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LENGTH-FACTORIALITY IN COMMUTATIVE MONOIDS AND

INTEGRAL DOMAINS

SCOTT T. CHAPMAN, JIM COYKENDALL, FELIX GOTTI, AND WILLIAM W. SMITH

Abstract. An atomic monoid M is called a length-factorial monoid (or an other-half-factorial monoid)
if for each non-invertible element x ∈ M no two distinct factorizations of x have the same length.
The notion of length-factoriality was introduced by Coykendall and Smith in 2011 as a dual of the
well-studied notion of half-factoriality. They proved that in the setting of integral domains, length-
factoriality can be taken as an alternative definition of a unique factorization domain. However, being a
length-factorial monoid is in general weaker than being a factorial monoid (i.e., a unique factorization
monoid). Here we further investigate length-factoriality. First, we offer two characterizations of a
length-factorial monoid M , and we use such characterizations to describe the set of Betti elements
and obtain a formula for the catenary degree of M . Then we study the connection between length-
factoriality and purely long (resp., purely short) irreducibles, which are irreducible elements that appear
in the longer (resp., shorter) part of any unbalanced factorization relation. Finally, we prove that an
integral domain cannot contain purely short and a purely long irreducibles simultaneously, and we
construct a Dedekind domain containing purely long (resp., purely short) irreducibles but not purely
short (resp., purely long) irreducibles.

1. Introduction

An atomic monoid M is called half-factorial if for all non-invertible x ∈ M , any two factorizations
of x have the same length. In contrast to this, we say that M is length-factorial if for all non-invertible
x ∈ M , any two distinct factorizations of x have different lengths. An integral domain is called half-
factorial if its multiplicative monoid is half-factorial. Half-factorial monoids and domains have been
systematically investigated during the last six decades in connection with algebraic number theory,
combinatorics, and commutative algebra: from work that appeared more than two decades ago, such
as [9,17,20,51], to more recent literature, including [26,32,35,42,46–48]. The term “half-factorial” was
coined by Zaks in [51]. On the other hand, length-factorial monoids were first investigated in 2011 by
the second and fourth authors [22]. As their main result, they proved that unique factorization domains
can be characterized as integral domains whose multiplicative monoids are length-factorial. Recently,
length-factorial monoids have been classified in the class of torsion-free rank-1 monoids [40], in the class
of submonoids of finite-rank free monoids [38], and in the class of monoids of the form N0[α], where α
is a positive algebraic numbers [16].

Here we offer a deeper investigation of length-factoriality in atomic monoids and integral domains as
well as some connections between length-factoriality and the existence of certain extremal irreducible
elements, which when introduced were called purely long and purely short irreducibles [22]. We say
that a monoid satisfies the PLS property if it contains both purely short and purely long irreducibles.
Every length-factorial monoid satisfies the PLS property, and here we determine classes of small-rank
monoids where every monoid satisfying the PLS property is length-factorial. We will also establish that
the multiplicative monoid of an atomic domain never satisfies the PLS property. As a result, we will
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rediscover that the multiplicative monoid of an integral domain is length-factorial if and only if the
integral domain is a unique factorization domain, which was the main result in [22].

In Section 3, which is the first section of content, we offer two characterizations of length-factorial
monoids. The first of such characterizations is given in terms of the integral independence of the set of
irreducibles and the set of irreducibles somehow shifted. The second characterization states that a non-
factorial monoid is length-factorial if and only if the kernel congruence of its factorization homomorphism
is nontrivial and can be generated by a single factorization relation. This second characterization will
allow us to recover [22, Proposition 2.9]. In addition, we use the second characterization to determine
the set of Betti elements and study the catenary degree of a length-factorial monoid.

In Section 4, we delve into the study of purely long and purely short irreducibles. For an element x
of a monoid M , a pair of factorizations (z1, z2) of x is called irredundant if they have no irreducibles in
common and is called unbalanced if |z1| ̸= |z2|. An irreducible a of M is called purely long (resp., purely
short) provided that for any pair of irredundant and unbalanced factorizations of the same element, the
longer (resp., shorter) factorization contains a. We prove that the set of purely long (and purely short)
irreducibles of an atomic monoid is finite, and we use this result to decompose any atomic monoid as a
direct sum of a half-factorial monoid and a length-factorial monoid.

Section 5 is devoted to the study of length-factoriality in connection with the PLS property on the
class consisting of finite-rank atomic monoids. Observe that this class comprises all finitely generated
monoids, all additive submonoids of Zn, and a large class of Krull monoids. We start by counting the
number of non-associated irreducibles of a finite-rank length-factorial monoid. Then we show that for
monoids of rank at most 2, being a length-factorial monoid is equivalent to satisfying the PLS property.
We conclude the section by offering further characterizations of length-factoriality for rank-1 atomic
monoids.

In Section 6, we investigate the existence of purely long and purely short irreducibles in the setting of
integral domains, arriving to the surprising fact that an integral domain cannot simultaneously contain
a purely long irreducible and a purely short irreducible. As a consequence of this fact, we rediscover the
main result of [22], that the multiplicative monoid of an integral domain is length-factorial if and only
if the integral domain is a unique factorization domain (a shorter proof of this result was later given
in [1, Theorem 2.3]). We also exhibit examples of Dedekind domains containing purely long (resp.,
purely short) irreducibles, but not purely short (resp., purely long) irreducibles.

2. Fundamentals

2.1. General Notation. Throughout this paper, we let N denote the set of positive integers, and we
set N0 := N ∪ {0}. For a, b ∈ Z with a ≤ b, we let !a, b" be the discrete interval from a to b, that is,
!a, b" = {n ∈ Z : a ≤ n ≤ b}. In addition, for S ⊆ R and r ∈ R, we set S≤r := {s ∈ S : s ≤ r} and,
with similar meaning, we use the symbols S≥r, S<r, and S>r. If q ∈ Q>0, then we let n(q) and d(q)
denote the unique positive integers such that q = n(q)/d(q) and gcd(n(q), d(q)) = 1. Unless we specify
otherwise, when we label elements in a certain set by si, si+1 . . . , sj , we always assume that i, j ∈ N0

and that i ≤ j.

2.2. Commutative Monoids. We tacitly assume that each monoid (i.e., a semigroup with an identity
element) we treat here is cancellative and commutative. As all monoids we shall be dealing with are
commutative, we will use additive notation unless otherwise specified. For the rest of this section, let M
be a monoid. We let M• denote the set M \{0}, and we let U (M) denote the group consisting of all
the units (i.e., invertible elements) of M . We say that M is reduced if U (M) = {0}.

For the monoid M there exist an abelian group gp(M) and a monoid homomorphism ι : M → gp(M)
such that any monoid homomorphism M → G, where G is an abelian group, uniquely factors through ι.
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The group gp(M), which is unique up to isomorphism, is called the Grothendieck group1 of M . The
monoid M is torsion-free if nx = ny for some n ∈ N and x, y ∈ M implies that x = y. A monoid is
torsion-free if and only if its Grothendieck group is torsion-free (see [8, Section 2.A]). IfM is torsion-free,
then the rank of M , denoted by rank(M), is the rank of the Z-module gp(M), that is, the dimension of
the Q-vector space Q⊗Z gp(M).

An equivalence relation ρ onM is called a congruence provided that it is compatible with the operation
of M , that is, for all x, y, z ∈ M the inclusion (y, z) ∈ ρ implies that (x + y, x + z) ∈ ρ. The elements
of a congruence are called relations. Let ρ be a congruence. Clearly, the set M/ρ of congruence classes
(i.e., the equivalence classes) naturally turns into a commutative semigroup with identity (it may not
be cancellative). The subset {(x, x) : x ∈ M} of M ×M is the smallest congruence of M , and is called
the trivial (or diagonal) congruence. Every relation in the trivial congruence is called diagonal, while
(0, 0) is called the trivial relation. We say that σ ⊆ M ×M generates the congruence ρ provided that ρ
is the smallest (under inclusion) congruence on M containing σ. A congruence on M is cyclic if it can
be generated by one element.

For x, y ∈ M , we say that y divides x in M and write y |M x provided that x = y + y′ for some
y′ ∈ M . If x |M y and y |M x, then x and y are said to be associated elements (or associates) and, in this
case, we write x ∼ y. Being associates determines a congruence on M , and Mred := M/ ∼ is called the
reduced monoid of M . When M is reduced, we identify Mred with M . For S ⊆ M , we let ⟨S⟩ denote the
smallest (under inclusion) submonoid of M containing S, and we say that S generates M if M = ⟨S⟩.
An element a ∈ M \ U (M) is an irreducible (or an atom) if for each pair of elements u, v ∈ M such
that a = u+ v either u ∈ U (M) or v ∈ U (M). We let A (M) denote the set of irreducibles of M . The
monoid M is called atomic if every element in M \U (M) can be written as a sum of atoms. Clearly, M
is atomic if and only if Mred is atomic. Each finitely generated monoid is atomic [30, Proposition 2.7.8].

2.3. Factorizations. The free commutative monoid on the set A (Mred) is denoted by Z(M), and the
elements of Z(M) are called factorizations. If z ∈ Z(M) consists of ℓ irreducibles of Mred (counting rep-
etitions), then we call ℓ the length of z and write |z| := ℓ. We say that a ∈ A (M) appears in z provided
that a+U (M) is one of the ℓ irreducibles of z. The unique monoid homomorphism πM : Z(M) → Mred

satisfying π(a) = a for all a ∈ A (Mred) is called the factorization homomorphism of M . When there
seems to be no risk of ambiguity, we write π instead of πM . The kernel

kerπ := {(z, z′) ∈ Z(M)2 : π(z) = π(z′)}

of π is a congruence on Z(M), which we call the factorization congruence of M . In addition, we call
an element (z, z′) ∈ kerπ a factorization relation. Let (z, z′) be a factorization relation of M . We say
that a ∈ A (M) appears in (z, z′) if a appears in either z or z′. We call (z, z′) balanced if |z| = |z′| and
unbalanced otherwise. Also, we say that (z, z′) is irredundant provided that no irreducible of M appears
in both z and z′. For each x ∈ M we set

Z(x) := ZM (x) := π−1(x + U (M)) ⊆ Z(M).

Observe that Z(u) = {0} if and only if u ∈ U (M). In addition, note that M is atomic if and only if π
is surjective, that is Z(x) ̸= ∅ for all x ∈ M . For each x ∈ M , we set

L(x) := LM (x) := {|z| : z ∈ Z(x)} ⊂ N0.

The monoid M is called a factorial monoid (or a unique factorization monoid) if |Z(x)| = 1 for all
x ∈ M . On the other hand, M is called a half-factorial monoid if |L(x)| = 1 for all x ∈ M . Let R be an
integral domain (i.e., a commutative ring with identity and without nonzero zero-divisors). We let R•

denote the multiplicative monoid R\{0} and, to simplify notation, we write πR and Z(R) instead of πR•

1The Grothendieck group of a monoid is often called the difference or the quotient group depending on whether the
monoid is written additively or multiplicatively.
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and Z(R•), respectively. In addition, for each x ∈ R•, we set ZR(x) := ZR•(x) and LR(x) := LR•(x). It
is clear that R is atomic (resp., a unique factorization domain) if and only if the monoid R• is atomic
(resp., factorial). We say that R is a half-factorial domain provided that R• is a half-factorial monoid.
See [10] for a survey on half-factorial domains.

The notion of a half-factorial monoid is therefore obtained from that of a factorial monoid by keeping
the existence and weakening the uniqueness of factorizations, i.e., replacing |Z(x)| = 1 by |L(x)| = 1
for every x ∈ M . In [22] the second and fourth authors proposed a dual way to weaken the unique
factorization property and obtain a natural relaxed version of a factorial monoid, which they called a
length-factorial monoid.

Definition 2.1. Let M be an atomic monoid. We say that M is length-factorial if for all x ∈ M and
z1, z2 ∈ Z(x) the equality |z1| = |z2| implies that z1 = z2.

Before proceeding, we make the following observation.

Remark 2.2. The term “length-factorial” seems like a natural choice as for every element x of a
length-factorial monoid M and every ℓ ∈ L(x) there is a unique factorization in Z(x) of length ℓ. We
emphasize, however, that the monoids we study here under the term “length-factorial monoids” were
first investigated in [22] under the term “other-half-factorial monoids”; observe that the later term
highlights the contrast with the half-factorial property.

Notice that a monoid is length-factorial if and only if its reduced monoid is length-factorial. It is clear
that every factorial monoid is a length-factorial monoid. We say that a length-factorial monoid is proper
if it is not factorial. The study of length-factoriality will be our primary focus of attention here. It has
been proved in [22] that the multiplicative monoid of an integral domain is a length-factorial monoid
if and only if the integral domain is a unique factorization domain, i.e., the multiplicative monoid of
an integral domain cannot be a proper length-factorial monoid. We will obtain this result, along with
several additional fundamental results, as a consequence of our investigation.

3. Characterizations of Length-factorial Monoids

The main purpose of this section is to provide characterizations of a proper length-factorial monoid in
terms of the integral dependence of its set of irreducibles and also in terms of its factorization congruence.
We will use the established characterizations to describe the set of Betti elements and study the catenary
degree of a given length-factorial monoid. Throughout this section, we assume that M is an atomic
monoid.

3.1. Characterizations of a Length-factorial Monoid. The notion of integral independence plays
a central role in our first characterization of a length-factorial monoid. Let S be a subset of M . We say
that S is integrally independent in M if S is linearly independent as a subset of the Z-module gp(M),
that is, for any distinct s1, . . . , sn ∈ S and any c1, . . . , cn ∈ Z the equality

∑n
i=1 cisi = 0 in gp(M) implies

that ci = 0 for every i ∈ !1, n". We proceed to establish two characterizations of proper length-factorial
monoids.

Theorem 3.1. Let M be an atomic monoid that is not a factorial monoid. Then the following state-
ments are equivalent.

(a) The monoid M is a length-factorial monoid.

(b) There exists a ∈ A (Mred) such that A (Mred) \ {a} and a − A (Mred) \ {a} are integrally
independent sets in gp(Mred).

(c) The congruence kerπ is nontrivial and cyclic.
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Proof. Since M is a length-factorial monoid if and only if Mred is a length-factorial monoid and since
the factorization homomorphisms of both M and Mred are the same, there is no loss in assuming that M
is a reduced monoid. Accordingly, we identify Mred with M .

(a) ⇒ (b): Assume that M is a length-factorial monoid. Observe that the set A (M) cannot be
integrally independent as, otherwise, M would be a factorial monoid. Then there exist a ∈ A (M) and
m ∈ N such that

(3.1) ma =
k

∑

i=1

miai

for some a1, . . . , ak ∈ A (M) \ {a} and m1, . . . ,mk ∈ Z. Let us verify that A (M) \ {a} is an integrally
independent set in gp(M). Suppose, for the sake of a contradiction, that this is not the case. Then
there exist b ∈ A (M) \ {a} and n ∈ N satisfying

(3.2) nb =
ℓ

∑

i=1

nibi

for some b1, . . . , bℓ ∈ A (M) \ {a, b} and n1, . . . , nℓ ∈ Z. Take ci =
1
2
(|mi|−mi) and c′i =

1
2
(|mi|+mi)

for every i ∈ !1, k", and also take di =
1
2
(|ni|− ni) and d′i =

1
2
(|ni|+ ni) for every i ∈ !1, ℓ". Then set

z1 := ma+
k
∑

i=1

ciai, z2 :=
k

∑

i=1

c′iai, w1 := nb+
ℓ

∑

j=1

djbj , and w2 :=
ℓ

∑

j=1

d′jbj .

It follows from (3.1) and (3.2) that both (z1, z2) and (w1, w2) are irredundant factorization relations ofM .
Because (z1, z2) and (w1, w2) are irredundant and nontrivial, the length-factoriality of M guarantees
that they are both unbalanced. Assume, without loss of generality, that |z1| > |z2| and |w1| < |w2|.
Clearly, ((|w2| − |w1|)z1, (|w2| − |w1|)z2) and ((|z1| − |z2|)w1, (|z1| − |z2|)w2) are both factorization
relations of M . By adding them, one can produce a new balanced factorization relation with exactly
one of its two factorization components involving the irreducible a. However, this contradicts that M
is a length-factorial monoid. Thus, A (M) \ {a} is integrally independent in gp(M).

Let a ∈ A (M) be as in the previous paragraph. We proceed to argue that the set a−A (M) \ {a} is
also integrally independent in gp(M). Take this time b1, . . . , bℓ ∈ A (M) \ {a} and n1, . . . , nℓ ∈ Z such

that
∑ℓ

i=1 ni(bi − a) = 0. Then set di = 1
2
(|ni| − ni) and d′i = 1

2
(|ni| + ni) for every i ∈ !1, ℓ", and

consider the factorizations

z1 :=
ℓ

∑

i=1

dibi +

( ℓ
∑

i=1

d′i

)

a and z2 :=
ℓ

∑

i=1

d′ibi +

( ℓ
∑

i=1

di

)

a.

The equality
∑ℓ

i=1 nibi =
(
∑ℓ

i=1 ni

)

a ensures that (z1, z2) is a balanced factorization relation. Since M
is a length-factorial monoid, z1 = z2 and therefore ni = di−d′i = 0 for every i ∈ !1, ℓ". As a consequence,
we can conclude that a− A (M) \ {a} is an integrally independent set in gp(M).

(b) ⇒ (c): Suppose that there exists a ∈ A (M) such that both A (M) \ {a} and a−A (M) \ {a} are
integrally independent sets in gp(M). Let S be the subgroup of gp(M) generated by A (M) \ {a}. We
have seen before that A (M) is an integrally dependent set. As a result, the annihilator Ann(a+ S) of
a+S in the Z-module gp(M)/S is not trivial. Since Ann(a+S) is an additive subgroup of Z, there exists
m ∈ N such that Ann(a+S) = mZ. Then there is an irredundant factorization relation (w1, w2) ∈ kerπ
such that exactly m copies of a appear in w1 and no copies of a appear in w2.

Let us verify that (w1, w2) is unbalanced. Suppose, by way of contradiction, that |w1| = |w2|. Note
that π(w1) − π(w2) = 0 in gp(M) ensures the existence of a0, . . . , ak ∈ A (M) (with a0 = a) and
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m0, . . . ,mk ∈ Z (with m0 = m) such that
∑k

i=0 miai = 0. As |w1| = |w2|, the equality
∑k

i=0 mi = 0
holds. As a consequence, one finds that

k
∑

i=1

mi(a− ai) = a
k

∑

i=0

mi −
k
∑

i=0

miai = 0.

This, along with the fact that mi ̸= 0 for some i ∈ !1, k", contradicts that a−A (M)\{a} is an integrally
independent set. Hence |w1| ̸= |w2|, and so (w1, w2) is unbalanced.

We still need to show that (w1, w2) generates the congruence kerπ. Towards this end, take a nontrivial
irredundant factorization relation (z1, z2) ∈ kerπ. As A (M) \ {a} is integrally independent, a must
appear in (z1, z2). Assume, without loss of generality, that exactly n copies of a appear in z1 for some
n ∈ N. Then the equality π(z1) = π(z2) ensures that n ∈ Ann(a + S), and so n = km for some k ∈ N.
Then after canceling na in both sides of π(wk

1z2) = π(wk
2z1), we obtain two integral combinations of

irreducibles in A (M) \ {a}, whose corresponding coefficients must be equal. Thus, (z1, z2) = (w1, w2)k.

(c) ⇒ (a): Suppose that kerπ is a cyclic congruence generated by an unbalanced irredundant factor-
ization relation (w1, w2). Let ∗ denote the monoid operation of the congruence kerπ. Take (z, z′) ∈ kerπ
such that z ̸= z′. Since (w1, w2) generates kerπ, there exist n ∈ N and z0, . . . , zn ∈ Z(M) with z0 = z
and zn = z′ such that for every i ∈ !1, n" the equality

(3.3) (zi−1, zi) = (w1, w2) ∗ (di, di)

holds for some di ∈ Z(M). After multiplying all the identities in (3.3) (for every i ∈ !1, n"), one finds
that (z, z′) ∗ (z1 · · · zn−1, z1 · · · zn−1) = (wn

1 , w
n
2 ) ∗ (d, d), where d = d1 · · · dn. Since z1 · · · zn−1 divides

both wn
1 d and wn

2 d in the free monoid Z(M) and gcd(wn
1 , w

n
2 ) = 1, there exists z′′ ∈ Z(M) such that

z1 · · · zn−1z′′ = d. As a result, (z, z′) = (z′′wn
1 , z

′′wn
2 ) and so (z, z′) is an unbalanced factorization

relation. Hence M is a length-factorial monoid. !

Following [22], we call a factorization relation (w1, w2) in kerπM master if any irredundant and
unbalanced factorization relation of M has the form (wn

1 , w
n
2 ) or (wn

2 , w
n
1 ) for some n ∈ N. A master

factorization relation must be irredundant and unbalanced unless M is a half-factorial monoid. When M
is a proper length-factorial monoid we have seen that kerπ is a nontrivial cyclic congruence, and it is
clear that (w1, w2) is a generator of kerπ if and only if (w1, w2) is a master factorization relation, in
which case, the only master factorization relations of M are (w1, w2) and (w2, w1). In this case, one can
readily verify that if |w1| < |w2|, then |w1| < |z| < |w2| for each factorization z ∈ Z(π(w1)) \ {w1, w2}.
As a consequence of Theorem 3.1, we obtain the following corollary, which was first established in the
proof of the main theorem of [22].

Corollary 3.2. Let M be an atomic monoid. Then M is a proper length-factorial monoid if and
only if it admits an unbalanced master factorization relation (w1, w2), in which case the only master
factorization relations of M are (w1, w2) and (w2, w1).

The numerical monoids that are proper length-factorial monoids have been characterized in [22] as
those having precisely two irreducibles. This was generalized in [40, Proposition 4.3], which states that
the additive submonoids of Q≥2 that are length-factorial monoids are those generated by two elements.
In general, every monoid that can be generated by two elements is a length-factorial monoid.

Corollary 3.3. Let M be a monoid generated by two elements. Then kerπ is cyclic, and M is a
length-factorial monoid.

Proof. As M is finitely generated, it is atomic. We can assume, without loss of generality, that M is
reduced. If M is a factorial monoid, then there is nothing to show. Therefore assume that M is not a
factorial monoid. Then there exists a generating set A of M with |A| = 2. Because M is not a factorial
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monoid, A (M) = A. As both sets A \ {a} and a − A \ {a} are singletons, the corollary follows from
Theorem 3.1. !

When a monoid cannot be generated by two elements, its factorization congruence may not be cyclic
(even if the monoid is finitely generated). The next example illustrates this observation.

Example 3.4. For n ∈ N≥3, consider the additive submonoid M = {0}∪N≥n of N0. It can be readily
verified that M is atomic and A (M) = !n, 2n− 1". Since 2(n+ 1) = n + (n + 2), it follows that M is
not a length-factorial monoid. Then Theorem 3.1 guarantees that the factorization congruence of M is
not cyclic.

3.2. Connection with the Catenary Degree. We call a finite sequence z0, z1, . . . , zk of factorizations
in Z(M) a chain of factorizations from z0 to zk if π(z0) = π(z1) = · · · = π(zk), where π is the factoriza-
tion homomorphism of M . Consider the subset R of Z(M)2 defined as follows: a pair (z, z′) ∈ Z(M)2

belongs to R if there exists a chain of factorizations z0, z1, . . . , zk from z to z′ such that gcd(zi−1, zi) ̸= 1
for every i ∈ !1, k", where gcd(zi−1, zi) denotes the greatest common divisor of zi−1 and zi as elements of
the free commutative monoid Z(M). It follows immediately that R is an equivalence relation on Z(M)
that refines kerπ. For each x ∈ M , we let Rx denote the set of equivalence classes of R inside Z(x). An
element b ∈ M is called a Betti element provided that |Rx| ≥ 2. Let Betti(M) denote the set of Betti
elements of M . As we proceed to show, every proper length-factorial monoid contains essentially one
Betti element.

Proposition 3.5. If M is a proper length-factorial monoid, then |Betti(Mred)| = 1.

Proof. Since M is a proper length-factorial monoid, Corollary 3.2 ensures the existence of a master
factorization relation (w1, w2). Assume that |w1| < |w2|. We claim that b = π(w1) is a Betti element.
To see this, take w′

1 ∈ Z(b) with w′
1 ̸= w1. As w1 is the minimum-length factorization of the master

relation (w1, w2), it follows that |w1| < |w′
1|. Therefore (w1, w′

1) = (wwn
1 , ww

n
2 ) for some w ∈ Z(M) and

n ∈ N, which implies that w = 1 and n = 1, that is, w′
1 = w2. As a result, Z(b) = {w1, w2}. This, along

with the fact that (w1, w2) is irredundant, guarantees that |Rb| = 2. Hence b ∈ Betti(Mred).
Now take x ∈ Mred such that x ̸= b, and let us verify that x cannot be a Betti element of Mred. If

|Z(x)| = 1, then |Rx| = 1, and so x /∈ Betti(Mred). Assume, therefore, that |Z(x)| ≥ 2. Take z, z′ ∈ Z(x)
with z ̸= z′ and suppose, without loss of generality, that |z| < |z′|. Then (z, z′) = (wwn

1 , ww
n
2 ) for

some w ∈ Z(M) and n ∈ N. If w ̸= 1, then z, z′ is a chain of factorizations from z to z′ such that
gcd(z, z′) ̸= 1. Otherwise, the fact that x ̸= b ensures that n ≥ 2, and after taking zi = wn−i

1 wi
2 for each

i ∈ !0, n", one can readily see that z0, z1, . . . , zn is a chain of factorizations from z to z′ satisfying that
gcd(zi−1, zi) ̸= 1 for every i ∈ !1, n". Hence |Rx| = 1, and so x /∈ Betti(Mred). !

We will conclude this section studying the (monotone, equal) catenary degree of a length-factorial
monoid; we express the (monotone) catenary degree in terms of any of the master factorization relations.
The distance d(z, z′) between two factorizations z and z′ in Z(M) is defined as follows:

d(z, z′) := max

{
∣

∣

∣

∣

z

gcd(z, z′)

∣

∣

∣

∣

,

∣

∣

∣

∣

z′

gcd(z, z′)

∣

∣

∣

∣

}

.

It is routine to verify that d is indeed a distance function. For N ∈ N0, a chain of factorizations
z0, z1, . . . , zk is called an N -chain from z0 to zk if d(zi−1, zi) ≤ N for every i ∈ !1, k". For x ∈ M , we let
c(x) denote the smallest N ∈ N0 such that for every z, z′ ∈ Z(x) there exists an N -chain of factorizations
from z to z′; when such an N does not exist, we set c(x) = ∞. The catenary degree of M , denoted by
c(M), is defined by

c(M) := sup{c(x) : x ∈ M}.
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The notion of catenary degree was introduced by Geroldinger in [27] in the context of Noetherian
domains, although the term was coined later in [28]. Since then, several variations of the catenary
degree have been investigated.

An N -chain z0, z1, . . . , zk of factorizations in Z(M) is said to be monotone if |z0| ≤ |z1| ≤ · · · ≤ |zk|
or |z0| ≥ |z1| ≥ · · · ≥ |zk|. For x ∈ M , we let cmon(x) (resp., ceq(x)) denote the smallest N ∈ N0

such that for every z, z′ ∈ Z(x) (resp., z, z′ ∈ Z(x) with |z| = |z′|) there exists a monotone N -chain of
factorizations from z to z′; if such an N does not exist, then we set cmon(x) = ∞ (resp., ceq(x) = ∞).
In addition, we set

cmon(M) := sup{cmon(x) : x ∈ M} and ceq(M) := sup{ceq(x) : x ∈ M},

and call them the monotone catenary degree and the equal catenary degree of M , respectively. It is
clear from the definition that c(x) ≤ cmon(x) and ceq(x) ≤ cmon(x) for all x ∈ M and, therefore,
c(M) ≤ cmon(M) and ceq(M) ≤ cmon(M). For every ℓ ∈ N0 and x ∈ M , set Zℓ(x) := {z ∈ Z(x) : |z| = ℓ}
and define cadj(x) as follows:

cadj(x) := sup
{

d(Zk(x),Zℓ(x)) : k, ℓ ∈ L(x), k < ℓ, and !k, ℓ" ∩ L(x) = {k, ℓ}
}

,

where d(Z1, Z2) = min{d(z1, z2) : z1 ∈ Z1 and z2 ∈ Z2} for any nonempty subsets Z1 and Z2 of Z(M).
The adjacent catenary degree of M , denoted by cadj(M), is then defined as

cadj(M) := sup{cadj(x) : x ∈ M}.

It is clear that cmon(x) = max{ceq(x), cadj(x)} for all x ∈ M , and so cmon(M) = max{ceq(M), cadj(M)}.
The notion of monotone catenary degree was introduced by Foroutan in [24], and it has been fairly
studied in past literature (see [33] and references therein). In [45, Section 3], Philipp provides charac-
terizations of the monotone, equal, and adjacent catenary degrees of M in terms of the factorization
congruence kerπ.

Proposition 3.6. Let M be a monoid, and let (w1, w2) be a master factorization relation of M . Then
the following statements hold.

(1) The monoid M is length-factorial if and only if ceq(M) = 0.

(2) If M is a proper length-factorial monoid, then

cadj(M) = cmon(M) = c(M) = max{|w1|, |w2|}.

Proof. (1) For the direct implication, assume that M is a length-factorial monoid. Since M is length-
factorial, for every x ∈ M two factorizations in Z(x) have the same length if and only if they are equal,
which immediately implies that ceq(x) = 0. Hence ceq(M) = 0. Conversely, suppose that ceq(M) = 0.
Take x ∈ M , and let z and z′ be two factorizations of x such that |z| = |z′|. Since ceq(x) ≤ ceq(M) = 0,
it follows that d(z, z′) = 0, and so z = z′. Thus, distinct factorizations of x must have different lengths.
Hence M is a length-factorial monoid.

(2) Now suppose that M is a proper length-factorial monoid. In order to find the catenary degree
of M , it suffices to look at the set Betti(M): indeed, it follows from [44, Corollary 9] that

c(M) = sup{µ(b) : b ∈ Betti(M)},

where µ(x) = sup{minz∈ρ |z| : ρ ∈ Rx}. By Proposition 3.5, the monoid M contains only one Betti
element b up to associate, and we have seen that Rb consists of two classes, namely, {w1} and {w2}.
Thus, c(M) = µ(b) = max{|w1|, |w2|}.

Since ceq(M) = 0, the equality cadj(M) = cmon(M) holds. Finally, let us argue that cmon(M) = c(M).
If b ∈ Betti(M), then Z(b) = {w1, w2}, as we have seen in the proof of Proposition 3.5. Clearly,
w1, w2 is a monotone N -chain of factorizations from w1 to w2, where N = max{|w1|, |w2|}. Thus,
cmon(b) ≤ max{|w1|, |w2|} = c(M). Now suppose that x ∈ M is not a Betti element. If |Z(x)| = 1,
then cmon(x) = 0 ≤ c(M). Suppose, otherwise, that |Z(x)| > 1 and take z, z′ ∈ Z(x) such that z ̸= z′.
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As M is a length-factorial monoid, we can assume that |z| < |z′|, so (z, z′) = (wwn
1 , ww

n
2 ) for some

w ∈ Z(M) and n ∈ N. In this case, we can take zi := wwn−i
1 wi

2 for each i ∈ !0, n" to obtain an N -chain
of factorizations from z to z′, where N = max{|w1|, |w2|} = c(M). This implies that cmon(x) ≤ c(M).
Hence cmon(M) ≤ c(M) and, therefore, the equality must hold. !

4. Pure Irreducibles: The PLS Property

In this section, we study the notions of purely long and purely short irreducibles (as introduced in [22])
in connection with length-factoriality. Based on these notions of irreducible elements, we introduce a
class of atomic monoids that strictly contains that of length-factorial monoids. We will see that each
monoid in this new class naturally decomposes as a sum of a half-factorial monoid and a length-factorial
monoid. Throughout this section, we let M be an atomic monoid.

4.1. Pure Irreducibles. Let (z1, z2) be an unbalanced factorization relation of M . Then we call the
factorization of bigger (resp., smaller) length between z1 and z2 the longer (resp., shorter) factorization
of (z1, z2).

Definition 4.1. Let M be a monoid, and take a ∈ A (Mred). We say that a is purely long (resp., purely
short) if a is not prime and for all irredundant and unbalanced factorization relations (z1, z2) of M , the
fact that a appears in z1 implies that |z1| > |z2| (resp., |z1| < |z2|).

Remark 4.2. As by definition a purely long (or short) irreducible is not prime, it must appear in at
least one nontrivial irredundant factorization relation of M .

We let L (M) (resp., S (M)) denote the set comprising all purely long (resp., purely short) irre-
ducibles of Mred. When M is a proper length-factorial monoid, it follows from Corollary 3.2 that both
L (M) and S (M) are nonempty sets. More precisely, if z1, z2 ∈ Z(M) satisfy |z1| < |z2| and (z1, z2)
is an irredundant factorization relation generating the factorization congruence of a length-factorial
monoid M , then L (M) (resp., S (M)) consists of all irreducibles that appear in z2 (resp., z1).

We call any element of L (M) ∪S (M) a pure irreducible. As a consequence of the following propo-
sition we will obtain that every atomic monoid contains only finitely many pure irreducibles.

Proposition 4.3. For an atomic monoid M , let a be a purely short/long irreducible, and let (w1, w2) be
an irredundant factorization relation. Then a appears in (w1, w2) if and only if (w1, w2) is unbalanced.

Proof. To argue the direct implication suppose, by way of contradiction, that (w1, w2) is balanced. We
also assume, without loss of generality, that a appears in w2. Suppose first that a ∈ L (M), and take
an irredundant factorization relation (z1, z2) such that |z1| > |z2| and a appears in z1. Then we can
take n ∈ N large enough such that the number of copies of a that appear in wn

1 z1 is strictly smaller
than the number of copies of a that appear in wn

2 z2. Therefore (wn
1 z1, w

n
2 z2) yields, after cancellations,

an irredundant and unbalanced factorization relation whose shorter factorization involves a. However,
this contradicts that a is purely long. Supposing that a ∈ S (M), one can similarly arrive to another
contradiction.

For the reverse implication, assume that (w1, w2) is unbalanced with |w1| < |w2|. Suppose first that
a ∈ L (M). Take an irredundant factorization relation (z1, z2) such that a appears in (z1, z2). There
is no loss in assuming that a appears in z1 and, therefore, that |z1| > |z2|. Then there exists n ∈ N

such that |wn
1 z1| < |wn

2 z2|. Since a appears in the shorter factorization of (wn
1 z1, w

n
2 z2), the fact that a

is a purely long irreducible guarantees that a also appears in the longer factorization of (wn
1 z1, w

n
2 z2).

Hence a appears in w2. For a ∈ S (M) the proof is similar. !

Corollary 4.4. For an atomic monoid M , both sets L (M) and S (M) are finite.
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Proof. If M is a half-factorial monoid, then both sets L (M) and S (M) are empty. Otherwise, there
must exist an unbalanced factorization relation (z1, z2). It follows now from Proposition 4.3 that every
pure irreducible of M appears in (z1, z2). Hence both sets L (M) and S (M) must be finite. !

Clearly, atomic monoids having both purely long and purely short irreducibles are natural gener-
alizations of length-factorial monoids, and they will play an important role in the remainder of this
paper.

Definition 4.5. If an atomic monoid M contains both purely long and purely short irreducibles, then
we say that M has the PLS property or that M is a PLS monoid.

For future reference, we highlight the following immediate corollary of Theorem 3.1.

Corollary 4.6. Every proper length-factorial monoid is a PLS monoid.

The converse of Corollary 4.6 does not hold even for finitely generated monoids. For any subset S
of Rd, we let cone(S) and aff(S) denote the cone and the affine space generated by S, respectively.

Example 4.7. For a1 = (0, 1, 1), a2 = (0, 2, 1), a3 = (1, 2, 3), a4 = (2, 2, 2), and a5 = (3, 2, 1), consider
the submonoid M = ⟨ai : i ∈ !1, 5"⟩ of (N3

0,+). Clearly, M is atomic and it is not hard to check that
A (M) = {ai : i ∈ !1, 5"}. Let H be the hyperplane described by the equation y = 2. Since a1 /∈ H and
ai ∈ H for every i ∈ !2, 5", the irreducible a1 is purely long. Because cone(a1, a2) and aff(a3, a4, a5) only
intersect in the origin, a1 and a2 cannot be in the same part of any irredundant factorization relation
of M . Thus, if a2 appears in an irredundant factorization relation involving a1, then it must appear in
its shorter part. In addition, note that because a2 /∈ aff(a3, a4, a5), there is no irredundant factorization
relation of M involving a2 but not a1. Hence a2 ∈ L (M), and so M is a PLS monoid. However, it
follows from [38, Section 5] that M is not a length-factorial monoid.

None of the conditions L (M) = ∅ and S (M) = ∅ implies the other one. The following example
sheds some light upon this observation.

Example 4.8. For the set A = {(0, 3), (1, 2), (2, 1), (3, 0)}, consider the submonoid M of (N2
0,+) gen-

erated by A. It is clear that M is atomic, and one can readily check that A (M) = A. Since all the
irreducibles of M lie in the line determined by the equation x+ y = 3, it follows from [38, Corollary 5.5]
that M is a half-factorial monoid.

Now consider the submonoid M1 of (N2
0,+) generated by the set A1 = A∪{(1, 1)}. It is easy to verify

that M1 is atomic with A (M1) = A1. Moreover, since the irreducibles of M1 are not colinear, it follows
from [38, Corollary 5.5] that M1 is not a half-factorial monoid. Therefore there exists an irredundant
factorization relation (z1, z2) with |z1| ̸= |z2|. Since M is a half-factorial monoid, (1, 1) must appear in
(z1, z2); say that (1, 1) appears in z1. After projecting on the line determined by the equation y = x,
one can easily see that |z1| > |z2|. As a result, (1, 1) is purely long. Note that the irreducibles in A
are neither purely long nor purely short because they are precisely the irreducibles of M , which is a
half-factorial monoid. Hence M1 contains a purely long irreducible but no purely short irreducibles.

Lastly, considering the submonoid M2 of (N2
0,+) generated by the set A ∪ {(2, 2)} and proceeding

as we did with M1, one finds that (2, 2) is the only purely short irreducible in M2, and also that M2

contains no purely long irreducibles.

We know that half-factorial monoids contain neither purely long nor purely short irreducibles. How-
ever, there are monoids that are not half-factorial and still contain neither purely long nor purely short
irreducibles.

Example 4.9. Let M and A be as in Example 4.8, and let M3 be the submonoid of (N2
0,+) generated

by the set A3 = A ∪ {(0, 2), (1, 1), (2, 0)}. It is not hard to verify that M3 is an atomic monoid with
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A (M3) = A3. Since the equalities 2(1, 1) = (0, 2) + (2, 0) and (1, 2) + (2, 1) = (0, 3) + (3, 0) give rise
to two irredundant and balanced factorizations involving each irreducible of M3, the sets L (M3) and
S (M3) must be empty. Because of this, M3 cannot be a length-factorial monoid, which is confirmed by
[38, Theorem 5.10]. In addition, as the points in A3 are not colinear, it follows from [38, Corollary 5.5]
that M3 is not a half-factorial monoid.

4.2. Sum Decomposition of PLS Monoids. We proceed to show how to decompose the reduced
monoid of a PLS monoid M as the inner sum of a half-factorial monoid M1 and a finitely generated
length-factorial monoid M2 satisfying that M1 ∩M2 = {0}. We emphasize that such a decomposition
does not guarantee the uniqueness of the representation of an element of M as a sum of an element
of M1 and an element of M2.

Theorem 4.10. Let M be a PLS monoid. Then there exist submonoids H and O of Mred satisfying
Mred = H +O, where H is a half-factorial monoid and O is a finitely generated proper length-factorial
monoid such that H ∩O = {0}.

Proof. Let O be the submonoid of Mred generated by the set L (M) ∪ S (M). It is clear that O is an
atomic monoid with A (O) = L (M)∪S (M). Moreover, note that L (O) = L (M) and S (O) = S (M).
By Corollary 4.4, the monoid O is finitely generated. To verify that O is a length-factorial monoid, let
(z1, z2) be a nontrivial irredundant factorization relation in kerπO. Since at least one irreducible in
L (M) ∪ S (M) appears in the relation (z1, z2), the latter must be unbalanced by Proposition 4.3. As
a consequence, O is a proper length-factorial monoid.

Now let H be the submonoid of Mred generated by A (M)\ (L (M)∪S (M)). It follows immediately
that H is atomic with A (H) = A (M) \ (L (M) ∪ S (M)). To see that H is a half-factorial monoid, it
suffices to observe that since kerπH ⊆ kerπM , any irredundant factorization relation of kerπH must be
balanced by Proposition 4.3.

Because A (Mred) = A (H)∪A (O), we find that Mred = H+O. To argue that H and O have trivial
intersection, suppose that x ∈ H ∩O. As both H and O are atomic monoids, one can take z1 ∈ ZH(x)
and z2 ∈ ZO(x). Therefore (z1, z2) ∈ kerπM . Since L (M) ̸= ∅ and S (M) ̸= ∅, if a pure irreducible
appeared in z2, then a pure irreducible would appear in z1. As z1 consists of non-pure irreducibles, z2
must be the factorization with no irreducibles, whence x = 0. As a result, H ∩O = {0}, which implies
that Mred = H ⊕O. !

The converse of Theorem 4.10 does not hold in general, as the following example indicates.

Example 4.11. Consider the additive submonoid M of (N2
0,+) generated by the set of lattice points

{(1, 1), (0, 3), (1, 2), (2, 1), (3, 0)}. We have already seen in the second paragraph of Example 4.8 that
L (M) = {(1, 1)} and S (M) = ∅. ThereforeM is not a PLS monoid. The submonoidH = ⟨(1, 2), (0, 3)⟩
of M is clearly a factorial monoid and, in particular, a half-factorial monoid. On the other hand, one can
see that the submonoid O = ⟨(1, 1), (2, 1), (3, 0)⟩ of M is a proper length-factorial monoid by applying
Theorem 3.1 with a = (1, 1). It follows immediately that M = H ⊕ O even though M is not a PLS
monoid.

We conclude this section with the following proposition.

Proposition 4.12. Let M be a PLS monoid. Then there exists an unbalanced factorization relation
(w1, w2) ∈ kerπ such that every factorization relation of kerπ has the form (wn

1 h1, wn
2h2) for some

n ∈ N0 and some balanced factorization relation (h1, h2) ∈ kerπ.

Proof. Take a ∈ L (M). Set A = A (M) \ {a}, and let S be the subgroup of gp(M) generated by A.
Since a appears in an irredundant and unbalanced factorization relation of M , there exists m ∈ N

such that Ann(a+ S) = mZ, where Ann(a+ S) is the annihilator of a+ S in the Z-module gp(M)/S.
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As ma ∈ S, there is an irredundant factorization relation (w1, w2) of M such that exactly m copies
of a appear in w1. It follows from Proposition 4.3 that |w1| > |w2|. Suppose now that (z1, z2) is
an irredundant factorization relation of M with |z1| > |z2|, and let k ∈ N be the number of copies
of a appearing in z1. Notice that k ∈ Ann(a + S), and therefore k = nm for some n ∈ N. Then
(wn

1 z2, w
n
2 z1) ∈ kerπ yields, after cancellations, a factorization relation that does not involve a. Thus,

such a factorization must be balanced by Proposition 4.3 and cannot involve any pure irreducible. So
the number of copies of each irreducible b in L (M) (resp., S (M)) that appear in z1 (resp., z2) equals n
times the number of copies of b that appear in w1 (resp., w2). Hence (z1, z2) = (wn

1 h1, wn
2h2), where

h1, h2 ∈ Z(M) involve no pure irreducibles. Clearly, (h1, h2) ∈ kerπ, and Proposition 4.3 guarantees
that |h1| = |h2|. !

5. Finite-Rank Monoids

In this section, we continue studying the OHF and the PLS properties, but we restrict our attention
to the class of finite-rank monoids.

5.1. Number of Irreducibles. If M is a reduced finite-rank factorial monoid, then it follows from [30,
Proposition 1.2.3(2)] that |A (M)| = rank(M). In parallel with this, the cardinality of A (M) in a
finite-rank proper length-factorial monoid M can be determined.

Proposition 5.1. Let M be a proper length-factorial monoid whose rank is finite. Then the equality
|A (Mred)| = rank(M) + 1 holds.

Proof. As gp(Mred) ∼= gp(M)/U (M), the monoid Mred has finite rank. Hence one can replace M by
Mred and assume that M is reduced. Set r = rank(M) and then embed M into the Q-vector space
V := Q ⊗Z gp(M) ∼= Qr via M ↪→ gp(M) → Q ⊗Z gp(M), where the injectivity of the second map
follows from the flatness of the Z-module Q. So we can think of M as an additive submonoid of the
finite-dimensional vector space Qr. By Theorem 3.1, there exists a ∈ A (M) such that A (M) \ {a}
and a− A (M) \ {a} are integrally independent sets in gp(M). In particular, the sets A (M) \ {a} and
a−A (M)\{a} are linearly independent inside the vector space V . Because M is atomic, gp(M) can be
generated by A (M) as a Z-module and, therefore, A (M) is a generating set of V . Since M is a proper
length-factorial monoid, the monoid M is not a factorial monoid and, consequently, A (M) is a linearly
dependent set of V . This along with the fact that A (M) \ {a} is linearly independent in V implies that
A (M) \ {a} is a basis for V . Hence |A (M)| = |A (M) \ {a}|+ 1 = r + 1. !

Corollary 5.2. Every finite-rank length-factorial monoid is finitely generated.

The condition of having finite rank in Corollary 5.2 is not superfluous. For instance, consider the
additive monoid M = ⟨2, 3⟩ ⊕ N∞

0 , where N∞
0 is the direct sum of countably many copies of N0. Since

⟨2, 3⟩ is a proper length-factorial monoid and N∞
0 is a factorial monoid, M is a proper length-factorial

monoid. However, M is not finitely generated because rank(M) = ∞. The converse of Proposition 5.1
does not hold in general, as the following example shows.

Example 5.3. For every r ∈ N, consider the submonoid Mr of (Nr
0,+) that is generated by the set

S = {v0, rej : j ∈ !1, r"}, where v0 := {e1 + · · ·+ er}. It is not hard to verify that A (Mr) = S, and so
|A (Mr)| = r + 1. Notice that each point in S lies in the hyperplane of Rr determined by the equation
x1 + · · · + xr = r. Hence it follows from [38, Corollary 5.5] that Mr is a proper half-factorial monoid.
Therefore Mr cannot be a length-factorial monoid.
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5.2. Monoids of Small Rank. As we have emphasized in Corollary 4.6, every proper length-factorial
monoid is a PLS monoid. We proceed to show that being a length-factorial monoid is equivalent to
being a PSLM in the class of torsion-free monoids with rank at most 2.

Theorem 5.4. For a torsion-free monoid M with rank(M) ≤ 2, the following statements are equivalent.

(a) The monoid M is a proper length-factorial monoid.

(b) The monoid M is a PLS monoid.

(c) The congruence kerπ can be generated by an unbalanced factorization relation.

Proof. (a) ⇔ (c): This is part of Theorem 3.1.

(a) ⇒ (b): This is Corollary 4.6.

(b) ⇒ (a): Assume that M is a PLS monoid, and suppose for the sake of a contradiction that M is
not a proper length-factorial monoid. Since M is finitely generated, it is atomic. As M is not a factorial
monoid, |A (M)| ≥ 2. We split the rest of the proof into three cases.

CASE 1: |A (M)| = 2. In this case, the factorization congruence kerπ is cyclic by Corollary 3.3, and
the existence of purely long/short irreducibles implies that any generator of kerπ must be unbalanced,
contradicting that M is not a proper length-factorial monoid.

CASE 2: |A (M)| = 3. Take a1, a2, a3 ∈ M such that A (M) = {a1, a2, a3}. Assume, without loss
of generality, that a1 ∈ L (M) and a2 ∈ S (M). Now take an irredundant and balanced factorization
relation (z1, z2) ∈ kerπ. Since a1 and a2 are pure irreducibles, none of them can appear in (z1, z2).
Therefore only copies of the irreducible a3 appear in both z1 and z2. This implies that z1 = z2. As
(z1, z2) was taking to be irredundant, it must be trivial. Hence M is a proper length-factorial monoid,
a contradiction.

CASE 3: |A (M)| ≥ 4. Take a0 ∈ L (M) and a3 ∈ S (M), and then take a1, a2 ∈ A (M) \ {a0, a3}
such that a1 ̸= a2. Since a0 is a purely long irreducible, the submonoid M ′ := ⟨a1, a2, a3⟩ of M must be
a half-factorial monoid. Now take a nontrivial factorization relation (z1, z2) ∈ kerπM ′ . As a3 is a purely
short irreducible, it does not appear in (z1, z2). Therefore either (z1, z2) or (z2, z1) equals (ma1,ma2)
for some n ∈ N. Now the fact that M is torsion-free, along with the equality ma1 = ma2, guarantees
that a1 = a2, which is a contradiction. !

Corollary 5.5. If a torsion-free monoid M is generated by at most three elements, then it is a proper
length-factorial monoid if and only if it is a PLS monoid.

Proof. There is no loss in assuming that M is reduced. Clearly, |A (M)| ≤ 3. Consider the Q-space
V = Q ⊗Z gp(M), and identify M with its isomorphic copy inside V provided by the embedding
M ↪→ gp(M) → Q ⊗Z gp(M). As M is atomic, A (M) is a spanning set of V , whence dimV ≤ 3. If
dim V = 3, then A (M) is linearly independent over Q, in which case M is the free monoid on A (M).
In this case, M is neither a proper length-factorial monoid nor a PLS monoid. On the other hand, if
dim V ≤ 2, then rank(M) ≤ 2 and we are done via Theorem 5.4. !

However, for a finitely generated monoid containing four or more irreducibles, the PLS property may
not imply the OHF property. This has been illustrated in Example 4.7. In the same example, we have
seen that the condition of having rank at most 2 is required in Theorem 5.4. On the other hand, the
following example indicates that the condition of being torsion-free is also required in the statement of
Theorem 5.4.

Example 5.6. Fix n ∈ N such that n ≥ 4, and consider the submonoid M := ⟨ak : k ∈ !1, n"⟩ of
the additive group Zn−2 × Z2, where a1 = (0, 0, 2), a2 = (0, 0, 3), and ak = (k − 3, 1, 0) for every
k ∈ !3, n". Since M is finitely generated, it must be atomic. In addition, it can be readily verified that
A (M) = {ak : k ∈ !1, n"}. Now suppose that (z1, z2) is an irredundant and unbalanced factorization
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relation in kerπ, and assume that |z1| < |z2|. Since the second component of both a1 and a2 is 0
and the second component of a3, . . . , an is 1, the numbers of irreducibles in {a3, . . . , an} that appear
in z1 and in z2 must coincide. A similar observation based on third components shows that a1 appears
in z2 but not in z1 and also that a2 appears in z1 but not in z2. Hence a1 ∈ L (M) and a2 ∈ S (M),
which implies that M is a PLS monoid. Checking that M is not a length-factorial monoid amounts to
observing that the equality (n − 2)a3 = (0, n − 2, 0) = (n − 2)a4 yields an irredundant and balanced
nontrivial factorization relation of M .

Now we turn to characterize the PSLMs in the class consisting of all torsion-free rank-1 monoids, which
have been recently studied under the name Puiseux monoids. Puiseux monoids have been studied in
connection with commutative algebra [21], commutative factorization theory [12], and noncommutative
factorization theory [6]. An updated survey on the atomic structure of Puiseux monoids is given in [13].
Notice that a Puiseux monoid is reduced unless it is a group (see [25, Section 24] and [36, Theorem
2.9]).

Proposition 5.7. Let M be an atomic Puiseux monoid. Then the following statements are equivalent.

(a) The monoid M is a proper length-factorial monoid.

(b) The monoid M is a PLS monoid.

(c) Both inclusions inf A (M) ∈ L (M) and supA (M) ∈ S (M) hold.

(d) At least one of the inclusions inf A (M) ∈ L (M) or supA (M) ∈ S (M) holds.

(e) The equality |A (M)| = 2 holds.

If any of the conditions above holds, then L (M) and S (M) are singletons: L (M) = {inf A (M)} and
S (M) = {supA (M)}.

Proof. (a) ⇒ (b): This is Corollary 4.6.

(b) ⇒ (c): Suppose that M is a PLS monoid, and take aℓ ∈ L (M) and as ∈ S (M). Now take a ∈ M
such that a ̸= aℓ. Clearly, n := n(a)n(aℓ) ∈ M and, moreover, z1 := n(a)d(aℓ)aℓ and z2 := n(aℓ)d(a)a
are two factorizations in Z(n). Since the factorization relation (z1, z2) is irredundant and aℓ appears
in z1, one finds that |z1| > |z2|. Therefore n(a)d(aℓ) > n(aℓ)d(a), which means that a > aℓ. Then we
conclude that inf A (M) = aℓ ∈ L (M). The equality supA (M) = as can be argued similarly, from
which one obtains that supA (M) ∈ S (M).

(c) ⇒ (d): This is obvious.

(d) ⇒ (e): Assume now that inf A (M) ∈ L (M), and take aℓ ∈ L (M). Since M is an atomic Puiseux
monoid that is not a factorial monoid, it follows that |A (M)| ≥ 2. Suppose, by way of contradiction,
that |A (M)| ≥ 3, and take irreducibles a1, a2 ∈ A (M) \ {aℓ} such that a1 ̸= a2. Consider the element
n := n(a1)n(a2) ∈ M . It is clear that both z1 := n(a2)d(a1)a1 and z2 := n(a1)d(a2)a2 are factorizations
in Z(n), and they have different lengths because a1 ̸= a2. However, the fact that aℓ does not appear
in either z1 or z2 contradicts that aℓ ∈ L (M). As a result, |A (M)| = 2. One can similarly obtain
|A (M)| = 2 assuming that supA (M) ∈ S (M).

(e) ⇒ (a): If |A (M)| = 2, it follows from Corollary 3.3 thatM is a length-factorial monoid. Taking a1
and a2 to be the two irreducibles of M , one finds that n(a2)d(a1)a1 and n(a1)d(a2)a2 are two different
factorizations of n(a1)n(a2) ∈ M , and so M is not a factorial monoid. Hence M must be a proper
length-factorial monoid. !

Corollary 5.8. Let N be a numerical monoid. Then L (N) ∪ S (N) is nonempty if and only if
|A (N)| = 2, in which case L (N) = {minA (N)} and S (N) = {maxA (N)}.
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6. Pure Irreducibles in Integral Domains

We proceed to study the existence of purely long and purely short irreducibles in the context of
integral domains. Throughout this section, we set L (R) := L (R•) and S (R) := S (R•) for any
atomic integral domain R. In addition, when R is a Dedekind domain, we let Cl(R) denote the divisor
class group of R.

6.1. Examples of Dedekind Domains. For a finite-rank monoid M , we have already seen in Exam-
ple 4.8 that none of the conditions L (M) = ∅ and S (M) = ∅ implies the other one. In this subsection,
we construct examples of Dedekind domains to illustrate that a similar statement holds in the context
of atomic integral domains.

The celebrated Claborn’s class group realization theorem [23, Theorem 7] states that for every abelian
group G there exists a Dedekind domain D such that Cl(D) ∼= G. The following refinement of this result,
due to Gilmer, Heinzer, and the fourth author, will be crucial in our constructions.

Theorem 6.1. [37, Theorem 8] Let G be a countably generated abelian group generated by B ∪ C with
B∩C = ∅ such that B∗∪C generates G as a monoid for each cofinite subset B∗ of B. Then there exists
a Dedekind domain D with class group G satisfying the following conditions:

(1) the set B ∪ C consists of the classes of G containing nonzero prime ideals;

(2) the set C consists of the classes of G containing infinitely many nonzero prime ideals;

(3) the set B consists of the classes of G containing finitely many nonzero prime ideals.

Moreover, the number of prime ideals in each class contained in B can be specified arbitrarily.

Further refinements of Claborn’s theorem in the direction of Theorem 6.1 were given by Grams [41],
Michel and Steffan [43], and Skula [49]. We are in a position now to exhibit a Dedekind domain with a
purely short (resp., long) irreducible but no purely long (resp., short) irreducibles.

Example 6.2. In this example, we will produce a Dedekind domain in which there is a purely short
irreducible but no purely long irreducibles. Toward this end, consider a Dedekind domain D with class
group Cl(D) ∼= Z/3Z. Since Cl(D) is finite and the class of Cl(D) corresponding to 2 + 3Z generates
Cl(D) as a monoid, one can invoke Theorem 6.1 to assume that the non-principal prime ideals of D
distribute within Cl(D) in the following way. There is a unique nonzero prime ideal P in the class of
Cl(D) corresponding to 1 + 3Z and infinitely many nonzero prime ideals in the class corresponding to
2 + 3Z. Observe that we can separate non-prime irreducible principal ideals I of D into the following
three types, according to their (unique) factorizations into prime ideals:

(1) I = P 3, (2) I = PQ, or (3) I = Q1Q2Q3,

where Q,Q1, Q2, and Q3 are prime ideals in the class of Cl(D) corresponding to 2+3Z. By construction,
there is only one irreducible principal ideal of type (1), namely, P 3.

Take a ∈ A (D) such that (a) = P 3. Proving that a ∈ S (D) amounts to verifying that (a) is a
purely short irreducible in the atomic monoid M consisting of all nonzero principal ideals of D. To do
so, suppose that (a) appears in an irredundant factorization relation (z1, z2) ∈ kerπM , where

z1 := (P 3)k
m
∏

i=1

(PQi)
n
∏

j=1

(Qj,1Qj,2Qj,3) and z2 :=
m′

∏

i=1

(PQ′
i)

n′

∏

j=1

(Q′
j,1Q

′
j,2Q

′
j,3)

for some k ∈ N, m,n,m′, n′ ∈ N0, and ideals Qi, Q′
i, Qj,i, and Q′

j,i in the class corresponding to
2 + 3Z. As D is Dedekind, comparing the numbers of copies of P in all the irreducibles of the ideal
factorizations z1 and z2, one obtains that 3k = m′ −m. Now comparing the numbers of copies of prime
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ideals in the class 2 + 3Z in all the irreducibles of the ideal factorizations z1 and z2, one obtains that
m′ −m = 3(n− n′), and so n− k = n′. As a result,

|z1| = k +m+ n = (3k +m) + (n− k)− k = m′ + n′ − k < |z2|.

Therefore a ∈ S (D), as desired.
Let us proceed to argue that D contains no purely long irreducibles. By the previous paragraph,

L (D) contains no irreducibles generating ideals of type (1). Take a2, a3 ∈ A (D) such that the ideals
(a2) and (a3) are of type (2) and type (3), respectively. Then take prime ideals Q1, . . . , Q5 in the class
of Cl(D) corresponding to 2 + 3Z such that the equalities (a2) = PQ1 and (a3) = Q2Q3Q4 hold, and
Q5 /∈ {Q1, Q2, Q3, Q4}. Now consider the ideal factorizations

z1 := (P 3)(Q2Q3Q4),

z2 := (PQ2)(PQ3)(PQ4),

z3 := (P 3)(PQ1)(Q3Q4Q5)(Q
3
5), and

z4 := (PQ5)
4(Q1Q3Q4).

Notice that (z1, z2) ∈ kerπM is irredundant and satisfies |z1| < |z2|. Because Q2Q3Q4 appears in z1,
it follows that a3 /∈ L (D). On the other hand, (z3, z4) ∈ kerπM is also irredundant, and it satisfies
|z3| < |z4|. Because PQ1 appears in z3, one finds that a2 /∈ L (D). As a result, no irreducible generating
an ideal of type (2) or type (3) is purely long, whence L (D) = ∅.

To complement Example 6.2, we proceed to construct a Dedekind domain having a purely long
irreducible but no purely short irreducibles.

Example 6.3. Let D be a Dedekind domain with Cl(D) ∼= Z. Since Cl(D) is countable and the set
{±1} generates Cl(D) as a monoid, we can assume in light of Theorem 6.1 that the non-principal prime
ideals of D distribute within Cl(D) as follows. There is a unique nonzero prime ideal, which we denote
by P , in the class of Cl(D) corresponding to −2; there is a unique nonzero prime ideal, which we denote
by Q, in the class of Cl(D) corresponding to 2; and there are infinitely many nonzero prime ideals in each
of the classes corresponding to −1 and 1. We denote the prime ideals in the class corresponding to −1
by (annotated) N and the prime ideals in the class corresponding to 1 by (annotated) M . Notice that
we can separate non-prime irreducible principal ideals I of D into the following four types, according to
their (unique) factorizations into prime ideals:

(1) I = PQ, (2) I = PN1N2, (3) I = QM1M2, or (4) I = NM,

where N,N1, N2 belong to the class of Cl(D) corresponding to −1 and M,M1,M2 belong to the class
of Cl(D) corresponding to 1.

Take a ∈ A (D) such that (a) = PQ. As in Example 6.2, proving that a ∈ L (D) amounts to showing
that the principal ideal (a) is a long irreducible in the atomic monoid M consisting of all nonzero
principal ideals of D. To do this, suppose that (a) appears in an irredundant ideal factorization relation
(z1, z2) ∈ kerπM , and write

z1 := (PQ)k
m
∏

i=1

(PNi,1Ni,2)
n
∏

j=1

(QMj,1Mj,2)
t
∏

k=1

(NkMk)

and

z2 :=
m′

∏

i=1

(PN ′
i,1N

′
i,2)

n′

∏

j=1

(QM ′
j,1M

′
j,2)

t′
∏

k=1

(N ′
kM

′
k)

for some k,m, n, t,m′, n′, t′ ∈ N0. Since D is Dedekind, after comparing the numbers of copies of the
prime ideals P and Q that appear in all irreducibles of z1 and z2, one obtains that m−m′ = n−n′ = −k.
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In addition, after comparing the numbers of copies of prime ideals in the class corresponding to −1 that
appear in z1 and z2, one obtains that t− t′ = −2(m−m′) = 2k. As a result,

|z1| = k +m+ n+ t = (m′ + n′ + t′) + k + (m−m′) + (n− n′) + (t− t′) = |z2|+ k > |z2|.

Therefore we can conclude that a ∈ L (D).
Finally, let us verify that D contains no purely short irreducibles. Since any irreducible generator of

PQ is purely long, D contains no purely short irreducibles of type (1). Take a2 ∈ A (D) such that (a2)
has type (2), and then take prime ideals N1, N2 in the class of Cl(D) corresponding to −1 such that
(a2) = PN1N2. In addition, take distinct prime ideals N3 and N4 in the class of Cl(D) corresponding
to −1 such that N3, N4 /∈ {N1, N2}. Finally, take distinct prime ideals M1 and M2 in the class of Cl(D)
corresponding to 1. Consider the ideal factorizations

z1 := (PQ)(PN1N2)(M1N3)(M2N4) and z2 := (PN1N3)(PN2N4)(QM1M2).

Observe that (z1, z2) ∈ kerπM is an irredundant factorization relation satisfying |z1| > |z2|. Since
PN1N2 appears in z1, it follows that a2 /∈ S (D). As a result, no irreducible generating an ideal of
type (2) can be purely short. In a similar manner, one can verify that no irreducible generating an
ideal of type (3) is purely short. Now let a4 be an irreducible of D such that (a4) is a principal ideal
of type (4). Take N and M in the classes of Cl(D) corresponding to −1 and 1, respectively, such that
(a4) = NM , and then consider the ideal factorizations

z3 := (PQ)(NM)2 and z4 := (PN2)(QM2).

Notice that (z3, z4) ∈ kerπM is an irredundant factorization relation satisfying |z3| > |z4|. Since NM
appears in z3, it follows that a4 /∈ S (D). Therefore none of the irreducibles generating ideals of type (4)
is purely short. As a consequence, S (D) = ∅.

6.2. Integral Domains Do Not Satisfy the PLS Property. In Section 5, we have proved that in
the class of torsion-free monoids with rank at most 2, being a proper length-factorial monoid and being a
PLS monoid are equivalent notions. It was proved in [22] that an integral domain has the length-factorial
property only if it is a unique factorization domain. In addition, being a proper length-factorial monoid
implies having both purely long and purely short irreducibles. This begs the tantalizing question as to
whether there is an atomic integral domain with both purely long and a purely short irreducibles. The
Dedekind domains constructed in the previous subsection do not satisfy this property, and this is not a
coincidence.

Theorem 6.4. Let R be an atomic domain. Then either L (R) = ∅ or S (R) = ∅.

Proof. Suppose, by way of contradiction, that R is an atomic domain such that both L (R) nor S (R)
are nonempty sets. We recall that by Corollary 4.4 both L (R) and S (R) are finite sets. Set ℓ := |L (R)|
and s := |S (R)|, and then write

L (R) =: {α1,α2, . . . ,αℓ} and S (R) =: {β1,β2, . . . ,βs}.

Take ρ ∈ kerπR to be an irredundant and unbalanced factorization relation. It follows from Proposi-
tion 4.3 that each αi appears in the longer factorization component of ρ and each βj appears in the
shorter factorization component of ρ. Therefore there exist factorizations z, z′ ∈ Z(R) such that

ρ = (αa1

1 αa2

2 · · ·αaℓ

ℓ z, βb1
1 βb2

2 · · ·βbs
s z′)

for some a1, . . . , aℓ, b1, . . . , bs ∈ N such that none of the αi’s appears in z and none of the βj ’s appears
in z′. In addition, as the factorization is irredundant, none of the αi’s appears in z′ and none of the βj ’s
appears in z. We now derive contradictions in the following three cases.



18 S. T. CHAPMAN, J. COYKENDALL, F. GOTTI, AND W. W. SMITH

CASE 1: ℓ, s ≥ 2. Consider the element

(6.1) x1 := αa2

2 αa3

3 · · ·αaℓ

ℓ (αa1

1 − βb1
1 )πR(z) ∈ R.

We claim that x1 ̸= 0. Because R contains no nonzero zero-divisors, verifying that x1 ̸= 0 amounts to
showing that αa1

1 − βb1
1 ̸= 0. Indeed, this must be the case: if (αa1

1 ,βb1
1 ) ∈ kerπR, then the fact that

ℓ ≥ 2 would force the purely long irreducible α2 to appear in the left factorization component of the
relation (αa1

1 ,βb1
1 ). Hence both αa1

1 − βb1
1 and x1 belong to R•. On the other hand, it follows from (6.1)

that β1 divides x1 in R. Thus, there exist w1 ∈ Z(R) and w2 ∈ ZR(α
a1

1 − βb1
1 ) such that β1w1 ∈ ZR(x1)

and w := αa2

2 αa3

3 · · ·αaℓ

ℓ w2z ∈ ZR(x1). Now consider the factorization relation (β1w1, w) ∈ kerπR.

CASE 1.1: β1 does not appear in w. Since β1 ∈ S (R), it follows that |w| > |β1w1|. Now the
inclusion α1 ∈ L (R) implies that α1 must appear in w and, therefore, in w2. Thus, α1 divides βb1

1

in R. As a result, there is a factorization relation (α1w′
1,β

b1
1 ) ∈ kerπR for some w′

1 ∈ Z(R). Clearly,
(α1w′

1,β
b1
1 ) is a non-diagonal factorization relation. Since β1 ∈ S (R), th inequality |α1w′

1| > |βb1
1 | must

hold. Therefore (α1w′
1,β

b1
1 ) is an unbalanced factorization relation in which β2 does not appear. This

contradicts that β2 ∈ S (R).

CASE 1.2: β1 appears in w. Because β1 does not appear in z, we see that β1 must appear in w2.
This implies that β1 divides αa1

1 in R. Now we can follow an argument completely analogous to that
we just used in CASE 1.1 to obtain the desired contradiction.

CASE 2: {ℓ, s} = {1, n} for some n ∈ N≥2. Assume will first assume that ℓ = 1. Recall that
ρ = (αa1

1 z, βb1
1 βb2

2 · · ·βbn
n z′). In this case, we also impose the condition that the exponent a1 is the

minimum number of copies of the purely long irreducible α1 that can appear in any irredundant and
unbalanced factorization relation in kerπR. Using notation similar to that of CASE 1, we now set

(6.2) x2 := αa1−1
1 (α1 − βb1

1 )πR(z) ∈ R.

Notice that x2 ̸= 0 as otherwise α1 = βb1
1 , which is clearly impossible. Since ℓ = 1, it follows

from (6.2) that β1 divides x2 in R. Then one can take w1 ∈ Z(R) and w2 ∈ ZR(α1 − βb1
1 ) such

that (β1w1,α
a1−1
1 w2z) ∈ kerπR. It is clear that β1 does not divide α1−βb1

1 , whence β1 does not appear
in αa1−1

1 w2z, which implies that |β1w1| < |αa1−1
1 w2z|. By the minimality of a1, we see that α1 must

appear in w2. Thus, α1 must divide βb1
1 in R. In this case, (α1w3,β

b1
1 ) ∈ kerπR for some w3 ∈ Z(R),

which is a contradiction because β2 does not appear in βb1
1 . The case when ℓ > 1 and s = 1 follows

similarly.

CASE 3: ℓ = s = 1. In this case, ρ = (αa1

1 z, βb1
1 z′). We assume that the exponent a1 satisfies the

same minimality condition that we imposed in CASE 2. Consider the element

(6.3) x3 := αa1−1
1 (α1 − β1)πR(z) ∈ R.

As α1−β1 is nonzero and β1 divides x3 in R, there exist factorizations w1 ∈ Z(R) and w2 ∈ ZR(α1−β1)
such that (β1w1,α

a1−1
1 w2z) ∈ kerπR. Since β1 does not divide α1 − β1 in R, it cannot appear in

αa1−1
1 w2z and, therefore, |β1w1| < |αa1−1

1 w2z|. This, along with the minimality of a1, implies that α1

appears in w2. However, this contradicts that α1 does not divide α1 − β1 in R. !

As a consequence of Theorem 6.4, we rediscover the main result of [22].

Corollary 6.5. [22, Theorem 2.10] Let R be an integral domain. Then R is a unique factorization
domain if and only if R• is a length-factorial monoid.

Proof. Clearly, if R is a unique factorization domain, then R• is a factorial monoid and, therefore, a
length-factorial monoid. For the reverse implication, suppose that R• is a length-factorial monoid. By
Theorem 6.4, either L (R) is empty or S (R) is empty. Therefore R• is not a proper length-factorial
monoid, and so it is a factorial monoid. Hence R is a unique factorization domain. !
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