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ABSTRACT

This paper proposes Prism, a secret sharing based approach to com-

pute private set operations (i.e., intersection and union), as well as

aggregates over outsourced databases belonging to multiple owners.

Prism enables data owners to pre-load the data onto non-colluding

servers and exploits the additive and multiplicative properties of

secret-shares to compute the above-listed operations in (at most)

two rounds of communication between the servers (storing the

secret-shares) and the querier, resulting in a very eocient imple-

mentation. Also, Prism does not require communication among the

servers and supports result veriocation techniques for each oper-

ation to detect malicious adversaries. Experimental results show

that Prism scales both in terms of the number of data owners and

database sizes, to which prior approaches do not scale.
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1 INTRODUCTION

With the advent of cloud computing, database-as-a-service

(DaS) [29] has gained signiocant attention. Traditionally, the DaS

problem focused on a single database (DB) owner, submitting suit-

ably encrypted data to the cloud over which DB owner (or one of

its clients) can execute queries. A more general use-case is one in

which there are multiple datasets, each owned by a diferent owner.

Data owners do not trust each other, but wish to execute queries

over common attributes of the dataset. The query execution must

not reveal the content of the database belonging to one DB owner

to others, except for the leakage that may occur from the answer

to the query. The most common form of such queries is the private
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set intersection (PSI) [23]. An example use-case of PSI include syn-

dromic surveillance, wherein organizations, such as pharmacies and

hospitals share information (e.g., a sudden increase in sales of spe-

cioc drugs such as analgesics or anti-allergy medicine, telehealth

calls, and school absenteeism requests) to enable early detection

of community-wide outbreaks of diseases. PSI is also a building

block for performing joins across private databases — it essentially

corresponds to a semi-join operation on the join attribute [38].

Private set computations over datasets owned by diferent DB

owners/organizations can, in general, be implemented using secure

multiparty computation (SMC) [26, 44, 57], a well-known cryp-

tographic technique that has been prevalent for more than three

decades. SMC allows DB owners to securely execute any function

over their datasets without revealing their data to other DB owners.

However, SMC can be very slow, often by order of magnitude [41].

Consequently, techniques that can more eociently compute private

set operations have been developed; particularly, in the context of

PSI and private set union (PSU) [19, 40]. PSU refers to privately

computing the union of all databases. Approaches using homomor-

phic encryption [15], polynomial evaluation [23], garbled-circuit

techniques [32], Bloom-olter [47], and oblivious transfer [49, 50]

have been proposed to implement private set operations.

Recent work on private set operations has also explored perform-

ing aggregation on the result of PSI operations. For instance, [34]

studied the problem of private set intersection sum (PSI Sum), moti-

vated by the internet advertising use-case, where a party maintains

information about which customer clicked on specioc advertise-

ments during their web session, while another has a list of trans-

actions about items listed in the advertisements that resulted in a

purchase by the customers. Both parties might wish to securely

learn the total sales that attributed due to customers clicking on

advertisements, while neither would like their data to be revealed to

the other for reasons including fair/competitive business strategies.

Existing approaches on private set computation (including recent

work on aggregation) are limited in several ways:

• Work on PSI or PSU has largely focused on the case of two DB own-

ers, with some exceptions that address more than two DB owners

scenarios, e.g., [16, 23, 31, 33, 40, 41, 58]. There are several interest-

ing use-cases, where one may wish to compute PSI over multiple

datasets. For instance, in the syndromic surveillance example listed

above, one may wish to compute intersection amongst several in-

dependently owned databases. Generalizing existing two-party PSI

or PSU approaches to the case of multiple DB owners results in

signiocant overhead [41]. For instance, [3], which is designed for

two DB owners, incurs (ÿÿ)2 communication cost, when extended

toÿ > 2 DB owners, where ÿ is the dataset size.
SIGMOD ’21, June –



Name Age Disease Cost

ÿ1 John 4 Cancer 100
ÿ2 Adam 6 Cancer 200
ÿ3 Mike 2 Heart 300

Table 1: Hospital 1.

Name Age Disease Cost

ÿ1 John 8 Cancer 100
ÿ2 Adam 5 Fever 70
ÿ3 Bob 4 Fever 50

Table 2: Hospital 2.

Name Age Disease Cost

ÿ1 Carl 8 Cancer 300
ÿ2 John 4 Cancer 700
ÿ3 Lisa 5 Heart 500

Table 3: Hospital 3.
Note: ÿÿ , ÿÿ , and ÿÿ denote the ÿ

th tuples of tables.

• Techniques to privately compute aggregation over set operations

have not been studied systematically. In database literature, aggre-

gation functions [46] are typically classioed as: summary aggrega-

tions (e.g., count, sum, and average) or exemplary aggregations (e.g.,

minimum, maximum, and median). Existing literature has only

considered the problem of PSI Sum [34] and cardinality determina-

tion, i.e., the size of the intersection/union [19, 22]. Techniques for

exemplary aggregations (and even for summary aggregations) that

may compute over multiple attributes have not been explored.

• Many of the existing solutions do not deal with a large amount of

data, due to either ineocient cryptographic techniques or multiple

communication rounds amongst DB owners. For instance, recent

work [41, 42, 58] dealt with data that is limited to sets of size less

than or equal to ≈1M in size.

This paper introduces Prism — a novel approach for comput-

ing collaboratively over multiple databases. Prism is designed for

both PSI and PSU, and supports both summary, as well as, exem-

plar aggregations. Unlike existing SMC techniques (wherein DB

owners compute operations privately through a sequence of com-

munication rounds), in Prism, DB owners outsource their data

in secret-shared form to multiple non-communicating public

servers. As will become clear, Prism exploits the homomorphic

nature of secret-shares to enable servers to compute private set

operations independently (to a large degree). These results are then

returned to DB owners to compute the onal results. In Prism, any

operator requires at most two communication rounds between DB

owners and servers, where the orst round onds tuples that are in

the intersection or union of the set, and the second round computes

the aggregation function over the objects in the intersection/union.

By using public servers for computation over secret-shared data,

Prism achieves the identical security guarantees as existing SMC

systems (e.g., Sharemind [8], Jana [5], and Conclave [54]). The key

advantage of Prism is that by outsourcing data in secret shared form

and exploiting homomorphic properties, Prism does not require

communication among server before/during/after the computation,

which allows Prism to perform eociently even for large data sizes

and for a large number of DB owners (as we will show in experi-

ment section). Since Prism uses the public servers, which may act

maliciously, Prism supports oblivious result veriocation methods.

Advantages of Prism. In summary, Prism ofers the following

beneots: (i) Information-theoretical security: It achieves information-

theoretical security at the servers and prevents them to learn any-

thing from input/output/access-patterns/output-size. (ii) No com-

munication among servers: It does not require any communication

among servers, unlike SMC-based solutions. (iii)No trusted entity: It

does not require any trusted entity that performs the computation

on the cleartext data, unlike the recent SMC system Conclave [54].

(iv) Several DB owners and large-sized dataset: It deals with several

DB owners having a large-size dataset.

Full version [1]. provides result veriocation methods for difer-

ent aggregation approaches, correctness, and information leakage

discussions.

2 PRIVATE SET OPERATIONS

We, orst, deone the set of operations supported by Prism. Let

DB1, . . . ,DBÿ (ÿ > 2) be independent DBs owned byÿ DB owners

DB1, . . . ,DBÿ . We assume, each DB owner is (partially) aware of

the schema of data stored at other DB owners. Particularly, DB own-

ers have knowledge of attribute(s) of the data stored at other DB

owners on which the set-based operations (intersection/union) can

be performed. Also, DB owners know about the attributes on which

aggregation functions be supported. This assumption is needed

to ensure that PSI/PSU and aggregation queries are well deoned.

However, the schema of data at diferent databases may be diferent.

Now, we deone the private set operations supported by Prism for-

mally and their corresponding privacy requirements (corresponding

SQL statements are shown in Table 4). To do so, (and in the rest of

the paper), we use the example tables shown in Tables 1, 2, and 3

that are owned by three diferent DB owners (in our case, hospitals).

(1) Private set intersection (PSI) (§5). PSI onds the common values

amongÿ DB owners for a specioc attribute ýý , i.e., DB1 .ýý + . . . +

DBÿ .ýý . For example, PSI over disease column of Tables 1, 2, and 3

returns {Cancer} as a common disease treated by all hospitals.

Note that a hospital computing PSI on disease should not gain any

information about other possible disease values (except for the result

of the PSI) associated with other hospitals.

(2) Private set union (PSU) (§7). PSU onds the union of values among

ÿ DB owners for a specioc attributeýý , i.e., DB1 .ýý , . . .,DBÿ .ýý .

E.g., PSU over disease column returns {Cancer, Fever, Heart} as

diseases treated by all hospitals. A hospital computing PSU over

other hospitals must not gain information about the specioc diseases

treated by others, or how many hospitals treat which disease.

(3) Aggregation over private set operators (§6.) Aggregation

ýý
Gÿ (ýý ) computes an aggregation function ÿ on attributeýý (ýý

≠ýý ) for the groups corresponding to the output of set-based oper-

ations (PSI/PSU) on attributeýý . E.g., the aggregation function sum

on cost attribute corresponding to PSI over disease attribute (i.e.,

diseaseGýÿÿ (cost)) returns a tuple {Cancer,1400}. The same aggre-

gation function over PSU will return {〈Cancer,1400〉, 〈Fever,120 〉, 〈

Heart,800〉}. Likewise, the output of aggregation diseaseGÿÿý (age)

over PSI would return {Cancer,8}, while the same over PSU would

return {〈Cancer,8〉, 〈Fever,5〉, 〈Heart,5〉}. Note that the count oper-

ation does not require specifying an aggregation attribute ýý and

can be computed over the attribute(s) associated with PSI/PSU. E.g.,

count over PSI (PSU) on disease column will return 1 (3), respec-

tively. From the perspective of privacy requirement, in the case of

PSI on disease column, a hospital executing an aggregation query

(maximum of age or sum of cost) should only gain information

about the answer, i.e., elements in the PSI and the corresponding ag-

gregate value. It should not gain information about other diseases

that are not in the intersection. Likewise, for PSU, the hospital will

gain information about all elements in the union and their corre-

sponding aggregate values, but will not gain any specioc information

about which database contains which disease values, or the number

of databases with a specioc disease.



PSI SELECT ýý FROM ýÿ1 INTERSECT . . . INTERSECT SELECT ýý FROM dbÿ
PSU SELECT ýý FROM db1 UNION . . . UNION SELECT ýý FROM dbÿ
PSI count SELECT COUNT(ýý ) FROM ýÿ1 INTERSECT . . . INTERSECT SELECT ýý FROM dbÿ

PSI ÿ
ÿ ∈ (AVG, SUM, MAX, MIN, Median)

CREATE VIEW CommonAc as SELECT ýý FROM db1 INTERSECT . . . INTERSECT SELECT ýý FROM dbÿ
SELECT ýý , ÿ(ýý ) FROM (SELECT ýý , ýý FROM db1, CommonAc WHERE db1 .Ac = CommonAc .Ac UNION ALL . . . UNION ALL

SELECT ýý , ýý FROM dbÿ, CommonAc WHERE dbm .Ac = CommonAc .Ac) as inner_relation Group By ýý

Table 4: SQL syntax of operations supported by Prism.

3 PRELIMINARY

This section presents the cryptographic concepts that serve as build-

ing blocks for Prism, an overview of Prism, and security properties.

3.1 Building Blocks

Prism is based on additive secret-sharing (SS), Shamir9s secret-

sharing (SSS), cyclic group, and pseudorandom number generator.

We provide an overview of these techniques, below.

Additive Secret-Sharing (SS). Additive SS is the simplest type of

the SS. Let ÿ be a prime number. Let Gÿ be an Abelian group under

modulo additionÿ operation. All additive shares are deoned overGÿ .

In particular, the DB owner creates ý shares ý(ý)1, ý(ý)2, . . . , ý(ý)ý

over Gÿ of a secret, say ý , such that ý = ý(ý)1 +ý(ý)2 + . . . +ý(ý)ý .

The DB owner sends share ý(ý)ÿ to the ÿth server (belonging to a

set of ý non-communicating servers). These servers cannot know

the secret ý until they collect all ý shares. To reconstruct ý , the DB

owner collects all the shares and adds them. Additive SS allows

additive homomorphism. Thus, servers holding shares of diferent

secrets can locally compute the sum of those shares. Let ý(ý)ÿ and

ý(ÿ)ÿ be additive shares of two secrets ý and ÿ, respectively, at a

server ÿ , then the server ÿ can compute ý(ý)ÿ +ý(ÿ)ÿ that enable

DB owner to know the result of ý + ÿ. The precondition of additive

homomorphism is that the sum of shares should be less than ÿ .

Example. Let G5 = {0, 1, 2, 3, 4} be an Abelian group under the

addition modulo 5. Let 4 be a secret. A DB owner may create two

shares: 3 and 1 (since 4 = (3 + 1) mod 5).

Shamir’s Secret-Sharing (SSS) [52]. Let ý be a secret. A DB owner

randomly selects a polynomial of degree ý ′ with ý ′ random coeo-

cients, i.e., ÿ (ý) = ÿ0+ÿ1ý +ÿ2ý
2+· · ·+ÿý′ý

ý′ , where ÿ (ý) ∈ Fý [ý],

ý is a prime number, Fý is a onite oeld of order ý , ÿ0 = ý , and ÿÿ ∈ N

(1 ≤ ÿ ≤ ý ′). The DB owner distributes ý into ý shares by computing

ÿ (ý) (ý = 1, . . . , ý) and sends an ÿth share to an ÿth server (belonging

to a set of ý non-colluding servers). The secret can be reconstructed

using any ý ′ + 1 shares using Lagrange interpolation [18]. SSS al-

lows additive homomorphism, i.e., if ÿ (ý)ÿ and ÿ (ÿ)ÿ are SSS of two

secrets ý and ÿ, respectively, at a server ÿ , then the server ÿ can

compute ÿ (ý)ÿ + ÿ (ÿ)ÿ , which will result in ý + ÿ at DB owner.

Cyclic group under modulo multiplication. Let ÿ be a prime

number. A groupG is called a cyclic group, if there exists an element

ý ∈ G, such that all ý ∈ G can be derived as ý = (ýÿ ) (where ÿ in an

integer number Z) under modulo multiplicative ÿ operation. The

element ý is called a generator of the cyclic group. The number of

elements in G is called the order of G. Based on each element ý of a

cyclic group, we can form a cyclic subgroup by executing ýÿ mod ÿ.

Example. ý = 2 is a generator of a cyclic group under multiplication

modulo ÿ = 11 for the group: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Note that

the group elements are derived by 2ÿ mod 11. By taking the ele-

ment 5 of this cyclic group, we form the following cyclic subgroup

{1, 3, 4, 5, 9}, under multiplication modulo ÿ = 11, by 5ÿ mod 11.

Permutation function PF . Let ý be a set. A permutation func-

tion PF is a bijective function that maps a permutation of ý to

another permutation of ý, i.e., PF : ý → ý.

Pseudorandom number generator PRG: is a deterministic and

eocient algorithm that generates a pseudorandom number se-

quence based on an input seed [7, 25].

3.2 Entities and Trust Assumption

Prism assumes the following four entities:

(1) The ÿ database (DB) owners (or users), who wish to execute

computation on their joint datasets. We assume that each DB owner

is trusted and does not act maliciously.

(2) A set of ý ≥ 2 servers that store the secret-shared data outsourced

by DB owners and execute the requested computation from authen-

ticated DB owners. Data transmission between a DB owner and

a server takes place in encrypted form or using anonymous rout-

ing [27] to prevent the locations of all servers from an adversary.

We assume that servers do not maliciously communicate (i.e., non-

communicating servers) with each other in violation of Prism

protocols. Unlike other MPC mechanisms [8], (as will be clear

soon), Prism protocols do not require the servers to communicate

before/during/after the execution of the query. The security of

secret-sharing techniques requires that out of the ý servers, no

more than ý ′ < ý communicate maliciously or collude with each

other, where ý ′ is a minority of servers (i.e., less than half of ý).

Thus, we assume that a majority of servers do not collude and com-

municate with each other, and hence, a legal secret value cannot be

generated/inserted/updated/deleted at the majority of the servers.

Also, note that the collusion of servers in violation of the protocol

is a general requirement for secret-sharing based protocols, and a

similar assumption is made by many prior work [8, 17, 52, 56]. This

assumption is based on factors such as economic incentivization

(violation is against their economic interest), law (illegal to col-

lude), and jurisdictional boundaries. Such servers can be selected

on diferent clouds, which make the assumption more realistic.

For the purpose of simplicity, we assume, none of the servers col-

ludes with each other, i.e., they do not communicate directly. Thus,

to reconstruct the original secret value from the shares, two ad-

ditive shares suoce. In the case of PSI sum (as in §6.1), we need

to multiply two shares, each of degree one, and that increases the

degree of the polynomial to two. To reconstruct the secret value of

degree two, we need at least three multiplicative shares.

While we assume that servers do not collude, we consider two

types of adversarial models for servers in the context of the compu-

tation that they perform: (i) Honest-but-curious (HBC) servers:

correctly compute the assigned task without tampering with data

or hiding answers. It may exploit side information (e.g., the internal

state of the server, query execution, background knowledge, and

output size) to gain information about stored data, computation,

or results. HBC adversarial model is considered widely in many

cryptographic algorithms [13, 29, 55]. (ii) Malicious adversarial



servers: can delete/insert tuples from the relation, and hence, is a

stronger adversarial model than HBC.

(3) An initiator or oracle, who knows ÿ DB owners and servers.

Before data outsourcing by DB owners, the initiator informs the

identity of servers to DB owners and vice versa. Also, the initiator

informs the desired parameters (e.g., a hash function, parameters

related to Abelian and cyclic groups, PF , and RRG) to servers and

DB owners. The initiator is an entity trusted by all other entities and

plays a role similar to the trusted certiocate authority in the public-

key infrastructure. The initiator never knows the data/results, since

it does not store any data, or data/results are not provided to servers

via the initiator. The role of the initiator has also been considered

in existing PSI work [51, 59].

(4) An announcer Sÿ who participates only in maximum, minimum,

and median queries to announce the results. Sÿ communicates (not

maliciously) with servers and initiator (and not with DB owners).

3.3 Prism Overview

Let us orst understand the working of Prism at the high-level.

Prism contains four phases (see Figure 1), as follows:

Phase 0: Initialization. The initiator sends desired parameters

(see details in §4) related to additive SS, SSS, cyclic group, PF , and

PRG to all entities and informs them about the identity of others

from/to whom they will receive/send the data.

Figure 1: Prism model.

Phase 1: Data Outsourcing by DB

owners. DB owners create additive

SS or SSS of their data, by follow-

ing methods given in §5 for PSI and

PSU, §6.1 for PSI/PSU-sum, and §6.3

for PSI/PSU-max/min. Then, they out-

source their secret-shared data to non-

communicating servers. Note that in our

explanations, we will write the data out-

sourcing method along with query exe-

cution.

Phase 2: Query Generation by the DB owner. A DB owner who

wishes to execute SMC over datasets of diferent DB owners, sends

the query to the servers. For generating secret-shared queries for

PSI, PSU, count, sum, maximum, and for their veriocation, the DB

owner follows the method given in §5, §6.

Phase 3: Query Processing. Servers process an input query and

respective veriocation method in an oblivious manner. Neither the

query nor the results satisfying the query/veriocation are revealed

to the server. Finally, servers transfer their outputs to DB owners.

Phase 4: Final processing at the DB owners. The DB owner

either adds the additive shares or performs Lagrange interpolation

on SSS to obtain the answer to the query.

3.4 Security Property

Asmentioned in the adversarial setting in §3.2, an adversarial server

wishes to learn the (entire/partial) input and output data, while a

DB owner may wish to know the data of other DB owners. Thus,

a secure algorithm must prevent an adversary to learn the data

(i) from the ciphertext representation of the data, (ii) from query

execution due to access-patterns (i.e., the adversary can learn the

physical locations of tuples that are accessed to answer the query),

and (iii) from the size of the output (i.e., the adversary can learn

the number of tuples satisfy the query). The attacks on a dataset

based on access-patterns and output-size are discussed in [14, 35].

In order to prevent these attacks, our security properties are iden-

tical to the standard security deonition as in [12, 13, 24]. An al-

gorithm is privacy-preserving if it maintains DB owners9 privacy,

data/computation privacy from the servers, and performs identical

operations regardless of the inputs.

Privacy from servers requires that datasets of DB owners must

be hidden from servers, before/during/after any computation. In

PSI/ PSU, servers must not know whether a value is common or

not, the number of DB owners having a particular value in the

result set. In the case of aggregation operations, the output of

aggregation over an attribute ýý corresponding to the attributes

ýý involved in PSI or PSU should not be revealed to servers. Also,

in the case of max/median/min query, servers must not know the

max/median/min value and the identity of the DB owner who

possesses such values. Further, the protocol must ensure that the

server9s behavior in reading/sending the data must be identical

for a particular type of query (e.g., PSI or PSU), thereby the server

should not learn anything from query execution (i.e., hiding access-

patterns and output-sizes).

DB owner privacy requires that the DB owners must not learn

anything other than their datasets and the onal output of the com-

putation. For example, in PSI/PSU queries, DB owners must only

learn the intersection/union set, and they must not learn the num-

ber of DB owners that does not contain a particular value in their

datasets. Similarly, in the case of aggregation operations, DB own-

ers must only learn the output of aggregation operation, not the

individual values on which aggregation was performed.

Properties of veriocation. A veriocation method must be obliv-

ious and ond misbehavior of servers in computing a query. We

follow the veriocation properties from [36] that the veriocation

method cannot be refuted by the majority of the servers and should

not leak any additional information.

4 ASSUMPTIONS & PARAMETERS

Diferent entities in Prism protocols are aware of the following

parameters to execute the desired task:

Parameters known to the initiator. The initiator knows all pa-

rameters used in Prism and distributes them to diferent entities

(only once) as they join in PRISM protocols. Note that the initiator

can select these parameters (such as ÿ, ÿ) to be large to support in-

creasing DB owners over time without updating parameters. Thus,

when new DB owners join, the initiator simply needs to inform DB

owners/servers about the increase in the number of DB owners in

the system, but does not need to change all parameters.

Additionally, the initiator does the following: (i) Selects a poly-

nomial (F (ý) = ÿÿ+1ý
ÿ+1 + ÿÿýÿ + . . . + ÿ1ý + ÿ0, where ÿÿ > 0)

of degree more thanÿ, whereÿ is the number of DB owners, and

sends the polynomial to all DB owners. This polynomial will be

used during the maximum computation. Importantly, this polyno-

mial F (ý) generates values at diferent DB owners in an order-

preserving manner, as will be clear in §6.3, and the degree of the

polynomial must be more than ÿ to prevent an entity, who has

ÿ diferent values generated using this polynomial, to reconstruct



the secret value (a condition similar to SSS); and beyond ÿ + 1,

the degree of the polynomial does not impact the security, in this

case. (ii) Generates a permutation function PF ÿ , and produces four

diferent permutation functions that satisfy Equation 1:

PF ý1 � PFýÿ1 = PF ý2 � PFýÿ2 = PF ÿ (1)

Symbol � shows composition of permutations, and these functions

can be selected over a permutation group. The initiator provides

PF ý1, PF ý2 to all servers and PFýÿ1, PFýÿ2 to all DB owners.

Parameters known to announcer. Announcer Sÿ knows ÿ , a

prime number used in modulo addition for an Abelian group (§3.1).

Parameters known to DB owners. All DB owners know the fol-

lowing parameters: (i)ÿ, i.e., the number of DB owners. (ii) ÿ > ÿ,

(iii) ÿ, where ÿ is a prime number used to deone modular multipli-

cation for a cyclic group (§3.1). Note that DB owners do not know

the generator ý of the cyclic group. (iv) A common hash function.

(v) The domain of the attribute ýý on which they want to execute

PSI/PSU. Note that knowing the domain of the attribute ýý does

not reveal that which of the DB owner has a value of the domain.

(Such an assumption is also considered in prior work [32].) (vi) Two

permutation functions PF db1 and PF db2 . (vii) The polynomial

F (ý) given by the initiator. (viii) A permutation function PF , and

the same permutation function will also known to servers.

PSI, PSU, sum, average, count algorithms are based on the as-

sumptions 1-5. PSI veriocation, sum veriocation, count, and count

veriocation are based on the assumptions 1-6. Maximum, its verio-

cation, and median algorithms are based on assumptions 1-8.

We assume, any DB owner or the initiator provides additive

shares ofÿ to servers for executing PSI, and the DB owners have

only positive integers to compute the max. Since the current PSI

maximummethod uses modular operations (as will be clear in §6.3),

we cannot handle noating-point values directly. Nonetheless, we

can ond the maximum for a large class of practical situations, where

the precision of decimal is limited, say ý > 0 digits by simply mul-

tiplying each number by 10ý and using the current PSI maximum

algorithm. E.g., we can ond the maximum over {0.5,8.2, 8.02} by

computing the maximum over {50, 820, 802}. Designing a more gen-

eral solution that does not require limited precision is non-trivial.

Parameters known to servers. Servers know following parame-

ters: (i)ÿ, ÿ > ÿ, the generator ý of the cyclic (sub)group of order

ÿ and ÿ ′ = ÿ ×ÿ and ÿ > 1. Based on the group theory, ÿ − 1 should

be divisible by ÿ . Note, servers do not know ÿ. (ii) A permutation

function PF , and recall that the same permutation function is also

known to DB owners. (iii) Two permutation functions PF ý1 and

PF ý2. (iv) A common pseudo-random number generator PRG

that generates random numbers between 1 and ÿ − 1; PRG is

unknown to DB owners. PSI, sum, and average are based on the

assumptions 1. Maximum, its veriocation, and median are based

on the assumptions 1,2. Count and its veriocation are based on the

assumptions 1,3. PSU algorithm is based on the assumptions 1,4.

5 PRIVATE SET INTERSECTION QUERY
This section, orst, develops a method for onding PSI amongÿ > 2

diferent DB owners on an attributeýý (which is assumed to exist at

all DB owners, §5.1) and presents a result veriocation method (§5.2).

Later in §6.6, we present a method to execute PSI over multiple

attributes and a method to reduce the communication cost of PSI.

5.1 PSI Query Execution

High-level idea. Each ofÿ > 2 DB owners uses a publicly known

hash function to map distinct values of ýý attribute in a table of at

most |Dom(ýý ) | cells, where |Dom(ýý ) | is the size of the domain

of ýý . Thus, if a value ÿ ÿ ∈ ýý exists at any DB owner, all DB

owners must map ÿ ÿ to an identical cell of the table. All values

of the table are outsourced in the form of additive shares to two

non-communicating servers Sÿ , ÿ ∈ {1, 2}, that obliviously ond the

common items/intersection and return shared output vector (of the

same length as the length of the received shares from DB owners).

Finally, each DB owner adds the results to know the onal answer.

Construction.We create the following construction over elements

of a group under addition and elements of a cyclic group under

multiplication. We can select any cyclic group such that ÿ > ÿ.
(ý + ÿ) mod ÿ = 0, (ýý × ýÿ) mod ÿ = 1 (2)

Based on this construction, below, we explain PSI onding algorithm:

Step 1: DB owners. Each DB owner onds distinct values in an

attribute (ýý , which exists at all DB owners, as per our assumption

given in §4) and executes the hash function on each value ÿÿ to

create a table ÿ = {ý1, ý2, . . . , ýÿ } of length ÿ = |Dom(ýý ) |. The

hash function maps the value ÿÿ ∈ ýc to one of the cells of ÿ , such

that the cell of ÿ corresponding to the value ÿÿ holds 1; otherwise

0.1 It is important that each cell must contain only a single one

corresponding to the unique value of the attributeýý , and note that

if a value ÿÿ ∈ ýý exists at any DB owner, then one corresponding

to ÿÿ is placed at an identical cell of ÿ at the DB owner. The table at

DB ÿ is denoted by ÿ ÿ . Finally, DB ÿ creates additive secret-shares

of each value of ÿ ÿ (i.e., additive secret-shares of either one or zero)

and outsources the ÿ th, ÿ ∈ {1, 2}, share to the server Sÿ . We use

the notation ý(ýÿ )
ÿ
ÿ to refer to ÿ th additive share of an ÿth element

of ÿ ÿ ofDB ÿ . Recall that before the computation starts, the initiator

informs the locations of servers to DB owners and vice versa (§3.2).

Step 2: Servers. Each server Sÿ (ÿ ∈ {1, 2}) holds the ÿ th additive

share of the table ÿ (denoted by ý(ÿ)
ÿ
ÿ ) of ÿ

th (1 ≤ ÿ ≤ ÿ) DB

owners and executes Equation 3:

output
Sÿ

ÿ ← ý
( (⊕

ÿ=ÿ
ÿ=1 ý(ýÿ )

ÿ
ÿ ) �ý(ÿ)ÿ )

mod ÿ ′, (1 ≤ ÿ ≤ ÿ) (3)

where ⊕ and � show the modular addition and modular subtraction

operations, respectively. We used the symbols ⊕ and � to distin-

guish them from the normal addition and subtraction. Particularly,

each server Sÿ performs the following operations: (i) modular addi-

tion (under ÿ) of the ÿth additive secret-shares from allÿ DB owners,

(ii) modular subtraction (under ÿ) of the result of the previous step

from the additive share ofÿ (i.e., ý(ÿ)ÿ ), (iii) exponentiation by ý

to the power the result of the previous step and modulo by ÿ ′, and

(iv) sends all the computed ÿ results to theÿ DB owners.

Step 3: DB owners. From two servers, DB owners receive two vec-

tors, each of length ÿ, and perform modular multiplication (under

ÿ) of outputs outputS1
ÿ and output

S2
ÿ , where 1 ≤ ÿ ≤ ÿ, i.e.,

fopÿ ← (ýÿýýÿý
S1
ÿ × ýÿýýÿý

S2
ÿ ) mod ÿ (4)

This step results in an output array of ÿ elements, which may

contain any value. However, if an ÿth item of ÿ ÿ exists at all DB

1We can also add any positive random number except 1 in case of 0 to prevent revealing data distri-
bution based on background knowledge; see [1] for details.



Value Share 1 Share 2

1 4 -3
0 2 -2
1 3 -2

Table 5: DB1.

Value Share 1 Share 2

1 3 -2
1 4 -3
0 3 -3

Table 6: DB2.

Value Share 1 Share 2

1 2 -1
0 3 -3
1 4 -3

Table 7: DB3.

owners, then fopÿ must be one, since Sÿ have added additive shares

ofÿ ones at the ÿth element and subtracted from additive share of

ÿ that results in (ý0 mod ÿ ′) mod ÿ = 1 at DB owner. Please see

the correctness argument below after the example.

Example 5.1.Assume three DB owners:DB1,DB2, andDB3; see

Tables 1, 2, and 3. For answering a query to ond the common disease

that is treated by each hospital, DB owners create their tables ÿ

as shown in the orst column of Tables 5, 6, and 7. For example, in

Table 6, 〈1, 1, 0〉 corresponds to cancer, fever, and heart diseases,

where 1 means that the disease is treated by the hospital. We select

ÿ = 5, ÿ = 11, and ÿ ′ = 143. Hence, the Abelian group under

modulo addition contains {0, 1, 2, 3, 4}, and the cyclic (sub)group

(with ý = 3) under modulo multiplication contains {1, 3, 4, 5, 9}.

Assume additive shares ofÿ = 3 = (1 + 2) mod 5.

Step 1: DB Owners. DB owners generate additive shares as shown in

the second and third columns of Tables 5, 6, and 7, and outsource all

values of the second and third columns to S1 and S2, respectively.

Step 2: Servers. The server S1 will return the three values 27, 27, 81,

by executing the following computation, to all three DB owners:

3( ( ( (4+3+2) mod 5)−1) mod 5) mod 143 = 27

3( ( ( (2+4+3) mod 5)−1) mod 5) mod 143 = 27

3( ( ( (3+3+4) mod 5)−1) mod 5) mod 143 = 81

The server S2 will return values 9, 1, and 1 to all three DB owners:

3( ( ( (−3−2−1) mod 5)−2) mod 5) mod 143 = 9

3( ( ( (−2−3−3) mod 5)−2) mod 5) mod 143 = 1

3( ( ( (−2−3−3) mod 5)−2) mod 5) mod 143 = 1

Step 3: DB owners. The DB owner obtains a vector 〈1, 5, 4〉, by

executing the following computation (see below). From the vector

〈1, 5, 4〉, DB owners learn that cancer is a common disease treated by

all three hospitals. However, the DB owner does not learn anything

more than this; note that in the output vector, the values 5 and 4

correspond to zero. For instance, DB1, i.e., hospital 1, cannot learn

whether fever and heart diseases are treated by hospital 2, 3, or not.

(27 × 9) mod 11 = 1 (27 × 1) mod 11 = 5 (81 × 1) mod 11 = 4

Correctness.When we plug Equation 3 into Equation 4, we obtain:

fopÿ = (ý
(⊕

ÿ=ÿ
ÿ=1 ý(ýÿ )

1
ÿ ) �ý(ÿ)1

× ý
(⊕

ÿ=ÿ
ÿ=1 ý(ýÿ )

2
ÿ ) �ý(ÿ)2

mod ÿ ′) mod ÿ

= (ý
(⊕

ÿ=ÿ
ÿ=1 (ýÿ ) ÿ−ÿ) mod ÿ ′) mod ÿ

We utilize modular identity, i.e., (ý mod ÿÿ) mod ÿ = ý mod ÿ;

thus, fopÿ = ý
(
∑ÿ=ÿ

ÿ=1 (ýÿ ) ÿ−ÿ) mod ÿ. Only when
∑ÿ=ÿ

ÿ=1 (ýÿ ) ÿ = ÿ,

the result of above expression is one; otherwise, a nonzero number.

Information leakage discussion. We need to prevent informa-

tion leakage at the server and at the DB owners.

(1) Server perspective. Servers only know the parameters 〈ý, ÿ, ÿ ′〉 and

may utilize the relations between ý and ÿ to guess ÿ from ÿ ′. How-

ever, it will not give any meaningful information to servers, since

the DB owner sends the elements of ÿ in additive shared form, and

since servers do not communicate with each other, they cannot

obtain the cleartext values of ÿ . Also, an identical operation is ex-

ecuted on all shares ofÿ DB owners. Hence, access-patterns are

hidden from servers, preventing them to distinguish between any

two values based on access-patterns. Also, the output of queries is

in shared form and contains an identical number of bits as inputs.

Thus, based on the output size, servers cannot know whether the

value is common among DB owners or not.

(2) DB owner perspective. When all DB owners do not have one at the

ÿth position of ÿ , we need to inform DB owners that there is no

common value and not to reveal that how many DB owners do

not have one at the ÿth position. Note that the DB owner can learn

this information, if they know ý and ÿ , since based on these values,

they can compute what the servers have computed. However, un-

awareness of ý and ÿ makes it impossible to guess the number of

DB owners that do not have one at the ÿth position of ÿ . We can

formally prove it as follows:

Lemma. A DB owner cannot deduce how many other DB owners

do not have one at the ÿth position of ÿ without knowing ý.

Proof. According to the precondition, ý is a generator of a

cyclic group of order ÿ , where ÿ is a prime number. Thus, C =

{ý0, ý, ý2, . . . , ýÿ−1} represents all items in the cyclic group. As-

sume that the output of Equation 4 is a number other than one,

say ÿ . Thus, we have ÿ = ýý−ÿ mod ÿ, where ý represents the

number of one at the ÿth position of ÿ ÿ , 1 ≤ ÿ ≤ ÿ. When DB

owners wish to know ý , they must compute logý ÿ . To solve it, they

need to know ý. Note that based on the characteristic of the cyclic

group, there are less than ÿ − 1 generators of C and co-prime to

ÿ . Thus, ý2, . . . , ýÿ−1 may also be generators of the cyclic group.

However, DB owners cannot distinguish which generator is used

by the servers. Thus, DB owners cannot deduce the value of ý ,

except knowing that ý ∈ [0,ÿ − 1].2�

5.2 PSI Result Veriocation

A malicious adversary or a hardware/software bug may result in

the following situations, during computing PSI: (i) skip processing

the ÿth additive shares of all DB owners, (ii) replacing the result

of the ÿth additive shares by the computed result for ÿ th share, (iii)

injecting fake values, or (iv) falsifying the veriocationmethod. Thus,

this section provides a method for verifying the result of PSI.

High-level idea. Let ý be a generator of a cyclic group under

modulo multiplicative ÿ operation, and ÿ ′ = ÿ × ÿ, ÿ > 1. Thus,

(ýý mod ÿ) × (ý−ý mod ÿ) = 1, and the idea of PSI veriocation lies

in this equation. Recall, in PSI (§5.1), we used (ýý mod ÿ), whose

value 1 shows that the item exists at all DB owners. Now, we will

use the term (ý−ý mod ÿ) for veriocation. Speciocally, if the servers

has performed their computations correctly, then Equation 5 must

hold to be true:

((ý
(⊕

ÿ=ÿ
ÿ=1 ý(ýÿ )

ÿ
ÿ )−ý(ÿ)ÿ

mod ÿ ′) × (ý
⊕
ÿ=ÿ
ÿ=1 ý(ýÿ )

ÿ
ÿ mod ÿ ′)) mod ÿ = 1

(5)

whereÿ is the number of DB owners, ý ÿ is either 1 or 0 (as described

in §5.1), and ý ÿ is the complement value of ý ÿ . Below, we describe

the steps executed at the servers and DB owners.

Step 1: DB owners. On distinct values of an attribute ýc of their

relations, DB ÿ executes a hash function to create the table ÿ ÿ that

2Consider ÿth , ÿ th , and ý th values of ÿ1 = {1, 0, 0}, ÿ2 = {0, 1, 0}, ÿ3 = {1, 1, 1}. Here, after

Step 3, DB owners will learn three random numbers, such that the orst two random numbers will

be identical. Based on this, DB owner can only know that the sum of ÿth and ÿ th position of ÿ is

identical. However, it will not reveal how many positions have 0 or 1 at ÿth or ÿ th positions.



Value Share 1 Share 2

0 2 -2
1 0 1
0 1 -1

Table 8: DB1.

Value Share 1 Share 2

0 2 -2
0 3 -3
1 4 -3

Table 9: DB2.

Value Share 1 Share 2

0 4 -4
1 1 0
0 1 -1

Table 10: DB3.

contains ÿ = |Dom(ýý ) | values (either 0 or 1). Also, DB ÿ creates a

table ÿ ÿ containing ÿ values, such that ÿth value of ÿ ÿ must be the

complement of ÿth value of ÿ ÿ . Then, DB ÿ permutes the values of

ÿ ÿ using a permutation function PFýÿ1 (known to all DB owners

only) and creates additive shares of each value of ÿ ÿ and ÿ ÿ , prior to

outsourcing to servers. Reason of using PFýÿ1 will be clear soon.

Step 2: Servers. Each server Sÿ holds the ÿ th additive share of

ÿ (denoted by ý(ÿ)
ÿ
ÿ ) and ÿ (denoted by ý(ÿ)

ÿ
ÿ ) of ÿ

th DB owner

and executes the following operation:

output
Sÿ

ÿ ← ý
( (⊕

ÿ=ÿ
ÿ=1 ý(ýÿ )

ÿ
ÿ ) �ý(ÿ)ÿ )

mod ÿ ′, (1 ≤ ÿ ≤ ÿ) (6)

Vout
Sÿ

ÿ ← ý
( (⊕

ÿ=ÿ
ÿ=1 ý(ýÿ )

ÿ
ÿ )) mod ÿ ′, (1 ≤ ÿ ≤ ÿ) (7)

Equation 6 is identical to Equation 3 (in §5.1) and onds the com-

mon item at the server. In Equation 7, each server Sÿ performs

following operations: (i) modular addition (under ÿ) of the ÿth addi-

tive shares of ÿ fromÿ DB owners, (ii) exponentiation by ý to the

power the result of previous step, under modulo ÿ ′; and (iii) sends

computed results outputSÿ [] and VoutSÿ [] to DB owners.

Step 3: DB owners. From two servers, DB owners receive

outputSÿ [] and VoutSÿ [] (each of length ÿ), permute back the val-

ues of VoutSÿ [] (using the reverse permutation function, since they

used PFýÿ1 on ÿ , which results in VoutSÿ [] at servers) to obtain

pvoutSÿ [], and execute the following:

ÿ1 ← output
S1
ÿ × output

S2
ÿ mod ÿ (8)

ÿ2 ← pvout
S1
ÿ × pvout

S2
ÿ mod ÿ (9)

ÿ1 × ÿ2 mod ÿ ? 1 (10)

If the DB owner onds the output of ÿ1×ÿ2 equals one for all ÿ values,

it shows that the servers executed the computation correctly.

Example 5.2.1. We verify PSI results of Example 5.1.1. Suppose

ÿ = 5, ÿ = 11, and ÿ ′ = 143, as assumed in Example 5.1.1.

Step 1: DB owners. DB owners ond the reverse of ÿ (as shown in

the orst column of Tables 8, 9, and 10) and generate additive shares;

see the second and third columns of Tables 8, 9, and 10. Note that

here for simplicity, we do not permute the values or shares.

Step 2: Servers. The server S1 will return the three values 27, 81, 3,

by executing the following computation, to all three DB owners:

3( (2+2+4) mod 5) mod 143 = 27

3( (0+3+1) mod 5) mod 143 = 81

3( (1+4+1) mod 5) mod 143 = 3

S2 will return three values 7, 27, and 1 to all three DB owners:

3( (−2−2−4) mod 5) mod 143 = 9

3( (1−3+0) mod 5) mod 143 = 27

3( (−1−3−1) mod 5) mod 143 = 1

Step 3: DB owners. The DB owner obtains a vector 〈1, 9, 8〉, by

executing the following computation:

(27 × 9) mod 11 = 1 (81 × 27) mod 11 = 9 (3 × 1) mod 11 = 3

Now, the DB owner executes the following to verify PSI results:

1 × 1 mod 11 = 1, 5 × 9 mod 11 = 1, and 4 × 3 mod 11 = 1, where 1,

5, 4 are onal outputs at DB owner in Example 5.1.1. The output 1

indicates that servers executed the computation correctly. �

Correctness. First, we need to argue that the processing at servers

works correctly. Assume that the DB owner does not implement

PFýÿ1 on elements of ÿ , and computation at servers is executed

in cleartext. Thus, on the values of ÿ , servers add ÿth value of each

ÿ ÿ = {ýÿ } (1 ≤ ÿ ≤ ÿ, 1 ≤ ÿ ≤ ÿ) and subtract the results fromÿ.

It will result in a number, say ÿ ∈ {−ÿ + 1, 0}. On the other hand,

servers add ÿth values ÿ ÿ , and it will result in a number, say ÿ ∈

{0,ÿ}, i.e., the number of ones at DB owners at the ÿth position of ÿ .

To hide the value of ÿ and ÿ from servers, they execute operations

on additive shares of ÿ and ÿ , and take a modulus exponent (i.e.,

ÿ1 ← ýÿ and ÿ2 ← ýÿ ) to hide ÿ and ÿ from DB owners. Since

ÿ = −ÿ or ÿ = ÿ = 0, ÿ1 × ÿ2 mod ÿ = 1, and this shows that the

server executed the correct operation.

Now, we showwhy the veriocationmethodwill detect any abnor-

mal computation executed by servers. Note that servers may skip

processing all/some values of ÿ and ÿ . For example, servers may

process only ý1 ∈ ÿ , ý1 ∈ ÿ , and send the results corresponding to

ý1, ý1 as the results of all remaining ÿ − 1 values. Such a malicious

operation of servers will provide legal proof (i.e., ÿ1 × ÿ2 mod ÿ = 1)

at DB owners that servers executed the computation correctly,

(since values of ÿ was not permuted). Thus, we used permutation

over the values of ÿ and/or additive shares of ÿ . Now, to break the

veriocation method and to produce ÿ1 × ÿ2 mod ÿ = 1 for an ÿth

value of ÿ , servers need to ond the correct value in ÿ corresponding

to an ÿth value of ÿ (among the randomly permuted shares). Hence,

the removal of any results from the output will be detected.

Now, we show that the veriocation method can detect fake data

insertion by servers. For a server S1 to successfully inject a fake tu-

ple (i.e., undetected during veriocation), it should know the correct

position of some element in both ý(ÿ)1ÿ and ý(ÿ)
1
ÿ . Since ý(ÿ)

1
ÿ is

a permuted vector of size ÿ = |Dom(ýý ) |, the probability of onding

the correct element iný(ÿ)1ÿ corresponding to an element ofý(ÿ)1ÿ
will be 1/ÿ2. E.g., in our experiments, the domain size is 5M (or

20M) values, making the above probability inonitesimal (< 10−13).3

Additional security. We implemented PF db1 on the elements

of ÿ . We can, further, permute additive shares of both ÿ and ÿ

using diferent permutation functions, to make it impossible for

both servers to ond the position of a value in ý(ÿ)
ÿ
ÿ and ý(ÿ)

ÿ
ÿ ,

ÿ ∈ {1, 2}. Thus, servers cannot break the veriocation method, and

any malicious activities will be detected by DB owners.

Information leakages discussion. The veriocation method will

not reveal any non-desired information to servers/DB owners, and

arguments follow the similar way as for PSI computation in §5.1.

6 AGGREGATION OPERATION OVER PSI

Prism supports both summary and exemplar aggregations. Below,

we describe how Prism implements sum §6.1, average §6.2, max-

imum §6.3, median §6.4 and count operations §6.5. Also, in our

discussion below, we consider set-based operation PSI on a sin-

gle attribute ýý . §6.6 extends the discussions to support PSI over

multiple attributes and over a large-size domain. Correctness and

information leakage discussion of the following methods with their

veriocation approaches are given in the full version [1].

3If the domain size is small, we can increase its size by adding fake values to bind the probability of
adversary being able to inject fake data.



6.1 PSI Sum Query

A PSI sum query computes the sum of values over an attribute

corresponding to common items in another attribute; see example

given in §2. This section develops a method based on additive, as

well as, multiplicative shares, where additive shares ond common

items over an attribute ýý and multiplicative shares (SSS) onds the

sum of shares of an attribute ýý corresponding to the common

items in ýý . This method contains the following steps:

Step 1: DB owners. DB ÿ creates their ÿ ÿ table over the distinct

values of ýý attribute by following Step 1 of PSI (§5). Here, ÿ ÿ =

{〈ýÿ1, ýÿ2〉} (1 ≤ ÿ ≤ ÿ and ÿ = |Dom(ýý ) |), i.e., the ÿ
th cell of ÿ ÿ

contains a pair of values, 〈ýÿ1, ýÿ2〉, where (i) ýÿ1 = 1, if a value

ÿÿ ∈ ýý is mapped to the ÿth cell, otherwise, 0; and (ii) ýÿ2 contains

the sum of values of ýý attribute corresponding to ÿÿ ; otherwise,

0. DB ÿ creates additive shares of ýÿ1 (denoted by ý(ýÿ1)
ÿ
ÿ , ÿ =

{1, 2}) and sends to servers S1 and S2. DB ÿ also creates SSS of ýÿ2
(denoted by ÿ (ýÿ2)

ÿ={1,2,3}) and sends to servers S1, S2, and S3.

Step 2: Servers. Servers S1 and S2 ond common items using ad-

ditive shares by implementing Equation 3 and send all computed

ÿ results to all DB owners. Since the result is in additive shared

form, it cannot be multiplied to SSS. Thus, servers send the output

of PSI to one of the DB owners selected randomly and wait to receive

multiplicative shares corresponding to common items. The reason

of randomly selecting only one DB owner is just to reduce the com-

munication overhead of sending/receiving additive/multiplicative

shares, and it does not impact the security. Note that all DB owners

can receive the PSI outputs and generate multiplicative shares.

Step 3: DB owners. On receiving ÿ values, the DB owner onds

the common items by executing Equation 4 and generates a vector

of length ÿ having 1 or 0 only, where 0 is obtained by replacing

random values of fop. Finally, DB owner creates three SSS of each ÿ

values, denoted by ÿ (ÿÿ )
ÿ , ÿ = {1, 2, 3}, and sends to three servers.

Step 4: Servers. Servers Sÿ , ÿ = {1, 2, 3}, execute the following:

sum
Sÿ

ÿ ←
∑ÿ=ÿ

ÿ=1 ÿ (ýÿ2)
ÿ
ÿ × ÿ (ÿÿ )

ÿ , 1 ≤ ÿ ≤ ÿ (11)

Each server multiplies ÿ (ÿÿ )
ÿ by ÿ (ýÿ2)

ÿ
ÿ of each DB owner, adds

the results, and sends them to all DB owners.

Step 5: DB owners. From three servers, DB owners receive three

vectors, each of length ÿ, and perform Lagrange interpolation on

each ÿth value of the three vectors to obtain the onal sum of the

value in ýý corresponding to the common items in ýý .

6.2 PSI Average Query

A PSI average query on cost column corresponding to the common

disease in Tables 1-3 returns {Cancer, 280}. PSI average query

works in a similar way as PSI sum query. In short, DB ÿ creates

ÿ ÿ = {〈ýÿ1, ýÿ2, ýÿ3〉} (1 ≤ ÿ ≤ ÿ, ÿ = |Dom(ýý ) |), and ýÿ1, ýÿ2 are

identical to the values we created in Step 1 of PSI sum (§6.1). The

new value ýÿ3 contains the number of tuples atDB ÿ corresponding

toýÿ1. E.g., in case of Table 1, one of the values of ÿ1 will be {〈Cancer,

300, 2〉}, i.e., Table 1 has two tuples corresponding to Cancer and

cost 300. All values ýÿ3 are outsourced in multiplicative share form.

Then, we follow Steps 2 and 3 of PSI sum. In Step 4, servers multiply

the received ÿth SSS values corresponding to the common value to

ýÿ2, ýÿ3 and add the values. Finally, in Step 5, DB owners interpolate

vectors corresponding to all ÿ values of ýÿ2, ýÿ3 and ond the average

by dividing the values appropriately.

6.3 PSI Maximum Query

This section develops amethod for onding themaximum value in an

attribute ýý corresponding to the common values in ýý attribute;

refer to §2 for PSI maximum example. Here, our objective is to

prevent the adversarial server from learning: (i) the actualmaximum

values outsourced by each DB owner, (ii) what is the maximum

value among DB owners and which DB owners have the maximum

value. We allow all the DB owners to know the maximum value

and/or the identity of the DB owner(s) having the maximum value.

We use pink color to highlight the part that is used to reveal the

identity of DB owners having maximum to distinguish which part

of the algorithm can be avoided based on the security requirements.

In this method, each DB owner uses polynomial F(ý) given

by the initiator (see §4 to ond how we created F (ý)). We use F (ý)

to generate values at diferent DB owners in an order-preserving

manner by executing the following Step 3 and Equation 12.

The method contains at most three rounds, where the orst round

onds the common values in an attribute ýý by using Steps 1-3,

the second round onds the maximum value in an attribute ýý

corresponding to common items in ýý using Steps 4-5a, the last

round onds DB owners who have the maximum value using Steps

5b-7. Note that the third round is not always required, if (i) we

do not want to reveal identity of the DB owner having themaximum

value, or (ii) values in ýý column across all DB owners are unique.

Step 1 at DB owner and Step 2 at servers. These two steps are

identical to Step 1 and Step 2 of PSI query execution method (§5).

Step 3: DB owner. On the received outputs (of Step 2) from

servers, DB owners ond the common item in the attribute ýý , as

in Step 3 of PSI query execution method (§5). Now, to ond the

maximum value in the attribute ýx corresponding to the common

item in ýý , DB owners proceeds as follows:

For simplicity, we assume that there is only one common item,

say ÿth item. DBÿ onds the maximum, say Mÿÿ , in the attribute

ýx of their relation corresponding to the common item ÿ. Note that

since we assume only one common element, we refer to the maxi-

mum element Mÿÿ by Mÿ . DBÿ executes Equation 12 to produce

values at DB owners in an order-preserving manner:
ÿÿ ← F (Mÿ ) + ÿÿ (12)

DBÿ implements the polynomial F () onMÿ and adds a random

number ÿÿ (selected in a range between 0 andMÿ
ÿ ), and it produces

a value ÿÿ . Finally, DBÿ creates additive shares of ÿÿ (denoted by

ý(ÿ)
ÿ
ÿ ) and sends them to servers Sÿ , ÿ = {1, 2}. Note that even

if ý ≥ 2 DB owners have the same maximum value Mÿ , by this

step, the value ÿ will be diferent at those DB owners, with a high

probability, 1 − 1
(Mÿ ) (ý−1)ÿ

, (depending on the range of ÿÿ ). Also, if

any two numbersMÿ < M ÿ , thenF (Mÿ ) + ÿÿ < F (M ÿ ) will hold.

Step 4: Servers. Each server Sÿ executes the following operation:

inputSÿ [ÿ] ← ý(ÿ)
ÿ
ÿ , 1 ≤ ÿ ≤ ÿ; outputSÿ [] ← PF (inputSÿ [])

Sÿ collects additive shares from each DB owner and places them in

an array (denoted by inputSÿ []), on which Sÿ executes the permu-

tation function PF . Then, Sÿ sends the output the permutation



function outputSÿ [] to the announcer Sÿ that does the following:

foutputSÿ [ÿ] ← outputS1 [ÿ] + outputS2 [ÿ], 1 ≤ ÿ ≤ ÿ (13)

max, index ← FindMax (foutputSÿ []) (14)

Sÿ adds the ÿth outputs received from S1 and S2, and compares

all those numbers to ond the maximum number (denoted by max).

Also,Sÿ produces the index position (denoted by index) correspond-

ing to the maximum number in foutputSÿ []. Finally, Sÿ creates

additive secret-shares of max (denoted by ý(maxSÿ ), ÿ ∈ {1, 2}),

as well as, of index (denoted byý(index)Sÿ ), and sends them to Sÿ
that forwards such additive shares to DB owners. Note, if the proto-

col does not require to reveal the identity of the DB owner having

the maximum value, Sÿ does not send additive shares of index.

Step 5a: DB owner. Now, the DB owners9 task is to ond the max-

imum value and/or the identity of the DB owner who has the

maximum value. To do so, each DB owner performs the following:

max ← ý(max)S1 +ý(max)S2 (15)

index ← ý(index)S1 +ý(index)S2 , pos ← RPF (index) (16)

The DB owner onds the identity of the DB owner having the max

value by adding the additive shares and by implementing reverse

permutation function RPF . (RPF works since PF is known to

DB owners and servers; see Assumptions given in §4). To ond the

max value, they implement F (ÿ) and F (ÿ+1) and evaluate F (ÿ) ≤

max < F (ÿ + 1), where ÿ ∈ {1, 2, . . .}.4 If this condition holds to be

true, then ÿ is the max value, and if ÿ = Mÿ , then DBÿ knows that

he/she holds the max value. Obviously, if DBÿ does not hold the

max value, then Mÿ < F (Mÿ ) + ÿÿ < F (Mÿ + 1) ≤ F (ÿ) ≤ max.

Step 5b: DB owner. By the end of Step 5a, the DB owners know

the max value and the identity of the DB owner having the same

max value, due to pos. But, if there are more than one DB owners

having the max value, the other DB owners cannot learn about it.

The reason is: the server Sÿ can ond only the max value, while,

recall that, if more than one DB owners have the same max value,

sayM, they produce a diferent value, due to using diferent random

numbers in Step 3 (Equation 12). Thus, we need to execute this step

5b to know all DB owners having the max value. After comparing

its max values against max, DBÿ knows whether it possesses the

maxi value or not. Depending on this,DBÿ generates a value ÿÿ = 0

or ÿÿ = 1, creates additive shares of ÿÿ , and sends to Sÿ , ÿ ∈ {1, 2}.

Step 6: Servers. Server Sÿ allocates the received additive shares

to a vector, denoted by fpos, and sends the vector fpos to all DB

owners, i.e., fposSÿ [ÿ] ← ý(ÿ)
Sÿ

ÿ , 1 ≤ ÿ ≤ ÿ.

Step 7: DB owner. Each DB owner adds the received additive

shares to obtain the vector fpos[].

fpos[ÿ] ← fposS1 [ÿ] + fposS2 [ÿ], 1 ≤ ÿ ≤ ÿ (17)

By fpos[], DB owners discover which DB owners have the max-

imum value, since, recall that in Step 5, DBÿ that satisoes the

condition (F (Mÿ ) ≤ max < F (Mÿ + 1)) requests Sÿ to place

additive share of 1 at fposSÿ [ÿ].

Example 6.3.1. Refer to Tables 1-3, and consider that all hospitals

wish to ond the maximum age of a patient corresponding to the

common disease and which hospitals treat such patients. Assume

ÿ = 5003 and that all hospitals know cancer as the common disease.

4To reduce the computation cost, we can select number ÿ using binary search method.

In Step 3, all hospitals, i.e., DB owners, ond their maximum

values in the attribute Age corresponding to common disease and

implement F (ý) = ý4 + ý3 + ý2 + ý + 1, sent by the initiator.

F (6) = 1555 + 216 = 1771 = (5000 − 3229) mod 5003

F (8) = 4681 + 1 = 4682 = (5500 − 818) mod 5003

F (8) = 4681 + 319 = 5000 = (2500 + 2500) mod 5003

Further, they add random numbers (216, 1, 319) and create ad-

ditive shares, which are outsourced to S1 and S2. In Step 4, S1

holds 〈5000, 5500, 2500〉, permutes them, and sends to Sÿ . S2 holds

〈−3229,−818, 2500〉, permutes them, and sends to Sÿ .

Sÿ obtains 〈4682, 5000, 1771〉 by adding the received shares from

S1, S2, and onds 5000 as the max value and 8Hospital 29 to which

this value belongs. Finally, Sÿ creates additive shares of 5000 =

(4000 + 1000) mod 5003, additive shares of the identity of the DB

owner: 2 = (200 − 198) mod 5003, and sends to DB owners via Sÿ .

In Step 5a, all hospitals will know the maximum value as 5000

(with random value added) and identity of the DB owner as 2 on

which they implement the reverse permutation function to obtain

the correct identity as 8Hospital 39. Then, 8Hospital 19 knows that

they do not hold the maximum, since F (6) + 216 < F (7) < 5000.

8Hospital 29 knows that they hold the maximum, since F (8) <

5000 < F (9). Also, 8Hospital 39 knows that they hold the maximum.

To know which hospitals have the maximum value, in Step 5b,

Hospitals 1, 2, 39 create additive shares of 0, 1, 1, respectively, as:

0 = (200 − 200) mod 5003, 1 = (300 − 299) mod 5003, and 1 =

(200− 199) mod 5003, and send to S1 and S2. Finally, in Step 6, S1

and S2 send 〈200, 300, 200〉 and 〈−200,−299,−199〉 to all hospitals.

In Step 7, hospitals add received shares, resulting in 〈0, 1, 1〉. It

shows that 8Hospitals 2, 39 have the maximum value 8. �

6.4 PSI Median Query

A PSI median query over cost column corresponding to disease

column over Tables 1-3 returns {〈Cancer, 300〉} (here, we orst

added the cost of treatment per disease at each DB owner). For

PSI median, we extend the method of onding max by executing

all steps as specioed in §6.3 with an additional process in Step 2.

Particularly, Sÿ in Step 2 of §6.3 after adding shares, sorts them,

and onds the median value. If number of DB owners is odd (even),

then Sÿ onds the middle (two middle) values in the sorted shares.

6.5 PSI Count Query

We extend PSI method (§5) to only reveal the count of common

items among DB owners (i.e., the cardinality of the common item),

instead of revealing common items. Recall that servers Sÿ know

a permutation function PF ý1 that is not known to DB owners.

The idea behind this is to ond the common items over ÿ and to

permute the onal output at servers before sending the vector (of

additive share form) to DB owners. Thus, when DB owners per-

form computation on the vector received from servers to know

the onal output, the position of one in the vector will not reveal

common items, while the count of one will reveal the cardinality

of the common items. Thus, PSI count method follows all steps of

PSI as described in §5.1 with an addition of permutation function

execution by servers before sending the output to DB owners.



Figure 2: Bucket tree for 16 values.

6.6 Extending PSI over Multiple Attributes

In the previous sections, we explained PSI over a single attribute (or

a set). We can trivially extend it to multiple attributes (or multisets).

Particularly, such a query can be express in SQL as follows:
SELECT ýý , ýý FROM ýÿ1 INTERSECT . . . INTERSECT SELECT ýý , ýý FROM dbÿ

Recall that in PSI ondingmethod §5.1,DB ÿ sends additive shares

of a table ÿ ÿ of length ÿ = |Dom(ýý ) |, where ýý was the attributes

on which we executed PSI. Now, we can extend this method by

creating a table ÿ ÿ of length ÿ = |Πÿ>0Dom(ýÿ ) |, where ýÿ are

attributes on which wewant to execute PSI. However, as the domain

size and the number of attributes increase, such a method incurs

the communication overhead. Thus, to apply the PSI method over a

large (and real) domain size, as well as, to reduce the communication

overhead, we provide a method, named as bucketization-based PSI.

Optimization: bucketization-based PSI. Before going to steps

of this method, let us consider the following example:

Example 6.6.1. Consider two attributes ý with |Dom(ý) | = 8 and

ý with |Dom(ý) | = 2. Thus, DB owners can create ÿ ÿ of 16 cells.

Assume that there are two DB owners: DB1 with ÿ1 whose only

positions 4, 7, 8 have one; and DB2 with ÿ2 whose only positions

1, 6, 8 have one. Thus, each DB owner sends/receives a vector of

length 16 from each server. Now, to reduce communication, we

create buckets over the cell of ÿ and build a tree, called bucket-tree,

of depth logÿ |ÿ |, where ÿ is the number of the maximum number

of child nodes that a node can have. Bucket-tree in created in a

bottom-up manner, by non-overlap grouping of ÿ nodes. For each

level of bucket-tree a hash table is created (similar to ÿ). Notation ÿÿÿ

denotes this table for ÿth level of bucket-tree atDB ÿ , and ÿÿÿ [ý] = 1,

if ý th node at the ÿth level has 1.

Figure 2 shows bucket-tree for DB ÿ , |ÿ | = 16, and ÿ = 4, with

appropriate one and zero in ÿÿ1. Note that the second level shows

four nodes ý21, ý22, ý23, ý24 corresponding to 1 − 4, 5 − 8, 9 − 12,

and 13 − 16. Since DB1 has one at 4, 7, 8 leaf nodes, we obtain

ÿ21 = 〈1, 1, 0, 0〉, i.e., ý21 = 1, ý22 = 1, ý23 = 0, ý24 = 0. Here,

ý21 = 1, since one of its child nodes has one. Now, when computing

PSI, DB ÿ starts the computation shown in Step 2 of §5.1 over the

specioed ÿth levels9 ÿÿÿ . The computation is continued only for the

child nodes, whose parent nodes resulted in one in Step 3 of §5.1.

For example, in Figure 2, DB ÿ can execute PSI for ÿ2ÿ and know

that the only desired bucket nodes are ý21 and ý22 that contain

common items. Thus, in the next round, they execute PSI over

the orst eight items of ÿ1ÿ , i.e., child nodes of ý21 and ý22. Hence,

while we use two communication rounds, DB owners/servers send

4+8=12 numbers instead of 16 numbers. �

Bucketization-based PSI has the following steps:

Step 1a: DB owner. Build the tree as specioed in Example 6.6.1.

Step 1b: DB owner. Outsource additive shares of ÿth level9s ÿÿÿ .

Step 2: Servers. Servers compute PSI using Step 2 of §5.1 over ÿÿÿ
(1 ≤ ÿ ≤ ÿ) and provide answers to DB owners.

Step 3: DB owner. DB ÿ computes results to ond the common

items in ÿÿÿ and discards all non-common values of ÿÿÿ and their

child nodes. DB ÿ requests servers to execute the above Step 2 for

ÿÿ−1ÿ that has values corresponding to all non-discarded nodes of

(ÿ − 1)th level node. Note: The role of DB owners in traversing the

tree (i.e., the above Step 3) can be eliminated by involving Sÿ .

Open problem. In bucketization, we perform PSI at layers of the

tree to eliminate ranges where corresponding child nodes have

zero. However, if the data is dense (i.e., data covers most of the

domain values), then bucketization-based PSI may incur overhead,

since all nodes in the tree may correspond to one, leading to PSI

execution on all those nodes including leaf nodes. In contrast, if

the data is sparse (i.e., the domain is much larger than the data, as

is the case of the domain to be a cartesian product of domains of

two or more attributes), then higher-level nodes in the tree may

have 0, leading to eliminate ranges of the domain on which PSI

is performed. Developing an optimal bucketization strategy that

minimizes PSI execution is an interesting open problem.

7 PRIVATE SET UNION (PSU) QUERY

This section develops a method for onding the union of values

amongÿ > 1 diferent DB owners over an attribute ýý .

High-level idea. Likewise PSI method (as given in §5), each DB

owner uses a publicly known hash function tomap distinct values of

ýý attribute in a table of cells at most |Dom(ýý ) |, where |Dom(ýý ) |

refers to the size of the domain of ýý , and outsources each element

of the table in additive share form to two servers Sÿ , ÿ ∈ {1, 2}. Sÿ
computes the union obliviously, thereby DB owners will receive a

vector of length |Dom(ýý ) | having either 0 or 1 of additive shared

form. After adding the share for an ÿth element, DB owners only

know whether the element is in the union or not; nothing else.

Step 1: DB owner. This step is identical to Step 1 of PSI (§5.1).

Step 2: Server. Server Sÿ holds the ÿ th additive share of the table

ÿ ofÿ DB owners and executes the following operation:
rand [] ← PRG(seed)

output
Sÿ

ÿ ← ((
∑ÿ=ÿ

ÿ=1 ý(ýÿ )
ÿ
ÿ ) × rand [ÿ]) mod ÿ

(18)

Server Sÿ : (i) generates ÿ pseudorandom numbers that are between

1 and ÿ − 1, (ii) performs (arithmetic) addition of the ÿth additive

secret-shares from all DB owners, (iii) multiplies the resultant of

the previous step with ÿth pseudorandom number and then takes

modulo, and (iv) sends ÿ results to all DB owners.

Step 3: DB owner. On receiving two vectors, each of length ÿ,

from two servers, DB owners execute modular addition over ÿth

shares of both vectors to get the onal answer (Equation 19). It

results in either zero or a random number, where zero shows that

ÿth element of ÿ is not present at any DB owner, while a random

number shows ÿth element of ÿ is present at one of the DB owners.

fopÿ ← (output
S1
ÿ + output

S2
ÿ ) mod ÿ (19)

8 EXPERIMENTAL EVALUATION

This section evaluates the scalability of Prism on diferent-sized

datasets and a diferent number of DB owners. Also, we compare

Prism against other MPC-based systems. We used a 16GB RAM

machine with 4 cores for each of the DB owners and three AWS



(a) 5M OK domain size (1-5M). (b) 20M OK domain size (1-20M).
Figure 3: Exp 1. Prism performance on multi-threaded im-

plementation at AWS.

Real data column For veriocation Average
OK PK LN SK DT vOK vPK vLN vSK vDT aOK

Table 11: Table structure created by Prism.

servers of 32GB RAM, 3.5GHz Intel Xeon CPU with 16 cores to

store shares. Communication between DB owners and servers were

done using the scp protocol, and ÿ, ÿ were 227, 113, respectively.

8.1 Prism Evaluation

Dataset generation. We used ove columns (Orderkey (OK),

Partkey (PK), Linenumber (LN), Suppkey(SK), and Discount (DT))

of LineItem table of TPC-H benchmark. We experimented with

domain sizes (i.e., the number of values) of 5M and 20M for the OK

column on which we executed PSI and PSU. Further, we selected at

most 50 DB owners. To our knowledge, this is the orst such experi-

ment of multi-owner large datasets. OK column is used for PSI/PSU,

and other columns were used for aggregation operations. To gener-

ate secret-shared dataset, each DB owner maintained a LineItem

table containing at most 5M (20M) OK values. To outsource the

database, each DB owner did the following:

(1) Created a table of 11 columns, as shown in Table 11, in which the

orst ove columns contain the secret-shared data of LineItem table,

the next ove columns contain the corresponding veriocation data,

and the last column (aOK) was used for computing the average. All

veriocation column names are preoxed with the character 8v.9

(2) First column of Table 11 was created over OK column of LineItem

table (using Step 1 of §5.1) for executing PSI/PSU over OK. vOK

column was created to verify PSI results (using Step 1 of §5.2).

(3) Columns PK and vPK were created using the following command:

select OK, sum(PK) from LineItem group by OK. Other

columns 〈LN, SK, DT, vLN, vSK, vDT〉 were created by using similar

SQL commands. Column aOK was created using the following

command: select count(*) from LineItem group by OK.

(4) Finally, permuted all values of all veriocation columns and create

additive shares of 〈OK and vOK〉, as well as, multiplicative shares

of all remaining columns.

Share generation time. The time to generate two additive shares

and three multiplicative shares of the respective orst ove columns

of Table 11 in the case of 5M (or 20M) OK domain size was 121s (or

548s). The time for creating each additional column for veriocation

took 20s (or 90s) in the case of 5M (or 20M) domain values.

Exp 1. Prism performance on multi-threaded implementa-

tion at AWS. Since identical computations are executed on each

row of the table, we exploit multiple CPU cores by writing Prism9s

the parallel implementation that divides rows into multiple blocks

(a) 5M OK domain size (1-5M). (b) 20M OK domain size (1-20M).
Figure 4: Exp 2. Prism dealing with multiple DB owners.

with each thread processing a single block. We increased the num-

ber of threads from 1 to 5; see Figure 3, while oxing DB owners

to 10. Increasing threads more than 5 did not provide speed-up,

since reading/writing of data quickly becomes the bottleneck as

the number of threads increase. Observe that the data fetch time

from the database remains (almost) identical; see Figure 3.

PSI and PSU queries. Figure 3 shows the time taken by PSI/PSU over

OK column. Observe that as the number of values in OK column

increases (from 5M to 20M), the time increases (almost) linearly

from 4s to 18s, respectively.

Aggregation queries over PSI. We executed PSI count, average, sum,

maximum, and median queries; see Figure 3. Observe that the pro-

cessing time of PSI count is almost the same as that of PSI, since

it involves only one round of computation in which we permute

the output of PSI. In contrast, other aggregation operations (sum,

average, maximum, and median) incur almost twice processing cost

at servers, since they involve computing PSI over OK column in the

orst round and, then, computing aggregation in the second round.

For this experiment, we computed the sum only over DT column

and maximum/median over PK column. Table 12 shows the impact

of computing sum and maximum over multiple attributes (from 1

to 4). As we increase the number of attributes, the computation of

respective aggregation operations also increases, due to additional

addition/multiplication/modulo operations on additional attributes.

Data size
Sum over diferent attributes Max over diferent attributes
1 2 3 4 1 2 3 4

5M 8.2 12.1 15.9 20.4 10 14.6 19 23.5
20M 33.4 48.6 63.5 81.9 36.6 53.3 70 87.4

Table 12: Exp 1. Multi-column aggregation query perfor-
mance (time in seconds).

Exp 2. Impact of the number of DB owners. Prism deals with

multiple DB owners; thus, we investigated the impact of DB owners

by selecting 10, 20, 30, 40, 50 DB owners, for two diferent domain

sizes of OK column. Figure 4 shows the server processing time

for PSI, PSU, and aggregation over PSI. Observe that as the num-

ber of DB owners increases, the computation time at the server

increases linearly, due to the linearly increasing number of addi-

tion/multiplication/modulo operations; e.g., on 5M OK values, PSI

processing took 4.2s, 8.6s, 12.5s, 16.2s, and 20s in the case of 10, 20,

30, 40, 50 DB owners.

Exp 3. DB owner processing time in result construction. In

Prism, DB owners perform computation on additive or multiplica-

tive shares. Table 14 shows the processing time at a DB owner over

5M and 20M domain values for diferent operations. It is clear that

the DB owner processing time is signiocantly less than the server

processing time. In case of 5M (20M) OK values and 50 DB owners,



Papers [39] & [45] [51] [3] [2] [37] [38] Jana [5] SMCQL [6] Sharemind [8] Conclave [54]! Prism

Operations supported PSI PSI PSI PSI PSI PSI PSI, PSU,
aggregation

PSI via join &
aggregation

PSI via join &
aggregation

PSI via join &
aggregation

PSI, PSU, ag-
gregation

Veriocation Support × × × � � × × × × × �

Scalability based on experi-
ments reported (dataset size &
time)

N/A 32768
(≈50m)

1 million
(≈2 h)

32768
(≈16m)

1 billion
(≈10 m)

1000
(≈9m)

1 million
(≈1 h)

>23 million
(≈23 h)

30000 (>2 h) 4 million (8
m)

20 million
(At most 8 s)

Communication among servers N/A N/A N/A N/A N/A N/A Yes ∗ Yes ∗ Yes ∗ Yes ∗ No

Computational Complexity O(ÿÿ ) O (ÿÿÿ) O (ÿÿ ) O (ÿÿ2) O (ÿÿ) !! O(ÿÿ ) O (ÿÿ ) N/A ∗ O(ÿÿ ) N/A ∗ O(ÿÿ)

Table 13: Comparison of existing cloud-based techniques against Prism. Notes. (i) The scalability numbers are taken from the respective papers. (ii) Results

of Sharemind [8] are taken from Conclave [54] experimental comparison. (ii) #DB owners were in each paper was reported two; thus, we executed Prism for two DB owners for this table. (iv) Only Jana,

SMCQL, Sharemind, and Conclave provide identical security like Prism. (v) h: hours. m: minutes. s: seconds.  : We setup Jana for two DB owners each with 1M values in our experiments. !: Conclave [54]

uses a trusted party. Yes: Requires communication among servers. No: No communication among servers. ∗: Based on MPC-based systems. ∗∗: N/A because executing operation in cleartext or at the trusted

party.ÿ: #DB owners. ÿ: DB size.ÿ : domain size. !!: A insecure technique that reveals the size of the intersection, and hence fast. ÿ : The cost of Bilinear Map pairing technique.

Data Size 5M 20M

PSI 1.3 4.8

Count 1.7 5.4

Sum 3.1 10.3

Avg 3.2 10.3

Max 2.8 9.5

PSU 1.3 4.8

Table 14: Exp 3. DB owner
processing time in result
construction (in seconds).

Figure 5: Exp 4. Impact of

bucketization.

each DB owner took at most 4s (13s) in PSI Sum (PSI Sum) query,

while servers took at least 20s (72s) in PSI (PSI) query; see Figure 4.

Exp 4. Impact of bucketization. Figure 5 shows the reduction in

the number of values on which we need to execute PSI when using

bucketization technique (§6.6). We created a tree with fanout 10,

height 9, and 100M values at the leaf level. In Figure 5, we refer to

the percentage of leaf nodes of the tree that containing one as oll

factor. We use a term actual domain size (in Figure 5) that refers to

the number of items on which we execute PSI. The actual domain

size is diferent from the real domain size that refers to domain

values given to us, i.e., 100M. The actual domain size depends on

the oll factor and impacts the performance of PSI. When oll factor

is 100% (i.e., all leaf nodes have one; thus, the entire tree has one),

the actual domain size was 111M. But, if the oll factor was only

0.01% of 100M values (i.e., 10K), then most of the tree contained

zero; thus, we run PSI only on actual domain size of 400K, instead of

real domain size of 100M. Note, for this experiment, we generated

the data randomly. If there is a correlation in the data (the case in

most real-world datasets), bucketization results will be even better.

8.2 Comparing with Other Works

We compare Prism against the state-of-the-art cloud-based indus-

trial MPC-based systems: Galois Inc.9s Jana [5], since it provides

identical security guarantees at servers as Prism. To evaluate Jana,

we inserted two LineItem tables (each of 1M rows) having 〈OK, PK,

LN, SK, DT〉 columns and executed join on OK column. However,

the join execution took more than 1 hour to complete.

[2, 3, 37–39, 45, 51] provide cloud-based PSI/PSU/aggregation

techniques/systems. We could not experimentally compare

Prism against such systems, since none are open-source, except

SMCQL [6], (which we installed and works for a very small data

and incurs runtime errors). Thus, in Table 13, we report experimen-

tal results from those papers, just for intuition purposes. With the

exception of [37], none of the techniques supports a large-sized

dataset, has quadratic/exponential complexity, or uses expensive

cryptographic techniques [51]. While [37] scales better, it does not

support aggregation and, also, reveals which item is in the intersec-

tion set. For a fair comparison, we report Prism results only for two

DB owners in Table 13, since other papers do not provide experi-

mental results for more than two DB owners. In our experiments

(Figure 4a), Prism supports 50 DB owners and takes at most ≈41

seconds on 5M values. Also, note that, in case of 1B values and two

DB owners, Prism takes ≈ 7.3mins, unlike [37] that took ≈10mins.

Several non-cloud-based PSI approaches also exist and can-

not be directly compared against Prism, due to a diferent model

used (in which DB owners communicate amongst themselves and

do not outsource data to cloud) and/or diferent security prop-

erties (e.g.,[4, 15, 21, 23, 26, 32, 41, 43, 47, 49]). A survey of PSI

protocols may be found in [49]. Many schemes including Yao9s

approach [57] for comparison/max onding were proposed; e.g., [9–

11, 20, 30, 48, 53]. Such techniques have limitations: many communi-

cation rounds, restricted to two DB owners, quadratic computation

cost at servers, not dealing with malicious adversaries in cloud

settings, and/or no support for result veriocation.

Comparison between Prism and Obscure [28]. While both

Prism and Obscure are based on secret-sharing, they are signif-

icantly diferent from each other in terms of: (i) purposes: Prism

is for computing simple aggregation over PSI/PSU queries over

multi-owner databases, while Obscure is for complex conjunc-

tive/disjunctive aggregation query processing over outsourced data

and does not support PSI/PSU queries; (ii) implementation: Prism is

based on domain-based representation, while Obscure is based on

unary representation; (iii) query execution complexities: Prism com-

plexity isO(ÿ×Dom(ýý )), whereÿ is #DB owners andDom(ýý ) is

the domain of attribute ýý , while Obscure complexity is O(ÿ × ÿ),

where ÿ is the number of tuples and ÿ is the length of a value

in unary representation. Thus, a direct comparison between the

two non-identical systems is infeasible. Full version [1] shows

overheads of these diferent secret-sharing techniques.

9 CONCLUSION

This paper describes Prism based on secret-sharing that allows mul-

tiple DB owners to outsource data to (a majority of) non-colluding

servers, behaving like honest-but-curious and malicious servers in

terms of computations that they perform. Prism exploits the addi-

tive and multiplicative homomorphic property of secret-sharing

techniques to implement set operations (intersection, union) and

aggregation functions. Experimental results show Prism scales to

both a large number of DB owners and to large datasets.
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