M) is torsion-free. For an integral domain R, the monoid ring of M over R, denoted by
either R[x;M ] or R[M ], is the ring consisting of all polynomial expressions with exponents in M and
coefficients in R. When M is torsion-free, R[M ] is an integral domain [19, Theorem 8.1] and the group
of units of R[M ] is R[M ]× = {uXm | u ∈ R× and m ∈ U(M)} [19, Theorem 11.1]. A comprehensive
expository material on the advances in monoid rings (until 1984) is given by Gilmer in [19].
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3. Integral Domains with Atomic Overrings

It was proved in [10] that any integral domain can be embedded in an antimatter domain that
is not a field. Thus, at the outset, any integral domain is contained in a non-atomic domain. For
overrings there are restrictions, as we will see in the first part of this section. Recall that an integral
domain R is Archimedean if for every nonunit x ∈ R the equality

⋂

n∈N
Rxn = (0) holds.

Lemma 3.1. For a valuation domain V , the following conditions are equivalent.

(a) V is atomic.

(b) dimV ≤ 1 and V is discrete.

(c) V is Noetherian (and so a DVR).

(d) V is discrete and Archimedean.

Proof. (a) ⇒ (b): Suppose, by way of contradiction, that there are nonzero prime ideals P and Q
such that P ! Q. Let p be a nonzero element of P . Since V is atomic, p decomposes into irreducibles,
namely, p = a1 · · · am for some a1, . . . , am ∈ I (V ). Because P is prime, aj ∈ P for some j ∈ !1,m".
Take q ∈ Q \P . Since aj "V q, the fact that V is a valuation domain guarantees that q |V aj . Thus, q
and aj are associates, contradicting that q /∈ P . Therefore dimV ≤ 1. We now note that if V is not
discrete, then V has no irreducible elements: this is because the value group of V has no minimum
positive element.

(b) ⇔ (c): This is well known.

(c) ⇒ (a): Every Noetherian domain is atomic (see [1, Proposition 2.2]).

(c) ⇒ (d): This is also clear as every DVR is a discrete valuation and every Noetherian domain is
Archimedean by Krull’s Intersection Theorem.

(d) ⇒ (c): It suffices to argue that dimV ≤ 1. To this end, we suppose that P and Q are prime
ideals such that P ! Q. Now take x ∈ Q \ P and y ∈ P . For each n ∈ N, it is clear that xn ∈ Q \ P ,
and so xn |V y. Therefore y ∈

⋂

n∈N
Rxn, and the fact that V is Archimedean guarantees that y = 0.

Hence P is the zero ideal, and we can conclude that dimV ≤ 1. !

The following corollary generalizes [30, Exercise 2.2.20].

Corollary 3.2. Let R be an integral domain. If every overring of R is atomic, then R must have
valuative dimension at most 1. In particular, the Krull dimension of R is at most 1.

Proof. If the valuative dimension of R exceeds 1, then R has a valuation overring of dimension greater
than 1, which cannot be atomic by Proposition 3.1. In general the Krull dimension is bounded above
by the valuative dimension (see [32, Proposition 7.17]). !

It is perhaps natural to conjecture at this point that an integral domain has all its overrings atomic
if and only if all of the valuations of its quotient field are discrete, but for example, if R is almost
Dedekind, but not Dedekind, then it is often not atomic and all of its valuation overrings are discrete
and Archimedean.

Besides fields, there are integral domains whose overrings are atomic.

Example 3.3. Let R be a one-dimensional Noetherian domain. It is well-known that every overring S
of R is also a one-dimensional Noetherian domain (see [30, Theorem 93]). Since S is Noetherian, it
must be atomic.

Observe that if the quotient field of an integral domain R is hereditarily atomic, then every overring
of R is atomic. There are, however, integral domains (that are not fields) having all their overrings
atomic whose quotient field is not hereditarily atomic.
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Example 3.4. Since the ring of polynomials Q[x] is a Dedekind domain, every overring of Q[x] is a
Dedekind domain and, therefore, atomic. However, its quotient field, Q(x), is not hereditarily atomic.
Indeed, Z+ xQ[x] is a subring of Q(x) that is not atomic.

For our next result, we consider almost Dedekind domains that arise in a specific way, as a directed
union of a family of Dedekind domains. This situation mirrors what happens when almost Dedekind
domains are constructed from “large” algebraic extensions of Dedekind domains. Recall that a directed
set Λ is a partially ordered set satisfying that for all α,β ∈ Λ, there exists θ ∈ Λ such that α ≤ θ and
β ≤ θ. A family of integral domains {Rλ}λ∈Λ is called a directed system of integral domains provided
that Λ is a directed set and Rα ⊆ Rβ if α ≤ β. In this case, the integral domain

⋃

λ∈Λ Rλ is the direct
limit of the system {Rλ}λ∈Λ in the categorical sense.

Definition 3.5. A directed system {Rλ}λ∈Λ of integral domains is called a directed integral system
of integral domains if, for all α,β ∈ Λ with α ≤ β, the ring extension Rα ⊆ Rβ is integral and
[qf(Rβ) : qf(Rα)] < ∞.

In general, it is known that the union of a directed system of Prüfer domains is a Prüfer domain.
Here we use atomicity to characterize whether the directed union of a directed integral system of
Dedekind domains is a Dedekind domain. Such a characterization will be the main tool that we
develop to characterize, in Theorem 4.4, the fields that are hereditarily atomic.

Theorem 3.6. Let D be a Prüfer domain that is the union of a directed integral system of Dedekind
domains. Then all the overrings of D are atomic if and only if D is a Dedekind domain.

Proof. Since D is a field, the statement of the theorem trivially follows. So we assume that D is not a
field. Let {Dλ}λ∈Λ be a directed integral system of Dedekind domains whose union is D. The reverse
implication is clear as every overring of a Dedekind domain is again Dedekind [15, Corollary 13.2]
and, therefore, atomic.

For the direct implication, assume that every overring of D is atomic. Since D is a Prüfer domain,
it is integrally closed. Let us argue that D is integral over Dα for each α ∈ Λ. Take α ∈ Λ and ω ∈ D.
As D is the union of the system {Dλ}λ∈Λ, there exists β ∈ Λ such that ω ∈ Dβ and, since the set Λ
is directed, there is a θ ∈ Λ such that Dα, Dβ ⊆ Dθ. As ω ∈ Dθ, which is an integral extension of Dα,
we see that ω is integral over Dα. Hence D is integral over Dα, as desired. Since Dα is a Dedekind
domain, D must be a one-dimensional domain.

Now we claim that D must be an almost Dedekind domain. To verify this, let P be a prime ideal
of D. Since D is a Prüfer domain, DP is a valuation domain. Since DP is an overring of D, the former
must be atomic by hypothesis. Thus, Lemma 3.1 ensures that DP is a DVR. As a consequence, D is
an almost Dedekind domain.

Finally, let us assume towards a contradiction that D is not a Dedekind domain. Since D is almost
Dedekind but not Dedekind, [20, Theorem 3] guarantees the existence of a nonzero proper ideal of D
that is contained in infinitely many maximal ideals. So the fact that D is atomic allows us to take
a ∈ I (D) such that a is contained in infinitely many prime ideals of D. Take α ∈ Λ such that a ∈ Dα

and record the prime ideal factorization of aDα in Dα, namely,

aDα = Pe1
1 Pe2

2 · · ·Pek
k

for distinct prime ideals P1, . . . ,Pk of Dα and e1, . . . , ek ∈ N. As every prime ideal of D containing a
lies over one of the ideals P1, . . . ,Pk, at least one of such ideals, namely P, must be contained in
infinitely many prime ideals of D. Write S := Dα \P.

For each β ∈ Λ with β ≥ α, it is clear that S is a multiplicative subset of Dβ, and so we can
consider the integral domain Rβ := S−1Dβ . Observe that {Rβ}β≥α form a directed integral system
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whose union is the localizationR := S−1D. Since R is a localization of the almost Dedekind domainD,
it is an almost Dedekind domain by [20, Theorem 4(a)]. Because there are infinitely many prime ideals
of D lying over P, the localization correspondence theorem guarantees that there are infinitely many
prime ideals of R lying over S−1P. Therefore the nonzero ideal Ra is contained in infinitely many
prime ideals of R, and so R is not a Dedekind domain.

Fix β ∈ Λ with β ≥ α. Since the extension Rα ⊆ Rβ is integral, Rβ is the integral closure of Rα in
qf(Rβ). Now as [qf(Rβ) : qf(Rα)] < ∞, it follows, as a consequence of Krull-Akizuki Theorem (see [33,
Theorem 11.7]), that Rβ contains only finitely many prime ideals lying over S−1P. Since S−1P is the
only prime ideal of Rα, we see that Rβ is a Dedekind domain with only finitely many prime ideals
and, therefore, it is a PID. Thus, Rβ is a PID provided that β ≥ α. Because R is an atomic domain
(it is an overring of D), we can factor a in R as follows:

a = a1a2 · · · am,

where a1, . . . , am ∈ I (R). Since R is the union of the directed integral system {Rβ}β≥α, there is a
θ ∈ Λ with θ ≥ α such that a1, . . . , am ∈ Rθ. Since the extension Dθ ⊆ D is integral, so is Rθ ⊆ R.
Then it follows that R×∩Rθ = R×

θ , and so I (R)∩Rθ ⊆ I (Rθ). Therefore a1, . . . , am ∈ I (Rθ), and
the fact that Rθ is a PID guarantees that a1, . . . , an are primes in Rθ. As a is contained in infinitely
many prime ideals of R, we can assume, without loss of generality, that a1 is not prime in R. So there
exist r1, r2, r3 ∈ R such that r1r2 = r3a1 with a1 not dividing either r1 or r2 in R. In particular,
r1, r2 /∈ R×. Choose ω ∈ Λ with ω ≥ α such that r1, r2, r3, a1 ∈ Rω. Since the extension Rω ⊆ R
is integral and a1 is irreducible in R, it must be irreducible, and hence prime, in Rω. Then a1 must
divide ri in Rω for some i ∈ {1, 2}. As a result, a1 would divide ri in R, which is a contradiction.
Hence we conclude that D is a Dedekind domain. !

Unlike Prüfer domains, the directed union of Dedekind domains may not be a Dedekind domain.

Example 3.7. Let Λ be the set consisting of all finite subsets of ZC. It is clear that Λ is a directed
set under inclusion. In addition, for each λ ∈ Λ, the ring Rλ := Z[λ] is a finite integral extension of Z
and, therefore, it is a Dedekind domain. Observe, on the other hand, that the union of the directed
system {Rλ}λ∈Λ is ZC, which is not even Noetherian (for instance, the ideal ( n

√
2 | n ∈ N) is not

finitely generated).

4. Hereditarily Atomic Fields

As we have seen in Example 3.4, having a hereditarily atomic quotient field is a stronger condition
than having all overrings atomic. Our primary purpose in this section is to classify the fields that are
hereditarily atomic. In doing so, the results we have established in Section 3 will be useful.

To begin with, we observe that if a field F is a finite-dimensional extension of its prime field, then
every subring of F is Noetherian by [21, Theorem]. Since every Noetherian domain is a BFD by [1,
Proposition 2.2], we immediately obtain the following sufficient condition for a field to be hereditarily
atomic.

Proposition 4.1. Let F be a field. If F is a finite-dimensional extension of its prime field, then F
is hereditarily atomic.

As we will see later, the previous sufficient condition is not necessary. Indeed, characterizing the
entirety of the family of hereditarily atomic fields is more delicate. For now let us collect two necessary
conditions for a field to be hereditarily atomic.

Proposition 4.2. Let F be a field. If F is hereditarily atomic, then the following statements hold.
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(1) If char(F ) = 0, then F is algebraic over Q.

(2) If char(F ) = p ∈ P, then the transcendence degree of Fp ⊆ F is at most 1.

(3) Every valuation of F is both discrete and Archimedean.

Proof. (1) Suppose first that char(F ) = 0. Assume, by way of contradiction, that F is not algebraic
over Q, and consider the subring R = Z+ tQ[t] of F , where t ∈ F is a transcendental element over Q.
It is clear that R is isomorphic to the subring Z + xQ[x] of the ring of polynomials Q[x]. Since Z is
not a field, it follows from [5, Corollary 1.4] that R is not atomic, which is a contradiction.

(2) Suppose now that char(F ) = p ∈ P. Similar to part (1), if t1, t2 ∈ F were algebraically
independent over Fp, then the subring Fp[t1] + t2Fp(t1)[t2] of F would be isomorphic to the non-
atomic subring Fp[t1] + xFp(t1)[x] of the polynomial ring Fp(t1)[x].

(3) For this, it suffices to note that if F has a valuation that is not discrete or a valuation that is
not Archimedean, then its corresponding valuation domain will not be atomic by Lemma 3.1. !

In light of Proposition 4.2, in order to classify the fields that are hereditarily atomic, it suffices to
restrict our attention to algebraic extensions of Q and field extensions of Fp of transcendence degree
at most 1. However, not all such field extensions are hereditarily atomic. The following example sheds
some light upon this observation.

Example 4.3. Take p ∈ P, and consider the additive submonoid M = Z[1/p]≥0 of Q≥0, where Z[1/p]
is the localization of Z at the multiplicative set {pn | n ∈ N0}. Now consider the monoid ring Fp[M ]
of M over Fp. Since Fp is a perfect field and M = pM , every polynomial expression in Fp[M ] is a p-th
power in Fp[M ]. As a consequence, Fp[M ] is an antimatter domain. As Fp[M ] is not a field, it cannot
be atomic. Finally, observe that Fp[M ] is a subring of the algebraic extension Fp(xm | m ∈ M) of the
field Fp(x).

We are in a position now to characterize the fields that are hereditarily atomic.

Theorem 4.4. Let F be a field.

(1) If char(F ) = 0, then F is hereditarily atomic if and only if F is an algebraic extension of Q
such that ZF is a Dedekind domain.

(2) If char(F ) = p ∈ P, then F is hereditarily atomic if and only if the transcendental degree of F
over Fp is at most 1 and Fp[x]F is a Dedekind domain for every x ∈ F .

Proof. (1) For the direct implications, suppose that F is hereditarily atomic. It follows from Propo-
sition 4.2 that F is an algebraic extension of Q. Since Z is a Prüfer domain with quotient field Q, it
follows that ZF is a (one-dimensional) Prüfer domain [30, Theorem 101]. Note now that the set of all
finite sub-extensions of ZF is a directed system of Dedekind domains. This directed system is clearly
a directed integral system with directed union ZF . As F is hereditarily atomic, every overring of ZF

is atomic and, therefore, Theorem 3.6 guarantees that ZF is a Dedekind domain.
Conversely, suppose that F is an algebraic extension of Q such that ZF is a Dedekind domain.

Let S be a subring of F . As ZF ⊆ SF holds, the fact that F is algebraic over both Q and qf(S)
guarantees that qf(ZF ) = F = qf(SF ). Therefore SF is an overring of ZF . Since ZF is a Dedekind
domain, so is SF [32, Theorem 6.21]. Thus, SF is Noetherian and, in particular, it must satisfy ACCP.

On the other hand, S
×

F ∩ S = S× because S ⊆ SF is an integral extension. From this, one infers
that S also satisfies ACCP. As a consequence, S is atomic. Hence F is hereditarily atomic.

(2) Suppose first that F is hereditarily atomic. It follows from Proposition 4.2 that the transcen-
dence degree of F over Fp is at most 1. Assume that F is not algebraic over Fp, and fix a transcendental

x ∈ F over Fp. Then F is an algebraic extension of Fp(x). Since Fp[x] is a Prüfer domain and Fp[x]F
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is one-dimensional, we can mimic the argument in the first paragraph of this proof to conclude that
Fp[x]F is a Dedekind domain.

For the reverse implications, we first observe that if F is an algebraic extension of Fp for some
p ∈ P, then every subring of F is a field, whence F is hereditarily atomic. We suppose, therefore,
that the transcendental degree of F over Fp is 1. Let S be a subring of F . If every element of S is
algebraic over Fp, then S is a field, and so atomic. Otherwise, let x ∈ S be a transcendental element
over Fp. Then Fp[x] is a subring of S. Since F is an algebraic extension of Fp(x) and Fp[x]F is a
Dedekind domain, we can argue that S is hereditarily atomic by simply following the lines of the
second paragraph of this proof. Thus, F is hereditarily atomic. !

We record the following corollary (actually a porism to Theorem 4.4).

Corollary 4.5. The field F is hereditarily atomic if and only if each subring of F is a BFD.

Corollary 4.6. For p ∈ P, let F be an algebraic extension of Fp. Then the field F (x) is hereditarily
atomic.

Proof. It suffices to show that F (x) is hereditarily atomic assuming that F is the algebraic closure
of Fp. It is clear that Fp[x]F (x) ⊆ F [x]F (x) = F [x] because F [x] is integrally closed. Conversely, every

element of F [x] is integral over Fp[x], and so F [x] ⊆ Fp[x]F (x). Thus, Fp[x]F (x) = F [x] is a Dedekind

domain, and it follows from part (2) of Theorem 4.4 that F (x) is hereditarily atomic. !

We quickly note that it is possible to have a Dedekind domainD with quotient field F such that F is
algebraic, but not finite, over Q (resp. Fp(x)). First, we record a key result needed in the construction.
This result is [22, Theorem 42.5].

Theorem 4.7. Let R be a Dedekind domain with quotient field K, and let

{Pi}ri=1, {Qi}si=1, {Ui}ti=1

be three collections of distinct maximal ideals of R (with r ≥ 1), each with finite residue field. Then
there is a simple quadratic field extension K(t) of K (with ring of integers RK(t)) such that t integral

over R and separable over K and each Pi is inertial in RK(t), each Qi ramifies in RK(t), and each Ui

splits in RK(t).

Example 4.8. Let R = R0 be a Dedekind domain, and suppose that R has (only) countably many
nonzero prime ideals (Pn)n∈N, each of them with finite residue field. We can apply Theorem 4.7 to
build a quadratic field extension K1 of qf(R) such that P1 is inertial in R1 := RK1

(and leave the
set to ramify and the set to split both as empty). Since R1 is Dedekind, we can apply Theorem 4.7
to obtain a quadratic field extension K2 of qf(R1) such that the primes of R1 lying over P2 and P1

(which is only P1R1 itself) are inertial in R2 := R1K2
. In the nth step we construct a quadratic

field extension Kn of qf(Rn−1) such that the primes of Rn−1 lying over P1,P2, . . . ,Pn are inertial in
Rn := Rn−1Kn

. Then we can consider D =
⋃

n∈N
Rn. It follows from [22, Corollary 42.2] that D is

an almost Dedekind domain. Since any Pn can be contained in only finitely many (in fact no more
than 2n−1) prime ideals of D, we obtain that D is a Dedekind domain. However, qf(D) is an infinite
field extension of qf(R).
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5. Polynomial-Like Rings

The main purpose of this section is to study hereditary atomicity in rings of polynomials and rings
of Laurent polynomials. To begin with, we will determine which are the fields whose polynomial rings
are hereditarily atomic. Every hereditarily atomic domain we have seen so far lives inside a hereditarily
atomic field. We will see that there are rings of polynomials that are hereditarily atomic domains but
whose quotient fields are not hereditarily atomic and, therefore, they cannot be embedded into any
hereditarily atomic field.

First, we note here that the distinction between atomic domains and domains satisfying ACCP is
notoriously subtle, and just a few classes of atomic domains without ACCP have been found so far
(see, for instance, [7], [28], and [38]). The following proposition, which we will use later, is not hard
to verify.

Proposition 5.1. [28, Proposition 2.1] Let R be an integral domain satisfying ACCP. If a subring S
of R satisfies S× = R× ∩ S, then S also satisfies ACCP.

Using Proposition 5.1, one can produce examples of hereditarily atomic domains whose quotient
fields are not hereditarily atomic.

Example 5.2. For n ∈ N, consider the polynomial ring R = Z[x1, . . . , xn]. Since R× = {±1}, for
each subring S of R we see that S× = {±1} = R× ∩ S. It follows now from Proposition 5.1 that S
satisfies ACCP and is, therefore, atomic. Thus, R is hereditarily atomic. However, the quotient field
of R is not hereditarily atomic by Theorem 4.4.

Example 5.3. For n ∈ N, the only unit of the polynomial ring R = F2[x1, . . . , xn] is 1. Now we can
proceed as in Example 5.2 to obtain that R is hereditarily atomic even though Theorem 4.4 guarantees
that the quotient field of R is not hereditarily atomic when n ≥ 2.

It is well known that if an integral domain R satisfies ACCP (resp., is a BFD), then the ring of
polynomials R[x] over R satisfies ACCP (resp., is a BFD). This is not the case for being atomic as
proved by M. Roitman [37]. Similarly, the ring R[x] may not be hereditarily atomic even when R
is hereditarily atomic. Indeed, the field Q is hereditarily atomic by Theorem 4.4, but the ring Q[x]
contains the subring Z + xQ[x], which is not atomic. We proceed to characterize the fields yielding
hereditarily atomic polynomial rings.

Proposition 5.4. Let F be a field. Then the following statements are equivalent.

(a) F [x1, . . . , xn] is hereditarily atomic for any distinct indeterminates x1, . . . , xn.

(b) F [x] is hereditarily atomic.

(c) F is an algebraic extension of Fp for some p ∈ P.

Proof. (a) ⇒ (b): This is clear.

(b) ⇒ (c): Suppose that F [x] is hereditarily atomic. As we have observed, char(F ) cannot be
zero, as otherwise F [x] would contain a copy of the non-atomic domain Z + xQ[x]. Let p be the
characteristic of F . Since every subring of F is atomic, it follows from part (b) of Theorem 4.4 that F
is an algebraic extension of either Fp or Fp(y). Note, however, that F cannot be an extension of Fp(y)
because, in such a case, Fp[y]+xFp(y)[x] would be a non-atomic subring of F [x] by [5, Corollary 1.4].
Hence F must be an algebraic extension of Fp.

(c) ⇒ (a): Suppose now that F is an algebraic extension of the finite field Fp for some p ∈ P, and
set R = F [x1, . . . , xn]. Let S be a subring of R. If S is a subring of F , then S must be atomic by
Theorem 4.4 (indeed, in this case, S is a field). Assume, therefore, that S is not a subring of F , and
take a ∈ S \ F satisfying that for all g, h ∈ R with a = gh, either g ∈ F or h ∈ F . Write a = gh for
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some g, h ∈ S and suppose, without loss of generality, that g ∈ F . Since F ∩ S is a subring of F , it
must be a field, and so g ∈ F ∩S implies that g ∈ S×. Thus, a ∈ I (S). Finally, if f ∈ S, then we can
write f = a1 · · ·am for a1, . . . , am ∈ S \ F taking m ∈ N as large as it can be. In this case, a1, . . . , am
must be irreducibles in S, and so a1 · · · am is a factorization of f in S. Hence S is atomic, and we can
conclude that R is hereditarily atomic. !

The following corollary is an immediate consequence of Theorem 4.4 and Proposition 5.4.

Corollary 5.5. Let F be an algebraic extension of Fp for some p ∈ P. For n ≥ 2, the ring of polyno-
mials F [x1, . . . , xn] is a hereditarily atomic domain whose quotient field is not hereditarily atomic.

Although Noetherian and Krull domains are BFDs, they are not necessarily hereditarily atomic
(see Corollary 5.12). However, as a consequence of Proposition 5.4, we can identify hereditarily atomic
Noetherian and Krull domains of any dimension.

Corollary 5.6. For every n ∈ N there exists a Noetherian/Krull domain of dimension n that is
hereditarily atomic.

Proof. For each n ∈ N, the n-dimensional ring Fp[x1, . . . , xk] is both a Noetherian domain and a Krull
domain, and it is also hereditarily atomic by Proposition 5.4. !

For every n ∈ N, it follows from Corollary 5.5 that the integral domain Fp[x1, . . . , xn], which
is isomorphic to the monoid ring of the rank-n free commutative monoid Nn

0 over the field Fp, is
hereditarily atomic. The next example exhibits another class of monoids whose monoid rings over Fp

are hereditarily atomic.
First, let us extend some terminology from the setting of integral domains to that of monoids. The

notions of irreducibility and atomicity carry over to any monoid M as follows: a ∈ M \ U(M) is
irreducible if a = xy for some x, y ∈ M implies that either x ∈ U(M) or U(M), and M is atomic
if every non-invertible element factors into irreducibles. Moreover, we can extend in the obvious
way the notion of a factorization to atomic monoids, and so we can define a bounded factorization
monoid (BFM ) mimicking the definition of a BFD. Finally, a subset I of a monoid M is called
an ideal if I + M ⊆ I, and so we can consider monoids satisfying ACCP. As for integral domains,
every BFM satisfies ACCP [18, Corollary 1.3.3] and every monoid satisfying ACCP is atomic [18,
Proposition 1.1.4].

Example 5.7. Fix p ∈ P. Let M be an additive submonoid of R≥0 such that 0 is not a limit point
of M•. Since 0 is not a limit point of M•, it follows from [25, Proposition 4.5] that M is a BFM,
and so the monoid ring Fp[M ] is a BFD by [3, Theorem 13]. In particular, Fp[M ] satisfies ACCP.
Now suppose that S is a subring of Fp[M ]. As the only invertible element of M is 0, we see that
Fp[M ]× = F×

p , and so the equality S× = F×
p = Fp[M ]×∩S holds. Then it follows from Proposition 5.1

that S satisfies ACCP and is, therefore, atomic. As a result, Fp[M ] is a hereditarily atomic domain.
Several aspects of the atomicity of F [M ] for additive submonoids M of Q≥0 (and any field F ) were
recently studied by the second author in [26].

Given a polynomial ring F [x] over a field, subrings of the form D + xF [x], where D is a subring
of F , are special cases of the well-investigated D+M construction, which was first studied by Gilmer
[22, Appendix II] in the context of valuation domains, and later by J. Brewer and E. A. Rutter [8]
for arbitrary integral domains. For an integral domain T , let K and M be a subfield of T and a
nonzero maximal ideal of T , respectively, such that T = K +M . Now let D be a subring of K, and
set R = D+M . It is known that R is atomic (resp., satisfies ACCP) if and only if T is atomic (resp.,
satisfies ACCP) and D is a field [1, Proposition 1.2]. If T has characteristic zero, then R cannot be
hereditarily atomic.
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Proposition 5.8. Let T be an integral domain, and let K and M be a subfield of T and a nonzero
maximal ideal of T , respectively, such that T = K +M . For a subring D of K, set R = D+M . If T
has characteristic zero, then R is not hereditarily atomic.

Proof. Suppose that T (and so R) has characteristic zero. If D is not a field, then it follows from [1,
Proposition 1.2] that R is not even atomic. Therefore we assume that D is a field extension of Q.
We claim that every nonzero element of M is transcendental over D. Indeed, if for some nonzero
m ∈ M there existed a polynomial f(x) =

∑n
j=0 cjx

j ∈ D[x] with c0 ̸= 0 and f(m) = 0, then the

equality 0 = c0 +m
∑n

j=1 cjm
j−1 would contradict that D+M is a direct sum of abelian groups. As

a result, R contains an isomorphic copy of Q[x] as a subring, namely, Q[m] for any nonzero m ∈ M .
Since Q[x] is not hereditarily atomic (it contains Z + xQ[x] as a subring), neither R nor T can be
hereditarily atomic. !

If T is hereditarily atomic (which can only happen if char(T ) is prime), then R is clearly hereditarily
atomic (even if D is not a field). On the other hand, if R is hereditarily atomic, then it is atomic
and so it follows from [1, Proposition 1.2] that T is atomic and D is a field. However, unlike for the
property of being atomic, the fact that R is hereditarily atomic does not suffice to guarantee that T
is hereditarily atomic. The following example sheds some light upon this last observation.

Example 5.9. Fix p ∈ P, and let x be an indeterminate over Fp. Let T denote the polynomial ring
Fp(x)[y] in the indeterminate y over the field Fp(x), and let R := Fp + yFp(x)[y] be the subring of T
of the form D + M , where D = Fp and M = yFp(x)[y]. Since T satisfies ACCP (indeed, T is a
UFD), [1, Proposition 1.2] ensures that R also satisfies ACCP. It follows from [6, Lemma 4.17] that
R× = T×∩R = F×

p . Now suppose that S is a subring of R, and observe that R×∩S = F×
p = S×. Then

Proposition 5.1 guarantees that S satisfies ACCP and is, therefore, atomic. Hence R is hereditarily
atomic. However, it follows from Proposition 5.4 that T is not hereditarily atomic.

We have just identified in Proposition 5.4 a class of polynomial rings that are hereditarily atomic.
In the next proposition we fully characterize the rings of Laurent polynomials that are hereditarily
atomic.

Theorem 5.10. Let R be an integral domain. Then R[x, x−1] is hereditarily atomic if and only if R
is an algebraic extension of Fp for some p ∈ P.

Proof. For the reverse implication, suppose that R is an algebraic extension of Fp for some p ∈ P. In
particular, we can assume that R is a subfield of the algebraic closure K of Fp. Then R[x, x−1] is a
subring of K(x). Since K(x) is hereditarily atomic by Corollary 4.6, we obtain that R[x, x−1] is also
hereditarily atomic.

For the direct implication, suppose that R[x, x−1] is hereditarily atomic. We will argue first that R
cannot have characteristic zero. Suppose, towards a contradiction, that char(R) = 0. Then R[x, x−1]
contains Z[x, x−1] as a subring. Now consider the subring

T := Z[xn, 2/xn | n ∈ N]

of Z[x, x−1]. One can readily verify that x−1 /∈ T . This, along with the inclusion T× ⊆ {±xn | n ∈ Z},
implies that T× = {±1}. As a consequence, 2/xj = x(2/xj+1) ensures that 2/xj /∈ I (T ) for any
j ∈ N0. Since T is a subring of R[x, x−1], it must be atomic. Therefore we can write 2 = a1(x) · · · an(x)
for some a1(x), . . . , an(x) ∈ I (T ), where n ≥ 2 because 2 /∈ T× ∪ I (T ). Since the monoid

M := {cxn | c ∈ Z \ {0} and n ∈ Z}
is a divisor-closed submonoid of the multiplicative monoid Z[x, x−1] \ {0}, it follows that aj(x) ∈ M
for every j ∈ !1, n". After relabeling and taking associates, we can assume that a1(x) = 2xs1 and
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aj(x) = xsj for every j ∈ !2, n", where s1, . . . , sn ∈ Z satisfy s1 + · · · + sn = 0. The fact that
a1(x) ∈ I (T ) guarantees that s1 ≥ 1. Thus, there must be a k ∈ !2, n" such that sk < 0. However,
in this case ak(x) = xsk would be a unit of T , which is a contradiction.

Hence char(R) = p for some p ∈ P, and so R contains Fp as its prime subfield. We will argue
that R is an algebraic extension of Fp. Assume, by way of contradiction, that there exists w ∈ R that
is transcendental over Fp. Let us prove that the subring

S := Fp[x,w/x
n | n ∈ N0]

of R[x, x−1] is not atomic, which will yield the desired contradiction.

If x were a unit of S, then x−1 =
∑k

i=0 gi(x)w
i for some g0 ∈ Fp[x] and g1, . . . , gk ∈ Fp[x, x−1],

and so the fact that w is transcendental over Fp(x) (as an element of the extension qf(R)(x)) would
imply that xg0(x) = 1. Thus, x /∈ S×. Similarly, if w/xn were a unit of S for some n ∈ N0, then

xn/w =
∑k

i=0 gi(x)w
i for some g0, . . . , gk ∈ Fp[x, x−1] and, after clearing denominators, we would

obtain F (x,w) = 0 for some nonzero F in the polynomial ring Fp[X,W ], contradicting that {x,w} is
algebraically independent over Fp. Thus, w/xn /∈ S× for any n ∈ N0.

We proceed to argue that w does not factor into irreducibles in S. Observe first that for every
m ∈ N0 the element w/xm is not irreducible in S because w/xm = x(w/xm+1) and, as we have already
checked, x,w/xm+1 /∈ S×. In particular, w is not irreducible in S. Now write

(5.1) w =
n
∏

i=1

fi
(

x,w,
w

x
, . . . ,

w

xk

)

in S for some k ∈ N0, n ∈ N≥2, and f1, . . . , fn ∈ Fp[X,W0, . . . ,Wk] such that fi(x,w,w/x, . . . , w/xk)
is not a unit of S for any i ∈ !1, n". Observe that for every i ∈ !1, n", there is a unique ℓi ∈ Z
such that gi := x−ℓifi ∈ Fp[x,w] and gi(0, w) ̸= 0. Set ℓ = ℓ1 + · · · + ℓn. It follows from (5.1)
that g1(x,w) · · · gn(x,w) = x−ℓw, which implies that ℓ = 0. Therefore w = g1(x,w) · · · gn(x,w) in
Fp[x,w]. Since Fp[x,w] is a UFD and w is irreducible in Fp[w, x], we can assume, after a possible
relabeling of subindices, that g1 = α1w for some α1 ∈ F×

p and gi = αi ∈ F×
p for every i > 1. Thus,

f1 = α1xℓ1w and fi = αixℓi for every i > 1. Now we observe that f1 is not irreducible in S because
f1 = α1xN (w/xN−ℓ1), where N := |ℓ1| + 1, and neither α1xN nor w/xN−ℓ1 is a unit of S. As a
consequence, w does not factor into irreducibles in S, and so S is a subring of R[x, x−1] that is not
atomic, contradicting that R[x, x−1] is hereditarily atomic. Hence R is an algebraic extension of Fp,
which concludes the proof. !

In contrast to the class of polynomial rings and the class of Laurent polynomial rings, which contain
many hereditarily atomic domains (see Example 5.2 and Proposition 5.4), the class of power series rings
does not contain any hereditarily atomic domain. We conclude the paper arguing this observation.

Proposition 5.11. If R is an integral domain, then R!x" is not hereditarily atomic.

Proof. Suppose, by way of contradiction, that R!x" is hereditarily atomic. Let R′ be the prime subring
of R. Since R′ is either finite or countable, the polynomial ring R′[X ] is also countable. Therefore
the algebraic closure of R′ inside R!x" is countable. On the other hand, it is clear that R!x" has
uncountably many units. As a result, there must be a unit u of R!x" that is not algebraic over the
ring R′[x]. Then R′[u, u−1] is a subring of R!x" that is isomorphic to the ring of Laurent polynomials
in one variable over R′. It follows from Theorem 5.10 that R′ is an algebraic extension of Fp, and so
R′ = Fp because R′ is the prime subring of R. Since Fp[u, u−1] is a countable set, we can argue as we
did before to deduce that there is an element y ∈ R!x" that is transcendental over the ring Fp[u, u−1].
This clearly implies that y is transcendental over Fp and that both u and u−1 are transcendental
over Fp[y]. Since Fp[y] is not an algebraic extension of Fp, it follows from Theorem 5.10 that the
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Laurent polynomial ring Fp[y][u, u−1] is not hereditarily atomic. Hence we conclude that R!x" is not
hereditarily atomic. !

In contrast to Corollary 5.6, now we can identify Noetherian and Krull domains of any finite Krull
dimension that are hereditarily atomic.

Corollary 5.12. For every k ∈ N, there exists a Noetherian/Krull domain of dimension k that is not
hereditarily atomic.

Proof. For each k ∈ N, the k-dimensional ring R := Q!x1, . . . , xk" is both a Noetherian domain and
a Krull domain [33, Theorem 12.4(iii)]. In addition, Q!x" is a subring of R that is not hereditarily
atomic by Proposition 5.11. Thus, R is not hereditarily atomic. !

6. Hereditary Atomicity VS Hereditary ACCP

It is well known (but historically a point of contention) that the ACCP condition is strictly stronger
than the atomic condition. The first example illustrating this fact is due to Grams [28] (correcting an
error in [9]). Further constructions have been given since then, and references to such constructions,
including two recent ones using pullbacks of rings and monoid algebras, were pointed out in the
introduction.

We say that an integral domain R is hereditarily ACCP if every subring of R satisfies ACCP. It is
clear that if R is hereditarily ACCP, then it must be hereditarily atomic. Given the history of these
concepts, it is natural to ask if the class consisting of hereditarily atomic domains coincides with that
of hereditarily ACCP domains. This motivates the following conjecture.

Conjecture 6.1. For an integral domain R, the following conditions are equivalent.

(a) R is hereditarily atomic.

(b) R is hereditarily ACCP.

We remark that this conjecture is not without historical motivation. For example, if R ⊆ T is an
extension of rings, then it is known that each of the first two conditions below implies the next one:

(a) R ⊆ T is a going up (GU) extension;

(b) R ⊆ T is a lying over (LO) extension;

(c) R ⊆ T is a survival extension.

In addition, no two of the previous three conditions are equivalent. On the other hand, if we replace
“extension” with “pair” in the same three conditions, then they become equivalent statements (we
say that R ⊆ T is an X-pair if for any intermediate extensions R ⊆ A ⊆ B ⊆ T , the inclusion A ⊆ B
is an X-extension). The interested reader is directed to [11] and [13] for more details.

Although Conjecture 6.1 is still open, in this section we will reduce it to some specialized cases. We
outline an approach that profiles the general properties of a canonical counterexample given that any
exists. It is interesting to notice that the veracity of Conjecture 6.1 would show that any example of
an atomic domain that is not ACCP must contain a non-atomic subring (and if Conjecture 6.1 proves
false, this shows exactly where to look for examples).

Proposition 6.2. The following conditions are equivalent.

(a) Conjecture 6.1 holds.

(b) Every integral domain that does not satisfy ACCP contains a subring that is not atomic.
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Proof. (a) ⇒ (b): Assume Conjecture 6.1 is true, and let R be an integral domain that does not
satisfy ACCP. Clearly, R is not hereditarily ACCP and, under our assumption, this means that R is
not hereditarily atomic.

(b) ⇒ (a): If every integral domain without the ACCP condition contains a non-atomic subring,
then no hereditarily atomic domain can have a subring without the ACCP condition. !

Here is a slight variant of [28, Proposition 2.1] (the original result by Grams appears previously as
our Proposition 5.1).

Proposition 6.3. Let R be an integral domain satisfying ACCP. If a subring S of R has the property
that every unit of R is integral over S, then S also satisfies ACCP.

Proof. We only need to show that strict containments among principal ideals survive in R. To this
end, suppose that (a) ! (b) in S, and take c ∈ S with a = bc. If c is a unit in R, then c−1 must be
integral over S by hypothesis and, hence, a unit itself in S (this is because c−1 is integral over S if and
only if c−1 ∈ S[c] = S), which is a contradiction. Hence the desired inclusion remains strict in R. !

Let R be an integral domain. For any ascending chain of ideals (In)n∈N of R, we say that (In)n∈N

ascends from I1. Recall that a multiplicative subset S of R is saturated if S is a divisor-closed
submonoid of R∗.

We are in a position to prove our final result.

Theorem 6.4. Let R be an integral domain with quotient field K. Let Z be the prime subring of R,
and let Q be the quotient field of Z. For each of the following conditions, R is hereditarily atomic if
and only if R is hereditarily ACCP.

(1) There exists u ∈ R× such that u is not integral over Z, and there exists x ∈ R such that x is
transcendental over Q(u).

(2) The field K has positive characteristic, and it is algebraic over Q.

(3) One of the following conditions hold:
• K has positive characteristic, R satisfies ACCP, and the transcendence degree of K
over Q is not 1;

• K has characteristic zero, R satisfies ACCP, and the transcendence degree of K over Q
is at least 2.

(4) There exists a sequence (yn)n∈N whose terms are nonunits in R with an x ∈
⋂

n∈N
(y1 · · · yn)

that is transcendental over the field Q(yn | n ∈ N).

(5) There exists a strictly ascending chain (xn)n∈N0
of principal ideals such that x0 is transcen-

dental over the field Q
(

xn

xn+1
| n ∈ N0

)

.

(6) There exists a strictly ascending chain of principal ideals of R

(x) !
( x

y1

)

! · · · !
( x

y1y2 · · · yn

)

! · · ·

for some nonzero nonunit x ∈ R and a sequence (yn)n∈N whose terms are nonzero nonunits
in R and x ∈

⋂

n∈N
(y1 · · · yn) such that Z[yn | n ∈ N]

⋂

P = (0), where P ⊂ R is the ideal
(

x,
x

y1
, · · · ,

x

y1y2 · · · yn
, · · ·

)

.

(7) The multiplicative subset of R defined by

{z ∈ R∗ | (z) = R or there is an infinite chain of distinct principal ideals ascending from (z)}
is a saturated set that is not contained in R×.
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Proof. We remark at the outset that, as noted before, hereditarily ACCP implies hereditarily atomic.
So for our seven items, we show hereditarily atomic implies hereditarily ACCP and the usual approach
will be to show produce an non-atomic subring of a domain that is not ACCP.

(1) Take u ∈ R× such that u is not integral over Z, and then select x ∈ R such that x is transcen-
dental overQ(u). It suffices to show that R has a non-atomic subring S. Towards this end, let S be the
subring Z[u−1]+xZ[u, u−1][x] of R. Since x is transcendental over Q(u), it functions as a polynomial
variable. Proving that S is not atomic amounts to showing that x cannot be factored into irreducibles
in S. First, note that u−1 is not a unit of Z[u−1] as otherwise f(u−1) = u for some polynomial f
over Z, and so u would be a root of the monic polynomial x1+deg f − xdeg ff(x−1) with coefficients
in Z, which is not possible because u is not integral over Z. Hence u−1 /∈ S×, and so the equality
x = u−1(xu) ensures that x is not irreducible. Because the multiplicative monoid consisting of all
nonzero monomials of S is a divisor-closed submonoid of S∗, every potential factorization of x in S
must contain a factor of the form cx for some c ∈ Z[u, u−1], which is not irreducible in S because x
is not irreducible. Hence ZS(x) is empty.

(2) Set p := char(K). As K is algebraic over Fp, every element of R is algebraic over Fp and, as a
result, R is a field. Suppose now that R is hereditary atomic. Since R is a hereditarily atomic field,
Corollary 4.5 guarantees that every subring of R is a BFD and, therefore, satisfies ACCP. Hence R is
hereditarily ACCP.

(3) In the case of positive characteristic, we can assume, by using part (2), that the transcendence
degree of K over Q is at least 2, which is the blanket assumption for the case of characteristic zero.
Since R satisfies ACCP, we note that if there exists u ∈ R× such that u is not integral over Z, then
the fact that the transcendence degree of K over Q is at least 2 assures us that condition (1) holds,
and so we are done. Hence we can further assume that every unit of R is integral over Z. Under this
last assumption, Proposition 6.3 gives the desired result.

(4) Take (yn)n∈N to be a sequence with terms in R \ R×, and then take x ∈
⋂

n∈N
(y1 · · · yn) such

that x is transcendental over Q(yn | n ∈ N). We claim that R is not hereditarily atomic. To verify
our claim it suffices to check that the subring S := Z[yn | n ∈ N] + Rx of R is not atomic. Since
x ∈ (y1y2), it is not irreducible in S. As x is transcendental over Q(yn | n ∈ N), we can proceed as
we did in the proof of (1) to conclude that ZS(x) is empty. Thus, S is not atomic.

(5) This condition is equivalent to condition (4). Indeed, one can readily show that (xn)n∈N0
is a

strictly ascending chain of principal ideals of R ascending from (x) if and only if the sequence (yn)n∈N

defined by yn := xn−1

xn
consists of nonunits of R and satisfies that x ∈

⋂

n∈N
(y1 · · · yn).

(6) We consider here the subring T := Z[yn | n ∈ N]+P . Take r1, r2 ∈ Z[yn | n ∈ N] and p1, p2 ∈ P
such that (r1 + p1)(r2 + p2) ∈ P . Since r1r2 ∈ Z[yn | n ∈ N]

⋂

P = (0), we see that r1r2 = 0 and,
therefore, either r1 + p1 or r2 + p2 belongs to P . Thus, P is a prime ideal of the subring T . We
now note that x cannot be factored into irreducibles in T by observing that if x = a1a2 · · ·ak with
a1, a2, . . . , ak ∈ I (T ), then as P is prime, aj ∈ P for some j ∈ !1, k", and so

(6.1) aj = r0x+
n
∑

k=1

rk
x

y1y2 · · · yk

for some choices of r0, . . . , rn ∈ R. We observe that (6.1) shows that yn+1 divides aj , and this is our
desired contradiction. We conclude that T is not atomic.

(7) Let S be the multiplicative subset of R described in condition (7). It is clear that S is a multi-
plicative subset of R. Note that in this case, the ring R itself can be easily shown to be non-atomic.
Indeed, suppose that s ∈ S is a nonunit and write s = r1r2 · · · rk for some nonunits r1, r2, . . . , rk ∈ R.
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As S is saturated, each ri has an infinite chain of principal ideals ascending from it and hence cannot
be irreducible. !

Despite this run of cases, Conjecture 6.1 is still open. It would be interesting to see an answer to
this conjecture as it should provide a further step towards unraveling the subtle interplay between
atomicity and the ACCP condition.
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