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BI-ATOMIC CLASSES OF POSITIVE SEMIRINGS

NICHOLAS R. BAETH, SCOTT T. CHAPMAN, AND FELIX GOTTI

ABSTRACT. A subsemiring S of R is called a positive semiring provided that S consists of nonnegative
numbers and 1 € S. Here we study factorizations in both the additive monoid (S,+) and the
multiplicative monoid (S\{0}, ). In particular, we investigate when, for a positive semiring S, both
(S,+) and (S\{0}, -) have the following properties: atomicity, the ACCP, the bounded factorization
property (BFP), the finite factorization property (FFP), and the half-factorial property (HFP). It is
well known that in the context of cancellative and commutative monoids, the chain of implications
HFP = BFP and FFP = BFP = ACCP = atomicity holds. Here we construct classes of positive
semirings wherein both the additive and multiplicative structures satisfy each of these properties,
and we also give examples to show that, in general, none of the implications in the previous chain is
reversible.

1. INTRODUCTION

The atomic structure of positive monoids (i.e., additive submonoids of the nonnegative cone of
the real line) has been the subject of much recent investigation. The simplest positive monoids are
numerical monoids (i.e., additive monoids consisting of nonnegative integers, up to isomorphism), and
their additive structure has been investigated by many authors during the last three decades (see
[4, 23] and references therein). In addition, the atomicity of Puiseux monoids (i.e., additive monoids
consisting of nonnegative rational numbers) has been the subject of various papers during the last
four years (see [14, 15] and references therein). Puiseux monoids have also been studied in connection
to commutative rings [20] and factorizations of matrices [6]. Positive monoids can be thought of as
natural higher-rank generalizations of Puiseux monoids, which are precisely the positive monoids of
rank 1. Submonoids of finite-rank free commutative monoids are also finite-rank positive monoids
up to isomorphism, and their atomicity and arithmetic were studied in [16, 17] and, more recently,
in [29, 32]. Positive monoids have also been considered in surprising contexts such as music theory;
see the recent paper [8].

If a positive monoid contains 1 and is closed under multiplication, then we call it a positive semiring.
Note that numerical monoids (other than Ny) are not positive semirings even though they are closed
under multiplication. Nevertheless, factorization aspects of their multiplicative structure were recently
investigated in [5]; we briefly consider this situation in Remark 2.4. Puiseux monoids generated
by geometric sequences are positive semirings. They were systematically studied in [15] under the
term “cyclic rational semirings”, where various factorization invariants of their additive structure
were considered (the arithmetic of their multiplicative structure was briefly explored in [6]). The
atomicity of certain generalizations of cyclic rational semirings was considered in [1]. Furthermore,
for a quadratic algebraic integer 7, both the elasticity and delta set of the multiplicative monoid of
the positive semiring No[7] were studied in [11, Section 3]. On the other hand, the atomicity of the
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additive structure of the positive semiring Ny[«], where « is an algebraic integer, has been recently
investigated in [18]. Finally, when « is transcendental, Ng[c] is isomorphic to the polynomial semiring
No[z], whose multiplicative structure was recently investigated in [10].

A cancellative and commutative monoid is atomic if every non-invertible element factors into irre-
ducibles, while it satisfies the ascending chain condition on principal ideals (or the ACCP) if every
ascending chain of principal ideals eventually stabilizes, in which case, we also say that it is an ACCP
monoid. One can easily show that monoids satisfying the ACCP are atomic. An atomic monoid
is a bounded factorization monoid (or a BFM) if every element has only finitely many factorization
lengths, while it is a finite factorization monoid (or an FFM) if every element has only finitely many
factorizations (up to order and associates). Clearly, each FFM is a BFM, and it is not hard to argue
that each BFM satisfies the ACCP. Finally, an atomic monoid is a half-factorial monoid (or an HFM)
if every element has exactly one factorization length, while it is a unique factorization monoid (or a
UFM) if every element has exactly one factorization (up to order and associates). Observe that each
UFM is both an FFM and an HFM, and each HFM is a BFM. However, there are BFMs that are
neither FFMs nor HFMs (see, for instance, [3, Example 4.7]). The implications mentioned in this
paragraph are shown in Diagram (1.1).

UFM —— HFM

(1.1) ﬂ ﬂ

FFM —— BFM —— ACCP monoid —— atomic monoid

Diagram (1.1) was introduced in [2] by D. D. Anderson, D. F. Anderson, and M. Zafrullah in
the setting of integral domains, where the authors illustrated that none of the involved implications
is reversible. We call a positive semiring S bi-atomic (or bi-ACCP, bi-BFS, bi-FFS, bi-HFS, bi-
UFS) provided that both its additive monoid (S, +) and its multiplicative monoid (S\{0},-) satisfy
the corresponding property. The implications in Diagram (1.2) follow immediately from those in
Diagram (1.1).

bi-UFS —— bi-HFS

(1.2) ﬂ ﬂ

bi-FFS —— bi-BFS —— bi-ACCP semiring =—= bi-atomic semiring

In this paper, we use known results on the atomicity of positive monoids to gain a better insight
of atomicity in certain classes of bi-atomic positive semirings. Our primary purpose here is twofold.
On one hand, we identify classes of positive semirings that are bi-atomic, bi-ACCP, bi-BFSs, bi-
FFSs, bi-HFSs, and bi-UFSs. On the other hand, we construct examples of positive semirings to
illustrate that, as for the case of Diagram (1.1) in the class of (multiplicative monoids of) integral
domains, none of the implications in Diagram (1.2) is reversible in the class of positive semirings. In
order to accomplish our goals, we will consider simultaneously these properties for both the additive
and multiplicative monoids of various classes of positive semirings. We emphasize, however, that
we still do not know whether the topmost horizontal implication in Diagram (1.2) is reversible (see
Conjecture 7.7 and Question 7.8). In Section 2, we set the stage by recalling some basic definitions
related to the content of this paper. We then consider atomicity (in Section 3), the ascending chain
condition on principal ideals (in Section 4), the bounded factorization property (in Section 5), the
finite factorization property (in Section 6), and finally the half-factorial property (in Section 7).
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2. GENERAL NOTATION AND DEFINITIONS

In this section, we present the notation and definitions related to commutative monoids/semirings
and factorization theory we will need for later sections. For a more comprehensive overview of these
areas, the interested reader can consult [36] for commutative monoids, [28] for semirings, and [26] for
factorization theory.

We denote the empty set by . The sets Ny, N, and P will denote the set of nonnegative integers,
positive integers, and prime numbers, respectively. In addition, the set of integers between a,b € Z
will be denoted by [a,b], that is, [a,b] = {n € Z | a < n < b} (observe that [a,b] is empty when
a>Db). Forre Rand X € R, we set X5, := {x € X | x > r} and use the notations X-,, X<,
and X, in a similar manner. For ¢ € Q-¢, we refer to the unique n,d € N such that ¢ = n/d and
ged(n, d) = 1 as the numerator and denominator of ¢ and denote them by n(g) and d(q), respectively.

Lastly, given @ < Qxo, we set n(Q) := {n(q) | ¢ € @} and d(Q) := {d(q) | ¢ € Q}.

2.1. Commutative Momnoids. Throughout this manuscript, the term monoid refers to a cancella-
tive, commutative semigroup with identity. As we have the need to study both additive and multi-
plicative submonoids of R, we will introduce the relevant factorization-theoretic terminology for a
generic operation . Let (M, #) be a monoid with identity denoted by ¢. We set M*® := M\{:}, while
we let 2 (M) denote the group of invertible elements of M. We say that M is trivial when M*® = &
and reduced when % (M) = {t}. The Grothendieck group gp(M) of M is the unique abelian group
gp(M) up to isomorphism satisfying that any abelian group containing a homomorphic image of M
will also contain a homomorphic image of gp(M). The rank of M is defined to be the rank of gp(M)
as a Z-module. The reduced monoid of M is the quotient of M by % (M), which is denoted by M;eq.
For b,c e M, we say that ¢ divides b in M if there exists d € M such that b = ¢ = d, in which case, we
write ¢ |ps b. A submonoid M’ of M is a divisor-closed submonoid if every element of M dividing an
element of M’ in M belongs to M’.

If A is a subset of M, then we let (A) be the submonoid of M generated by the set A, that is,
(Ay ={a1*---*a, |neNyand ay,...,a, € A}, where the product of zero elements is the identity
element. Clearly, (A) is the smallest submonoid of M containing A. If M = (A), we say that A is a
generating set of M. The monoid M is said to be finitely generated provided that M = (A) for some
finite subset A of M. An element a € M\% (M) is an atom if it cannot be written as a = x*y for
any two non-invertible elements x,y € M. The set of atoms of M will be denoted by «7(M). Observe
that if M is reduced, then &/ (M) is contained in every generating set of M. Following [19], we say
that M is antimatter if o/ (M) is empty. We have a special interest in monoids that can be generated
by their sets of atoms.

Definition 2.1. A monoid M is atomic if each element in M\% (M) factors into atoms.

Atomic monoids will play a crucial role in the upcoming discussion. One can readily verify that M
is atomic if and only if M,eq is atomic. In the context of monoids and integral domains, the ascending
chain condition on principal ideals is a property that is often studied in connection to atomicity. An
ideal I of M is a subset I of M satisfying I+M := {ysz | y € I and © € M} < I (or, equivalently,
I+M = T). If I is an ideal of M such that I = y«M := {y*x | x € M} for some y € M, then T
is principal. In addition, M satisfies the ascending chain condition on principal ideals (or ACCP)
provided that each ascending chain of principal ideals of M stabilizes. It is worth noting that any
monoid satisfying the ACCP is atomic [26, Proposition 1.1.4]. However, the reverse implication does
not hold in general; for instance, we will exhibit in Proposition 4.3 a class of additive submonoids
of (Q, +) that are atomic but do not satisfy the ACCP. Atomic monoids and integral domains that
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do not satisfy the ACCP are not that easy to produce; the first such example was constructed by
A. Grams in [35], and further examples were constructed by A. Zaks in [38].

The monoid M is free on a subset P of M if every map P — M’, where M’ is a monoid, uniquely
extends to a monoid homomorphism M — M’. For each set P, there is a unique free monoid on P
up to isomorphism. If M is the free monoid on P, then every z € M can be written uniquely in the
form x = s,ep p'»(®), where v, (z) € Ny and v, (x) > 0 only for finitely many elements p € P. Since
the monoid M is determined by P up to isomorphism, we will sometimes denote M by % (P). Note
that the fundamental theorem of arithmetic can be simply stated as N = % (P), where N is considered
multiplicatively.

Additive submonoids of Rso play a central role throughout this paper. Following [30], we call
them positive monoids. If a positive monoid consists of rational numbers, then it is called a Puiseux
monoid. The atomic structure of Puiseux monoids has been systematically studied during the last
few years (see, for instance, the recent paper [25] and references therein). Puiseux monoids are, up to
isomorphism, the positive monoids of rank 1. Indeed, nontrivial Puiseux monoids can be characterized
as the torsion-free rank-1 monoids that are not groups (see [25, Theorem 3.12] and [22, Section 24]).
Another important subclass of positive monoids is that consisting of numerical monoids, that is, the
additive cofinite submonoids of Ny (see [23] for a treatment of numerical monoids and [4] for some
of their applications). Numerical monoids account for all finitely generated Puiseux monoids, up to
isomorphism.

2.2. Factorizations. Now assume that M is atomic. The free (commutative) monoid on & (M;eq)
is denoted by Z(M). Let m: Z(M) — M;yeq be the unique monoid homomorphism fixing &7 (Myeq). If
z = ay*---*ay € Z(M), where ay,...,as € & (Myeq), then £ is called the length of z and is denoted
by |z|. For each b e M, we set

Zar(b) = n b+ (M) and  Las(b) = {|2] | 2 € Zas (b))

When we see no risk of ambiguity, we will simply write Z(b) and L(b) instead of the more cumbersome
notation Zys(b) and Las(b), respectively. The sets Z(b) and L(b) play a crucial role in factorization
theory (see [24]). The monoid M is a finite factorization monoid (or an FFM) if |Z(b)| < oo for every
b e M, while M is a bounded factorization monoid (or a BFM) if |L(b)| < oo for every b € M. Each
finitely generated monoid is an FFM by [26, Proposition 2.7.8], and it is clear that each FFM is a
BFM. In addition, M is a unique factorization monoid (or a UFM) if |Z(b)| = 1 for every b € M,
while M is a half-factorial monoid (or an HFM) if |L(b)| = 1 for every b € M. A UFM is clearly
both an FFM and an HFM, and an HFM is clearly a BFM. There are BFMs that are neither FFMs
nor HFMs; see, for instance, [3, Example 4.7]. Finally, M is a length-factorial monoid (or an LFM)
provided that for all b € M and z, 2’ € Z(b), the equality |z| = |2’| implies that z = z’. The notion
of length-factoriality was first considered in [21] under the term “other-half-factoriality”, and it has
been recently investigated in [13]. For a recent survey on atomicity and factorizations in commutative
monoids, see [27].

2.3. Semirings. Consider a triple (S, +,-), where (S, +) is an additive monoid and (S°,-) is a mul-
tiplicative semigroup. If multiplication distributes over addition and the equalities 0 -2z =z -0 =0
hold for all x € S, then S := (S, +,-) is a semiring. If the semigroup (S°,-) is commutative, then S is
a commutative semiring. Here we are interested in the atomic structure of subsemirings of R>( with
respect to the usual addition and multiplication of real numbers. Because we are primarily interested
in atomicity, we will only consider subsemirings of R>q containing 1, the multiplicative identity.
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Definition 2.2. If a subsemiring of R contains 1, we call it a positive semiring. If a positive
semiring consists only of rational numbers (resp., algebraic numbers), we say it is a rational (resp.,
an algebraic) semiring.

Let S be a positive semiring. Clearly, S is commutative; indeed, (S°®,-) is a monoid. We call (5, +)
and (S°,-) the additive monoid and the multiplicative monoid of S, respectively. It is clear that (S, +)
is a reduced monoid. We say that a positive semiring S is bi-reduced provided that (S*®,-) is reduced.
We let o7, (S) and <7, (S) denote the sets of atoms of (S, +) and (S°,-), respectively. In addition, we
let % (S) denote the set of elements of S with multiplicative inverses.

Definition 2.3. A positive semiring S is bi-atomic if both monoids (S, +) and (S°*, ) are atomic.

Because the main focus of this paper is to study semirings whose additive and multiplicative
monoids satisfy some of the well-known atomic properties defined in previous subsections, the following
terminology will be useful in the upcoming sections. The positive semiring S satisfies the bi-ACCP
provided that both monoids (S, +) and (S°*, ) satisfy the ACCP. In addition, S is a bi-FFS provided
that both (S, +) and (S°,-) are FFMs. In a similar manner, we use the terminologies bi- BFS, bi- UFS,
bi-HF'S, and bi-LFS.

Although our primary purpose is to investigate atomicity and further properties refining atomicity
in positive semirings, we pause here to illustrate that one could consider atomic properties in a
commutative semiring without multiplicative identity.

Remark 2.4. Observe that although every numerical monoid is a subsemiring of R>¢, the only
numerical monoid that contains 1 and is thus a positive semiring is Ny. Let S be a numerical monoid.
Clearly, (S, +) is an FFM. However, (S, +) is an HFM if and only if S = Ny, in which case it is a UFM.
In addition, (S, +) is an LFM if and only if it can be generated by two elements (see [21, Example 2.13]
and [31, Proposition 2.2]). It is similarly clear that (S°,-) is an FFM without identity, though should
that make the reader squeamish, it does no harm to consider the monoid (S® U {1}, -) instead. From [5]
we know that if S # Ny, then we can choose a g € P\S and an n € Nx5 so that whenever p e P n S,
the elements p, pg"~!,q¢", and ¢**~! are multiplicative atoms of S. Since p - ¢*"~! = (pg"~!) - ¢",
one immediately sees that (S°,-) is not an LFM. On the other hand, as (¢")*"~! = (¢*" )", we
observe that (S°,-) is not an HFM. As a result, every numerical monoid is bi-atomic, satisfies the
bi-ACCP, and is both a bi-BFS and a bi-FFS. However, in the class of numerical monoids (treated as
semirings), the equivalences bi-UFS < bi-HFS < bi-LFS hold, and each of them is true precisely for
the numerical monoid Ny.

2.4. Constructions. Throughout, we will employ several constructions in order to both build exam-
ples of families of positive semirings satisfying various properties and to concoct examples of semirings
showing that various implications do not hold. For convenience, we collect these basic constructions
in this subsection.

Valuations of Ng[x]. By definition, every positive semiring contains Ny. Many of the examples that
we consider are valuations of Ny[z] at various & € R~g. Therefore it is convenient to introduce the
following terminology.

Definition 2.5. For each a € R+, we call the semiring No[a] := {f(«) | f € No[x]} the cyclic positive
semiring generated by a. When « is algebraic (resp., rational), we call No[a] a cyclic algebraic (resp.,
rational) semiring.
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The additive structure of cyclic positive semirings was studied in detail in [18]. We note that while
the additive structure of Ny[z] is simple (it is the free monoid on {z™ | n € Ny} and hence a UFM),
the multiplicative structure, studied in [10], is far from simple. Nevertheless, the positive semirings
Np[«] are among the most tractable positive semirings; this is because the additive atomic structure
of its members is relatively well understood, as we will corroborate throughout this paper.

Ezxponentiation. Often, it will be useful to construct, from a positive monoid M, a positive semiring
whose multiplicative structure somehow reflects that of M. To do so, we invoke the following important
result in transcendental number theory (see [7, Chapter 1]).

Theorem 2.6 (Lindemann-Weierstrass Theorem). If ay,...,a, are distinct algebraic numbers, then
the set {e*1,... e} is linearly independent over the algebraic numbers.

In particular, if M is a positive monoid consisting of algebraic numbers, then the additive monoid
E(M) :={(e™ | me M)" is free on the set {¢™ | m € M}. In addition, one can readily see that E(M)
is closed under the standard multiplication and, therefore, it is a positive semiring. The multiplicative
structure of M is not, in general, as nice as its additive structure. It is thus sometimes convenient to
consider the multiplicative submonoid e(M) := {™ | m € M} of E(M)®, which is clearly isomorphic
to the monoid M. As we now see, e(M) is divisor-closed in F(M) and hence atoms and factorizations
in the smaller monoid e(M) persist to the larger monoid.

Lemma 2.7. Let M be a positive monoid. Then e(M) is a divisor-closed submonoid of the multi-
plicative monoid of the semiring E(M).

Proof. Suppose that e™ € e(M) (necessarily with m € M), and write e™ = (X" c;e™) (X_, celd)

j=1
in E(M) assuming that k; > --- > ky, and Iy > --- > [, and taking the coefficients cjl, ...J,cm
and c},...,c, to be positive integers. Because (E(M),+) is the free monoid on {e™ | m € M}
by Theorem 2.6, we see that e™ = (cief)(cjelr) = cicjef i, As a result, ¢; = ¢} = 1. Hence
ity cieht = eMand 377, chels = et both belong to e(M). O

3. ATOMICITY

The primary purposes of this section are to identify classes of bi-atomic positive semirings and to
explore their atomic structure. These classes consist of real evaluations of the cyclic free semiring No[z]
of polynomials with nonnegative integer coefficients (various factorization aspects of the multiplicative
structure of No[z] were recently studied by F. Campanini and A. Facchini in [10]).

First, we present an easy result to illustrate how the multiplicative structure of a positive semiring
interlaces with the atomicity of its additive structure.

Proposition 3.1. For a positive semiring S, the following statements are equivalent.
(a) % (S) < AL(S).
(b) 1€ &, (95).
(¢) 1 (S) is nonempty.

1By the Lindemann-Weierstrass Theorem, F (M) can be naturally identified with a subsemiring of the semigroup
ring with coefficients in Z and exponents in M.
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Proof. (a) = (b) = (c): Both implications follow immediately.

(¢) = (a): Suppose that 7, (S) is nonempty, and take a € &7, (S). Write 1 = s+t for some s,t € S.
Since a = sa + ta and (5, +) is a reduced monoid, either s = 0 or t = 0. Hence 1 € &7, (S). Now take
u € % (S), and suppose that u = s, + t, for some s,,t, € S. Then the equality 1 = u='s, +u~1t,
ensures that either s, = 0 or ¢, = 0, and so u € &, (S). Thus, Z (S) < ,(95). O

We now consider the atomicity of cyclic positive semirings. First, observe that not every such a
semiring is bi-reduced: for instance, 2 is a multiplicative unit of the positive semiring Ny[1/2]. Note,
in addition, that (No[1/2],+) is not atomic. Indeed, bi-reduced semirings Ny[a] can be characterized
as those whose additive monoids are atomic.

Proposition 3.2. For a € Rsq, the positive semiring No[a] is bi-reduced if and only if (No[a], +) s
atomic.

Proof. The statement of the proposition is clear when o = 1. Thus, we assume that « # 1. For
the direct implication, assume that the semiring Ny[a] is bi-reduced. Suppose that 1 = 5+« in
(No[a], +), and write 8 = D" b’ and v = X1 ;' for some by, ... ,bm,co,...,cn € Ng. The
equalities by = 0 and ¢y = 0 cannot hold simultaneously as, in that case, & would be a multiplicative
divisor of 1 and, therefore, a unit in (Ng[«]®,-). Hence either bg = 1 or ¢g = 1, and so 1 = 8 + v
implies that {8,~v} = {0,1}. Consequently, 1 € o7, (Nyg[a]), and so it follows from [18, Theorem 4.1]
that (No[a], +) is atomic.

Conversely, suppose that (No[a], +) is atomic and so that 1 € &, (No[a]). Let u = >/" b’ be
a multiplicative unit of the semiring No[a]. Take v = Y. j¢;a’ in Ng[a]® such that uv = 1. Since
1 e o (No[a]), it follows that D" b; = i, ¢; = 1. This implies that u = o/ and v = o for some
j,keNg. As o # 1, the equality 1 = a/** ensures that j = k = 0, and so u = 1. Thus, 1 is the only
multiplicative unit of No[a], and so the positive semiring No[«a] is bi-reduced. O

As the following example illustrates, Proposition 3.2 cannot be extended to the class of all positive
semirings.
Example 3.3. Take g € Q- such that neither ¢ nor ¢~! is an integer. Since Ny[z,y] is a semiring,
its evaluation No[g,¢7'] at (z,y) = (¢,¢"') is a positive semiring. It is not hard to verify that
1 € o (No[g,q7']). Indeed, the equality <7, (No[q,q~']) = {¢" | n € Z} follows from the proof of [33,
Proposition 3.5], and so (No[q, ¢~ ], +) is atomic. However, the semiring No[q, ¢~!] is not bi-reduced
as, for instance, ¢ is a multiplicative unit.

As mentioned before, the atomic structure of (Ng[a], +) is very tractable. For instance, we will see
in the next proposition that the set o7, (Ng[a]) is well structured and not hard to describe. For each
a € R. g, set

n(a) :=min{ne N |a" e{(a? | je [0,n —1])} € N U {0}

if (Ng[a], +) is atomic, and set n(«) = 0 otherwise.

Proposition 3.4. Let a € Rog be an algebraic number with minimal polynomial m(x). Then the
following statements hold.

(1) &4 (Nola]) = {a™ [ n € [0,n(a) —1]}.
(2) If (No[a], +) is atomic, then {a™ | n € [0,degm(z) — 1]} < &7 (No[a]).
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Proof. (1) If the additive monoid of the positive semiring No[a] is not atomic, then Proposition 3.1
ensures that 1 ¢ o7, (Ng[a]), from which the equality in (1) trivially follows. The same equality holds
from [18, Theorem 4.1] in the case when (Ny[«], +) is atomic.

(2) Note that when (Ng[a],+) is atomic, 1 € &/ (Ng[a]) by Proposition 3.1. If a = 1, then
No[a] = Ny, and the inclusion follows trivially. For « # 1, we consider two cases:

Case 1: a < 1. Fix j € [0,degm(z) — 1]. Since o < 1, we see that o™ does not divide o/ in No[a]
for any n € N<;. Now suppose that o/ = 37" c;a’ for some n € Nxj and ¢j,...,c, € No with
Cn > 0. If n > j, then 1 = Z?:j c;a=7 | in which case, 1 ¢ @, (Ng[a]). Son = j and ¢; = 1. Thus,
ol € o, (No[a]).

Case 2: o > 1. Suppose, by way of contradiction, that o’ ¢ o7, (No[«]) for some j € [0, deg m(x) —1].
This implies that j > 1. Observe that o does not divide o’ in Ng[a] for any n € N with n > j
because o > 1. Therefore o/ = Zg;& c;ab for ¢y, . .. ,¢j—1 € Ny, and so « is a root of the polynomial
flx) = a7 — Y9~ ¢z’ € Q[z]. Then f(z) is a nonzero polynomial of degree strictly less than
degm(z) having a as a root. However, this contradicts the minimality of m(z). As a consequence,
{a™ | n e [0,degm(z) — 1]} < #; (Ng[a]). O

The following corollary, which was first proved in [18], is an immediate consequence of Proposi-
tion 3.1 and part (1) of Proposition 3.4.

Corollary 3.5. For a € Ry, the additive monoid of the semiring No[«] is atomic if and only if
o, (No[a]) is nonempty, in which case, 1 € o, (No[a]).

The additive structure of cyclic rational semirings Ny[q] (for ¢ € Qx¢), along with various factor-
ization invariants, has been recently investigated in [15].

Example 3.6. For ¢ € Q~¢, consider the monoid Ny[g]. Assume that ¢ ¢ N as, otherwise, Ny[q] = Ny
has trivial atomic structure. If n(q) = 1, then 1 = d(g)q and so it follows from Proposition 3.7 that
No[g] is antimatter. Then assume that n(q) > 1. One can readily verify that 1 = > | ¢;¢" for some
€1, ..., cn € Ng would imply that n(g) | d(g), which is not possible. Hence 1 € 27} (Ng[q]), and so Ny[q]
is atomic by Corollary 3.5. Similarly, one can check that ¢" = Z;:ol ¢iq' for some cg,...,cn_1 € Ny

would imply that d(q) | n(¢). Thus, it follows from Proposition 3.4 that <7 (No[¢]) = {¢™ | n € No}.
We proceed to identify two classes of bi-atomic semirings.

Proposition 3.7. For a € R.g, the following statements hold.
(1) If « is transcendental, then the semiring No[a] is bi-atomic.

(2) If « is algebraic and o = 1, then the semiring No[a] 4s bi-atomic.

Proof. (1) When « is transcendental, the kernel of the ring homomorphism ¢: Z[z] — R consisting
in evaluating at « is trivial. As p(Ng[z]) = Ny[a], we obtain that No[a] = Ny[z] as semirings. The
monoid (Ng[z],+) is free and thus atomic. On the other hand, a simple degree consideration shows
that (Ng[z]®,-) is atomic. Hence the semiring Ny[«] is bi-atomic.

(2) If a = 1, then Ny[a] = Ny is clearly bi-atomic. Suppose now that o > 1. Since for each n € N,
the interval [0, n] contains only finitely many elements of Ny[«], the monoid (Ny[«], +) must be atomic
(this argument will become more transparent in Theorem 5.1). For a similar reason, (In(No[a]*), +)
is atomic (as usual, “In” denotes the logarithm base e). Since the monoid (Np[«]®,-) is clearly
isomorphic to (In(No[a]*), +), it must be atomic. Thus, Ny[«a] is bi-atomic. O
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With the notation as in Proposition 3.7, it is also true that Ng[a] is bi-atomic even for some
values o < 1. For instance, we shall see in Proposition 4.3 that the rational cyclic semiring Ny[2/3]
is bi-atomic. It is known that if S is a bi-atomic rational semiring, then |<7, (S)| € {0,1, 00} (see
[6, Proposition 3.6]). This is no longer the case for algebraic semirings, as the following proposition
indicates.

Proposition 3.8. For every n € N U {00}, there exists a bi-atomic algebraic semiring S such that

PACED

Proof. For n = o, take ¢ € Q>1\N and consider the rational semiring No[q]. It follows from
Proposition 3.7 that Ng[g] is a bi-atomic semiring. In addition, we have seen in Example 3.6 that
o (No[q]) = {¢™ | n € No}. Thus, |2 (No[g])| = o0.

Now suppose that n € N. Consider the polynomial m(z) = ™ — p, where n € N and p € P. Because
m(1) < 0, the polynomial m(z) has a root &« € R>y. It follows from part (2) of Proposition 3.7
that the positive semiring No[«] is bi-atomic. We claim that |27 (No[])| = n. By Eisenstein’s
Criterion, the polynomial m(x) is irreducible in Q[X], and so it is the minimal polynomial of a.
Therefore {o’ | j € [0,n — 1]} is contained in o7, (Np[a]) by Proposition 3.4. On the other hand,
a™ ¢ o/, (Ng[a]) because it is the sum of p copies of 1. Then it follows from part (1) of Proposition 3.4
that 7, (No[a]) = {a’ | j € [0,n — 1]}, whence |7, (No[a])| = n. O

Though we are primarily interested in bi-atomic positive semirings, we note that there are positive
semirings whose additive monoids (resp., multiplicative monoids) are antimatter even though their
multiplicative monoids (resp., additive monoids) are atomic. We conclude this section with two
examples illustrating this fact.

Example 3.9. Consider the positive semiring No[1/d], where d € Ns,. Clearly, 1 ¢ o/, (Ng[1/d])
and so it follows from Corollary 3.5 that (No[1/d], +) is antimatter. We now prove that (Ng[1/d]*,-)
is atomic. Let D be the set consisting of all prime divisors of d, and consider the multiplicative
submonoid Mp of N generated by D. Since Ng[1/d]* = {n/d™ | m,n € Ny}, the group of units of
(No[1/d]*,-) is gp(Mp). Let Mp be the multiplicative submonoid of N generated by P\D, and define
¢: (No[1/d]*,-) = Mp by n/d™ = n', where for n € N and m € Ny, the element n’ is the maximal
divisor of n in Mp. It is clear that ¢ is a surjective monoid homomorphism, and it is easy to check
that p(z) = ¢(y) if and only if 2/y € gp(Mp). It follows from the First Isomorphism Theorem
(for monoids) that the reduced monoid of (Ng[1/d]®,-) is isomorphic to Mp. Since Mp is a free
(commutative) monoid, (Ng[1/d]®, ) must be a UFM and, therefore, an atomic monoid. In particular,
the positive semiring Ny[1/d] is not bi-atomic.

Example 3.10. Consider the positive semiring S = {0} UQx=1. One can easily check that (S, +) is an
atomic monoid and that <7, (S) = Q n [1,2) (we shall discuss the atomic structure of a more general
case in Theorem 5.1). Let us verify that o7 (S) is the empty set. First, note that S is bi-reduced.

For every ¢ € Q~1, take n € N sufficiently large such that ¢ - 25 > 1, and so ¢ - ;77 € S°. This,
along with the fact that ¢ = (anH) (”T“), ensures that ¢ ¢ 27 (S). Hence (S°,-) is antimatter. In

particular, the positive semiring S is not bi-atomic.
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4. THE ASCENDING CHAIN CONDITION ON PRINCIPAL IDEALS

In this section, we construct a class of positive semirings satisfying the bi-ACCP, and we identify
a class of bi-atomic cyclic positive semirings that do not satisfy the bi-ACCP. We construct the
former class in the next proposition, which is motivated by [6]. For such a construction, the use of
Lindemann-Weierstrass Theorem (Theorem 2.6) is crucial.

Proposition 4.1. Let P be a nonempty subset of P, and let M = {1/p | p € P). Then the positive
semiring E(M) satisfies the bi-ACCP.

Proof. Set S = E(M). Tt can be deduced from [2, Example 2.1] that the monoid M satisfies the
ACCP. On the other hand, it follows from Theorem 2.6 that (S, +) is a free (commutative) monoid
on the set {e? | ¢ € M}. The fact that S n (0,1) = J ensures that S is a bi-reduced semiring. Since
(S, +) is a free (commutative) monoid, it must satisfy the ACCP.

We proceed to argue that (S°®,-) also satisfies the ACCP. To do so, let (2,5°*)nen be an increasing
sequence of principal ideals of (S*,-). For each n € N, take y,4+1 € S® such that x,11Yn+1 = Zn-
Let ¢ be the limit of the decreasing sequence (z,)nen. From infS® = 1, we see that £ > 1 and, as
a result, limy, = 1. We may therefore assume that y,, < 2 for every n € N55. Clearly, S n (0,2)
is a subset of e(M) = {e? | ¢ € M}. For each n € Nso, write y,, = e for some g, € M. Take
c1y...,c, € Nand ry,...,r, € M with r; < --- < rp such that z; = Zle cie™. Since (S, +) is a free
(commutative) monoid on the set {€? | g€ M} and (y2 - - - yn)xn = 21 for every n € N>, one finds that
Ty = Zle cie™ i for rp1, ...,k € M such that rj = ry, ; + >, 5 ¢; for each j € [1,k]. As for each
j € [1,k], the equality ry, j = Tnt1,; + ¢n+1 holds for every n € N, the sequence (ry, ; + M)nen is an
ascending chain of principal ideals of M. Since M satisfies the ACCP, (1, ; + M)neny must stabilize.
Thus, (2,S5*)nen, also stabilizes. Consequently, the monoid (S°®,-) satisfies the ACCP, and so the
positive semiring S satisfies the bi-ACCP. O

Our next goal is to identify a class of bi-atomic cyclic rational semirings whose members do not
satisfy the bi-ACCP. We first introduce some notation and a lemma.

Let f(z) = Y1 cia™ be a nonzero polynomial in Q[z]. We say that f(x) is canonically repre-
sented by Y c;a™i if ¢; # 0 for every i € [0,n] and m; # m; for any distinct 4,5 € [0,n]; in this
case, we call D" c;z™i the canonical representation of f(x) (which is clearly unique up to commu-
tation of its monomials). The support supp f(x) of f(z) is the set of exponents of the monomials
appearing in its canonical representation. Let o be an algebraic number, and let m(x) be the minimal
polynomial of a. Observe that there exists a unique ¢ € N such that ¢m(z) € Z[x] has content 1,
while there are unique polynomials m™(x), m™(x) € Ny[z] such that ¢m(z) = m™(z) — m~(x) and
suppm™ (z) [ \suppm ™ (z) = &. We call the pair (m*(z), m™(z)) the minimal pair of a.

The following lemma is a slight generalization of [18, Theorem 4.7], and the proof we provide here
follows the same idea.

Lemma 4.2. Let o € (0,1) be an algebraic number with minimal polynomial m(x). If (No[a], +)
satisfies the ACCP, then m™ (x) ¢ Ng[x] + m™ (z)Ng[z]*.

Proof. Suppose that the monoid (No[«], +) satisfies the ACCP. Assume, towards a contradiction, that
m*t(z) € No[z] + m™ (x)Ng[z]*, and then take polynomials a(x) € Ny[z] and b(z) € Ny[x]* satisfying
m*t(z) = a(z) + b(x)m™ (z). Let s be a nonnegative integer in the support of b(z), and observe that
c(x) = a(z) + (b(z) — 2°)m~ (x) belongs to No[z]. For each n € N, let I,, denote the principal ideal
m~(a)a®™ + No[a] of (No[a], +). Since the equality m™(a)a™ = c¢(a)a®™ + m~(a)a*™+1) holds for
every n € N, the sequence (I,,)nen is an ascending chain of principal ideals of (No[«], +). In addition,
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(I )nen does not stabilize since the sequence (min I, )neny = (M~ (@)™ )pen is strictly decreasing.
However, this contradicts that (No[«], +) satisfies the ACCP. O

We are now in a position to construct a bi-atomic semiring that does not satisfy the bi-ACCP.

Proposition 4.3. For every g € Q n (0,1) such that n(q) > 1 and d(q) € P, the positive semiring
No[q] is bi-atomic but does not satisfy the bi-ACCP.

Proof. From Example 3.6 we know that (Ny[q], +) is an atomic monoid. We now show that (No[q]°®, -)
satisfies the ACCP. Suppose that (r,No[¢]®)ren is an ascending chain of principal ideals of (Ny[q]°®,-).
For every n € N, the fact that r,4; divides r, in (No[¢]®,-) ensures that n(r,4+1) < n(r,) and
d(rp+1) < d(rp). Consequently, the ascending chain of principal ideals (r,No[¢]®)nen must stabilize.
As a result, (Ng[q]®,-) satisfies the ACCP and is therefore atomic. Thus, the rational semiring No[g]
is bi-atomic. Arguing that Np[g] does not satisfy the bi-ACCP amounts to verifying that the monoid
(No[g], +) does not satisfy the ACCP. This is an immediate consequence of Lemma 4.2 as the minimal

pair of ¢ is (d(q)z,n(q)) and d(q) > n(q). O

Although positive semirings satisfying the bi-ACCP are clearly bi-atomic, Proposition 4.3 shows
that the reverse implication does not hold in general. We emphasize this observation with the following
diagram.

(4.1) bi-ACCP semiring —— bi-atomic semiring

5. THE BOUNDED FACTORIZATION PROPERTY

In this section, we identify a class of positive semirings that are bi-BFSs. In addition, we construct
a class of bi-ACCP positive semirings that are not bi-BFSs. It was first proved in [30, Proposition 4.5]
that a positive monoid M is a BFM provided that 0 is not a limit point of M*. We proceed to establish
a similar sufficient condition for a positive semiring to be a bi-BFS.

Theorem 5.1. Let S be a positive semiring. Then S is a bi-BFS provided that 1 is not a limit point
of S*\{1}. In addition, for r > 0, the positive semiring S, generated by the ray Rs, is a bi-BFS if
and only if r > 1, in which case,

A (Sy) = ({1} v [rr+ 1))\{[r]} and o (S;) = (IP’<T2 v [r, 7“2))\]P’- (Sr)>1.

Proof. Suppose the set S*\{1} does not have 1 as a limit point. For each r € [0,1) n S the sequence
(1 + 7™)pen consists of elements of S and converges to 1. This ensures that » = 0 because 1 is not a
limit point of S*\{1}. As a consequence, (0,1) n S = ¢J. In particular, 0 is not a limit point of S*
and, therefore, [30, Proposition 4.5] ensures that (S, +) is a BFM. To show that (S°,-) is also a BFM,
we use the fact that (S°,-) is isomorphic to (InS®,+). Because 1 is not a limit point of S*\{1}, it
follows that 0 is not a limit point of (In.S*)\{0}. Then (In S*,+) is a BFM by [30, Proposition 4.5],
and so (S°®,-) is also a BFM. Thus, S is a bi-BFS.

For the direct implication of the second statement, it suffices to verify that whenever r» < 1, either
(Sr,+) or (Sr,-) is not atomic. When r = 1, the monoid (S5, -) is antimatter, as we have already seen
in Example 3.10. Assume now that r < 1, and fix s € R~g. Now take n € N such that s/r™ > 1. This
implies that s/r™ € S,, and so s = r™(s/r™) € S,. Thus, S, is the positive semiring R, which is
not a bi-BFS because (Rxq, +) is not atomic. The reverse implication of the second statement is an
immediate consequence of the first statement.
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Finally, we describe &7, (S,) and @ (S;) when r > 1. Notice that S, = Ny U Rs,. Since (S, +) is
a reduced monoid and Rx,41 € 1+ Sy, one finds that <7, (S,) € Sy N Repiq1 = [1,|7|]] v [r,r + 1).

9

Because 1 € &7, (S,) and m ¢ <7, (S,) for any m € [2, [r]],
A1 (Sr) = ({1} o [rr + D)\{[r]}

To determine o7 (S,.), note first that (S?,-) is reduced and (S;)s,2 S (Sr)>1 - (Sr)>1. Consequently,
A (Sr) S (S2)<p2 = [1,|r]] U [r,7?). Then we see that the only elements in [1,|r|] u [r,r?) that are
not in @, (S,) are those that are properly divisible in (S?,-) by some prime number. Hence

79

A (Sr) = (Poyz U [r,r?))\P+ (S)>1.
0

As the following example illustrates, the converse of the first statement of Theorem 5.1 does not
hold.

Example 5.2. Consider the positive monoid M = <[—‘g—7] | pe ]P’>. Because M is a submonoid of
(1/p | p € P), it can be easily deduced from [2, Example 2.1] that M satisfies the ACCP, and so that
it is atomic. In addition, it is not hard to verify that &/ (M) = {[P@ | p e P}. We proceed to show
that M is an FFM. Fix ¢ € M*, and suppose that z is a factorization of q. Now take p € P such that

/P > max{q,+/d(q)}. Since p does not divide d(g), the number of copies of the atom [,/p]/p that
appear in z must be a multiple of p, namely, np. Therefore

nlvp] =

This, along with the inequality \/p > ¢, implies that n = 0. Thus, [/p]/p does not divide ¢ in M.
As a result, only finitely many atoms (or elements) in M divide ¢, and so Zys(q) is finite. Hence it
follows from [37, Theorem 2] that M is an FFM and, in particular, a BFM.

Now consider the positive semiring S = E(M). It follows from Theorem 2.6 that (S, +) is the free
(commutative) monoid on the set {e? | ¢ € M} and thus a BFM. We proceed to show that (S°,-) is
also a BFM. We can also deduce from Theorem 2.6 that N is a divisor-closed submonoid of (S°,-).
Therefore Lge(m), which equals Ly(m), is a finite set for every m € N. So take z = Y " | ¢;e? € S*\N,
where ¢1,...,¢, € Nand ¢1,...q, € M satisfy ¢ > -+ > q,. As z ¢ N, we see that ¢; > 0. Write

x=my---mgf1--- fe for some my,..., my € Nxo (allowing k = 0, in which case, my---mg = 1) and
fis---, fe € S\N. Because x = my ---my and m; = 2 for every i € [1,k], it follows that k < log, x.
For each i € [[1,/], write f; = Z?:l ¢;ie¥ for some ¢y 4,...,¢n,s € N and qi4,...,Gn,,s € M with

Q1 > -+ > qn,.i- Observe that, for each i € [1,¢], the fact that f; € S\N guarantees that ¢ ; € M*.
As ¢ = Zle q1,i, we obtain that ¢ < maxLa(q1), and so k + ¢ < logyx + Las(g1). Since M is a
BFM and ¢; is uniquely determined by x, the set Lge(x) is bounded. Thus, (S°,-) is also a BFM and,
therefore, the positive semiring S is a bi-BFS. However, it is clear that 1 is a limit point of S*\{1}.

Now we construct a positive semiring that satisfies the bi-ACCP but is not a bi-BFS.

Example 5.3. Let M = (1/p | p € P) and consider the positive semiring S = F(M). By Proposi-
tion 4.1, S satisfies the bi-ACCP. Let us argue that (S°,-) is not a BEFM. It is clear that M is not a
BFM (for instance, p(1/p) is a length-p factorization in Zs(1) for every p € P). On the other hand, M
is isomorphic to the multiplicative monoid e(M) and, therefore, e(M) is not a BFM. By Lemma 2.7,
the monoid e(M) is a divisor-closed submonoid of (S*,-). Thus, the monoid (S°,-) is not a BFM.
Hence S is not a bi-BFS even though it satisfies the bi-ACCP.
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As every bi-BFS satisfies the bi-ACCP, Example 5.3 allows us to extend Diagram (4.1) as follows.
= <
(5.1) bi-BFS ——= bi-ACCP —— bi-atomic

6. THE FINITE FACTORIZATION PROPERTY

Our next task is to introduce a class of positive semirings that are bi-FFSs, the class consisting of
increasing positive semirings. Following [30], we say that a positive monoid M is strongly increasing
if o/ (M) is the underlying set of a sequence that increases to infinity. Strongly increasing positive
monoids have been considered in [8, 9, 30].

Example 6.1. (1) One can easily see that the positive monoid M7 = <p + 1—17 |pe ]P’> is atomic with
o (My) = {p+ % | p € P}, which is clearly the underlying set of a divergent increasing sequence.
Hence M, is a strongly increasing positive monoid.

(2) On the other hand, the positive monoid My = {0} U Ry, is atomic with o/ (Mz) = [1,2). Since
o/ (Ms) is uncountable, it cannot be the underlying set of any sequence. As a consequence, Mj is not
strongly increasing.

(3) Now consider the positive monoid M3 = <HL+1 | ne N>. One can readily verify that Ms is
atomic with «/(M3) = {17 | n € N}. Even though «/(M3) is the underlying set of the increasing
sequence (HL_H)%N, the monoid M3 is not strongly increasing because the sequence (
not increase to infinity.

n
n+1 )nEN does

We call a positive semiring S strongly increasing provided that (S,+) is a strongly increasing
monoid. Every strongly increasing positive semiring is a bi-FF'S, as we proceed to show.

Theorem 6.2. FEvery strongly increasing positive semiring is a bi-FFS. In addition, if M is a strongly
increasing positive monoid consisting of algebraic numbers, then

A (E(M))={e" |re M} and o (E(M))2{e*|ac (M)}

Proof. Let S be a strongly increasing positive semiring. Then (S, +) is a strongly increasing positive
monoid, and it follows from [30, Theorem 5.6] that (S, +) is an FFM. Since S is a strongly increasing
positive semiring, 0 cannot be a limit point of S°®. As a result, if » € S-;, then the fact that the
sequence (r")pen of S converges to 0 enforces the equality r = 0. Hence inf S* = 1, and so (In S°, +)
is a positive monoid. Because S is strongly increasing, the set S n [0, n] must be finite for every n € N.
Therefore there exists a strictly increasing sequence (sy)nen, with underlying set S. This implies
that (In s, )nen is an increasing sequence generating (In.S*, +), and so [30, Theorem 5.6] ensures that
(InS°®, +) is an FFM. Thus, S is a bi-FFS.

Now suppose that M is a strongly increasing positive monoid consisting of algebraic numbers, and
set S = E(M). It follows from Theorem 2.6 that (S, +) is the free (commutative) monoid with basis
{€" | re M}. As aresult, &7 (S) = {e" | r € M}. To argue the last inclusion, take a € &/(M) and

write e® = fg, where f = 3" | bje% and g = 377, c;je’ for some coefficients by, ..., by, and c1, ..., ¢p
in N and exponents ¢1,...,¢n and r1,...,7, in M with ¢y > - > ¢, =>0and ry > --- > r, = 0.

Since (S, +) is free on {e" | r € M}, after distributing the right-hand side of e* = fg, one obtains that
q1 + 71 = Gm + T = a, which implies that m =n =1and by =¢; = 1. Since g1 + r1 = a€ (M), it
follows that either f =1 or g = 1, and so e® € @ (95). O

The converse of Theorem 6.2 does not hold, as we illustrate in the following example.
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Example 6.3. Let M be the positive monoid generated by the set

2 1 n 1
6.1) Az{pzn‘i‘ 72?2 1+ ‘neN},
D2n P2n+1

where (pn)nen Is a strictly increasing sequence of primes. Now we consider the positive semiring
S = E(M). Because (5,+) is the free (commutative) monoid on {e” | r € M} by Theorem 2.6, it
follows that <7, (S) = {e" | r € M}. Since & (S) is an unbounded subset of R having e as a limit
point, it cannot be the underlying set of any increasing sequence. As each generating set of (S, +)
must contain A, the positive semiring S is not strongly increasing.

Since the denominators of any two different rationals in A are distinct primes, it is not hard to
verify that A = &/ (M), from which we can conclude that M is atomic. Let us show, in fact, that M
is an FFM. To do this, we proceed as we did in Example 5.2. Fix ¢ € M* and then take D, to be
the set of all prime numbers dividing d(g). Now choose ng € N such that ny > max{q,d(q)}. For each
a € A such that d(a) > ng, the number ¢ of copies of the atom a appearing in any factorization z in
Z(g) must be a multiple of d(a) because d(a) ¢ D,. If ¢ were nonzero, ¢ > ca > d(a)a > d(a) > q.
Thus, ¢ = 0. As a consequence, if an atom a divides ¢ in M, then d(a) < ng. Hence only finitely
many elements of &/ (M) divide ¢ in M, and so M is an FFM by [37, Theorem 2].

Finally, we show that S is a bi-FFS. Since (S, +) is a free (commutative) monoid by Theorem 2.6,
this amounts to verifying that the multiplicative monoid (S°*,-) is an FFM. Fix s = >,\" | bie? € S*\{1}

for some by,...,b, € N and q1,...,¢m € M. For every i € [1,m], let D; denote the set of divisors
of ¢; in M. Because M is an FFM, the set D = Dy U --- U Dy, is finite. Now set b = max{b1,...,b;}.
Let r = > | ¢;e” € S*\{1} be a divisor of s in (S*,), where ¢1,...,¢, € Nand rq,...,7, € M. Since

(S, +) is free on {e? | ¢ € M}, it is not hard to see that r; € D and ¢; < b for every i € [1,n]. Thus, s
has only finitely many divisors in (S°,-). As every element of S* has finitely many divisors, it follows
from [37, Theorem 2] that (S*,-) is an FFM. Hence S is a bi-FFS.

We conclude this section giving an example of a bi-BFS that is not a bi-FFS.

Example 6.4. Consider the positive semiring S; = Ny u R>5. Note that S5 is reduced because
1 =inf S5. It follows from Theorem 5.1 that Sy is a bi-BFS satisfying that <7, (S2) = {1} u (2, 3) and
oy (S2) = [2,4). To verify that the additive monoid of Sy is not an FFM, it suffices to take r € (4, 5)
and observe that the formal sum (2 4+ 1/n) + (r —2 — 1/n) is a length-2 factorization of r in (Sz, +)
for every n € N with n > ﬁ. In a similar way, we can argue that the multiplicative monoid (S5, -)
is not an FFM. Hence Ss is a bi-BFS that is not a bi-FFS. One can use a similar argument to show
that, for each r = 2, the positive semiring S, = Ny u R, is a bi-BFS that is not a bi-FFS.

It is clear that every bi-FFS is a bi-BFS, and we have just seen in Example 6.4 that not every
bi-BFS is a bi-FFS. Hence we can extend Diagram (5.1) as follows.

e e R
(6.2) bi-FFS —— Dbi-BFS —— bi-ACCP —— bi-atomic
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7. THE HALF-FACTORIAL AND THE LENGTH-FACTORIAL PROPERTIES

In this final section, we consider the half-factorial and the length-factorial properties. We give
two simple necessary conditions for a positive semiring to be a bi-HFS or a bi-LFS. These necessary
conditions will allow us to provide several examples of positive semirings that are bi-BFSs but not
bi-HF'Ss or bi-LFSs. In particular, they can be applied to some of the examples of positive semirings
of the form F(M) we have seen in previous sections. A rather striking example of a positive semiring
whose multiplicative monoid is neither an HFM nor an LFM is E(Np); we will discuss this in detail
in Example 7.9. The section concludes with a final extended version of Diagram (6.2).

Proposition 7.1. If a positive semiring S is a bi-HF'S, then the following statements hold.
(1) Sn Q = No.
(2) If S~ (0,1) = & and a € 2« (S), then S n{a?| qge Q} = {a™ | n € Np}.

Proof. (1) Tt is clear that Ng € S n Q. To argue the reverse inclusion, take ¢ € S* n Q. Because
(S, +) is atomic, g = Zle a; for some ay,...,a; € & (S). Then ZZ 1d(¢)a; is a factorization of
n(g) in (S, +) of length kd(q). On the other hand, it follows from Proposition 3.1 that 1 € &7, (5),
and so n(q) - 1 is a factorization of n(q) in (S, +) of length n(g). Since (S, +) is an HFM, the equality
n(q) = kd(q) holds, whence ¢ = k € N. As a result, S n Q < Np.

(2) Assume that S (0,1) = ¢, and take a € &7, (S). Clearly, the monoids (S°*,-) and (log, S*, +)
are isomorphic. As the set S n (0,1) is empty, (log, S®,+) is a positive monoid. In addition, we see
that 1 € <7 (log, S*) because a € 2/, (S). Mimicking the argument in the previous paragraph, one can
verify that (log, S*) N Q = Ny. As a result, S n {a? | g€ Q} = {a" | n € No}. O

We need S to be a semiring in order to guarantee part (1) of Proposition 7.1, as the following
example illustrates.

Example 7.2. For n € N, consider the positive monoid M,, = {(r,n, %(w +mn)). It is not hard to check
that </ (M,) = {m,n, 3(7 +n)}. Since 7+ n and 27" are two distinct factorizations in Z(m + n), the
monoid M, is not a UFM. In addition, suppose that
T+n
2
for some ¢1, co,c3 € Z. Then ¢1 + ¢3/2 = 0 and c¢2 + ¢3/2 = 0, from which the equality ¢1 +co+ ¢35 =0
follows. Hence M, is an HFM. However, M,, n Q = nNj.

=0

C1T + Ccan + ¢3

On the other hand, there are positive monoids that are not semirings and still satisfy the condition
in part (1) of Proposition 7.1.

Example 7.3. Let w be an irrational number with 1 < w < 2 such that w is not a quadratic integer.
Consider the positive monoid M = (g + (1 — q)w | ¢ € Q n [0,1]). Since ¢ + (1 — q)w € [1,2) for
each ¢ € Q n [0,1], it follows that /(M) = {¢ + (1 — ¢)w | ¢ € Q n [0,1]} and, therefore, M is
atomic. It is clear that Ng € M n Q. To check the reverse inclusion, take ¢ € M* n Q, and write
q=2r,¢+(1—¢)wforsomen € Nand g1, ...,q, € Qn[0,1]. Since 1 and w are linearly independent
over Q, it follows that ¢ = > ; ¢; and 0 = > (1 — ¢;). As aresult, ¢ =Y, ;¢ = n € N. Hence
NO =M n Q

We proceed to argue that M is an HFM that is not closed under multiplication. Fix b € M, and
consider two factorizations of 1engths k and ¢ in Z(b), that is,

Z% 1—qzw—b—2qj (1-q)w

Jj=1
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for some rational numbers qi,...,qx and ¢j,...,q, in the interval [0,1]. The fact that 1 and w
are linearly independent over @Q immediately implies that both equalities Zle @G = Z§:1 q; and

Zle(l —qi) = Zﬁzl(l — ¢;) hold. After adding both equalities, one finds that k = ¢. Hence M is
an HFM. If M were closed under multiplication, then w? = a + bw for some a,b € Q=q, which is not
possible because w is an irrational number that is not a quadratic integer. As a final remark, observe
that for all g1, 92 € Q n [0, 1] with ¢1 + g2 = 1, the equality 1 + w = (q1 +(1— ql)w) + (qz +(1— QQ)w)
holds, whence M is not even an FFM.

The following proposition extends [14, Proposition 4.25] to give an analog of Proposition 7.1 for
positive semirings that are bi-LF'S.

Proposition 7.4. If a positive semiring S is a bi-LFS, then the following statements hold.
(1) () n Ql < 2.
(2) If S~ (0,1) = & and a € 2« (S), then |2 (S) n{a? | qe Q}| < 2.

Proof. (1) Since (S, +) is an LFM, [13, Theorem 3.1] guarantees the existence of a € &7, (S) such that
the set <7, (S)\{a} is integrally independent in the Grothendieck group of (S, +). This, along with
the fact that the group @ has rank 1, immediately implies that at most two elements of &7, (S) can
be rational numbers, that is, |7 (S) n Q| < 2. This part could have also been proved by mimicking
the proof of [31, Proposition 2.2].

(2) Suppose that S n (0,1) = &, and take a € & (S). Take a?,a%,a® € @/, (S) for some
q1,92,q3 € Q. Since (S°,-) =~ (log, S*, +), it follows that g1, ¢2,q3 € </ (log, S*). As (log, S*,+) is
an LFM, [{¢1,q2,q3}| < 2 by the previous part (observe that we argued the previous part without
appealing to the multiplicative structure of S). Then we conclude that |27 (S)n{a? |¢e Q}| <2. O

Since we did not use the multiplicative structure of S to establish part (1) of Proposition 7.4, the
following statement holds: |2/ (M) n Q| < 2 for every length-factorial positive monoid M. The same
condition in part (1) of Proposition 7.4 does not guarantee that a positive semiring is a bi-LFS. The
following example sheds some light upon this observation.

Example 7.5. The set S := Ny u ((2, 4)\@) U R< 4 is closed under both addition and multiplication,
and so S is a positive semiring. In addition, Theorem 5.1 guarantees that S is a bi-BFS and, in
particular, a bi-atomic positive semiring. Now fix r € Q4. Taking € to be an irrational number so
that 0 < € < r —4, we can write r = (24 ¢) + (r — (2 + €)). Since both 2 + € and r — (2 + €) are
irrational numbers greater than 2, it follows that r ¢ &7, (S). As a result, the only rational additive
atom of S is 1, which implies that |27 (S) n Q| < 2. However, (S, +) is not an LFM, as we proceed
to verify. If o is an irrational number with 0 < o < 1/2, then 5/2 + o € &7, (S) and so the equality
5=(5/2—a)+ (5/2 + ) yields a length-2 factorization of 5 in (S, +). As distinct choices of « yield
distinct length-2 factorizations of 5, the monoid (S, +) is not an LFM. Thus, S is not a bi-LFS. As a
side note, observe that 5 also has a length-5 factorization in (S, +), and so S is not a bi-HFS.

Propositions 7.1 and 7.4 immediately give rise to a wealth of examples of positive semirings that
are neither bi-HFSs nor bi-LFSs. Consider, as evidence, the positive semirings in Examples 5.2, 6.3,
and 6.4, and the positive semirings .S, in Theorem 5.1. We note that the exponent monoids used in all
such examples are not finitely generated. We proceed to provide an example of a positive semiring of
the form F(M) for a finitely generated monoid M such that E(M) is neither a bi-HFS nor a bi-LFS.
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Example 7.6. Let M be the numerical monoid M = (2,3) = Np\{1}, and consider the positive
semiring S = E(M). Theorem 2.6 ensures that (S, +) is a UFM. The elements e¢? and e® belong
to @« (S) because they are atoms of the divisor-closed submonoid e(M) of (S°®,-). Therefore the
equality (e?)® = (e3)? reveals that (S°,-) is not an HFM, and so S is not a bi-HFS. Since the monoids
e(M) and M are isomorphic, it follows from [21, Example 2.13] that e(M) is an LFM (see also [13,
Corollary 3.3]). However, we will verify that (S°®,-) is not an LFM. Consider the element e? + ¢3 of S
and write e? +¢% = (37" aiei)(zgl:o bjel) taking ao, . .., am and by, ..., by, in Ng with a,,b, # 0 and
a1 = by = 0. As (S, +) is free on {e’ | j € M} by Theorem 2.6, it follows that a,,b,e™™™ = €3, whence
am = b, = 1 and m + n = 3. Assuming that m < n, we obtain that m = 0 and n = 3, from which
St aet = e = 1. Thus, e? +€® € &, (S). In a similar way, we can verify that e* 4 2e3 +e? € 7, (9).
Now the equality (e? + e®)(e? + €®) = e?(e? + 2¢® + ¢*) allows us to conclude that (S*,-) is not an
LFM. Hence S is not a bi-LFS.

It is clear that Ny is a positive semiring that is a bi-UFS. As the reader may have already noticed,
this is the only example of a bi-UFS that we have exhibited so far. Indeed, the aforementioned results
lead us to make the following conjecture.

Conjecture 7.7. A positive semiring S is a bi-UFS if and only if S = Np.
In the direction of Conjecture 7.7, we pose the following questions.

Question 7.8.
(1) Is Ng the only positive semiring that is a bi-HFS?
(2) Is Ny the only positive semiring that is a bi-LFS?

We now show that the positive semiring E(Np) is a bi-FFS that is neither a bi-HFS nor a bi-LFS.
Lindemann-Weierstrass Theorem (Theorem 2.6) guarantees that the semiring of polynomials Ny[z] is
isomorphic to the positive semiring F(Np) via p(z) — p(e). As most readers should be more familiar
with polynomial notation, in the next example we think of F(Np) in terms of polynomials.

Example 7.9. As (Ng[z],+) is a free (commutative) monoid with basis {z™ | n € Ny}, it is a UFM
and hence an FFM. The multiplicative monoid (Ng[x]®,-) is also an FFM, as we proceed to argue.
Fix f(x) in Ng[z]®, and let d(z) € No[z]* be a divisor of f(x) in (Ng[z]*,-). Then d(x) divides f(z)
in the integral domain Z[x], which is clearly an FFD (that is, (Z[x]®,-) is an FFM). It follows from
[2, Theorem 5.1] that f(z) has only finitely many non-associate divisors in Z[z], and so f(x) has
only finitely many divisors in (Ng[z]*,-). Hence (Ng[z]*,-) is an FFM by [37, Theorem 2] and, as a
result, S is a bi-FFS.

We now illustrate that (Ng[z]®,-) is neither an HFM nor an LFM. By [11, Corollary 2.2], for
each n € N, the polynomial (z + n)"(z*> — z + 1) is irreducible in (Rso[z]*,-) and, therefore, in
(No[z]*,-). As a result, for every k € N, the expressions [(x + n)"(2?> —x + 1)] - [z + 1]* and
[z+n]"[(z%2 —x+1)(x+1)][x+1]*~! are factorizations of the same element in (No[x]*, ) with lengths
k +1 and n + k, respectively. Hence (No[z]®,-) is not an HFM. On the other hand, it follows from
[11, Corollary 2.2] that the polynomials (z + 1)(z% — z + 3) and (z + 2)(22 — 2 + 3) are irreducibles in
(Rxo[x]*, ) and so in (Ng[x]*,-). Since [(z+ 1)(z? — 2 +3)] - [z + 2] and [(x +2)(2® — 2 + 3)] - [x + 1]
are distinct factorizations of length 2 of the same element in (Ng[z]®,-), we see that (Ng[z]®,-) is not
an LFM. Thus, Ny[z] is neither a bi-HFS nor a bi-LFS.

We now provide a concrete example of a positive semiring that is a bi-BFS but neither its additive
monoid nor its multiplicative monoid are HFMs/LFMs.
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Example 7.10. Consider the positive semiring So = {0,1} U R>s. It is a bi-BFS by Theorem 5.1.
Since @7 (S2) = {1} U (2, 3), the equalities 5-1 = 2-(5/2) = 7/3 + 8/3 ensure that (S2,+) is neither an
HFM nor an LEM. On the other hand, it follows from Theorem 5.1 that [2, 3] is contained in 7 (S3)
and, in particular, 2,3,8/3,14/5, and 15/7 belong to @7 (S2). As a result, the equality 23 = 3. (8/3)
implies that (S5, ) is not an HFM and the equality 2-3 = (14/5) - (15/7) implies that (S5, -) is not an
LFM.

It is clear that every bi-UFS is a bi-FFS, a bi-HFS, and a bi-LFS. This observation, along with
Example 7.9, allows us to conclude with an extended version of Diagram (1.2) for positive semirings.
This extended diagram illustrates that, as it is the case for monoids and integral domains, most of
the implications in Diagram (1.2) are not reversible in the context of positive semirings. Whether or
not the topmost horizontal implications in Diagram (7.1) are reversible is the gist of Conjecture 7.7
and Question 7.8.

bi-LFS <— bi-UFS ———= _bi-HFS

71 \ ﬂ / ﬂ

bi-FF'S bi-BFS bi-ACCP bi-atomic
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