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Abstract: This paper focuses on the application of model-based predictive control (MPC)
for a full wrist exoskeleton designed for the alleviation of tremors in patients suffering from
Parkinson’s Disease and Essential Tremor. The main motivation for using MPC here relies on
its ability to incorporate state and input constraints, which are crucial for the user’s safety.
The forearm-exoskeleton model is successively linearized at each time sample to obtain a linear
state space model. The optimal input is then generated by minimizing a convex quadratic cost
function. Finally, simulation cases are provided to demonstrate the effectiveness of the control
scheme.
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NOMENCLATURE

The mathematical notations used are listed as following:

∥Z∥n n-norm of a matrix Z
A ≻ 0 Square matrix A is positive definite
In Identity Matrix of dimension n
col(a1...an) Column vector with elements a1...an
diag(a1...an) Diagonal matrix with diagonal entries a1...an

1. INTRODUCTION

Controlling an exoskeleton system is a challenging prob-
lem due to the complexity and nonlinearity of the ex-
oskeleton dynamics. Various control algorithms have been
introduced in the last few years to overcome these chal-
lenges, notably sliding mode controllers and adaptive con-
trol approaches. In recent times, there has been more
attention towards model based optimal control schemes.
These methods aim to reduce future tracking errors while
simultaneously satisfying different constraints by solving
a finite-horizon optimal control problem. Their inherent
robustness and ability to control complex uncertain and
disturbed systems successfully has currently made them a
popular choice among researchers.

In model-based optimal control, an optimization algorithm
uses the system’s dynamical model to optimize a suitable
cost function and predict the outcome of possible actions
to derive an optimal future plan. Model-Predictive control
(MPC) is one such realization of model-based optimal con-
trol (Camacho and Alba (2013)). At each sampling inter-
val, the behaviour of the system over some future timesteps
is predicted by the model. The length of this future
timesteps is defined as the prediction horizon. Based on
these predictions, an objective function is minimized with
respect to the future sequence of inputs. This minimization
function is a constrained optimization problem, which is

solved for each sampling interval. Although prediction and
optimization are performed over the complete prediction
horizon, only the first input sequence, or inputs for the
current sampling interval are used. This same procedure
is repeated for the next sampling time, by sliding the time
window to one sampling time forward. This mechanism is
known as moving or receding horizon strategy.

The model of the coupled hand-exoskeleton system is
complex and nonlinear. In recent times, nonlinear model
predictive control (NMPC) (Allgöwer and Zheng (2012))
has been well developed for robotic applications (Wilson
et al. (2016);Vougioukas (2007)), but at the same time, it
has been observed that the computational effort required
is significantly higher compared to the linear version.
NMPC requires a nonlinear programming problem to be
solved online, which is non-convex, has a larger number of
decision variables, and a global minimum that is in general,
impossible to find (Henson (1998);Kuhne et al. (2004)). In
this paper, a successive linearization approach of the hand-
exoskeleton dynamical model is used to yield a linear,
time-varying description of the system, which is then
solved through linear MPC. Then, considering the control
inputs as the decision variables, the optimization problem
is transformed into a convex quadratic programming (QP)
problem, which is solved by numerically robust solvers to
obtain global optimal solutions.

This study proposes to implement a model predictive con-
troller to the exoskeleton developed in Wang et al. (2019)
to suppress pathological tremors, i.e. Essential tremors
(Louis (2001)) and Parkinson’s disease (Jankovic (2008)).
Tremor suppression orthoses can be classified into active,
semi-active, and passive. Passive orthoses aren’t tuneable
to the user’s or the environment’s needs, and also offer
a resistive force for the voluntary motions of the user
along with tremor suppression, making them less effective
(Fromme et al. (2019)). While many active wrist orthoses
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(Herrnstadt and Menon (2016); Wang (2023);Rocon et al.
(2007)) have successfully alleviated tremors by applying
appropriate forces to the wrist joint, they cannot conve-
niently incorporate input force/torque and range of motion
limitations, which are crucial to the safety of the user. This
is possible in model predictive controller, hence motivating
us to explore the same. While MPC has been successfully
implemented in the past for exoskeleton control, this study
aims to extend its use for tremor suppression.

The rest of the paper is arranged as follows: In Section
2, the linearization formulation of the human-exoskeleton
model is discussed. In Section 3, the Model Predictive Con-
troller algorithm is set up with a quadratic cost function
for minimization based on the linearized model. In Section
4, the performance of the controller is demonstrated by
MATLAB simulations of the wearable exoskeleton, fol-
lowed by Section 5, where active tremor suppression with
BMFLC(Veluvolu and Ang (2011)) is explored. Finally,
Section 6 summarizes the findings and proposes future
work.

2. MODEL AND LINEARIZATION

In this study, the proposed controller is designed on
the TAWE exoskeleton (Wang and Barry (2021)), which
follows a generic human-exoskeleton multibody model
structure:

M(q)q̈ = −C(q, q̇)q̇− h(q, q̇, t) + JT
u (q)u (1)

where q ∈ Rnq is the generalized coordinate; t ∈ R+ is
the time variable and u ∈ Rnu is the control input from
the exoskeleton. M ∈ Rnq×nq is the inertia matrix and
satisfies M = MT ≻ 0; C ∈ Rnq×nq is the Coriolis and
centripetal matrix; h ∈ Rnq is the generalized force vector,
and includes potential energy forces and energy dissipation
forces, and time-dependent excitations; Ju ∈ Rnu×nq is
the control input Jacobian matrix.

The state is defined as x = col(q, q̇), and thus the state
equation can be written as:

ẋ =

[
q̇

M−1(−Cq̇− h+ JT
uu)

]
(2)

which is of the form: ẋ = f(x,u)

The system can be linearized about the point (xr,ur)
by taking the Taylor expansion and discarding the higher
order terms:

ẋ = f(x,u) = f(xr,ur) + fx,r(x− xr) + fu,r(u− ur) (3)

where

fx,r =
∂f

∂x

∣∣∣∣x=xr
u=ur

and fu,r =
∂f

∂u

∣∣∣∣x=xr
u=ur

Using Euler’s method, for sample time ∆t, Eqn. (3) can
be discretized as:

x(t+ 1) = x(t) + f(xr,ur)∆t

+fx,r(x(t)− xr)∆t+ fu,r(u(t)− ur)∆t

=⇒ x(t+ 1) = (I+ fx,r∆t)x(t) + (fu,r∆t)u(t)

+(f(xr,ur)− fx,rxr − fu,rur)∆t (4)

The Jacobian matrices fx,r and fu,r are calculated as:

fx,r =

[
0 Inq

A1 A2

]
fu,r =

[
0
B

]

where

A1=
∂

∂q
M−1(−Cq̇− h+ JT

uu)

=
∂M−1

∂q
(−Cq̇− h+ JT

uu)

+M−1(−∂C

∂q
(q̇)− ∂h

∂q
+

∂JT
u

∂q
(u))

(5a)

A2 =
∂

∂q̇

(
M−1

(
−Cq̇− h+ JT

uu
))

= M−1

(
−∂C

∂q̇
q̇− ∂h

∂q̇

) (5b)

B =
∂

∂u
M−1(−Cq̇− h+ JT

uu) = M−1JT
u (5c)

The modeling of the system has been done using the sym-
bolic toolbox in MATLAB. Hence, first calculating M−1

symbolically and then calculating ∂M−1

∂q isn’t numerically

efficient. Hence ∂M−1

∂q is instead calculated as:

∂M−1

∂q
=

∂(M−1ṀM−1)

∂q̇
(6)

where M−1 is calculated numerically.

3. THE MPC ALGORITHM

The essence of a Model Predictive Controller is to optimize
predictions of a system’s behaviour over a sequence of fu-
ture control inputs. At each sampling time, a minimization
function is solved to generate an optimal control sequence,
and its first element is applied to the plant. At the next
sampling time, with the updated system states, the prob-
lem is solved again to obtain the optimal control sequence.
The minimization function is generally formulated to be a
quadratic function of the states and control inputs(Kuhne
et al. (2004)).

The objective here is that when provided a reference
trajectory xdes, the controller calculates the optimal ac-
tuation input basis the dynamics and defined cost func-
tion, and provides these inputs to the human-exoskeleton
dynamic system. The cost function is defined such that
the calculated actuation inputs can track the exoskeleton
motion along a given reference.

Taking the prediction horizon as N, the cost function is
defined as:

J0→N(x0,U0→N) := ∥xN − xdes
N ∥2P

+

N−1∑
k=0

(∥xk − xdes
k ∥2Q + ∥uk∥2R)

(7)

subject to the constraints :

xk+1 = Axk +Buk +K for k = 0,1,..N-1 (8a)

Xl≤ xk ≤ Xu for k = 0,1,..N-1 (8b)

Ul≤ uk ≤ Uu for k = 0,1,..N-1 (8c)

Here, P = PT ≻ 0, Q = QT ≻ 0 and R = RT ≻ 0 are
the cost matrices associated with the terminal state, non-
terminal states and inputs respectively. Equation (8a) is a
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(Herrnstadt and Menon (2016); Wang (2023);Rocon et al.
(2007)) have successfully alleviated tremors by applying
appropriate forces to the wrist joint, they cannot conve-
niently incorporate input force/torque and range of motion
limitations, which are crucial to the safety of the user. This
is possible in model predictive controller, hence motivating
us to explore the same. While MPC has been successfully
implemented in the past for exoskeleton control, this study
aims to extend its use for tremor suppression.

The rest of the paper is arranged as follows: In Section
2, the linearization formulation of the human-exoskeleton
model is discussed. In Section 3, the Model Predictive Con-
troller algorithm is set up with a quadratic cost function
for minimization based on the linearized model. In Section
4, the performance of the controller is demonstrated by
MATLAB simulations of the wearable exoskeleton, fol-
lowed by Section 5, where active tremor suppression with
BMFLC(Veluvolu and Ang (2011)) is explored. Finally,
Section 6 summarizes the findings and proposes future
work.

2. MODEL AND LINEARIZATION

In this study, the proposed controller is designed on
the TAWE exoskeleton (Wang and Barry (2021)), which
follows a generic human-exoskeleton multibody model
structure:

M(q)q̈ = −C(q, q̇)q̇− h(q, q̇, t) + JT
u (q)u (1)

where q ∈ Rnq is the generalized coordinate; t ∈ R+ is
the time variable and u ∈ Rnu is the control input from
the exoskeleton. M ∈ Rnq×nq is the inertia matrix and
satisfies M = MT ≻ 0; C ∈ Rnq×nq is the Coriolis and
centripetal matrix; h ∈ Rnq is the generalized force vector,
and includes potential energy forces and energy dissipation
forces, and time-dependent excitations; Ju ∈ Rnu×nq is
the control input Jacobian matrix.

The state is defined as x = col(q, q̇), and thus the state
equation can be written as:

ẋ =

[
q̇

M−1(−Cq̇− h+ JT
uu)

]
(2)

which is of the form: ẋ = f(x,u)

The system can be linearized about the point (xr,ur)
by taking the Taylor expansion and discarding the higher
order terms:

ẋ = f(x,u) = f(xr,ur) + fx,r(x− xr) + fu,r(u− ur) (3)

where

fx,r =
∂f

∂x

∣∣∣∣x=xr
u=ur

and fu,r =
∂f

∂u

∣∣∣∣x=xr
u=ur

Using Euler’s method, for sample time ∆t, Eqn. (3) can
be discretized as:

x(t+ 1) = x(t) + f(xr,ur)∆t

+fx,r(x(t)− xr)∆t+ fu,r(u(t)− ur)∆t

=⇒ x(t+ 1) = (I+ fx,r∆t)x(t) + (fu,r∆t)u(t)

+(f(xr,ur)− fx,rxr − fu,rur)∆t (4)

The Jacobian matrices fx,r and fu,r are calculated as:

fx,r =

[
0 Inq

A1 A2

]
fu,r =

[
0
B

]

where

A1=
∂

∂q
M−1(−Cq̇− h+ JT

uu)

=
∂M−1

∂q
(−Cq̇− h+ JT

uu)

+M−1(−∂C

∂q
(q̇)− ∂h

∂q
+

∂JT
u

∂q
(u))

(5a)

A2 =
∂

∂q̇

(
M−1

(
−Cq̇− h+ JT

uu
))

= M−1

(
−∂C

∂q̇
q̇− ∂h

∂q̇

) (5b)

B =
∂

∂u
M−1(−Cq̇− h+ JT

uu) = M−1JT
u (5c)

The modeling of the system has been done using the sym-
bolic toolbox in MATLAB. Hence, first calculating M−1

symbolically and then calculating ∂M−1

∂q isn’t numerically

efficient. Hence ∂M−1

∂q is instead calculated as:

∂M−1

∂q
=

∂(M−1ṀM−1)

∂q̇
(6)

where M−1 is calculated numerically.

3. THE MPC ALGORITHM

The essence of a Model Predictive Controller is to optimize
predictions of a system’s behaviour over a sequence of fu-
ture control inputs. At each sampling time, a minimization
function is solved to generate an optimal control sequence,
and its first element is applied to the plant. At the next
sampling time, with the updated system states, the prob-
lem is solved again to obtain the optimal control sequence.
The minimization function is generally formulated to be a
quadratic function of the states and control inputs(Kuhne
et al. (2004)).

The objective here is that when provided a reference
trajectory xdes, the controller calculates the optimal ac-
tuation input basis the dynamics and defined cost func-
tion, and provides these inputs to the human-exoskeleton
dynamic system. The cost function is defined such that
the calculated actuation inputs can track the exoskeleton
motion along a given reference.

Taking the prediction horizon as N, the cost function is
defined as:

J0→N(x0,U0→N) := ∥xN − xdes
N ∥2P

+

N−1∑
k=0

(∥xk − xdes
k ∥2Q + ∥uk∥2R)

(7)

subject to the constraints :

xk+1 = Axk +Buk +K for k = 0,1,..N-1 (8a)

Xl≤ xk ≤ Xu for k = 0,1,..N-1 (8b)

Ul≤ uk ≤ Uu for k = 0,1,..N-1 (8c)

Here, P = PT ≻ 0, Q = QT ≻ 0 and R = RT ≻ 0 are
the cost matrices associated with the terminal state, non-
terminal states and inputs respectively. Equation (8a) is a

simplified version of (4), representing the state equation
while (8b), (8c) represents the state and input constraints.

This cost function can be written as:

ZT
0→N


Q̄ 0
0 R̄


Z0→N + gZ0→N (9)

where

Z0→N = col(x1,x2, ...xN,u0,u1, ...uN−1)

Q̄ = diag(Q,Q...,P)

R̄ = diag(R,R...,R)

g = [−2(xdes
1 )TQ,−2(xdes

2 )TQ, ...− 2(xdes
N )TP,0,0...0]

The state equations and the constraint equations can be
written in matrix form as




Inx
0 . . . 0 0 −B 0 . . . 0

−A Inx
. . . 0 0 0 −B . . . 0

...
...

. . .
...

...
...

...
. . .

...
0 0 . . . −A Inx

0 0 . . . −B


 [Z0→N]

=




Ax0 +K
K
...
K




(10a)


I2N×(nx+nu)

−I2N×(nx+nu)


[Z0→N] ≤



(Xu)N×1

(Uu)N×1

(−Xl)N×1

(−Ul)N×1


 (10b)

The cost function in (9) is quadratic, and various quadratic
solvers can be used to obtain Z0→N that minimizes the
cost function. In our simulations, this quadratic opti-
mization problem has been solved using the qpSWIFT
solver as it has been found to be faster than most other
solvers(Pandala et al. (2019)).

4. SIMULATIONS AND DISCUSSION

This section demonstrates the performance of the devel-
oped model predictive controller through simulations of
the forearm model and wearable wrist exoskeleton (Wang
et al. (2018)) carried out using the ANDY Toolbox (Wang
et al. (2018)), an analytical multibody toolbox in MAT-
LAB, validated in Wang and Barry (2020). Fig. 1 shows
the conceptual design of the TAWE exoskeleton, while
the 3D visualization of simulation is shown in Fig. 2.
For some of the simulations, the references r are selected
as bounded periodic and quasiperiodic trajectories with
multiple harmonic components (Wang and Barry (2021)).
The simulation and control sampling rate is taken as 500
Hz, and the frequency at which the linearization is done is
100 Hz.

The weighing matrices, defined in section 3 are taken to
be: P = Q = diag(200, 1000, 0.1, 0.1) and R = 0.4I2. The
prediction horizon N is taken to be 20.

4.1 Forearm model

Initially, the developed model was tested on a forearm
(wrist) model, with the MPC algorithm implemented to
obtain the optimal control inputs in Flexion-Extension

Fig. 1. The CAD model of the conceptual design of TAWE
attached to a right human forearm mannequin (Wang
and Barry (2020))

Fig. 2. 3D model of the TAWE simulation in MATLAB
environment using ANDY Toolbox

and Radial-Ulnar Deviation directions to follow a reference
trajectory.

The wrist is a constrained 3D rotational joint and the
3 DOFs are given as radial-ulnar deviation (RUD),
flexion-extension (FE), and supination-pronation (SP).
Here, the generalized coordinate is considered as q1 =
[θRUD, θFE, θSP]

T . The rotation θSP on the SP direction is
constrained to [θRUD, θFE]

T (Li et al. (2005)). To formulate
this, a kinematic constraint is defined, and is given as
rc(q1) ∈ R, which constrains the θSP DOF of the system.
The time derivative of rc is given as

ṙc= 0 = Jc,q(q, ρ)q̇+Jc,ρ(q, ρ)ρ̇; ρ = [θSP] (11)

where Jc,q ∈ R1×2 and Jc,ρ ∈ R1×1 are Jacobian matrices.
With ρ̇ = −J−1

c,ρJc,q, a 2-DOF assembled dynamical model
is obtained which follows the dynamical model structure
given in Eq. (1) (Wang and Barry (2021)).

Since the control torques are applied at the wrist joint in
FE and RUD directions, the state and input constraints
were considered basis the average range of motion and
strength of the wrist joint. The torque limits for flexion and
extension were considered to be 12 Nm and 7 Nm respec-
tively, and for radial and ulnar deviations, the limits were
11 Nm and 9.5 Nm respectively (Delp et al. (1996);Yoshii
et al. (2015)). In FE and RUD directions, the limits are
−75◦ to 75◦ (-1.31 rad to 1.31 rad) and −45◦ to 25◦ (-0.79
rad to 0.44 rad) respectively (Wang (2023)). According
to a study (Rosen et al. (2005)) of the kinematics and
dynamics of the arm in various daily activities, the max
angular velocities in flexion and extension were recorded
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to be 232.9 deg/s (4.06 rad/s)and 141.2 deg/s (2.46 rad/s).
Similarly for radial and ulnar deviation, it was recorded to
be 203.9 deg/s (3.56 rad/s) and 180.4 deg/s (3.14 rad/s)
respectively. Keeping some buffer, the angular velocity
limits were kept at 270 deg/s (3π/2 rad/s) for both FE
and RUD.

The tracking performance is presented in figure 3. From
figures 3(a) and 3(b), it can be observed that the trajectory
of q is accurately following the set references, and the
errors in 3(c) and 3(d) are close to zeros, confirming the
efficacy of the controller.

The forearm model example allows us to observe the
suitability and performance behaviors of the controller.
The MPC Controller is used in the wearable exoskeleton
for the next case.

Fig. 3. The control system performance when applied
only on forearm for trajectory tracking, where (a–b)
shows the trajectories followed (θ) and reference (rθ)
from the simulation; (c-d) shows the tracking errors
(ϵ = rθ − θ)

4.2 Forearm with TAWE Exoskeleton

TAWE (Wang and Barry (2020)) - a wearable wrist ex-
oskeleton has been developed by our team for active
pathological tremor alleviation and movement assistance,
the conceptual design of which is shown in Figure 1.
TAWE constitutes a 6-DOF rigid linkage mechanism that
allows unconstrained wrist movement, while its kinemat-
ics is defined by the biomechanism of the wrist. The
detailed modeling of forearm-TAWE dynamics has been
explained and validated in (Wang and Barry (2020)). Here,
a simpler case is considered, where the forearm is fixed.
This leads to the forearm being a 3-DOF system with
q1 = [θRUD, θFE, θSP]

T as the wrist 3D rotation angles,
and TAWE being a 6-DOF system with q2 ∈ R6 as its
six joints. The closed kinematic chain formed between the
forearm and TAWE results in q2 being fully constrained
to q1, and as described in section 4.1, the rotation θSP is
constrained to [θRUD, θFE]

T . Similar to section 4.1 these
configurations lead to a set of kinematic constraints de-
fined as rc(q1,q2) ∈ R7, which constrains seven DOFs
of the system in total, and the time derivative of rc is
calculated as:

ṙc= 0 = Jc,q(q, ρ)q̇+Jc,ρ(q, ρ)ρ̇; ρ = [θSP qT
2 ]

T

(12)
Jc,q ∈ R7×2 and Jc,ρ ∈ R7×7 are Jacobian matrices, and
with ρ̇ = −J−1

c,ρJc,q, a 2-DOF assembled dynamical model
can be obtained. The control inputs are provided at the
first two joints of TAWE Wang and Barry (2021).

First, the tracking performance is tested as shown in Fig.
4. It can be observed from figure 4 that the trajectory
followed for the TAWE-Forearm model closely matches
the trajectory followed by the Forearm model, and thus,
closely follows the set trajectory. Figure 5 shows the
control inputs obtained for trajectory tracking for the
Forearm-TAWE system. These results confirm that the
MPC controller can be extended to the forearm-TAWE
system as well.

Fig. 4. The control system performance applied to
Forearm-TAWE and Forearm model for trajectory
tracking, where (a–b) shows the trajectories followed
(θ) and (c-d) shows the tracking errors (ϵ = rθ − θ)

Fig. 5. The inputs for trajectory tracking with TAWE;
where (a–b) shows the control inputs in FE and RUD

Then, tremors are introduced as a model uncertainty and
the performance for tremor suppression with MPC is ob-
served. For this, the Forearm-exoskeleton is kept station-
ary, i.e. the set trajectory to follow is kept as 0 in both FE
and RUD directions. The results of the MPC Controller is
compared with a proportional-derivative controller (PD),
with a feed-forward term. The feed-forward input is con-
stant, and is given to compensate for the torque due to
gravity, while the PD term drives back the system to [0,0]
as the tremors act to move the system away from [0,0].
Figure 6 shows that when the PD controller is applied,
the deviation is quite large, while in figures 7(a) and 7(b),
it can be observed that the error oscillation amplitudes
are significantly reduced when MPC is applied, thus con-
firming that MPC is applicable for tremor suppression as
well.

5. EXPLORING MPC WITH TREMOR MODELING

In the previous sections, it was observed that the devel-
oped MPC model can provide passive tremor suppression.
In this section, implementing active tremor suppression
using BMFLC was explored.
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TAWE (Wang and Barry (2020)) - a wearable wrist ex-
oskeleton has been developed by our team for active
pathological tremor alleviation and movement assistance,
the conceptual design of which is shown in Figure 1.
TAWE constitutes a 6-DOF rigid linkage mechanism that
allows unconstrained wrist movement, while its kinemat-
ics is defined by the biomechanism of the wrist. The
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T . Similar to section 4.1 these
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of the system in total, and the time derivative of rc is
calculated as:
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Jc,q ∈ R7×2 and Jc,ρ ∈ R7×7 are Jacobian matrices, and
with ρ̇ = −J−1

c,ρJc,q, a 2-DOF assembled dynamical model
can be obtained. The control inputs are provided at the
first two joints of TAWE Wang and Barry (2021).

First, the tracking performance is tested as shown in Fig.
4. It can be observed from figure 4 that the trajectory
followed for the TAWE-Forearm model closely matches
the trajectory followed by the Forearm model, and thus,
closely follows the set trajectory. Figure 5 shows the
control inputs obtained for trajectory tracking for the
Forearm-TAWE system. These results confirm that the
MPC controller can be extended to the forearm-TAWE
system as well.
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Then, tremors are introduced as a model uncertainty and
the performance for tremor suppression with MPC is ob-
served. For this, the Forearm-exoskeleton is kept station-
ary, i.e. the set trajectory to follow is kept as 0 in both FE
and RUD directions. The results of the MPC Controller is
compared with a proportional-derivative controller (PD),
with a feed-forward term. The feed-forward input is con-
stant, and is given to compensate for the torque due to
gravity, while the PD term drives back the system to [0,0]
as the tremors act to move the system away from [0,0].
Figure 6 shows that when the PD controller is applied,
the deviation is quite large, while in figures 7(a) and 7(b),
it can be observed that the error oscillation amplitudes
are significantly reduced when MPC is applied, thus con-
firming that MPC is applicable for tremor suppression as
well.

5. EXPLORING MPC WITH TREMOR MODELING

In the previous sections, it was observed that the devel-
oped MPC model can provide passive tremor suppression.
In this section, implementing active tremor suppression
using BMFLC was explored.

Fig. 6. The deviation with a PD Controller; where (a–b)
shows the tracking errors in RUD and FE (ϵ = rθ − θ)

Fig. 7. Comparison of the stationary exoskeleton-forearm
tracking controls between PD and MPC Controllers
(a-b) (ϵ = rθ − θ). The control input generated from
MPC is shown in (c-d)

The synthetic tremor excitation introduced to the model
is assumed to be a combination of harmonic waves with
different frequencies within a certain bandwidth. For ex-
ample, for Parkinsonian tremor (Rocon et al. (2007))), this
range is 3–6 Hz. A band-limited multi-frequency Fourier
linear combiner (BMFLC) (Veluvolu and Ang (2011)) was
designed to model the tremor, which is included as a part
of the cost function for the model predictive controller to
compensate for the synthetic tremor, and the compen-
sating torque was included as part of the constraints. A
BMFLC model with nBMFLC frequency components can
be structured as:

µBMFLC(t) =

nBMFLC
i=1

(pµ,BMFLC,isin(cµ,BMFLC,it)

+ pµ,BMFLC,i+ncos(cµ,BMFLC,it)) (13)

where pµ,BMFLC,i is the i
th uncertain amplitude parameter

and cµ,BMFLC,i is the ith constant frequency. The fre-
quencies cµ,BMFLC,1 and cµ,BMFLC,nBMFLC

determines the
bandwidth, and nBMFLC determines the frequency-domain
resolution of model (Wang (2023)).

To obtain these uncertain amplitude parameters, a cost
term is introduced to (7) which updates those parameters
at each time sample. Thus, the modified cost function can
be written as:

J0→N(x0,U0→N) := ∥xN − xdes
N ∥2P

+

N−1
k=0

(∥xk − xdes
k ∥2Q + ∥uk∥2R) + ϕTSϕ

(14)

where ϕ ∈ R4nBMFLC×1 is the uncertain amplitude param-
eter vector given as :

ϕ = [pµ,1,RUD, .. pµ,2nBMFLC,RUD,

pµ,1,FE, .. pµ,2nBMFLC,FE]
T (15)

and S = ST ≻ 0 is the cost matrix associated with the
amplitude vector. The modified control input is given as
uk + utr(tk, ϕ) where utr(tk, ϕ) is the additional virtual
input that causes tremor, and is given as:

utr(tk, ϕ) = JT
ϕ,BMFLC × ϕ (16)

Jϕ,BMFLC =




sin(cµ,1,RUDt) 0
...

...
sin(cµ,n,RUDt) 0
cos(cµ,n+1,RUDt) 0

...
...

cos(cµ,2n,RUDt) 0
0 sin(cµ,1,FEt)
...

...
0 sin(cµ,n,FEt)
0 cos(cµ,n+1,FEt)
...

...
0 cos(cµ,2n,FEt)




(17)

With the above modifications, the new decision variables
Z0→N is given as col(x1,x2, ...xN,u0,u1, ...uN−1, ϕ), and
the state equation and input constraint are modified as:

xk+1 = Axk +B(uk + utr(tk, ϕ)) +K (18a)

Ul ≤ uk + utr(tk, ϕ) ≤ Uu for k = 0 to N-1 (18b)

Considering these modified constraint and state equations,
the equations (10a and 10b) are changed accordingly. It
should be noted that the input to the exoskeleton is still
uk, and utr is the estimated virtual input.

Fig. 8. The comparison for performances for tremor sup-
pression using tracking errors (ϵ = rθ − θ) for sta-
tionary exoskeleton for passive suppression (without
BMFLC) and active suppression (with BMFLC)

From figure 8, it was observed that adding the BMFLC
component leads to only slight improvement in the per-
formance in the FE direction, but no improvement in the
RUD direction. This is likely because the tremor should be
modeled using past data, which has not been considered
here, leading to an incomplete model.

Thus, in our future works, the tremor information of the
past will be considered for estimating the tremor using
the BMFLC model. Once the BMFLC component utr is
updated, this updated model component will be used for
model predictive control for active tremor suppression.
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6. CONCLUSION AND FUTURE WORK

This paper presents a model predictive controller for an
exoskeleton aimed for tremor suppression. The non-linear
multibody system was linearized at each time sample to
obtain the state space form, and a convex quadratic cost
function with constraints was minimized to obtain the con-
trol inputs. The devised controller was then validated by
the control simulations of the forearm and TAWE systems.
The controller demonstrated good tracking performance as
the errors between set references and followed trajectory
was always close to zero (≤ 0.07 rad). Further, with added
tremors, the error oscillation amplitudes were significantly
smaller for the MPC controller compared to the PD con-
troller, thus demonstrating passive tremor suppression.

As mentioned in section 5, methods to estimate tremor
using past tremor information for active tremor suppres-
sion will be investigated. Also, in this study, disturbances
were not considered and the inertia of the human arm
was considered to be known with certainty. Further, it
is assumed here that wrist kinematics is known, which
would not be the case in practical applications. Thus, in
future works, investigation would be done to implement
this controller with uncertain inertias and disturbances.
A Wrist Kinematics Identification (WKI) algorithm de-
veloped in Wang (2023) would be implemented to obtain
an approximated wrist model and wrist angles using the
inertia measurement units (IMU) and encoders on TAWE.
The performance of the controller would be further tested
through experiments, including testing on human subjects
and the performance would be investigated with different
motion planning algorithms.
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