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ON SEMIGROUP ALGEBRAS WITH RATIONAL EXPONENTS

FELIX GOTTI

ABSTRACT. In this paper, a semigroup algebra consisting of polynomial expressions
with coefficients in a field ' and exponents in an additive submonoid M of Q>¢ is
called a Puiseux algebra and denoted by F[M]. Here we study the atomic structure
of Puiseux algebras. To begin with, we answer the Isomorphism Problem for the
class of Puiseux algebras, that is, we show that for a field F' if two Puiseux algebras
F[M,] and F[M,] are isomorphic, then the monoids M; and M3 must be isomorphic.
Then we construct three classes of Puiseux algebras satisfying the following well-
known atomic properties: the ACCP property, the bounded factorization property,
and the finite factorization property. We show that there are bounded factorization
Puiseux algebras with extremal systems of sets of lengths, which allows us to prove
that Puiseux algebras cannot be determined up to isomorphism by their arithmetic of
lengths. Finally, we give a full description of the seminormal closure, root closure, and
complete integral closure of a Puiseux algebra, and use such description to provide a
class of antimatter Puiseux algebras (i.e., Puiseux algebras containing no irreducibles).

1. INTRODUCTION

The study of group rings dates back to the mid-nineteen century. Most of the initial
research in this area focused mainly on the structure of the groups of units of group
rings and the Isomorphism Problem for group rings over a given ring of coefficients;
see G. Highman [38] and S. K. Sehgal [43], respectively. However, most of the early
ring-theoretical study of group rings was mainly carried out on a non-commutative set-
ting. It was not until the seventies with the work of R. Gilmer, R. Matsuda, and other
authors that the study of commutative group rings as well as commutative semigroup
rings started earning substantial attention (see [24, 26, 42| and references therein).
Much of the work done on commutative semigroup rings during this decade focused
on the following abstract problem: given a commutative ring R and a commutative
semigroup S, establish conditions under which the semigroup ring of S over R satisfies
certain algebraic property. Answering instances of this problem often requires a fair
understanding of the algebraic properties of both S and R. As the structure of com-
mutative semigroups most of the time cannot be derived from that of abelian groups,
a new research direction in commutative algebra had emerged.
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Much of the work on commutative semigroup rings carried out in the seventies was
compiled by Gilmer in his celebrated book Commutative Semigroup Rings [23], which in
turn has motivated a lot of research in the field. More recently, many authors, including
P. A. Grillet [35], J. Gubeladze [36], and H. Kim [41], have investigated algebraic and
factorization properties of semigroup rings. Semigroup algebras (i.e., semigroup rings
with coefficients in a field), in particular, have permeated through various areas under
active investigation, including algebraic combinatorics [10], discrete geometry [11], and
functional analysis [1].

Puiseux monoids (i.e., additive submonoids of nonnegative rationals) have a complex
atomic structure (see [20] and references therein). As a result, the semigroup algebras
they determine, which we refer to as Puiseux algebras, have played important roles in
commutative algebra. For instance, A. Grams in [33] localized a Puiseux algebra to
construct an integral domain and disprove P. M. Cohn’s assumption that every atomic
domain satisfies the ACCP. In addition, J. Coykendall and the author recently appealed
to Puiseux algebras [15] to partially answer a question on atomicity stated by Gilmer
back in 1984 [23, page 189]. There are further appearances of Puiseux algebras in
recent literature (for instance, in [3] and [27]); however, no systematic study of their
atomic structure seems to have been carried out so far. Although this paper offers
by no means a systematic study, it aims to provide further insight on the algebraic
and atomic structure of Puiseux algebras. Here we address two algebraic problems:
the Isomorphism Problem and the computation of the seminormal, root, and complete
integral closures for Puiseux algebras. Then we use both results to construct various
infinite classes of Puiseux algebras with distinct atomic properties.

The first problem we shall address here is the Isomorphism Problem for Puiseux alge-
bras. The Isomorphism Problem for a field F' and a class of monoids % is the question
of whether two monoids in % are isomorphic provided they have isomorphic semigroup
algebra over F'. Versions of the Isomorphism Problem on classes of finitely generated
monoids have been investigated before; see, for instance, [35] and [36]. However, the
Isomorphism Problem on classes of non-finitely generated monoids seems to be rather
unexplored. In Section 3, we give a positive answer to the Isomorphism Problem for
Puiseux algebras.

Let R be an integral domain. The domain R is said to satisfy the ascending chain
condition on principal ideals (ACCP) if every ascending chain of principal ideals of R
becomes stationary. In addition, R is called a bounded factorization domain (BFD) if for
every nonzero nonunit x € R there exists N € N such that x = a; - - - a,, for irreducibles
ai,...,a, € R implies that n < N. Moreover, R is called a finite factorization domain
(FFD) if every nonzero element of R has only finitely many non-associate divisors. The
notions of BFDs and FFDs were introduced in [2] by D. D. Anderson, D. F. Anderson,
and M. Zafrullah, where the authors introduced and studied a diagram of implications
of atomic classes of integral domains containing the chain

UFD = FFD — BFD — ACCP.
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These three implications are not reversible in general, and examples of atomic domains
witnessing this observation are provided in [2]. To illustrate the complexity of the class
of Puiseux algebras, for each of the three implications, we construct in Section 4 an
infinite class of Puiseux algebras witnessing the failure of its converse. Our positive
answer to the Isomorphism Theorem is key to guarantee that the classes we construct
are infinite up to isomorphism.

For each nonzero element z of an atomic integral domain R, the set L(x) consists of
all possible lengths of factorizations of x, and .Z(R) := {L(z) | * € R\ {0}} is called
the system of sets of lengths of R; the system of sets of lengths of an atomic monoid
is defined similarly. The search for bounded factorization domains and monoids having
extremal systems of sets of lengths has earned significant interest since F. Kainrath [39]
proved that the system of sets of lengths of a Krull domain/monoid with infinite class
group (and primes in each divisor class) is as large as it can possible be (see, for
instance, [17, 31]). In Section 4 we show that there are infinitely many non-isomorphic
Puiseux algebras having extremal systems of sets of lengths. This will allow us to
answer negatively the Characterization Problem for Puiseux algebras: for any fixed
field F', Puiseux algebras over F' cannot be determined up to isomorphism by their
systems of sets of lengths.

Following Coykendall et al. [14], we say that an integral domain is antimatter if it
contains no irreducibles. Classes of antimatter Puiseux algebras have been constructed
in [3]. Following A. Grams and H. Warner [34], we say that an integral domain is
irreducible-divisor-finite (or IDF) if each element is divisible by only finitely many
irreducibles up to associates; IDF monoids are defined similarly. Every antimatter
domain/monoid is clearly IDF, and an integral domain (resp., a monoid) satisfies the
finite factorization property if and only if it is atomic and IDF by [2, Theorem 5.1]
(resp., [37, Theorem 2]). In Section 5, we show that a Puiseux algebra F'[M] may not
be IDF even when M is IDF. In Section 5, we also prove that the seminormal closure,
root closure, and complete integral closure of a Puiseux algebra all coincide, and we
provide a full description in terms of its monoid of exponents. We use our description to
determine whether the seminormal closure of a Puiseux algebra is atomic or antimatter.
In sharp contrast to the fact that the Puiseux algebras we obtain by taking seminormal
closures are seminormal, we conclude the paper providing a non-seminormal class of
antimatter Puiseux algebras.

2. BACKGROUND

Throughout this paper, we let N and P denote the set of positive integers and the
set of primes, respectively. In addition, we set Ny := N U {0}. If j, k € Z, then we let
[7, k] denote the discrete interval from j to k, i.e., [j,k] :=={z € Z | j < z < k}. For
X CRand r € R, we define X5, := {z € X | x > r} and, in a similar manner, we
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define X, and X-,. If ¢ € Q~¢, then we denote the unique n,d € N such that ¢ = n/d
and ged(n,d) = 1 by n(q) and d(q), respectively. Finally, for S C Q~q, we set

n(S):={n(s) | s€ S} and d(S):={d(s)|seS}.

2.1. Commutative Monoids. Within the scope of our exposition, each monoid is tac-
itly assumed to be cancellative and commutative. Unless we specify otherwise, monoids
here are written additively. Let M be a monoid. We set M*® := M \ {0}, and we let
% (M) denote the set of units (i.e., invertible elements) of M. If Z (M) = {0}, then M
is called reduced. The quotient monoid M /% (M), denoted by M,eq, is clearly reduced.
If z,y € M, then y divides x in M, in symbols, y | x, if there exists z € M such that
rT=Y+=z.

The difference group of M, denoted here by gp(M), is the abelian group (unique up
to isomorphism) satisfying that any abelian group containing a homomorphic image
of M also contains a homomorphic image of gp(M). We say that y € M* has type zero
provided that there is a largest n € N such that the equation nx = y is solvable in
gp(M). In addition, we say that M has type zero if every element of M*® has type zero.
The monoids

o M':={z €gp(M)]| there exists N € N such that nz € M for all n > N},

o M :={x€gp(M)| nz e M for some n € N}, and

o M :={x e gp(M)| there exists ¢ € M such that ¢+ nz € M for all n € N}
are called the seminormal closure, root closure, and complete integral closure of M,
respectively. In addition, the following chain of inclusions holds:
(2.1) M C M CMCMCgp(M).

The only inclusion that is not obvious in (2.1) is M C M. To verify that this inclusion
holds, take g = z —y € M for some x,y € M, and then take ny € N with nog € M and
set ¢ = ngy. Now for every n € N, we can write n = mng + r for some m € Ny and
r € [0,n9 — 1] to see that

(2.2) c+ng=ney+ (mng+r)(x—y) = (ng —r)y + re + m(ngg) € M,

whence g € M. Asa consequence, M C M. The monoid M is called seminormal
(resp., root closed or completely integrally closed) provided that the equality M’ = M

(resp., M = M or M= M) holds.
An element a € M\ % (M) is called an atom if for all z,y € M with a = x4y either
x €U(M)ory e ¥(M). The set of atoms of M is denoted by o7 (M). Atomicity and
antimatterness play a fundamental role in this paper.
Definition 2.1. Let M be a monoid.
(1) If each nonunit of M can be written as a sum of atoms, then M is atomic.
(2) If M contains no atoms, then M is antimatter.
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A subset I of M is an ideal of M provided that I + M C I. The ideal I is prin-
cipal if I = x + M for some x € M. The monoid M satisfies the ascending chain
condition on principal ideals (or ACCP) if each increasing sequence of principal ideals
of M eventually stabilizes. It is well known that each monoid satisfying the ACCP is
atomic [21, Proposition 1.1.4]. For S C M, we let (S) denote the submonoid of M
generated by S (i.e., the smallest submonoid of M containing S). The monoid M is
called finitely generated if it can be generated by a finite set, while M is called cyclic if
it can be generated by a singleton. Each finitely generated monoid satisfies the ACCP
[21, Proposition 2.7.8].

In this paper we study monoid algebras whose exponents lie in Q>(. Additive sub-
monoids of Qs are known as Puiseur monoids. Additive submonoids of Q account,
up to isomorphism, for all rank-one torsion-free monoids [18, Section 24|, and every
additive submonoid of Q that is not a group is isomorphic to a Puiseux monoid [23,
Theorem 2.9]. The atomic spectrum of the class of Puiseux monoids is broad, whose
members ranging from antimatter monoids (e.g., (1/2" | n € N)) to non-finitely gener-
ated atomic monoids (e.g., (1/p | p € P)). The atomic structure of Puiseux monoids has
been systematically studied during the last three years, and the most relevant achieved
results can be found in the survey [13]. Puiseux monoids have also been studied in
connection with factorizations of matrices [9] and commutative rings [15].

2.2. Factorizations. Recall that a multiplicative monoid F' is the free commutative
monoid on P C F provided that every element x € F' can be written uniquely in the
form x =[] cp p"»(®) where v,(r) € Ny and v,(x) > 0 only for finitely many p € P. For
each set P, there exists a unique (up to canonical isomorphism) monoid F that is free
commutative on P. We let Z(M) denote the (multiplicative) free commutative monoid
on o/ (Myeq). The elements of Z(M) are called factorizations. If z = ay---ay € Z(M)
for some ¢ € Ny and ay,...,a; € o/ (Myeq), then ¢ is called the length of z and is
denoted by |z|. Because Z(M) is free, there exists a unique monoid homomorphism
m: Z(M) — M,eq satisfying that m(a) = a for all a € o (M,eq). For each x € M, we set

Z(z) = Zy(x) =72+ % (M)) C Z(M).

Clearly, M is an atomic monoid if and only if Z(z) is nonempty for all x € M. The
monoid M is called a unique factorization monoid (or a UFM) if |Z(x)| = 1 for all
x € M. On the other hand, M is called a finite factorization monoid (or an FFM) if
1 <|Z(z)| < oo for all z € M. Clearly, each UFM is an FFM. For each x € M, we set

L(z) :=Ly(x) :={|z] | z € Z(x)}.

The set L(M) = {L(z) | x € M} is called the system of sets of lengths of M. The
monoid M is called a bounded factorization monoid (or a BFM) if 1 < |L(b)| < oo for
all b € M. It is clear that each FFM is a BFM. In addition, it is well known and easy
to prove that each BFM satisfies the ACCP (see the Diagram (4.1)). Sets of lengths
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play an important role in the study of the arithmetic of atomic monoids (see [19] for
more details).

2.3. Integral Domains and Semigroup Rings. Let R be an integral domain, and
let R* := R\ {0} denote the multiplicative monoid of R. As usual, R* denote the group
of units of R (clearly, R* = % (R*)). We say that R is atomic (resp., antimatter, a BFD,
an FFD) if R* is atomic (resp., antimatter, a BFM, an FFM). For several examples of
BFDs and FFDs, see the recent survey [5]. Also, we let o/ (R) and Z(R) denote o7 (R*)
and Z(R*), respectively, and for a nonzero nonunit r € R, we let Z(r) := Zg(r) and
L(r) := Lg(r) denote Zg«(r) and Lg-(r), respectively. The system of sets of lengths of R
is defined to be Z(R) := Z(R")

For a ring R and a semigroup S, consider the set R[X;S] comprising all functions
f: S — R satisfying that {s € S| f(s) # 0} is finite. We shall conveniently represent
an element f € R[X; S| by f = """, f(s;)X®, where sy, ..., s, are precisely those s € S
satisfying that f(s) # 0. With addition and multiplication defined as for polynomials,
R[X; S] is a ring, which is called the semigroup ring of S over R. Following Gilmer [23],
we shall write R[S] instead of R[X;S]. As we are mainly concerned with semigroup rings
of Puiseux monoids over a given field, the following terminology seems appropriate.

Definition 2.2. Let F' be a field, and let M be a Puiseux monoid. Then we call F[M]
a Puiseur algebra.

Let F[M] be a Puiseux algebra. It follows from [23, Theorem 8.1 and Theorem 11.1]
that F'[M] is an integral domain satisfying that F[M]* = F. We say that the element
f=a X"+ 4+ X% € F[M]* is represented in canonical form if a; # 0 for
each ¢ € [1,k] and ¢; > --- > gx. Observe that each element of F[M]* has a unique
representation in canonical form. In this case, supp(f) := {q1,...,q} and deg(f) := ¢
are called the support and the degree of f, respectively. As for polynomials, the degree
identity deg fg = deg f + deg g holds for all f,g € F[M]*.

3. THE ISOMORPHISM PROBLEM

For each integral domain R, a monoid isomorphism M; — M, always induces an
R-algebra isomorphism R[M;] — R[Ms]. More generally, we have the following propo-
sition, which is an immediate consequence of [23, Theorem 7.2(2)].

Proposition 3.1. Let R be an integral domain, and let ¢: My — M, be a monoid
homomorphism. If ¢ is injective (resp., surjective), then the R-algebra homomorphism
@: R[M,] — R[M,] determined by X* +— X% is also injective (resp., surjective).
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In the context of monoid algebras, the Isomorphism Problem refers to the veracity
of the reverse implication of Proposition 3.1.

Isomorphism Problem. Let F be a field, and let € be a nonempty class of monoids.
For My, My € €, does F[M;] = F|[M,] as F-algebras guarantee that M; = My?

A brief early survey on this problem is offered by Gilmer in [23, Section 25]. Although
the cases when € is a class consisting of groups have been studied since the 1960s [7],
it was not until the 1980s that some attention was given to the more general case of
monoids. In 1982, A. S. Demushkin proposed in [16] a positive answer to the Isomor-
phism Problem on the class of finitely generated normal monoids without nontrivial
units (see [23, Section 11] for definitions). However, his proof involved various invalid
arguments. In 1998, Gubeladze provided a final positive answer to the Isomorphism
Problem on the class of finitely generated torsion-free monoids [36]. We proceed to offer
a positive answer to the Isomorphism Problem on the class of Puiseux monoids.

Theorem 3.2. Let F be a field, and let My and My be Puiseux monoids. Then My = M,
as monoids if and only if F|M;] = F[Ms] as F-algebras.

Proof. The direct implication is an immediate consequence of Proposition 3.1. To prove
the reverse implication, suppose that ¢: F[M;] — F[M,] is an F-algebra isomorphism.
By virtue of Proposition 3.1 one can replace M; by an isomorphic copy rM; (for a
suitable 7 € Qs¢), and therefore, assume that both conditions F[M;] = F[M,] and
X € F[M;] hold. Now define ¢: M; — M, by ¢(q) = deg p(X9), and notice that for
each ¢ € M7,
pla) = deg p(X7) = <~ deg p(X9)0) = - deg p(X)"® = g dog (X))
d(q) d(q)

Hence after setting ¢y := deg@(X) € My C Qsg, we see that ¢ is the monoid homo-
morphism consisting in multiplying by ¢o. Since @ is an F-algebra isomorphism, ¢y > 0.
Therefore ¢ is not only injective, but also strictly increasing. Finally, we show that ¢
is surjective. Since ¢ is strictly increasing, for each element f := 3", ¢t X% € F[M;]*
represented in canonical form, one obtains that deg (X ) > degp(X%*) for every
k € [1,n — 1], and as a consequence,

(3.1) deg ¢(f) = deg ch@(Xq’“) = deg ¢(X") = ¢(¢n) = qo deg f.
=1

Clearly, My = {deg f | f € F[M;]\ F} and M3 = {degg | g € F[My]\ F'}. As ¢ is a
surjective function satisfying that ¢(F') = F, it follows from (3.1) that
M3 ={deg@(f) | f € FIMi]\ F} = qo{deg f | f € FIMi]\ F'} = qo M.

As qoM; = M,, the homomorphism ¢ is surjective. Hence M; = M, as monoids. O
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4. CLASSES OF AToMIC PUISEUX ALGEBRAS

The chain (4.1) of refined classes of atomic domains was introduced by Anderson,
Anderson, and Zafrullah in [2]. Since then this chain has received a significant amount
of consideration in the literature of both commutative algebra and semigroup theory.

(4.1) UFD — FFD — BFD — ACCP = atomic domain

As illustrated in [2], none of the implications in (4.1) is, in general, reversible. This
section is devoted to study the potential failure of each of the reverse implications
in (4.1) when we restrict to the class of Puiseux algebras. We will construct atomic
Puiseux algebras witnessing such failure for the three leftmost implications, illustrating,
as a byproduct, the diversity and complexity of the atomic structure of Puiseux algebras.
We still do not know whether there exists an atomic Puiseux algebra failing to satisfy
the ACCP. However, we suspect that this is the case, and we propose a potential witness
at the end of this section.

Remark 4.1. The original full diagram containing the chain (4.1) also involves the
class of half-factorial domains. An integral domain R is called half-factorial (or an
HFD) provided that |L(z)| = 1 for every x € R*. We shall not explicitly consider
half-factoriality here because a Puiseux algebra is an HFD if and only if it is a UFD
[29, Theorem 4.4].

If a Puiseux algebra F[M] is atomic, then so is the monoid M [41, Proposition 1.4].
The converse statement was posed by Gilmer in [23, page 189] and has been answered
negatively by Coykendall and the author [15, Theorem 5.4]. In this section, we identify
various infinite classes of atomic Puiseux monoids whose corresponding Puiseux algebras
are also atomic but play different roles in the chain of atomic classes (4.1).

4.1. The Ascending Chain Condition on Principal Ideals. If R is an integral
domain and M is a torsion-free monoid such that either M is reduced or has type zero,
then R[M] satisfies the ACCP if and only if both R and M satisfy the ACCP (this was
first noted by R. Gilmer and T. Parker in [25, Section 7]). Using this result, we can
construct classes of Puiseux algebras that satisfy the ACCP but are not BEDs. Part (2)
of Proposition 4.2 is a slight generalization of [2, Example 2.1], and its proof follows
the same argument; we have included it here for the sake of completeness.

Proposition 4.2. For a field F' the following statements hold.
(1) If M is a Puiseux monoid satisfying the ACCP, then the Puiseux algebra F[M|
also satisfies the ACCP.
(2) If P C P is nonempty and Mp = (1/p | p € P), then F[Mp] satisfies the ACCP,
but it is a BFD if and only if |P| < co. In addition, for any two distinct infinite
subsets P and @Q of P, it follows that F|[Mp] = F[Mg] if and only if P = Q.
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Proof. (1) This can be proved easily, but it also follows from the previously mentioned
Gilmer and Parker’s observation because every field trivially satisfies the ACCP and
every Puiseux monoid is reduced.

(2) Fix a nonempty P C P, and let Mp be as in part (2). If |P| < oo, then Mp is
an FFM by [21, Proposition 2.7.8], and so it satisfies the ACCP. We assume, therefore,
that |P| = oco. It is easy to check that Mp is atomic with &/ (Mp) = {1/p | p € P}. Let
(Pn)nen be a strictly increasing sequence with underlying set P. One can readily check
that for each ¢ € M there is a unique N(q) € Ny and a unique sequence of nonnegative
integers (ca(q))nen such that ¢ = N(q) + 3, ey en(q);-, where ¢,(q) € [0,p, — 1] and
cn(q) = 0 for all but finitely many n € N. Set s(q) := >, ycn(q). Clearly, if ¢ |a ¢
for some ¢’ € M, then N(q¢') < N(q). In addition, observe that if ¢’ is a proper divisor
of ¢ in M, then N(q') = N(q) implies that s(¢’) < s(q). As a consequence of these two
observations, one deduces that each sequence (g,)neny in M satisfying that ¢,+1 |v ¢n
for every n € N must stabilize. Hence M satisfies the ACCP.

We verify now that F'[Mp] is not a BFD when |P| = co. First notice that a € o/ (Mp)
if and only if X € o/ (F[Mp]). Hence X'/? € o/ (F[Mp]) for every p € P. Because
X = (XY7)", it follows that Lgp,(X) = P. Since |P| = oo, the Puiseux algebra
F[Mp] is not a BFD.

To argue the last statement, suppose that P and () are infinite subsets of P such that
F[Mp] = F[Mg]. It follows from Theorem 3.2 that Mp = Mg, and then it follows from
[30, Proposition 3.2] that Mg = rMp for some r € Qso. If p € P, then r/p € o7/ (Mg)
and so r = p/q for some ¢ € Q. Similarly, if p; € P\ {p}, then r = p;/q; for some
q1 € Q. The equality pq; = p1g now implies that p = ¢ € ). Thus, P C @). In a similar
manner, one can argue that () C P. The reverse implication is obvious. 0

4.2. The Bounded Factorization Property. For an integral domain R and a torsion-
free monoid M that is reduced or has type zero, R[M] is a BFD if and only if R is a
BFD and M is a BFM. This was proved by H. Kim [40, Theorem 3.15] for monoids of
type zero and by D. D. Anderson and J. Juett [4, Theorem 13] for reduced monoids.
We will use the later result in Proposition 4.4 to construct an infinite class of Puiseux
algebras that are BFDs but not FFDs.

For every p € P, the nonnegative cone of the localization of the ring Z at its multi-
plicative subset {p" | n € Ny} is the antimatter Puiseux monoid <pin | n € Ny). More
generally, we can consider multiplicative subsets of Z generated by several primes, and
take positive rays of their localization rings to obtain Puiseux monoids that are indeed
atomic. The following example illustrates this observation.

Example 4.3. Let P be the multiplicative subset of Z generated by the primes 2 and 3,
namely, P = {23/ | i,j € Ny}. Then we see that

— n .o
ZP211:{2i—?)j‘n,'l,]€No} )

>1
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and so {O}UZPZ_I1 = {0}UM>1, where M = (5 | i,j € Np). Observe that although M
is antimatter, the Puiseux monoid {0} UZPZ| is atomic; indeed, it is a BFM because 0
is not a limit point of ZP-}. On the other hand, it is easy to check that 3 has infinitely
many divisors in {0} U ZPZ}, and so the later is not an FFM.

A generalized version of the monoid in Example 4.3 can be used to construct a class
of Puiseux algebras that are BFDs but not FFDs.

Proposition 4.4. Let F be a field, ZP~! the localization of the ring Z at a multiplicative
subset P generated by primes, and Mp = {0} UZPZ!'. Then the following statements
hold. -

(1) If a Puiseux monoid M is a BFM, then the Puiseuz algebra F[M] is a BFD.

(2) The Puiseuz algebra F[Mp)| is a BFD, but it is an FFD if and only if P = {1}.
In addition, F[Mp| = F[Mg)] if and only if P = Q.

Proof. (1) As M is reduced, it is a direct consequence of part (3) of [4, Theorem 13].

(2) Since 0 is not a limit point of Mp, it follows from [28, Proposition 4.5] that Mp
is a BFM. Hence F[Mp] is a BFD by part (1).

If P = {1}, then F[Mp| = F|Ny| = F[X], which is clearly an FFD. Now suppose
that P # {1}, and let us verify that F[Mp] is not an FFD. One can readily check that
o (Mp) = [1,2)NZP~" and, as a consequence, the set of irreducibles in F[Mp] dividing
X3is A={X?|q€[1,2)NZP'}. Let p be one of the primes generating P. Because
the irreducibles in A are pairwise non-associate, the equalities X3 = X *+1/p" xX2-1/p"
(for every n € N) yield infinitely many factorizations of X? in F[Mp]. Hence F[Mp] is
not an FFD.

For the direct implication of the last statement, suppose that F[Mp| = F[Mjy],
where @) is also a multiplicative set of Z generated by primes. Using Theorem 3.2 we
obtain that Mp = Mg and, therefore, [30, Proposition 3.2] guarantees that Mg = rMp
for some r € Qs¢. As inf M} = inf Mg = 1, we see that r = 1. Hence Mp = Mg, and
so P = (). The reverse implication of the last statement is obvious. O

An integral domain (resp., a monoid) is said to have full system of sets of lengths if it
is a BFD (resp., BFM) and each subset of Nxs is a set of lengths of some element (i.e.,
its system of sets of lengths is as large as it can be). In the next proposition, we show
that there are infinitely many non-isomorphic Puiseux algebras having full systems of
sets of lengths. First, we need the following lemma.

Lemma 4.5. There are infinitely many non-isomorphic Puiseux monoids having full
systems of sets of lengths.

Proof. For each infinite set of primes P, one can mimic the proof of [31, Theorem 3.6]
to construct a non-finitely generated Puiseux monoid M having full system of sets of
lengths such that d(M*) is contained in the free (multiplicative) monoid with base P.



ON SEMIGROUP ALGEBRAS WITH RATIONAL EXPONENTS 11

Now let (P,)nen be a sequence of pairwise disjoint subsets of P such that |P,| = oo
for every n € N. By our initial observation, we can construct a sequence (M, ),en of
non-finitely generated Puiseux monoids having full systems of sets of lengths such that
d(M?) Nd(M;) = {1} when i # j. If M; = M; for i, j € N, then [30, Proposition 3.2]
ensures that M; = rM; for some r € Q. If i # j, then taking ¢ € M7 with d(q) > d(r)
we would obtain that ¢ ¢ rM;. Hence i = j. Thus, (M, ),en consists of pairwise non-
isomorphic Puiseux monoids. 0

Proposition 4.6. (cf. [22, Corollary 3.5]) There are infinitely many non-isomorphic
Puiseux algebras having full systems of sets of lengths.

Proof. First, suppose that M is a Puiseux monoid with full system of sets of lengths,
which exists by Lemma 4.5. Then M is a BFM, and so F[M] is a BFD by part (1) of
Proposition 4.4. Since the equality Ly (X?) = Lys(g) holds for every ¢ € M?*, it follows
that Z (M) C Z(F[M]). Because F[M] is a BFD, the fact that M has full system of
sets of lengths guarantees that F[M] also has full system of sets of lengths. Take now
an infinite class {M; | i € I} of non-isomorphic Puiseux monoids with full systems of
sets of lengths. Then the Isomorphism Problem for Puiseux algebras (Theorem 3.2)
guarantees that {F[M;] | i € I} is an infinite class of non-isomorphic Puiseux algebras
having full systems of sets of lengths. O

The Characterization Problem for a class of atomic monoids & refers to the question
of whether the function M +— £ (M) is injective on %. Nontrivial instances of the
Characterization Problem have been investigated in the past. For example, the Char-
acterization Problem was answered negatively for the class of numerical monoids [3].
Perhaps the most investigated instance of the Characterization Problem, which is still
open, is for the class of Krull monoids with finite class group (Conjecture 4.7). If G
is an additive finite abelian group with |G| = n, then the Davenport constant of G,
denoted by D(G), is the minimum d € N such that every length-d sequence of elements
of G contains a nonempty subsequence adding to zero.

Conjecture 4.7. Let M and M' be Krull monoids with respective finite abelian class

groups G and G', each of their classes containing at least one prime divisor. Assume
also that D(G) > 4. If Z(M) = £ (M’), then M = M’.

As an immediate consequence of Proposition 4.6, one obtains that, for every field F',
the answer of the Characterization Problem for the class of Puiseux algebras over F'is
negative.

Corollary 4.8. For every field F', Puiseuz algebras over F' are not determined by their
systems of sets of lengths.
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4.3. The Finite Factorization Property. As for satisfying the ACCP or the bounded
factorization property, for an integral domain R and a torsion-free monoid M of type
zero, Kim proved in [40, Theorem 3.25] that R[M] is an FFD if and only if R is an FFD
and M is an FFM. However, a similar result when M is reduced (instead of a type zero
monoid) remains an open question.

We proceed to provide a class of Puiseux algebras that are FFDs but not UFDs.
A Puiseux monoid is said to be increasing if it can be generated by an increasing
sequence of rationals. Increasing Puiseux monoids were first studied in [32] and have
been recently considered in [8, 9, 28].

Proposition 4.9. Let F' be a field, and let M be an increasing Puiseux monoid. Then
F[M] is an FFD. In addition, F[M] is a UFD if and only if M = (Ny, +).

Proof. Because 0 is not a limit point of M, it follows from [28, Proposition 4.5] that
M is a BFM. Therefore part (1) of Proposition 4.4 guarantees that F'[M] is a BFD.
To verify that F[M] is indeed an FFD, suppose towards a contradiction that there is
an f € F[M]\ F such that Dy := {g € F[M]* | g|pp f} contains infinitely many
non-associate divisors of f. Since M is increasingly generated, the set M N (0, deg f] is
finite. Clearly, for each g € Dy, the inclusion supp(g) € M N (0, deg f] holds. Hence
there exists S C M N (0,deg f] such that the set {g € D | supp(g) = S} contains
infinitely many non-associate divisors of f. Let m be the least common multiple of
d(M N (0,deg f]). Observe that

G ={g(X™) | g € Dy and supp(g) = S}

is a subset of F[X] consisting of infinitely many divisors of f(X™) in F[X]|. Because
F[X]is a UFD, there exists g; and go in Dy such that the elements g;(X™) and go(X™)
of G are associates in F[X]. As F[M]* = F* = F[X]*, it follows that ¢g; and g> must
be associates in F'[M], which is a contradiction. Thus, each element of F[M] has only
finitely many non-associate divisors and, because F[M] is atomic, it is an FFD by [2,
Theorem 5.1]. The fact that F[M] is a UFD if and only if M = (Ny, +) follows from
[29, Theorem 4.2]. O

The Puiseux monoids S, = (r" | n € Ny), where r € Q-g, have been recently
studied in [12] under the term cyclic rational semirings (clearly, they are closed under
multiplication). It is known that for every r € Q<o with r ¢ NU {1/n | n € N}, the
monoid S, is atomic with 27 (S,) = {r" | n € Ny} (see [13, Proposition 4.3]).

Corollary 4.10. For each r € Qsy, the Puiseuz algebra F[S,] is an FFD, and it is a
UFD if and only if r € N.

Proof. The fact that F[S,] is an FFD follows as a direct consequence of Proposition 4.9
as S, is an increasing monoid when r € Q1. For the second statement, it is clear that
S, = Ng when r € N. On the other hand, if » = a/b, where a,b € N>, and ged(a,b) = 1,
then because a = a-1 = b-r the element a has two distinct factorizations in S, and so



ON SEMIGROUP ALGEBRAS WITH RATIONAL EXPONENTS 13

S, 2 (Ng,+). Thus, S, = (Ny, +) if and only if » € N, and so the last statement of the
corollary follows from the last statement of Proposition 4.9. O

4.4. Further Observations. We have seen before that a Puiseux algebra satisfies
the ACCP (resp., is a BFD) if and only if its exponent Puiseux monoid satisfies the
ACCP (resp., is a BFM). For a general torsion-free monoid M, there seems to be no
characterization (in terms of M) for the monoid algebra F[M] to satisfy the ACCP,
being a BFD, or being an FFD (see [5, page 34] for more details). In addition, it
seems to be still open whether a monoid algebra F[M] is an FFD provided that M is
a torsion-free reduced FFM.

In this section, we have constructed Puiseux algebras witnessing the failure of the
reverse statements of all the implications in Diagram (4.1), except the last one. Al-
though we still do not know whether the last implication is reversible, we suspect it is
not. We finish this section proposing a Puiseux algebra as a potential counterexample.
For r € (0,1) N Q with n(r) # 1, consider the Puiseux monoid S,. Since

()" = () = (d(r) = n(r)r"* 4 ()

for every n € N, the sequence (n(r)r"™ + S, ),en is an ascending chain of principal ideals
of S,. Clearly, this sequence does not stabilize, and so S, does not satisfy the ACCP.
Now, let I be a field. By [41, Proposition 1.4], the Puiseux algebra F[S,] does not
satisfy the ACCP. However, we believe that F'[S,] is an atomic domain. The case when
r > 1 in the following conjecture follows from Corollary 4.10.

Conjecture 4.11. Let F be a field, and take r € Q<q. If S, is an atomic monoid, then
F[S,] is an atomic domain.

5. CLASSES OF ANTIMATTER PUISEUX ALGEBRAS

In this section we prove that the seminormal closure, root closure, and complete
integral closure of a Puiseux algebra are equal, and we describe such closures in terms
of the exponent Puiseux monoid. Our description will yield a class of antimatter and
seminormal Puiseux algebras. We will also offer another class of antimatter Puiseux
algebras that are not seminormal. Before proceeding, we would like to emphasize that
antimatter domains were first investigated in [14] and classes of antimatter Puiseux
algebras were first constructed in [3].
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5.1. Algebraic Closures. Let R be an integral domain with quotient field denoted
by qf(R). The seminormal closure, root closure, and complete integral closure of R,
respectively denoted by R/, R, and ﬁ, are the overrings of R whose multiplicative
monoids are R*, R*, and R , respectively. Thus,

(5.1) RC R CRCRCqf(R).
The integral domain R is called seminormal (resp., root closed or completely integrally

closed) if R = R (resp., R = R or R = R). In general, R’ # R and R # R even in the
context of monoid algebras.

Example 5.1.

(1) In [11, Example 2.56], W. Bruns and J. Gubeladze exhibit an additive submonoid
M of Nj that is seminormal but not root closed. Since Q[M] = Q[M’] by [11,

Corollary 4.77] and Q[M] = Q[M] by [23, Corollary 12.11], one obtains that

Q[M] # Q[M].

(2) Consider the additive submonoid M := {(0,0)} UN? of N2, which satisfies that
gp(M) = Z2. Tt follows immediately that M is root closed, and therefore, [23,
Corollary 12.11] guarantees that the monoid algebra Q[M] is also root closed.
Notice, on the other hand, that M is not completely integrally closed because
(1,1) +n(0,1) € M for every n € N even though (0,1) ¢ M. So it follows from
[23, Corollary 12.7] that Q[M] is not completely integrally closed. As a result,

Q[M] # Q[M].

However, as we shall prove in the next theorem, in the class consisting of Puiseux
algebras the three algebraic closures above coincide. First, let us argue the following
lemma.

Lemma 5.2. Let F' be a field, and let M be a Puiseuxr monoid. Then the equality
FIM]N F(X) = F[X] holds.

Proof. 1t suffices to argue that F[M] N F(X) C F[X], as the reverse inclusion follows
immediately. To do this, take f = S_F ;X% € F[M]N F(X) represented in canonical
form as an element of F[M]. Let ¢ be the least common multiple of d(¢1),...,d(qx)-
Then take g = > /", f;iX™ and h =Y 6;X™ in F[X], both of them represented in
canonical form, such that f = g/h. Then

n k m
(5.2) D XM " XH = WX F(XY) = g(X) =D BXx"™,

in F[X], where k; := {q; € N for every i € [1,k]. Let us argue inductively that ¢; € N
for every i € [1,k]. As ky = fmy —¥ny, we see that ¢; € N. Suppose that ¢;,...,¢; € N
for some j € [1,k — 1]. Consider the monomial 6;co; X% that shows when one
multiplies out the leftmost part of (5.2). If ny + k; € supp g(X*), then ¢ must divide
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Iny+k;, and therefore, ¢; € N. If fny +k; ¢ supp g(X*), then the monomial 6 c; X "1+
should cancel with monomials of the form 6;0, X% with ¢t < j, in which case ¢ must
divide k; — k. As ¢ divides k, it follows that ¢; € N. Then we conclude that f € F[X].
Thus, F[M]N F(X) C F[X]. O

Theorem 5.3. Let F be a field, and let M be a Puiseuxr monoid. Then the following
statement hold.

(1) FIM]' = F[M] = F[M] = Flgp(M) N Qx].

(2) If M is finitely generated, then F[M]" is atomic.

(3) If F is algebraically closed and M is not finitely generated, then F[M]" is anti-
matter.

o —

Proof. (1) By virtue of (5.1), it suffices to argue that F[M] C Fgp(M) N Qxp] and
Flgp(M) NQso] C F[M]'. To verify the latter inclusion, it is enough to observe that
the equality gp(M) N Qso = M’ holds by [20, Proposition 3.1] while the equality
F[M'] = F[M] holds by [11, Corollary 4.77].

To prove the former inclusion, take f in the complete integral closure of F[M], and
then take g € F[M] such that gf" € F|[M] for every n € N. Write f = f,/f, for
fi1, fo € F[M] with fy # 0. Assume, by way of contradiction, that fo does not divide f;
in F[gp(M)NQx¢). Now let £ be the least common multiple of the set |, ¢ d(supp(s)),
where S := {g, f1, fo}. It is clear that n/¢ € gp(M) N Qs for every n € N. Therefore
setting ¢(X) = fi(X9/f2(XY) € F(X), one can see that ¢ ¢ F[X] as otherwise
fi/fa = q(XV*) € Flgp(M)NQxo), which is not possible. Then f,(X*) does not divide
f1(X%) in F[X]. As F[X] is a UFD, there exist a € & (F[X]) and m € N such that

a(X)™ [ppx f2(X5) but a(X)™ e fi(XF).
Let = max{n € N | a(X)" |rpy f1(X%)}. Take N € N such that the inequality
Ndega > ¢degg holds, and then take hy € F[M] such that gf¥ = fNhy. Observe
that hn(XY) = g(XfA(XHN (XN € F(X). Then it follows from Lemma 5.2
that hy (X% € F[X]. As a result, the factors in g(X*) fi(X)N = fo( XN hy(X?) are
polynomials in F[X]. This, together with the fact that a(X)™ |px fo(X?), implies
that a(X)™ | prx 9(X9) f1(X)N. So there exists b(X) € F[X] such that

b(X)a(X) V) — g(x") (f 1(XX)) ) .

a(
Since m > p and F[X] is a UFD, a(X)" |px g(X%). However, this contradicts
the inequality N dega > fdegg. Therefore f € Flgp(M) N Q]. We conclude that
F[M] € Flgp(M) N Qxol.

(2) Suppose that M is finitely generated, namely, M = {(qi,...,q,) for some n € N

and qi, ..., ¢, € Qsg. Letting ¢ be the least common multiple of d(¢;), ...,d(g,) and g
be the greatest common divisor of n(q;),...,n(q,), one can check that N := ¢g~'M is
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a numerical monoid. Therefore N/ = Ny. It is clear that M = N. Then it follows from
[11, Corollary 4.77] and Theorem 3.2 that F[M] = F[M'] 2 F[N'] = F[X], and so
F[M]" is a UFD and, in particular, an atomic domain.

(3) Suppose now that M is not finitely generated. In light of Theorem 3.2, one can
replace M by (gedn(M*®))™'M and assume that gedn(M*®) = 1. Then [20, Proposi-
tion 3.1] ensures that M’ = (d(q)™* | ¢ € M*®). From the fact that M is not finitely
generated, one can deduce that |d(M'®)| = |d(M®)| = co. We check that M’ is pure
(i.e., for each b € M’ there exists n € N>g such that b/n € M’). To do so, take b € M'.
As |d(M*®)| = oo, we can take d € d(M*) such that d 1 d(b). It is clear that the least
common multiple ¢ of d(b) and d belongs to d(M'®). Setting n := £/d(b), we obtain that
n > 2and b/n =n(b)/¢ € M’'. Hence M’ is pure. Since F' is algebraically closed, it fol-
lows from [11, Corollary 4.77] and [3, Theorem 1] that F[M] = F[M'] is an antimatter
domain. O

Recall that for each r € Q~, the Puiseux monoid (r" | n € Ny) is denoted by S,..

Corollary 5.4. Let F' be an algebraically closed field. For each p € P, the Puiseux
algebra F'[Sy)p] is antimatter. In addition, F[S1,,] 2 F[S1/4] if ¢ € P\ {p}.

Proof. As =54, US4, is an additive subgroup of Q, the equality S/, = gp(Si/p) N Q>0
holds, and so F[Si/,] = Flgp(Sisp) N Qs¢] = F[S1/)" by part (1) of Theorem 5.3.
Since M is not finitely generated and F' is algebraically closed, it follows from part (3)
of Theorem 5.3 that F'[S; /] is antimatter.

To argue the second statement, suppose for the sake of a contradiction that there
exist p,q € P with p # ¢ such that F[S,,| = F[S/,]. It follows from Theorem 3.2 that
S1/p =2 S1/4, and therefore, [30, Proposition 3.2] guarantees that S;,, = 75, for some
r € Q. Taking n € N such that p” { n(r), one obtains that r/p" € 51/, = S1/4, which
contradicts that d(S1/,) = {¢" | n € No}. O

With the notation as in Corollary 5.4, the hypothesis that the field F' is algebraically
closed is not superfluous, as we will confirm in Example 5.5.

A monoid is an irreducible-divisor-finite monoid (or an IDFM) if each element is
divisible by only finitely many atoms up to associates, while we say that an integral
domain is an irreducible-divisor-finite domain (or an IDFD) if its multiplicative monoid
is an IDFM. It has been proved in [2, Theorem 5.1] that an FFD can be characterized
by being an atomic IDFD; this result was generalized for monoids in [37, Theorem 2].
Although we do not know whether a Puiseux algebra F'[M] is an FFD provided that M
is an FFM, we can answer the corresponding question for the irreducible-divisor-finite
property. In the following example we verify that a Puiseux algebra F'[M] need not be
antimatter (resp., an IDFD) when M is antimatter (resp., an IDFM).

We let ®,,(X) denote the n-th cylcotomic polynomial, while we let ¢ denote Euler’s
totient function.
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Example 5.5. Take p € P, and consider the Puiseux monoid S;,,. We have seen that
S1/p is antimatter and, therefore, an IDFM. To argue that the Puiseux algebra Q[S; ;]
is neither antimatter nor an IDFD, it suffices to show that the element X —1 € Q[S )]
is divisible by infinitely many non-associate irreducible elements in Q[Sy,,]. For every
k € N, we can factor X — 1 as follows:

k
(5.3) X —1=(XF)" —1=T[ @ (x).
n=0

We claim that each factor on the rightmost expression of (5.3) is irreducible. To ver-
ify that our claim holds, fix n € [0,k] and write ®,n (Xl/pk) = f(X)g(X), where
f(X),9(X) € Q[Si/p]. Let p™ be the least common multiple of d(supp(f) U supp(g)).
Since deg ®,n (Xl/pk) = (") /p* = Z%a it follows that p* "' divides p™ and,
therefore, m — k +mn > 1. Because

B (XP") = @, (XP"TTTY) = @i (X)),

P
it follows that ®,n (Xpmqe) is an irreducible polynomial in Q[X]. Now the fact that
D, (XP"F) = F(XP")g(XP") yields a factorization of @, (X?" ") in Q[X] implies
that either f(X?") € Q or g(X?") € Q, which in turns implies that either f(X) € Q or
9(X) € Q. So @0 (XY pk) is irreducible in the Puiseux algebra Q[S;/,]. Because k was
taking arbitrarily in N and ®pn, (X/7") 2 ®pn, (X/7") whenever ny # na, we conclude
that X — 1 has infinitely many irreducible divisors in Q[S;,,]. Hence Q[S;/,] is neither
antimatter nor an IDFD.

In the direction of Corollary 5.4, we have the following question.

Question 5.6. Is there an antimatter Puiseur monoid that is not root closed such that
the algebra F[M] is antimatter over any (or some) algebraically closed field F'?

The antimatter Puiseux algebras we have seen so far come from part (3) of Theo-
rem 5.3 and are, therefore, seminormal. By contrast, we would like to construct a class
of antimatter Puiseux algebras that are not seminormal. For distinct p,q € P, let M, ,
denote the Puiseux monoid (p~¢~™ | m,n € Ny).

Proposition 5.7. Let F' be a perfect field of finite characteristic p. For each q € P\{p},
the Puiseux algebra F[M,,| is antimatter but fails to be seminormal. In addition,

F[M, 4] % F[M,y] for any ¢ € P\ {p,q}.

Proof. Fix ¢ € P\ {p}. For each z € M, , it is clear that x/p € M, ,, and therefore, M, ,
is antimatter. To argue that F'[M, ,] is an antimatter domain, consider the element

f=amX" + 4 a, X" € F]M,,]\ F.

As I is a perfect field of characteristic p, the Frobenius homomorphism x +— 2P is
surjective, and so for each i € [1,n], there exists ; € F' with a; = 8 for some f; € F.
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In addition, it follows from our initial observation that ¢;/p € M, , for every i € [1,n].
Therefore the element f = (5 X%/P + .- + 3,X9/P)? is not irreducible in F[M,].
Hence F[M,,] is an antimatter Puiseux algebra.

In light of [11, Corollary 4.77], proving that the Puiseux algebra F'[M, ] is not semi-
normal amounts to verifying that M, , is not a seminormal monoid. Assume, by way
of contradiction, that M is seminormal. Then piq € M by [20, Proposition 3.1]. So we
can write

1 - Q; - Bi
(5.4) p” ; 5t ; 7
for some coefficients oy, . ..oy, B, ..., Bs € Ng with ay # 0 and B # 0. After simplifying
if necessary, we can assume that p { a; and ¢ {1 §; for any ¢ € [1,¢] and j € [1,s].
Multiplying (5.4) by p'q® one obtains that ¢ = s = 1. However, % + % > % + % > piq,
which contradicts (5.4). Hence F[M, ] is not a seminormal domain.
To argue that F[M, ] % F[M,,] for any ¢ € P\ {p,q} one can merely mimic the

lines of the second paragraph of the proof of Corollary 5.4. O

Remark 5.8. Proposition 5.7 is a version of [3, Theorem 5(2)], which states that if R is
an antimatter GCD-domain whose quotient field is perfect of finite characteristic, then
R[Q>o] is also an antimatter GCD-domain.
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