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LENGTH-FACTORIALITY IN COMMUTATIVE MONOIDS AND
INTEGRAL DOMAINS

SCOTT T. CHAPMAN, JIM COYKENDALL, FELIX GOTTI, AND WILLIAM W. SMITH

ABSTRACT. An atomic monoid M is called a length-factorial monoid (or an other-half-factorial monoid)
if for each non-invertible element x € M no two distinct factorizations of z have the same length.
The notion of length-factoriality was introduced by Coykendall and Smith in 2011 as a dual of the
well-studied notion of half-factoriality. They proved that in the setting of integral domains, length-
factoriality can be taken as an alternative definition of a unique factorization domain. However, being a
length-factorial monoid is in general weaker than being a factorial monoid (i.e., a unique factorization
monoid). Here we further investigate length-factoriality. First, we offer two characterizations of a
length-factorial monoid M, and we use such characterizations to describe the set of Betti elements
and obtain a formula for the catenary degree of M. Then we study the connection between length-
factoriality and purely long (resp., purely short) irreducibles, which are irreducible elements that appear
in the longer (resp., shorter) part of any unbalanced factorization relation. Finally, we prove that an
integral domain cannot contain purely short and a purely long irreducibles simultaneously, and we
construct a Dedekind domain containing purely long (resp., purely short) irreducibles but not purely
short (resp., purely long) irreducibles.

1. INTRODUCTION

An atomic monoid M is called half-factorial if for all non-invertible x € M, any two factorizations
of x have the same length. In contrast to this, we say that M is length-factorial if for all non-invertible
x € M, any two distinct factorizations of x have different lengths. An integral domain is called half-
factorial if its multiplicative monoid is half-factorial. Half-factorial monoids and domains have been
systematically investigated during the last six decades in connection with algebraic number theory,
combinatorics, and commutative algebra: from work that appeared more than two decades ago, such
as [9,17,20,51], to more recent literature, including [26,32,35,42,46-48]. The term “half-factorial” was
coined by Zaks in [51]. On the other hand, length-factorial monoids were first investigated in 2011 by
the second and fourth authors [22]. As their main result, they proved that unique factorization domains
can be characterized as integral domains whose multiplicative monoids are length-factorial. Recently,
length-factorial monoids have been classified in the class of torsion-free rank-1 monoids [40], in the class
of submonoids of finite-rank free monoids [38], and in the class of monoids of the form Ny[«], where «
is a positive algebraic numbers [16].

Here we offer a deeper investigation of length-factoriality in atomic monoids and integral domains as
well as some connections between length-factoriality and the existence of certain extremal irreducible
elements, which when introduced were called purely long and purely short irreducibles [22]. We say
that a monoid satisfies the PLS property if it contains both purely short and purely long irreducibles.
Every length-factorial monoid satisfies the PLS property, and here we determine classes of small-rank
monoids where every monoid satisfying the PLS property is length-factorial. We will also establish that
the multiplicative monoid of an atomic domain never satisfies the PLS property. As a result, we will
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rediscover that the multiplicative monoid of an integral domain is length-factorial if and only if the
integral domain is a unique factorization domain, which was the main result in [22].

In Section 3, which is the first section of content, we offer two characterizations of length-factorial
monoids. The first of such characterizations is given in terms of the integral independence of the set of
irreducibles and the set of irreducibles somehow shifted. The second characterization states that a non-
factorial monoid is length-factorial if and only if the kernel congruence of its factorization homomorphism
is nontrivial and can be generated by a single factorization relation. This second characterization will
allow us to recover [22, Proposition 2.9]. In addition, we use the second characterization to determine
the set of Betti elements and study the catenary degree of a length-factorial monoid.

In Section 4, we delve into the study of purely long and purely short irreducibles. For an element x
of a monoid M, a pair of factorizations (21, z2) of x is called irredundant if they have no irreducibles in
common and is called unbalanced if |z1| # |22|. An irreducible a of M is called purely long (resp., purely
short) provided that for any pair of irredundant and unbalanced factorizations of the same element, the
longer (resp., shorter) factorization contains a. We prove that the set of purely long (and purely short)
irreducibles of an atomic monoid is finite, and we use this result to decompose any atomic monoid as a
direct sum of a half-factorial monoid and a length-factorial monoid.

Section 5 is devoted to the study of length-factoriality in connection with the PLS property on the
class consisting of finite-rank atomic monoids. Observe that this class comprises all finitely generated
monoids, all additive submonoids of Z™, and a large class of Krull monoids. We start by counting the
number of non-associated irreducibles of a finite-rank length-factorial monoid. Then we show that for
monoids of rank at most 2, being a length-factorial monoid is equivalent to satisfying the PLS property.
We conclude the section by offering further characterizations of length-factoriality for rank-1 atomic
monoids.

In Section 6, we investigate the existence of purely long and purely short irreducibles in the setting of
integral domains, arriving to the surprising fact that an integral domain cannot simultaneously contain
a purely long irreducible and a purely short irreducible. As a consequence of this fact, we rediscover the
main result of [22], that the multiplicative monoid of an integral domain is length-factorial if and only
if the integral domain is a unique factorization domain (a shorter proof of this result was later given
in [1, Theorem 2.3]). We also exhibit examples of Dedekind domains containing purely long (resp.,
purely short) irreducibles, but not purely short (resp., purely long) irreducibles.

2. FUNDAMENTALS

2.1. General Notation. Throughout this paper, we let N denote the set of positive integers, and we
set Ng := NU{0}. For a,b € Z with a < b, we let [a,b] be the discrete interval from a to b, that is,
[a,b] = {n € Z : a < n < b}. In addition, for S C R and r € R, we set S<, := {s € S: s < r} and,
with similar meaning, we use the symbols S>,, S, and Ss,. If ¢ € Qs0, then we let n(g) and d(q)
denote the unique positive integers such that ¢ = n(q)/d(q) and ged(n(q),d(q)) = 1. Unless we specify
otherwise, when we label elements in a certain set by s;,s;41...,s;, we always assume that 4,5 € Ny
and that i < j.

2.2. Commutative Monoids. We tacitly assume that each monoid (i.e., a semigroup with an identity
element) we treat here is cancellative and commutative. As all monoids we shall be dealing with are
commutative, we will use additive notation unless otherwise specified. For the rest of this section, let M
be a monoid. We let M*® denote the set M\ {0}, and we let % (M) denote the group consisting of all
the units (i.e., invertible elements) of M. We say that M is reduced if % (M) = {0}.

For the monoid M there exist an abelian group gp(M) and a monoid homomorphism ¢: M — gp(M)
such that any monoid homomorphism M — G, where G is an abelian group, uniquely factors through ¢.
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The group gp(M), which is unique up to isomorphism, is called the Grothendieck group' of M. The
monoid M is torsion-free if nz = ny for some n € N and z,y € M implies that z = y. A monoid is
torsion-free if and only if its Grothendieck group is torsion-free (see [8, Section 2.A]). If M is torsion-free,
then the rank of M, denoted by rank(M), is the rank of the Z-module gp(M), that is, the dimension of
the Q-vector space Q ®z gp(M).

An equivalence relation p on M is called a congruence provided that it is compatible with the operation
of M, that is, for all z,y,z € M the inclusion (y, z) € p implies that (x + y,x + z) € p. The elements
of a congruence are called relations. Let p be a congruence. Clearly, the set M/p of congruence classes
(i.e., the equivalence classes) naturally turns into a commutative semigroup with identity (it may not
be cancellative). The subset {(x,z) : x € M} of M x M is the smallest congruence of M, and is called
the trivial (or diagonal) congruence. Every relation in the trivial congruence is called diagonal, while
(0,0) is called the trivial relation. We say that o C M x M generates the congruence p provided that p
is the smallest (under inclusion) congruence on M containing o. A congruence on M is cyclic if it can
be generated by one element.

For x,y € M, we say that y divides x in M and write y |y = provided that 2 = y 4+ ¢y’ for some
y € M. Ifx |pr y and y |p x, then z and y are said to be associated elements (or associates) and, in this
case, we write  ~ y. Being associates determines a congruence on M, and M,eq := M/ ~ is called the
reduced monoid of M. When M is reduced, we identify M,eq with M. For S C M, we let (S) denote the
smallest (under inclusion) submonoid of M containing S, and we say that S generates M if M = (S).
An element a € M \ % (M) is an irreducible (or an atom) if for each pair of elements u,v € M such
that a = u + v either u € Z (M) or v € % (M). We let &/ (M) denote the set of irreducibles of M. The
monoid M is called atomic if every element in M \ % (M) can be written as a sum of atoms. Clearly, M
is atomic if and only if M,eq is atomic. Each finitely generated monoid is atomic [30, Proposition 2.7.8].

2.3. Factorizations. The free commutative monoid on the set o/ (M;cq) is denoted by Z(M), and the
elements of Z(M) are called factorizations. If z € Z(M) consists of £ irreducibles of Meq (counting rep-
etitions), then we call ¢ the length of z and write |z| := ¢. We say that a € &7 (M) appears in z provided
that a4+ % (M) is one of the £ irreducibles of z. The unique monoid homomorphism s : Z(M) — Myeq
satisfying w(a) = a for all a € & (Myeq) is called the factorization homomorphism of M. When there
seems to be no risk of ambiguity, we write 7 instead of m5;. The kernel

kerm := {(2,2') € Z(M)? : () = n(2')}

of 7 is a congruence on Z(M), which we call the factorization congruence of M. In addition, we call
an element (z,2') € ker7 a factorization relation. Let (z,2") be a factorization relation of M. We say
that a € o7 (M) appears in (z, 2') if a appears in either z or z’. We call (z, 2) balanced if |z| = |2/| and
unbalanced otherwise. Also, we say that (z, 2’) is irredundant provided that no irreducible of M appears
in both z and z’. For each 2z € M we set

Z(z) = Zy(x) =7 Yx+ % (M)) C Z(M).
Observe that Z(u) = {0} if and only if u € % (M). In addition, note that M is atomic if and only if 7
is surjective, that is Z(x) # @) for all x € M. For each x € M, we set
L(z) :=Lap(x) :={|2| : z € Z(z)} C No.

The monoid M is called a factorial monoid (or a unique factorization monoid) if |Z(z)] = 1 for all
x € M. On the other hand, M is called a half-factorial monoid if |[L(x)| = 1 for all z € M. Let R be an
integral domain (i.e., a commutative ring with identity and without nonzero zero-divisors). We let R®
denote the multiplicative monoid R\ {0} and, to simplify notation, we write 7r and Z(R) instead of mge

IThe Grothendieck group of a monoid is often called the difference or the quotient group depending on whether the
monoid is written additively or multiplicatively.
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and Z(R*®), respectively. In addition, for each x € R®, we set Zr(x) := Zpe(z) and Lg(z) := Lge(z). It
is clear that R is atomic (resp., a unique factorization domain) if and only if the monoid R® is atomic
(resp., factorial). We say that R is a half-factorial domain provided that R® is a half-factorial monoid.
See [10] for a survey on half-factorial domains.

The notion of a half-factorial monoid is therefore obtained from that of a factorial monoid by keeping
the existence and weakening the uniqueness of factorizations, i.e., replacing |Z(x)] = 1 by |L(z)| = 1
for every z € M. In [22] the second and fourth authors proposed a dual way to weaken the unique
factorization property and obtain a natural relaxed version of a factorial monoid, which they called a
length-factorial monoid.

Definition 2.1. Let M be an atomic monoid. We say that M is length-factorial if for all x € M and
21,22 € Z(x) the equality |z1| = |22| implies that zq = 2.

Before proceeding, we make the following observation.

Remark 2.2. The term “length-factorial” seems like a natural choice as for every element x of a
length-factorial monoid M and every ¢ € L(x) there is a unique factorization in Z(z) of length £. We
emphasize, however, that the monoids we study here under the term “length-factorial monoids” were
first investigated in [22] under the term “other-half-factorial monoids”; observe that the later term
highlights the contrast with the half-factorial property.

Notice that a monoid is length-factorial if and only if its reduced monoid is length-factorial. It is clear
that every factorial monoid is a length-factorial monoid. We say that a length-factorial monoid is proper
if it is not factorial. The study of length-factoriality will be our primary focus of attention here. It has
been proved in [22] that the multiplicative monoid of an integral domain is a length-factorial monoid
if and only if the integral domain is a unique factorization domain, i.e., the multiplicative monoid of
an integral domain cannot be a proper length-factorial monoid. We will obtain this result, along with
several additional fundamental results, as a consequence of our investigation.

3. CHARACTERIZATIONS OF LENGTH-FACTORIAL MONOIDS

The main purpose of this section is to provide characterizations of a proper length-factorial monoid in
terms of the integral dependence of its set of irreducibles and also in terms of its factorization congruence.
We will use the established characterizations to describe the set of Betti elements and study the catenary
degree of a given length-factorial monoid. Throughout this section, we assume that M is an atomic
monoid.

3.1. Characterizations of a Length-factorial Monoid. The notion of integral independence plays
a central role in our first characterization of a length-factorial monoid. Let S be a subset of M. We say
that S is integrally independent in M if S is linearly independent as a subset of the Z-module gp(M),
that is, for any distinct s1,...,s, € Sand any ¢1,...,¢, € Z the equality Y . ; ¢;s; = 0 in gp(M) implies
that ¢; = 0 for every @ € [1,n]. We proceed to establish two characterizations of proper length-factorial
monoids.

Theorem 3.1. Let M be an atomic monoid that is not a factorial monoid. Then the following state-
ments are equivalent.
(a) The monoid M is a length-factorial monoid.

(b) There exists a € o (Myea) such that o/ (Myea) \ {a} and a — o/ (Myea) \ {a} are integrally
independent sets in gp(Mieq).

(¢) The congruence ker w is nontrivial and cyclic.
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Proof. Since M is a length-factorial monoid if and only if M..q is a length-factorial monoid and since
the factorization homomorphisms of both M and M,q are the same, there is no loss in assuming that M
is a reduced monoid. Accordingly, we identify M,eq with M.

(a) = (b): Assume that M is a length-factorial monoid. Observe that the set /(M) cannot be
integrally independent as, otherwise, M would be a factorial monoid. Then there exist a € o/ (M) and
m € N such that

k
(3.1) ma = Zmiai
i=1

for some ay,...,ax € & (M)\ {a} and mq,...,my € Z. Let us verify that &/ (M) \ {a} is an integrally
independent set in gp(M). Suppose, for the sake of a contradiction, that this is not the case. Then
there exist b € &7 (M) \ {a} and n € N satisfying

J4
i=1

for some by, ...,by € & (M) \ {a,b} and ny,...,ng € Z. Take ¢; = 1(|m;| — m;) and ¢} = (|m;| +m;)
for every i € [1,k], and also take d; = 3 (|n;| — n;) and d} = (|n;| + n;) for every i € [1,£]. Then set

k k ¢ ¢
21 = ma + E citi, 2= E cia;, wy:=nb+ E d;jbj, and wy:= E dsb;.
i—1 i—1 j=1 j=1

It follows from (3.1) and (3.2) that both (21, 22) and (w1, w2) are irredundant factorization relations of M.
Because (21, 22) and (wy,ws) are irredundant and nontrivial, the length-factoriality of M guarantees
that they are both unbalanced. Assume, without loss of generality, that |z1] > |z2| and |wi| < |wa].
Clearly, ((Jwz] — |w1|)z1, (|lwz] — |Jw1])z2) and ((|z1| — |z2])w1, (Jz1] — |22])w2) are both factorization
relations of M. By adding them, one can produce a new balanced factorization relation with exactly
one of its two factorization components involving the irreducible a. However, this contradicts that M
is a length-factorial monoid. Thus, &7 (M) \ {a} is integrally independent in gp(M).

Let a € o7 (M) be as in the previous paragraph. We proceed to argue that the set a — o/ (M) \ {a} is
also integrally independent in gp(M). Take this time by,...,b; € /(M) \ {a} and n4,...,n¢ € Z such
that Zle ni(b; —a) = 0. Then set d; = 1(|n;| — n;) and d; = (|n;| + n;) for every i € [1,4], and
consider the factorizations

¢ ‘ ‘ ‘
21 = Zldibl-—k <Zld;>a and 29 1= Zldgbi—k <Zldi>a-

The equality Zle n;b; = (Zle ni)a ensures that (21, 22) is a balanced factorization relation. Since M
is a length-factorial monoid, z; = 2z and therefore n; = d; —d} = 0 for every i € [1,¢]. As a consequence,
we can conclude that a — o/ (M) \ {a} is an integrally independent set in gp(M).

(b) = (c): Suppose that there exists a € &7 (M) such that both o/ (M)\ {a} and a — &/ (M) \ {a} are
integrally independent sets in gp(M). Let S be the subgroup of gp(M) generated by </ (M) \ {a}. We
have seen before that <7 (M) is an integrally dependent set. As a result, the annihilator Ann(a + S) of
a+ S in the Z-module gp(M)/S is not trivial. Since Ann(a+S) is an additive subgroup of Z, there exists
m € N such that Ann(a+ S) = mZ. Then there is an irredundant factorization relation (w,ws) € kerm
such that exactly m copies of a appear in w; and no copies of a appear in ws.

Let us verify that (wy,w2) is unbalanced. Suppose, by way of contradiction, that |w;| = |ws|. Note
that w(wy) — m(wz) = 0 in gp(M) ensures the existence of ag,...,ar € /(M) (with agp = a) and
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mo,...,m, € Z (with mg = m) such that Zf:o mia; = 0. As |w1| = |we|, the equality Zf:o m; =0
holds. As a consequence, one finds that

k k k
Zmi(a— a;) = aZmi - Zmiai =0.
i—1 i=0 i=0

This, along with the fact that m; # 0 for some i € [1, k], contradicts that a — o/ (M)\{a} is an integrally
independent set. Hence |wq| # |wz], and so (w1, ws) is unbalanced.

We still need to show that (w1, ws) generates the congruence ker . Towards this end, take a nontrivial
irredundant factorization relation (z1,z2) € kerm. As /(M) \ {a} is integrally independent, a must
appear in (21, z2). Assume, without loss of generality, that exactly n copies of a appear in z; for some
n € N. Then the equality m(z1) = 7(22) ensures that n € Ann(a + 5), and so n = km for some k € N.
Then after canceling na in both sides of m(w¥zy) = m(wkz1), we obtain two integral combinations of
irreducibles in .7 (M) \ {a}, whose corresponding coefficients must be equal. Thus, (z1, 22) = (wy,w2)".

(¢) = (a): Suppose that ker7 is a cyclic congruence generated by an unbalanced irredundant factor-
ization relation (wy,ws). Let * denote the monoid operation of the congruence ker . Take (z,2’) € ker 7

such that z # 2’. Since (wy,ws) generates ker 7, there exist n € N and zo, ..., 2, € Z(M) with zg = z
and z, = 2’ such that for every i € [1,n] the equality
(33) (Zl',l, Zz) = (wl, w2) * (dz, dz)

holds for some d; € Z(M). After multiplying all the identities in (3.3) (for every i € [1,n]), one finds
that (z,2) % (21 2pn_1,21 - 2n—1) = (W}, wh) * (d,d), where d = dy ---dp. Since z1---z,_1 divides
both wid and wid in the free monoid Z(M) and ged(wy,wy) = 1, there exists z” € Z(M) such that
21 2n—12" = d. As a result, (z,2') = ("wl,z"wh) and so (z,2z’) is an unbalanced factorization
relation. Hence M is a length-factorial monoid. 0

Following [22], we call a factorization relation (wi,ws) in kermy; master if any irredundant and
unbalanced factorization relation of M has the form (w},w%) or (wh,w}) for some n € N. A master
factorization relation must be irredundant and unbalanced unless M is a half-factorial monoid. When M
is a proper length-factorial monoid we have seen that ker 7 is a nontrivial cyclic congruence, and it is
clear that (wi,wz) is a generator of ker 7 if and only if (w1, ws) is a master factorization relation, in
which case, the only master factorization relations of M are (wy,ws) and (w2, wq). In this case, one can
readily verify that if |wy] < |wa], then |wi| < |z| < |wz| for each factorization z € Z(m(w1)) \ {w1,w2}.
As a consequence of Theorem 3.1, we obtain the following corollary, which was first established in the
proof of the main theorem of [22].

Corollary 3.2. Let M be an atomic monoid. Then M is a proper length-factorial monoid if and
only if it admits an unbalanced master factorization relation (w1, ws), in which case the only master
factorization relations of M are (wy,ws) and (wa,wy).

The numerical monoids that are proper length-factorial monoids have been characterized in [22] as
those having precisely two irreducibles. This was generalized in [40, Proposition 4.3], which states that
the additive submonoids of Q> that are length-factorial monoids are those generated by two elements.
In general, every monoid that can be generated by two elements is a length-factorial monoid.

Corollary 3.3. Let M be a monoid generated by two elements. Then kern is cyclic, and M is a
length-factorial monoid.

Proof. As M is finitely generated, it is atomic. We can assume, without loss of generality, that M is
reduced. If M is a factorial monoid, then there is nothing to show. Therefore assume that M is not a
factorial monoid. Then there exists a generating set A of M with |A| = 2. Because M is not a factorial
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monoid, &/ (M) = A. As both sets A\ {a} and a — A\ {a} are singletons, the corollary follows from
Theorem 3.1. i

When a monoid cannot be generated by two elements, its factorization congruence may not be cyclic
(even if the monoid is finitely generated). The next example illustrates this observation.

Example 3.4. For n € N3, consider the additive submonoid M = {0} UN>,, of Ny. It can be readily
verified that M is atomic and &/ (M) = [n,2n — 1]. Since 2(n + 1) = n+ (n + 2), it follows that M is
not a length-factorial monoid. Then Theorem 3.1 guarantees that the factorization congruence of M is
not cyclic.

3.2. Connection with the Catenary Degree. We call a finite sequence zg, 21, . . ., 2 of factorizations
in Z(M) a chain of factorizations from zg to zy, if w(29) = w(21) = - -+ = w(2x), where 7 is the factoriza-
tion homomorphism of M. Consider the subset % of Z(M)? defined as follows: a pair (z,2’) € Z(M)?
belongs to Z if there exists a chain of factorizations 2o, 21, . . ., 2k from z to z’ such that ged(z;—1,2;) # 1
for every i € [[1, k], where ged(z;—1, 2;) denotes the greatest common divisor of z;_; and z; as elements of
the free commutative monoid Z(M). It follows immediately that Z is an equivalence relation on Z(M)
that refines ker . For each © € M, we let %, denote the set of equivalence classes of Z inside Z(z). An
element b € M is called a Betti element provided that |%Z;| > 2. Let Betti(M) denote the set of Betti
elements of M. As we proceed to show, every proper length-factorial monoid contains essentially one
Betti element.

Proposition 3.5. If M is a proper length-factorial monoid, then |Betti(Myeq)| = 1.

Proof. Since M is a proper length-factorial monoid, Corollary 3.2 ensures the existence of a master
factorization relation (wi,ws). Assume that |wq| < |wz|. We claim that b = 7(w;) is a Betti element.
To see this, take w] € Z(b) with w] # wi. As wi is the minimum-length factorization of the master
relation (w1, wa), it follows that |w| < |w}|. Therefore (w1, w}]) = (ww}, wwy) for some w € Z(M) and
n € N, which implies that w = 1 and n = 1, that is, w] = wy. As a result, Z(b) = {w1,wa}. This, along
with the fact that (wq,ws) is irredundant, guarantees that |%,| = 2. Hence b € Betti(Myeq).

Now take x € Meq such that & # b, and let us verify that x cannot be a Betti element of Mcq. If
|Z(x)| = 1, then |%Z;| = 1, and so x ¢ Betti(Myeq). Assume, therefore, that |Z(x)| > 2. Take z,2" € Z(x)
with z # 2’ and suppose, without loss of generality, that |z| < |2/|. Then (z,2') = (ww},wwy) for
some w € Z(M) and n € N. If w # 1, then 2,2’ is a chain of factorizations from z to 2’ such that
ged(z, 2') # 1. Otherwise, the fact that = # b ensures that n > 2, and after taking z; = w}™“w} for each
1 € [0,n], one can readily see that zg, 21, ..., 2, is a chain of factorizations from z to 2’ satisfying that
ged(zi—1,2i) # 1 for every ¢ € [1,n]. Hence |%Z,| =1, and so x ¢ Betti(Meq). O

We will conclude this section studying the (monotone, equal) catenary degree of a length-factorial
monoid; we express the (monotone) catenary degree in terms of any of the master factorization relations.
The distance d(z,z") between two factorizations z and 2z’ in Z(M) is defined as follows:

z z

A=7= max{‘gcd(zaz’) ged(z, 2') }

It is routine to verify that d is indeed a distance function. For N € Ny, a chain of factorizations
20, 21, - - - » 2k 1s called an N-chain from zq to zy if d(z;—1, 2;) < N for every i € [1,k]. For 2 € M, we let
c(x) denote the smallest N € Ny such that for every z, 2’ € Z(x) there exists an N-chain of factorizations
from z to z’; when such an N does not exist, we set c(z) = co. The catenary degree of M, denoted by
c(M), is defined by

/

)

c(M) = sup{c(z) : x € M}.
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The notion of catenary degree was introduced by Geroldinger in [27] in the context of Noetherian
domains, although the term was coined later in [28]. Since then, several variations of the catenary
degree have been investigated.

An N-chain zg, z1, . . ., 2z, of factorizations in Z(M) is said to be monotone if |zo| < |z1] < -+ < |2zg]
or |zo| > |z1| > -+ > |z|. For @ € M, we let cmon(x) (resp., Ceq(z)) denote the smallest N € Ny
such that for every z,z’ € Z(z) (resp., 2,2’ € Z(x) with |z| = |2’|) there exists a monotone N-chain of
factorizations from z to z’; if such an N does not exist, then we set Con(z) = 00 (resp., Ceq(r) = 0).
In addition, we set

Cmon(M) :=sup{cmon(x) : & € M} and ceq(M) := sup{ceq(z) : © € M},

and call them the monotone catenary degree and the equal catenary degree of M, respectively. It is
clear from the definition that c(z) < cpon(z) and ceq(z) < Cmon(z) for all z € M and, therefore,

(M) < cmon(M) and ceq(M) < cyon(M). For every £ € Ng and © € M, set Zo(x) :={z € Z(z) : |z| = ¢}
and define c,qj(z) as follows:

Caqj(x) := sup {d(Zk(x),Zg(a:)) sk, lel(x), k<t and [k, /] NL(z) = {k,ﬂ}},

where d(Z71, Z2) = min{d(z1, 22) : 21 € Z1 and 22 € Z>} for any nonempty subsets Z; and Zs of Z(M).
The adjacent catenary degree of M, denoted by caqj(M), is then defined as

Cadj(M) := sup{caqj(x) : © € M}.

It is clear that cion(2) = max{ceq(x), Caqj(x)} for all x € M, and so cmon (M) = max{ceq(M), caqj(M)}.
The notion of monotone catenary degree was introduced by Foroutan in [24], and it has been fairly
studied in past literature (see [33] and references therein). In [45, Section 3], Philipp provides charac-
terizations of the monotone, equal, and adjacent catenary degrees of M in terms of the factorization
congruence ker 7.

Proposition 3.6. Let M be a monoid, and let (w1, w2) be a master factorization relation of M. Then
the following statements hold.

(1) The monoid M is length-factorial if and only if ceq(M) = 0.
(2) If M is a proper length-factorial monoid, then
Cadj(M) = Cmon(M) = ¢(M) = max{|w|, [wal}.

Proof. (1) For the direct implication, assume that M is a length-factorial monoid. Since M is length-
factorial, for every « € M two factorizations in Z(x) have the same length if and only if they are equal,
which immediately implies that ceq(x) = 0. Hence ceq(M) = 0. Conversely, suppose that ceq(M) = 0.
Take z € M, and let z and 2’ be two factorizations of & such that |z| = |2/|. Since ceq(x) < ceq(M) =0,
it follows that d(z, 2’) = 0, and so z = 2z’. Thus, distinct factorizations of 2 must have different lengths.
Hence M is a length-factorial monoid.

(2) Now suppose that M is a proper length-factorial monoid. In order to find the catenary degree
of M, it suffices to look at the set Betti(M): indeed, it follows from [44, Corollary 9] that

c(M) = sup{u(d) : b € Betti(M)},

where p(z) = sup{min.¢, |z| : p € Z,}. By Proposition 3.5, the monoid M contains only one Betti
element b up to associate, and we have seen that % consists of two classes, namely, {w;} and {w.}.
Thus, c¢(M) = p(b) = max{|wi], jwa|}.

Since ceq(M) = 0, the equality cagj(M) = cmon (M) holds. Finally, let us argue that cmon (M) = c(M).
If b € Betti(M), then Z(b) = {wq, w2}, as we have seen in the proof of Proposition 3.5. Clearly,
w1y, wy is a monotone N-chain of factorizations from w; to wg, where N = max{|wi|,|wz|}. Thus,
Cmon () < max{|w1|, |w2|} = c¢(M). Now suppose that x € M is not a Betti element. If |Z(z)| = 1,
then cmon(z) = 0 < c(M). Suppose, otherwise, that |Z(z)| > 1 and take z, 2z’ € Z(x) such that z # z'.
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As M is a length-factorial monoid, we can assume that |z| < [2'|, so (z,2") = (ww],wwy) for some
w € Z(M) and n € N. In this case, we can take z; := ww]'w} for each i € [0,n] to obtain an N-chain
of factorizations from z to z’, where N = max{|w1|, |wz|} = c¢(M). This implies that cyen(x) < c(M).

Hence cpon (M) < c(M) and, therefore, the equality must hold. O

4. PURE IRREDUCIBLES: THE PLS PROPERTY

In this section, we study the notions of purely long and purely short irreducibles (as introduced in [22])
in connection with length-factoriality. Based on these notions of irreducible elements, we introduce a
class of atomic monoids that strictly contains that of length-factorial monoids. We will see that each
monoid in this new class naturally decomposes as a sum of a half-factorial monoid and a length-factorial
monoid. Throughout this section, we let M be an atomic monoid.

4.1. Pure Irreducibles. Let (z1,22) be an unbalanced factorization relation of M. Then we call the
factorization of bigger (resp., smaller) length between z; and z5 the longer (resp., shorter) factorization
of (z1,22).

Definition 4.1. Let M be a monoid, and take a € &7 (M,eq). We say that a is purely long (resp., purely
short) if a is not prime and for all irredundant and unbalanced factorization relations (21, z2) of M, the
fact that a appears in z; implies that |z1]| > |22| (resp., |z1] < |22]).

Remark 4.2. As by definition a purely long (or short) irreducible is not prime, it must appear in at
least one nontrivial irredundant factorization relation of M.

We let Z(M) (resp., #(M)) denote the set comprising all purely long (resp., purely short) irre-
ducibles of M;eq. When M is a proper length-factorial monoid, it follows from Corollary 3.2 that both
Z(M) and (M) are nonempty sets. More precisely, if z1, 20 € Z(M) satisfy |z1| < |22| and (21, 22)
is an irredundant factorization relation generating the factorization congruence of a length-factorial
monoid M, then .Z(M) (resp., . (M)) consists of all irreducibles that appear in z (resp., z1).

We call any element of .Z(M)U.¥ (M) a pure irreducible. As a consequence of the following propo-
sition we will obtain that every atomic monoid contains only finitely many pure irreducibles.

Proposition 4.3. For an atomic monoid M, let a be a purely short/long irreducible, and let (wy,ws) be
an irredundant factorization relation. Then a appears in (w1, wsz) if and only if (w1, ws) is unbalanced.

Proof. To argue the direct implication suppose, by way of contradiction, that (w,ws) is balanced. We
also assume, without loss of generality, that a appears in ws. Suppose first that a € (M), and take
an irredundant factorization relation (21, z2) such that |z1| > |z2] and a appears in z;. Then we can
take n € N large enough such that the number of copies of a that appear in w{z; is strictly smaller
than the number of copies of a that appear in w4 zs. Therefore (w21, whzo) yields, after cancellations,
an irredundant and unbalanced factorization relation whose shorter factorization involves a. However,
this contradicts that a is purely long. Supposing that a € (M), one can similarly arrive to another
contradiction.

For the reverse implication, assume that (wq,w2) is unbalanced with |w| < |wa|. Suppose first that
a € Z(M). Take an irredundant factorization relation (z1, z2) such that a appears in (21, 22). There
is no loss in assuming that a appears in z; and, therefore, that |z1] > |z2|. Then there exists n € N
such that |wi'z1] < |[w%zz|. Since a appears in the shorter factorization of (wjz1, w4 z2), the fact that a
is a purely long irreducible guarantees that a also appears in the longer factorization of (wf z1, w4 z2).
Hence a appears in ws. For a € (M) the proof is similar. (]

Corollary 4.4. For an atomic monoid M, both sets £ (M) and . (M) are finite.
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Proof. Tf M is a half-factorial monoid, then both sets £ (M) and .¥(M) are empty. Otherwise, there
must exist an unbalanced factorization relation (21, z2). It follows now from Proposition 4.3 that every
pure irreducible of M appears in (21, z2). Hence both sets Z (M) and . (M) must be finite. O

Clearly, atomic monoids having both purely long and purely short irreducibles are natural gener-
alizations of length-factorial monoids, and they will play an important role in the remainder of this

paper.

Definition 4.5. If an atomic monoid M contains both purely long and purely short irreducibles, then
we say that M has the PLS property or that M is a PLS monoid.

For future reference, we highlight the following immediate corollary of Theorem 3.1.
Corollary 4.6. FEwvery proper length-factorial monoid is a PLS monoid.

The converse of Corollary 4.6 does not hold even for finitely generated monoids. For any subset S
of R, we let cone(S) and aff(S) denote the cone and the affine space generated by S, respectively.

Example 4.7. For a; = (0,1,1), as = (0,2,1), a3 = (1,2, 3), a4 = (2,2,2), and a5 = (3,2,1), consider
the submonoid M = (a; : i € [1,5]) of (N3, +). Clearly, M is atomic and it is not hard to check that
(M) ={a;:i€[1,5]}. Let H be the hyperplane described by the equation y = 2. Since a; ¢ H and
a; € H for every i € [2,5], the irreducible a; is purely long. Because cone(ay, az) and aff(as, a4, as) only
intersect in the origin, a; and as cannot be in the same part of any irredundant factorization relation
of M. Thus, if as appears in an irredundant factorization relation involving a;, then it must appear in
its shorter part. In addition, note that because as ¢ aff(as, a4, as), there is no irredundant factorization
relation of M involving as but not a;. Hence ay € Z(M), and so M is a PLS monoid. However, it
follows from [38, Section 5] that M is not a length-factorial monoid.

None of the conditions £ (M) = () and .(M) = () implies the other one. The following example
sheds some light upon this observation.

Example 4.8. For the set A = {(0,3),(1,2),(2,1),(3,0)}, consider the submonoid M of (N2, +) gen-
erated by A. It is clear that M is atomic, and one can readily check that /(M) = A. Since all the
irreducibles of M lie in the line determined by the equation z +y = 3, it follows from [38, Corollary 5.5]
that M is a half-factorial monoid.

Now consider the submonoid M; of (N2, +) generated by the set A1 = AU{(1,1)}. It is easy to verify
that M is atomic with 7 (M;) = A;. Moreover, since the irreducibles of M; are not colinear, it follows
from [38, Corollary 5.5] that M is not a half-factorial monoid. Therefore there exists an irredundant
factorization relation (21, z2) with |z1| # |22|. Since M is a half-factorial monoid, (1,1) must appear in
(21,22); say that (1,1) appears in z;. After projecting on the line determined by the equation y = z,
one can easily see that |z1] > |z2|. As a result, (1,1) is purely long. Note that the irreducibles in A
are neither purely long nor purely short because they are precisely the irreducibles of M, which is a
half-factorial monoid. Hence M; contains a purely long irreducible but no purely short irreducibles.

Lastly, considering the submonoid Ms of (N3, +) generated by the set AU {(2,2)} and proceeding
as we did with M, one finds that (2,2) is the only purely short irreducible in My, and also that Ms
contains no purely long irreducibles.

We know that half-factorial monoids contain neither purely long nor purely short irreducibles. How-
ever, there are monoids that are not half-factorial and still contain neither purely long nor purely short
irreducibles.

Example 4.9. Let M and A be as in Example 4.8, and let M3 be the submonoid of (N2, +) generated
by the set A3 = AU {(0,2),(1,1),(2,0)}. It is not hard to verify that Mz is an atomic monoid with
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o/ (M3) = As. Since the equalities 2(1,1) = (0,2) 4+ (2,0) and (1,2) + (2,1) = (0,3) + (3,0) give rise
to two irredundant and balanced factorizations involving each irreducible of M3, the sets Z(M3) and
.7 (Ms3) must be empty. Because of this, M3 cannot be a length-factorial monoid, which is confirmed by
[38, Theorem 5.10]. In addition, as the points in As are not colinear, it follows from [38, Corollary 5.5]
that M3 is not a half-factorial monoid.

4.2. Sum Decomposition of PLS Monoids. We proceed to show how to decompose the reduced
monoid of a PLS monoid M as the inner sum of a half-factorial monoid M; and a finitely generated
length-factorial monoid My satisfying that M; N My = {0}. We emphasize that such a decomposition
does not guarantee the uniqueness of the representation of an element of M as a sum of an element
of M7 and an element of Ms.

Theorem 4.10. Let M be a PLS monoid. Then there exist submonoids H and O of Myeqa satisfying
Myea = H + O, where H is a half-factorial monoid and O is a finitely generated proper length-factorial
monoid such that HN O = {0}.

Proof. Let O be the submonoid of M,.q generated by the set £ (M) U . (M). It is clear that O is an
atomic monoid with &/ (0) = Z(M)U (M). Moreover, note that £ (0) = £ (M) and #(0) = S (M).
By Corollary 4.4, the monoid O is finitely generated. To verify that O is a length-factorial monoid, let
(21,22) be a nontrivial irredundant factorization relation in ker mo. Since at least one irreducible in
Z(M)U (M) appears in the relation (z1, z2), the latter must be unbalanced by Proposition 4.3. As
a consequence, O is a proper length-factorial monoid.

Now let H be the submonoid of Mg generated by o7 (M) \ (L (M)U.(M)). Tt follows immediately
that H is atomic with &/ (H) = &/ (M) \ (L(M)U.(M)). To see that H is a half-factorial monoid, it
suffices to observe that since ker mg C ker 7y, any irredundant factorization relation of ker 7z must be
balanced by Proposition 4.3.

Because & (Myeq) = </ (H) Uo7 (0), we find that M,eq = H + O. To argue that H and O have trivial
intersection, suppose that x € H N O. As both H and O are atomic monoids, one can take z1 € Zg(x)
and z2 € Zp(x). Therefore (21,22) € kermys. Since L (M) # 0 and (M) # 0, if a pure irreducible
appeared in zo, then a pure irreducible would appear in z;. As z; consists of non-pure irreducibles, zo
must be the factorization with no irreducibles, whence x = 0. As a result, H N O = {0}, which implies
that Myeqa = H @ O. O

The converse of Theorem 4.10 does not hold in general, as the following example indicates.

Example 4.11. Consider the additive submonoid M of (N2, +) generated by the set of lattice points
{(1,1),(0,3),(1,2),(2,1),(3,0)}. We have already seen in the second paragraph of Example 4.8 that
Z(M)={(1,1)} and L (M) = . Therefore M is not a PLS monoid. The submonoid H = {((1, 2), (0, 3))
of M is clearly a factorial monoid and, in particular, a half-factorial monoid. On the other hand, one can
see that the submonoid O = ((1,1),(2,1),(3,0)) of M is a proper length-factorial monoid by applying
Theorem 3.1 with a = (1,1). It follows immediately that M = H @ O even though M is not a PLS
monoid.

We conclude this section with the following proposition.

Proposition 4.12. Let M be a PLS monoid. Then there exists an unbalanced factorization relation
(w1,ws) € kerm such that every factorization relation of kern has the form (wihy,whhs) for some
n € Ny and some balanced factorization relation (hi,hs) € kerm.

Proof. Take a € L (M). Set A = o/ (M) \ {a}, and let S be the subgroup of gp(M) generated by A.
Since a appears in an irredundant and unbalanced factorization relation of M, there exists m € N
such that Ann(a + S) = mZ, where Ann(a + S) is the annihilator of a + S in the Z-module gp(M)/S.
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As ma € S, there is an irredundant factorization relation (wi,ws) of M such that exactly m copies
of a appear in wy. It follows from Proposition 4.3 that |wi| > |wa|. Suppose now that (z1,z2) is
an irredundant factorization relation of M with |z1]| > |22/, and let £ € N be the number of copies
of a appearing in z;. Notice that ¥ € Ann(a + S), and therefore k& = nm for some n € N. Then
(Wl ze,whz) € kerw yields, after cancellations, a factorization relation that does not involve a. Thus,
such a factorization must be balanced by Proposition 4.3 and cannot involve any pure irreducible. So
the number of copies of each irreducible b in Z (M) (resp., .(M)) that appear in z; (resp., z2) equals n
times the number of copies of b that appear in wy (resp., wy). Hence (z1,22) = (wihy, whhs), where
hi,he € Z(M) involve no pure irreducibles. Clearly, (hi,h2) € kerw, and Proposition 4.3 guarantees
that |h1| = |h2| O

5. FINITE-RANK MONOIDS

In this section, we continue studying the OHF and the PLS properties, but we restrict our attention
to the class of finite-rank monoids.

5.1. Number of Irreducibles. If M is a reduced finite-rank factorial monoid, then it follows from [30,
Proposition 1.2.3(2)] that |/ (M)| = rank(M). In parallel with this, the cardinality of «/(M) in a
finite-rank proper length-factorial monoid M can be determined.

Proposition 5.1. Let M be a proper length-factorial monoid whose rank is finite. Then the equality
|/ (Myeq)| = rank(M) + 1 holds.

Proof. As gp(Myea) =2 gp(M)/% (M), the monoid M,¢q has finite rank. Hence one can replace M by
M;eq and assume that M is reduced. Set r = rank(M) and then embed M into the Q-vector space
Vi=Q®zgp(M) 2 Q" via M — gp(M) — Q ®z gp(M), where the injectivity of the second map
follows from the flatness of the Z-module Q. So we can think of M as an additive submonoid of the
finite-dimensional vector space Q". By Theorem 3.1, there exists a € &/ (M) such that /(M) \ {a}
and a — o/ (M) \ {a} are integrally independent sets in gp(M). In particular, the sets o/ (M) \ {a} and
a—o/(M)\ {a} are linearly independent inside the vector space V. Because M is atomic, gp(M) can be
generated by &7 (M) as a Z-module and, therefore, o7 (M) is a generating set of V. Since M is a proper
length-factorial monoid, the monoid M is not a factorial monoid and, consequently, o7 (M) is a linearly
dependent set of V. This along with the fact that </ (M) \ {a} is linearly independent in V' implies that
o/ (M) \ {a} is a basis for V. Hence |« (M)| = |&/(M)\ {a}|+1=7r+1. O

Corollary 5.2. Ewvery finite-rank length-factorial monoid is finitely generated.

The condition of having finite rank in Corollary 5.2 is not superfluous. For instance, consider the
additive monoid M = (2,3) @ N§°, where N§° is the direct sum of countably many copies of Ny. Since
(2,3) is a proper length-factorial monoid and N§° is a factorial monoid, M is a proper length-factorial
monoid. However, M is not finitely generated because rank(M) = co. The converse of Proposition 5.1
does not hold in general, as the following example shows.

Example 5.3. For every r € N, consider the submonoid M, of (Nj, +) that is generated by the set
S ={vo,re; : j € [1,7]}, where vg := {e1 + --- + e, }. It is not hard to verify that </ (M, ) = S, and so
|/ (M,)| = r + 1. Notice that each point in S lies in the hyperplane of R” determined by the equation
21+ -+ + a2, = r. Hence it follows from [38, Corollary 5.5] that M, is a proper half-factorial monoid.
Therefore M, cannot be a length-factorial monoid.
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5.2. Monoids of Small Rank. As we have emphasized in Corollary 4.6, every proper length-factorial
monoid is a PLS monoid. We proceed to show that being a length-factorial monoid is equivalent to
being a PSLM in the class of torsion-free monoids with rank at most 2.

Theorem 5.4. For a torsion-free monoid M with rank(M) < 2, the following statements are equivalent.
(a) The monoid M is a proper length-factorial monoid.
(b) The monoid M is a PLS monoid.
(¢) The congruence ker w can be generated by an unbalanced factorization relation.

Proof. (a) < (c): This is part of Theorem 3.1.
(a) = (b): This is Corollary 4.6.
(b) = (a): Assume that M is a PLS monoid, and suppose for the sake of a contradiction that M is

not a proper length-factorial monoid. Since M is finitely generated, it is atomic. As M is not a factorial
monoid, |7 (M)| > 2. We split the rest of the proof into three cases.

CASE 1: |&/(M)| = 2. In this case, the factorization congruence ker 7 is cyclic by Corollary 3.3, and
the existence of purely long/short irreducibles implies that any generator of ker 7 must be unbalanced,
contradicting that M is not a proper length-factorial monoid.

CASE 2: |&/(M)| = 3. Take a1, a2,as € M such that /(M) = {a1,az,as}. Assume, without loss
of generality, that a; € Z(M) and ay € . (M). Now take an irredundant and balanced factorization
relation (z1,22) € kerw. Since a1 and as are pure irreducibles, none of them can appear in (21, 22).
Therefore only copies of the irreducible az appear in both z; and z9. This implies that z; = 2z5. As
(21, 22) was taking to be irredundant, it must be trivial. Hence M is a proper length-factorial monoid,
a contradiction.

CASE 3: |/ (M)| > 4. Take ap € £ (M) and a3 € (M), and then take a1,a2 € /(M) \ {ao,as}
such that a1 # as. Since ag is a purely long irreducible, the submonoid M’ := (aq, az, az) of M must be
a half-factorial monoid. Now take a nontrivial factorization relation (z1, z2) € ker mys. As ag is a purely
short irreducible, it does not appear in (z1, z2). Therefore either (z1, z2) or (z2,21) equals (may, mas)
for some n € N. Now the fact that M is torsion-free, along with the equality ma; = masa, guarantees
that a; = as, which is a contradiction. O

Corollary 5.5. If a torsion-free monoid M is generated by at most three elements, then it is a proper
length-factorial monoid if and only if it is a PLS monoid.

Proof. There is no loss in assuming that M is reduced. Clearly, |« (M)| < 3. Consider the Q-space
V = Q ®z gp(M), and identify M with its isomorphic copy inside V' provided by the embedding
M < gp(M) = Q ®z gp(M). As M is atomic, o/ (M) is a spanning set of V, whence dimV < 3. If
dimV = 3, then /(M) is linearly independent over @Q, in which case M is the free monoid on </ (M).
In this case, M is neither a proper length-factorial monoid nor a PLS monoid. On the other hand, if
dim V' < 2, then rank(M) < 2 and we are done via Theorem 5.4. O

However, for a finitely generated monoid containing four or more irreducibles, the PLS property may
not imply the OHF property. This has been illustrated in Example 4.7. In the same example, we have
seen that the condition of having rank at most 2 is required in Theorem 5.4. On the other hand, the
following example indicates that the condition of being torsion-free is also required in the statement of
Theorem 5.4.

Example 5.6. Fix n € N such that n > 4, and consider the submonoid M := (aj : k € [1,n]) of
the additive group Z,_o x Z?, where a; = (0,0,2), ay = (0,0,3), and ar, = (k — 3,1,0) for every
k € [3,n]. Since M is finitely generated, it must be atomic. In addition, it can be readily verified that
(M) = {ay, : k € [1,n]}. Now suppose that (z1,z22) is an irredundant and unbalanced factorization
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relation in kerm, and assume that |z1| < |z2]. Since the second component of both a; and as is 0
and the second component of as,...,a, is 1, the numbers of irreducibles in {as,...,a,} that appear
in z; and in zo must coincide. A similar observation based on third components shows that a; appears
in 2z but not in z; and also that as appears in z; but not in zo. Hence a1 € Z(M) and ay € (M),
which implies that M is a PLS monoid. Checking that M is not a length-factorial monoid amounts to
observing that the equality (n — 2)as = (0,n — 2,0) = (n — 2)ay yields an irredundant and balanced
nontrivial factorization relation of M.

Now we turn to characterize the PSLMs in the class consisting of all torsion-free rank-1 monoids, which
have been recently studied under the name Puiseux monoids. Puiseux monoids have been studied in
connection with commutative algebra [21], commutative factorization theory [12], and noncommutative
factorization theory [6]. An updated survey on the atomic structure of Puiseux monoids is given in [13].
Notice that a Puiseux monoid is reduced unless it is a group (see [25, Section 24] and [36, Theorem
2.9)).

Proposition 5.7. Let M be an atomic Puiseux monoid. Then the following statements are equivalent.
(a) The monoid M is a proper length-factorial monoid.
(b) The monoid M is a PLS monoid.
(c¢) Both inclusions inf o/ (M) € £ (M) and sup o7/ (M) € (M) hold.
(d) At least one of the inclusions inf &7 (M) € L (M) or sup o (M) € (M) holds.
(e) The equality |/ (M)| = 2 holds.

If any of the conditions above holds, then £ (M) and . (M) are singletons: L (M) = {inf &/ (M)} and
(M) = {sup ' (M)}.

Proof. (a) = (b): This is Corollary 4.6.

(b) = (c): Suppose that M is a PLS monoid, and take a; € .2 (M) and as € . (M). Now take a € M
such that a # a,. Clearly, n := n(a)n(ag) € M and, moreover, z; := n(a)d(as)ae and z3 := n(as)d(a)a
are two factorizations in Z(n). Since the factorization relation (z1, 22) is irredundant and ay appears
in 21, one finds that |z1]| > |z2|. Therefore n(a)d(a;) > n(as)d(a), which means that a > ag. Then we
conclude that inf o/ (M) = a, € £ (M). The equality sup /(M) = a, can be argued similarly, from
which one obtains that sup /(M) € .7 (M).

(¢) = (d): This is obvious.

(d) = (e): Assume now that inf &/ (M) € £ (M), and take a; € £ (M). Since M is an atomic Puiseux
monoid that is not a factorial monoid, it follows that |</(M)| > 2. Suppose, by way of contradiction,
that |/ (M)| > 3, and take irreducibles ay, as € &/ (M) \ {as} such that a; # ag. Consider the element
n:=n(a1)n(az) € M. Tt is clear that both z; := n(ag)d(a1)a; and 29 := n(ay)d(az)as are factorizations
in Z(n), and they have different lengths because a1 # as. However, the fact that a, does not appear
in either z; or zo contradicts that a, € Z(M). As a result, |«/(M)| = 2. One can similarly obtain
|/ (M)| = 2 assuming that sup &/ (M) € ./ (M).

(e) = (a): If |&/(M)| = 2, it follows from Corollary 3.3 that M is a length-factorial monoid. Taking a;
and az to be the two irreducibles of M, one finds that n(az)d(a1)a; and n(a;)d(az)as are two different
factorizations of n(ai)n(az) € M, and so M is not a factorial monoid. Hence M must be a proper
length-factorial monoid. O

Corollary 5.8. Let N be a numerical monoid. Then Z(N) U . (N) is nonempty if and only if
|/ (N)| = 2, in which case L(N) = {min</(N)} and .(N) = {max .o/ (N)}.
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6. PURE IRREDUCIBLES IN INTEGRAL DOMAINS

We proceed to study the existence of purely long and purely short irreducibles in the context of
integral domains. Throughout this section, we set .Z(R) := Z(R*) and . (R) = .#(R°®) for any
atomic integral domain R. In addition, when R is a Dedekind domain, we let C1(R) denote the divisor
class group of R.

6.1. Examples of Dedekind Domains. For a finite-rank monoid M, we have already seen in Exam-
ple 4.8 that none of the conditions £ (M) = ) and .&(M) = @) implies the other one. In this subsection,
we construct examples of Dedekind domains to illustrate that a similar statement holds in the context
of atomic integral domains.

The celebrated Claborn’s class group realization theorem [23, Theorem 7] states that for every abelian
group G there exists a Dedekind domain D such that C1(D) = G. The following refinement of this result,
due to Gilmer, Heinzer, and the fourth author, will be crucial in our constructions.

Theorem 6.1. [37, Theorem 8] Let G be a countably generated abelian group generated by B U C with
BNC =0 such that B*UC generates G as a monoid for each cofinite subset B* of B. Then there exists
a Dedekind domain D with class group G satisfying the following conditions:

(1) the set BUC consists of the classes of G containing nonzero prime ideals;
(2) the set C consists of the classes of G containing infinitely many nonzero prime ideals;
(3) the set B consists of the classes of G containing finitely many nonzero prime ideals.

Moreover, the number of prime ideals in each class contained in B can be specified arbitrarily.

Further refinements of Claborn’s theorem in the direction of Theorem 6.1 were given by Grams [11],
Michel and Steffan [43], and Skula [49]. We are in a position now to exhibit a Dedekind domain with a
purely short (resp., long) irreducible but no purely long (resp., short) irreducibles.

Example 6.2. In this example, we will produce a Dedekind domain in which there is a purely short
irreducible but no purely long irreducibles. Toward this end, consider a Dedekind domain D with class
group Cl(D) = Z/3Z. Since CI(D) is finite and the class of C1(D) corresponding to 2 4+ 3Z generates
CI(D) as a monoid, one can invoke Theorem 6.1 to assume that the non-principal prime ideals of D
distribute within C1(D) in the following way. There is a unique nonzero prime ideal P in the class of
CI(D) corresponding to 1 4 3Z and infinitely many nonzero prime ideals in the class corresponding to
2 4 3Z. Observe that we can separate non-prime irreducible principal ideals I of D into the following
three types, according to their (unique) factorizations into prime ideals:

(1) I=P°, (2) I=PQ, or (3) I=Q1Q:Qs,

where @, Q1, Q2, and @3 are prime ideals in the class of C1(D) corresponding to 2+ 3Z. By construction,
there is only one irreducible principal ideal of type (1), namely, P3.

Take a € «/(D) such that (a) = P3. Proving that a € .%(D) amounts to verifying that (a) is a
purely short irreducible in the atomic monoid M consisting of all nonzero principal ideals of D. To do
so, suppose that (a) appears in an irredundant factorization relation (z1,z2) € ker mps, where

m n m’

2= (PP [[(PQ) [[(@Q11Qi2Qs3)  and 2 = [[(PQ) [[(Q51Q)2Q)5)
i=1 =1

] i=1

=1
for some k € N, m,n,m',n" € Ny, and ideals Q;,Q},Q;i, and @’ in the class corresponding to

2+ 3Z. As D is Dedekind, comparing the numbers of copies of P in all the irreducibles of the ideal
factorizations z; and z9, one obtains that 3k = m’ —m. Now comparing the numbers of copies of prime
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ideals in the class 2 + 3Z in all the irreducibles of the ideal factorizations z; and zs, one obtains that
m' —m =3(n—n'), and son —k =n'. As a result,

lzil=k+m+n=0Bk+m)+(n—k)—k=m'+n" —k <|z].

Therefore a € .#(D), as desired.

Let us proceed to argue that D contains no purely long irreducibles. By the previous paragraph,
Z(D) contains no irreducibles generating ideals of type (1). Take ag,a3 € /(D) such that the ideals
(a2) and (a3) are of type (2) and type (3), respectively. Then take prime ideals Q1, ..., Qs in the class
of CI(D) corresponding to 2 4+ 3Z such that the equalities (a2) = PQ1 and (a3) = Q2Q3Q4 hold, and
Qs ¢ {Q1,Q2,Qs,RQs}. Now consider the ideal factorizations

1= (P?)(Q2Q3Q4),

= (PQ2)(PQs3)(PQ4),

= (P*)(PQ1)(Q3Q4Q5)(Q2), and
24 1= (PQs5)* (Q1Q3Qu).

Notice that (z1,22) € kermys is irredundant and satisfies |z1] < |22|. Because Q2Q3Q4 appears in zq,
it follows that as ¢ (D). On the other hand, (z3,24) € kermys is also irredundant, and it satisfies
|z3| < |z4|. Because PQ; appears in z3, one finds that ay ¢ .Z(D). As a result, no irreducible generating
an ideal of type (2) or type (3) is purely long, whence .Z (D) = 0.

To complement Example 6.2, we proceed to construct a Dedekind domain having a purely long
irreducible but no purely short irreducibles.

Example 6.3. Let D be a Dedekind domain with Cl(D) = Z. Since Cl(D) is countable and the set
{+£1} generates Cl(D) as a monoid, we can assume in light of Theorem 6.1 that the non-principal prime
ideals of D distribute within C1(D) as follows. There is a unique nonzero prime ideal, which we denote
by P, in the class of CI(D) corresponding to —2; there is a unique nonzero prime ideal, which we denote
by @, in the class of C1(D) corresponding to 2; and there are infinitely many nonzero prime ideals in each
of the classes corresponding to —1 and 1. We denote the prime ideals in the class corresponding to —1
by (annotated) N and the prime ideals in the class corresponding to 1 by (annotated) M. Notice that
we can separate non-prime irreducible principal ideals I of D into the following four types, according to
their (unique) factorizations into prime ideals:

(1) I=PQ, (2) I=PNNy, (3) I=QMM, or (4) I=NM,

where N, N1, N2 belong to the class of CI(D) corresponding to —1 and M, M7, Ms belong to the class
of C1(D) corresponding to 1.

Take a € &/(D) such that (a) = PQ. As in Example 6.2, proving that a € .Z(D) amounts to showing
that the principal ideal (a) is a long irreducible in the atomic monoid M consisting of all nonzero
principal ideals of D. To do this, suppose that (a) appears in an irredundant ideal factorization relation
(21, 22) € ker mp, and write

m n t
21 = (PQ)F [[(PNiiNio) [ [(@M; 1M 5) [T (NeMy)
i=1 j=1 k=1

and
m’ n' t’
22 = H(PNi/,lNi/.,Q) H(QMJllMJ/2) H(N’QM’;)
i=1 j=1 k=1

for some k,m,n,t,m’,n',t' € Ny. Since D is Dedekind, after comparing the numbers of copies of the
prime ideals P and ) that appear in all irreducibles of z; and z3, one obtains that m—m’ =n—n' = —k.
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In addition, after comparing the numbers of copies of prime ideals in the class corresponding to —1 that
appear in z; and zz, one obtains that t — ¢/ = —2(m — m/) = 2k. As a result,

z1l=k+m+n+t=m +n' +t)+k+m—m)+(n—n")+{t—t)=|2|+k> |z

Therefore we can conclude that a € (D).

Finally, let us verify that D contains no purely short irreducibles. Since any irreducible generator of
PQ@ is purely long, D contains no purely short irreducibles of type (1). Take as € &/ (D) such that (az)
has type (2), and then take prime ideals Ni, N5 in the class of Cl(D) corresponding to —1 such that
(ag) = PN1Ny. In addition, take distinct prime ideals N3 and Ny in the class of C1(D) corresponding
to —1 such that N3, Ny ¢ {N1, No}. Finally, take distinct prime ideals M7 and Ms in the class of C1(D)
corresponding to 1. Consider the ideal factorizations

21 = (PQ)(PN1N2)(MiN3)(MaNy) and  zp := (PN N3)(PNaNg)(QM; My).

Observe that (z1,22) € kermys is an irredundant factorization relation satisfying |z1| > |z2|. Since
PN; Ny appears in z1, it follows that as ¢ (D). As a result, no irreducible generating an ideal of
type (2) can be purely short. In a similar manner, one can verify that no irreducible generating an
ideal of type (3) is purely short. Now let as be an irreducible of D such that (a4) is a principal ideal
of type (4). Take N and M in the classes of Cl(D) corresponding to —1 and 1, respectively, such that
(asg) = NM, and then consider the ideal factorizations

z3:= (PQ)(NM)?* and z4:=(PN?)(QM?).

Notice that (z3,24) € kermy is an irredundant factorization relation satisfying |z3| > |z4]. Since NM
appears in zs, it follows that aq ¢ .7 (D). Therefore none of the irreducibles generating ideals of type (4)
is purely short. As a consequence, .7 (D) = ().

6.2. Integral Domains Do Not Satisfy the PLS Property. In Section 5, we have proved that in
the class of torsion-free monoids with rank at most 2, being a proper length-factorial monoid and being a
PLS monoid are equivalent notions. It was proved in [22] that an integral domain has the length-factorial
property only if it is a unique factorization domain. In addition, being a proper length-factorial monoid
implies having both purely long and purely short irreducibles. This begs the tantalizing question as to
whether there is an atomic integral domain with both purely long and a purely short irreducibles. The
Dedekind domains constructed in the previous subsection do not satisfy this property, and this is not a
coincidence.

Theorem 6.4. Let R be an atomic domain. Then either Z(R) =0 or #(R) = (.

Proof. Suppose, by way of contradiction, that R is an atomic domain such that both .Z(R) nor . (R)
are nonempty sets. We recall that by Corollary 4.4 both .Z(R) and . (R) are finite sets. Set ¢ := |.Z(R)]
and s := |Z(R)|, and then write

Z(R) ={a1,as,...,a¢} and S(R)=:{B1,082,...,0s}

Take p € kermr to be an irredundant and unbalanced factorization relation. It follows from Proposi-
tion 4.3 that each «; appears in the longer factorization component of p and each ; appears in the
shorter factorization component of p. Therefore there exist factorizations z, 2’ € Z(R) such that

p=(aftag - aitz, B A L)

for some ay,...,ab1,...,bs € N such that none of the a;’s appears in z and none of the 3;’s appears
in 2’. In addition, as the factorization is irredundant, none of the «;’s appears in 2z’ and none of the ;s
appears in z. We now derive contradictions in the following three cases.
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CASE 1: /,s > 2. Consider the element

(6.1) zy = ag2ag® -l (ot — B)mR(z) € R.
We claim that x; # 0. Because R contains no nonzero zero-divisors, verifying that z; # 0 amounts to
showing that af* — i’l # 0. Indeed, this must be the case: if (af*, i’l) € ker g, then the fact that
¢ > 2 would force the purely long irreducible as to appear in the left factorization component of the
relation (a4, 4%"). Hence both af' — 8% and z; belong to R®. On the other hand, it follows from (6.1)
that £ divides z1 in R. Thus, there exist w; € Z(R) and wy € Zr(af* — i’l) such that Siwy € Zg(xq)
and w := a3?as® - - offwez € Zr(x1). Now consider the factorization relation (5w, w) € ker 7g.

CASE 1.1: 4 does not appear in w. Since 81 € Z(R), it follows that |w| > |Siwi]. Now the
inclusion a; € .Z(R) implies that o) must appear in w and, therefore, in wy. Thus, a; divides 5
in R. As a result, there is a factorization relation (ayw}, %) € kermg for some w| € Z(R). Clearly,
(aqw}, B%") is a non-diagonal factorization relation. Since 81 € .(R), th inequality |o;w/| > |45 | must
hold. Therefore (ajw},3Y") is an unbalanced factorization relation in which 8, does not appear. This
contradicts that Sz € .7 (R).

CASE 1.2: ; appears in w. Because (51 does not appear in z, we see that $; must appear in ws.
This implies that £, divides af' in R. Now we can follow an argument completely analogous to that
we just used in CASE 1.1 to obtain the desired contradiction.

CASE 2: {¢,s} = {1,n} for some n € N>3. Assume will first assume that £ = 1. Recall that
p = (af'z, Bi’l 32 .- f8bn2"). In this case, we also impose the condition that the exponent a; is the
minimum number of copies of the purely long irreducible o that can appear in any irredundant and
unbalanced factorization relation in ker mr. Using notation similar to that of CASE 1, we now set

(6.2) Ty = a$ " Hay — ) 7wR(2) € R.

Notice that zo # 0 as otherwise a1 = ﬁll“, which is clearly impossible. Since ¢ = 1, it follows
from (6.2) that () divides 3 in R. Then one can take w; € Z(R) and wy € Zp(ay — B') such
that (8yws, a‘l“flwgz) € ker . It is clear that 31 does not divide oy — Bi’l, whence 1 does not appear
in o' twyz, which implies that |Biw;| < |o' 'waz|. By the minimality of a;, we see that a; must
appear in wy. Thus, oy must divide Bi’l in R. In this case, (alwg,ﬁi’l) € ker g for some ws € Z(R),
which is a contradiction because 2 does not appear in ﬁlfl. The case when ¢ > 1 and s = 1 follows
similarly.

CASE 3: ¢ = s = 1. In this case, p = (a]'2, Bi’lz’). We assume that the exponent a; satisfies the
same minimality condition that we imposed in CASE 2. Consider the element

(63) T3 = Oéllllil(al — BI)WR(Z) € R.

As oy — (1 is nonzero and 7 divides x3 in R, there exist factorizations wy € Z(R) and wy € Zg(ag — 1)
such that (Blwl,a‘fl*lwgz) € kermr. Since 1 does not divide a3 — 81 in R, it cannot appear in

oty z and, therefore, |Biwi| < oS~ wyz|. This, along with the minimality of a;, implies that a;
appears in we. However, this contradicts that «; does not divide a; — 7 in R. O

As a consequence of Theorem 6.4, we rediscover the main result of [22].

Corollary 6.5. [22, Theorem 2.10] Let R be an integral domain. Then R is a unique factorization
domain if and only if R® is a length-factorial monoid.

Proof. Clearly, if R is a unique factorization domain, then R® is a factorial monoid and, therefore, a
length-factorial monoid. For the reverse implication, suppose that R® is a length-factorial monoid. By
Theorem 6.4, either Z(R) is empty or .(R) is empty. Therefore R® is not a proper length-factorial
monoid, and so it is a factorial monoid. Hence R is a unique factorization domain. O
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