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A RIGIDITY RESULT FOR PROPER HOLOMORPHIC MAPS

BETWEEN BALLS

EDGAR GEVORGYAN, HAORAN WANG, AND ANDREW ZIMMER

Abstract. In this note, we prove a rigidity result for proper holomorphic
maps between unit balls that have many symmetries and which extend to
C2-smooth maps on the boundary.

1. Introduction

In this note, we study proper holomorphic maps between unit balls in complex
Euclidean space and prove a rigidity result for maps that have many symmetries
and which extend to C2-smooth maps on the boundary. There is extensive litera-
ture on proper holomorphic maps between balls, for details and references see the
survey [Hua01].

To state our result precisely, we need to introduce some basic terminology. Given
an open set V ⊂ C

m, we will let Aut(V ) denote the automorphism group of V ,
that is the group of biholomorphic maps V → V . When V is bounded, a theorem
of Cartan says that Aut(V ) has a Lie group structure where the map

(ϕ, z) ∈ Aut(V )× V %→ ϕ(z) ∈ V

is smooth.
Following D’Angelo–Xiao [DX17, DX18], given a holomorphic map f : V → W ,

we consider the group

Gf := {(φ,ψ) : φ ∈ Aut(V ),ψ ∈ Aut(W ),ψ ◦ f = f ◦ φ} .

As in D’Angelo–Xiao, we specialize to the case where f : Bm → B
M is a proper

map between (Euclidean) unit balls Bm ⊂ C
m and B

M ⊂ C
M .

Example 1.1. If m ≤ M and f : B
m → B

M is the holomorphic map given
by f(z) = (z, 0), then Aut(Bm) naturally embeds into Gf and hence Gf is non-
compact.

Recently, D’Angelo–Xiao [DX17, Corollary 3.2] proved that a proper rational
map between unit balls with a non-compact automorphism group is, up to post
and pre-composition by automorphisms, just the proper map in Example 1.1. In
this note, we establish the following generalization of their result.

Theorem 1.2. Suppose f : Bm → B
M is a proper holomorphic map which extends

to a C2-smooth map B
m → B

M . If Gf is non-compact, then there exist ϕ1 ∈
Aut(Bm) and ϕ2 ∈ Aut(BM ) such that

ϕ2 ◦ f ◦ ϕ1(z) = (z, 0)

for all z ∈ B
m.
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Remark 1.3. In the special case when M < 2m− 1, a deep result of Huang [Hua99]
shows that every proper holomorphic map f : Bm → B

M , which extends to a C2-
smooth map on the boundary, satisfies the conclusion of Theorem 1.2 (without any
assumptions on Gf ). Further, when M = 2m− 1 there exists a proper holomorphic
map f : Bm → B

M which extends to a C2-smooth map on the boundary but does
not satisfy the conclusion of Theorem 1.2.

Theorem 1.2 is somewhat related to an old conjecture involving complex hy-
perbolic m-space, denoted H

m
C . This conjecture states that if 2 ≤ m ≤ M and

ρ : Γ → Isom(HM
C ) is a convex co-compact representation of a uniform lattice

Γ ≤ Isom(Hm
C ), then the image of ρ preserves a totally geodesic copy of Hm

C in H
M
C

(see for instance [Hua01, Problem 3.2]).
Using the work of Cao–Mok [CM90], Yue [Yue96] proved this conjecture in the

particular case when M ≤ 2m− 1.
Complex hyperbolic m-space is biholomorphic to the unit ball Bm and, under

this identification, Aut(Bm) coincides with Isom0(H
m
C ), the connected component

of the identity in Isom(HC
m). Further, if ρ : Γ → Isom(HM

C ) is as in the conjecture,
then the theory of harmonic maps implies the existence of a ρ-equivariant proper
holomorphic map f : Bm → B

M (see [Yue96, pg. 348]). Also, since the orbit map
of any convex co-compact representation is a quasi-isometry, the map f extends to
a C0-smooth map ∂ Bm → ∂ BM .

Hence this conjecture can be essentially restated as follows:

Conjecture 1.4. Suppose that f : Bm → B
M is a proper holomorphic map which

extends to a C0-smooth map B
m → B

M . If the image of the natural projection
Gf → Aut(Bm) contains a uniform lattice, then there exist ϕ1 ∈ Aut(Bm) and
ϕ2 ∈ Aut(BM ) such that

ϕ2 ◦ f ◦ ϕ1(z) = (z, 0)

for all z ∈ B
m.

The proof of Theorem 1.2 is motivated by the proof of the Wong and Rosay
ball theorem [Won77, Ros79], which states that a strongly pseudoconvex domain
Ω ⊂ C

m with non-compact automorphism is biholomorphic to the unit ball. In
the standard proof of this result, one considers a sequence {ϕn} of automorphisms
of Ω with no convergent subsequence. Fixing a point p0 ∈ Ω and passing to a
subsequence, one can suppose that ϕn(p0) → x ∈ ∂Ω. One then carefully con-
structs a sequence of affine dilations {An} centered at x, where after passing to a
subsequence, the maps An ◦ ϕn : Ω → C

m converge to a biholomorphism from the
domain Ω to an affine translation of the parabolic model of the unit ball.

The proof of Theorem 1.2 also uses a rescaling argument, but instead of using
affine maps, we use automorphisms of the unit ball.
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2. Reminders

Recall that U(m, 1) is the subgroup of GL(m+1,C) which preserves the Hermitian
two form

[z, w]m,1 = z1w̄1 + · · ·+ zmw̄m − zm+1w̄m+1.

We can identify Aut(Bm) with the quotient group

PU(m, 1) := U(m, 1)/(S1 · idm+1)

via the action
[

A b
cT d

]

(z) =
Az + b

cT z + d
.

We will identify U(m) with the subgroup
{[

A
1

]

: A ∈ U(m)

}

≤ PU(m, 1).

Then, under the identification Aut(Bm) = PU(m, 1), we have

U(m) = StabAut(Bm)(0) = {g ∈ Aut(Bm) : g(0) = 0}.

Further, if k =

[

A
1

]

∈ U(m), then k acts on B
m by

k(z) = Az.

We also consider the standard Cartan subgroup, A = {at : t ∈ R} ⊂ PU(m, 1),
where

at =





cosh(t) sinh(t)
Idm−1

sinh(t) cosh(t)



 .

Notice that

at(0) = (tanh(t), 0, . . . , 0)

for all t ∈ R.
Finally, we recall the parabolic model of the ball. Let

Pm :=
{

z ∈ C
m : Im(z1) > |z2|2 + · · ·+ |zm|2

}

.

Then the map

Fm(z) =

(

i
1− z1
1 + z1

,
z2

1 + z1
, . . . ,

zm
1 + z1

)

is a biholomorphism B
m → Pm with inverse

F−1
m (z) =

(

z1 − i

z1 + i
,

2z2
z1 + i

, . . . ,
2zm
z1 + i

)

.

Notice that

(1) Fm ◦ at ◦ F−1
m (z) = (e−tz1, e

−t/2z2, . . . , e
−t/2zm)

for all t ∈ R.
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3. The image of radial lines

In this section, we consider the case of proper holomorphic maps between unit
balls which extend to Lipschitz maps on the boundaries. For such maps, we show
that radial lines get mapped close to radial lines, where “closeness” is in terms of
the Kobayashi distance.

In what follows, let dΩ denote the Kobayashi pseudo-distance on a bounded
domain Ω ⊂ C

m.

Theorem 3.1. Suppose f : Bm → B
M is a proper holomorphic map which extends

to a Lipschitz map B
m → B

M . There exists C > 0 such that: if v ∈ ∂ Bm, then

dBM

(

f(tv), tf(v)
)

≤ C

for all t ∈ [0, 1).

3.1. Properties of the Kobayashi metric. Before starting the proof, we need
to recall some properties of the Kobayashi pseudo-distance, for more background
see [Aba89].

The fundamental property of the Kobayashi pseudo-distance is that it is non-
increasing with respect to holomorphic maps.

Proposition 3.2. If f : Ω1 → Ω2 is a holomorphic map between domains, then

dΩ2
(f(z), f(w)) ≤ dΩ1

(z, w)

for all z, w ∈ Ω1.

The Kobayashi pseudo-distance on the unit ball is actually a distance and can
be explicitly computed:

(2) dBm(z, w) = cosh−1

√

|1− 〈z, w〉|2

(1− ‖z‖2)(1− ‖w‖2)
for all z, w ∈ B

m.
The Kobayashi distance on the unit ball is also a proper geodesic Gromov hy-

perbolic metric space (in fact the Kobayashi metric on any bounded strongly pseu-
doconvex domain is a proper geodesic Gromov hyperbolic metric, see [BB00]). The
exact definition of this class of metric spaces is unimportant for our work, but we
will use one of their properties: the Morse Lemma.

To state the Morse Lemma, we need to recall a few preliminary definitions. If
(X, d) is a metric space and I ⊂ R is an interval, then a map σ : I → X is:

• a geodesic if

d(σ(s),σ(t)) = |t− s| for all s, t ∈ I,

• an (α,β)-quasi-geodesic (where α ≥ 1, β ≥ 0) if

1

α
|t− s|− β ≤ d(σ(s),σ(t)) = α |t− s|+ β for all s, t ∈ I.

Finally, if I1, I2 ⊂ R are intervals then we define the Hausdorff pseudo-distance
between two maps σ1 : I1 → X and σ2 : I2 → X to be

dHaus(σ1,σ2) = max

{

sup
t∈I1

inf
s∈I2

d(σ1(t),σ2(s)), sup
s∈I2

inf
t∈I1

d(σ1(t),σ2(s))

}

.

The Morse Lemma states that any two quasi-geodesics which start and end near
each other have bounded Hausdorff distance.
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Theorem 3.3 (The Morse Lemma). For any m ≥ 1, α ≥ 1, β ≥ 0, and R ≥ 0,
there exists D = D(m,α,β, R) such that: if σ1 : [a1, b1] → B

m and σ2 : [a2, b2] →
B
m are (α,β)-quasi-geodesics in (Bm, dBm) and

max
{

dBm

(

σ1(a1),σ2(a2)
)

, dBm

(

σ1(b1),σ2(b2)
)}

≤ R,

then

dHaus
Bm (σ1,σ2) ≤ D.

Proof. A proof, which is valid for any proper geodesic Gromov hyperbolic metric
space, may be found in [BH99, Chapter III.H Theorem 1.7]. !

3.2. Proof of Theorem 3.1. Since f is Lipschitz on B
m and f(∂ Bm) ⊂ ∂ BM ,

there exists C > 0 such that

(3) 1− ‖f(z)‖ ≤ C(1− ‖z‖)

for all z ∈ B
m.

For v ∈ ∂ Bm, define σv : [0,∞) → B
m by σv(t) = tanh(t)v. Then Equation (2)

implies that σv is a geodesic in (Bm, dBm). We prove that the image under f of σv
in B

M is a quasi-geodesic.

Lemma 3.4. If v ∈ ∂ Bm, then f ◦ σv is a (1,β)-quasi-geodesic in (BM , dBM ),
where

β :=
1

2
log(2C) + dBM (0, f(0)).

Proof. Fix v ∈ ∂ Bm and fix 0 ≤ s ≤ t. Let σ̂v := f ◦ σv.
By the distance non-increasing property of the Kobayashi distance, we have

dBM (σ̂v(s), σ̂v(t)) = dBm(f(σv(t)), f(σv(s))) ≤ dBm(σv(t),σv(s)) = t− s.

By the triangle inequality,

dBM (σ̂v(s), σ̂v(t)) ≥ dBM (0, σ̂v(t))− dBM (0, σ̂v(s)).

Further, using Equations (2) and (3)

dBM (0, σ̂v(t)) =
1

2
log

1 + ‖σ̂v(t)‖
1− ‖σ̂v(t)‖

≥
1

2
log

1

C(1− ‖σv(t)‖)

≥
1

2
log

1 + ‖σv(t)‖
1− ‖σv(t)‖

−
1

2
log(2C) = dBm(0,σv(t))−

1

2
log(2C)

= t−
1

2
log(2C).

Also,

dBM (0, σ̂v(s)) ≤ dBM (0, σ̂v(0)) + dBM (σ̂v(0), σ̂v(s))

≤ dBM (0, f(0)) + dBm(σv(0),σv(s)) = dBM (0, f(0)) + s.

Hence,

dBM (σ̂v(s), σ̂v(t)) ≥ (t− s)− β

and σ̂v is a (1,β)-quasi-geodesic. !

For w ∈ ∂ BM , define γw : [0,∞) → B
M by γw(t) = tanh(t)w. Then Equation (2)

implies that γw is a geodesic in (BM , dBM ).
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Lemma 3.5. There exists D > 0 such that: if v ∈ ∂ Bm, then

dHaus
BM (γf(v), f ◦ σv) ≤ D.

Proof. Let D satisfy the Morse Lemma (Theorem 3.3) for B
M with parameters

α = 1, β, and R := dBM (0, f(0)).
Fix v ∈ ∂ Bm. Since t %→ (f ◦ σv)(t) is a (1,β)-quasi-geodesic,

dBM (0, (f ◦ σv)(t)) ≥ t− β − dBM (0, (f ◦ σv)(0)) = t− β − dBM (0, f(0)).

So, (f ◦ σv)(t) .= 0 when t > T := β + dBM (0, f(0)). For every natural number
n > T , let

wn :=
f(σv(n))

‖f(σv(n))‖
∈ ∂ BM

and let bn := tanh−1(‖f(σv(n))‖). Then γwn
(bn) = (f ◦ σv)(n) and

dBM (γwn
(0), (f ◦ σv)(0)) = dBM (0, f(0)) = R.

So, by the Morse Lemma,

dHaus
BM

(

γwn
|[0,bn], f ◦ σv|[0,n]

)

≤ D.

Since wn → f(v) and bn → ∞, sending n → ∞ implies that

dHaus
BM (γf(v), f ◦ σv) ≤ D. !

We are now ready to complete the proof of Theorem 3.1.

Lemma 3.6. If v ∈ ∂ Bm, then

dBM

(

f(tv), tf(v)
)

≤ 2D + β + dBM (0, f(0))

for all t ∈ [0, 1).

Proof. Fix s ≥ 0 such that tanh(s) = t. By the previous lemma, there exists s′ ≥ 0
such that

dBM (γf(v)(s
′), (f ◦ σv)(s)) ≤ D.

Further,

dBM

(

γf(v)(s
′), (f ◦ σv)(s)

)

≥ − dBM (0, f(0)) +
∣

∣dBM (γf(v)(s
′), 0)− dBM (f(0), (f ◦ σv)(s))

∣

∣

≥ − dBM (0, f(0))− β + |s′ − s|

since γf(v) is a geodesic and f ◦ σv is an (1,β)-quasi-geodesic. So,

|s′ − s| ≤ D + β + dBM (0, f(0)).

Then

dBM

(

f(tv), tf(v)
)

= dBM

(

(f ◦ σv)(s), γf(v)(s)
)

≤ dBM

(

(f ◦ σv)(s), γf(v)(s′)
)

+ dBM

(

γf(v)(s
′), γf(v)(s)

)

≤ D + |s′ − s| ≤ 2D + β + dBM (0, f(0)).

!
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4. The proof of Theorem 1.2

For the rest of this section, suppose that f : Bm → B
M is a proper holomorphic

map where

(1) f extends to a C2-smooth map B
m → B

M ,
(2) Gf is non-compact.

Remark 4.1. Notice that each element of Aut(Bm) (respectively, Aut(BM )) ex-

tends to a smooth map on B
m (respectively, BM ). Further, if ψ ∈ Aut(BM ) and

φ ∈ Aut(Bm), then Gf is non-compact if and only if Gψ◦f◦φ is non-compact. So
throughout the argument, we are allowed to replace f by a map of the form ψ◦f ◦ϕ,
where ψ ∈ Aut(BM ) and φ ∈ Aut(Bm).

Lemma 4.2. Without loss of generality, we may assume that f(0) = 0.

Proof. Since Aut(BM ) acts transitively on B
M , there exists ϕ ∈ Aut(BM ) with

ϕ(f(0)) = 0. Then replace f by ϕ ◦ f . !

Since Gf is non-compact, there exists a sequence {(φn,ψn)} in Gf with no con-
vergent subsequence.

We observe that the sequences {φn(0)} and {ψn(0)} escape to the boundary.

Lemma 4.3. limn→∞ |φn(0)| = 1 = limn→∞ |ψn(0)|.

Proof. Assume for a contradiction that limn→∞ |φn(0)| .= 1. Then there exists a
subsequence φnj

(0) converging to some z ∈ B
m. Then, since Aut(Bm) acts properly

on B
m, we may pass to a further subsequence and assume that φnj

converges to
some φ ∈ Aut(Bm).

By the definition of Gf , we then have

lim
j→∞

ψnj
(0) = lim

j→∞
ψnj

(f(0)) = lim
j→∞

f(φnj
(0)) = f(z) ∈ B

M .

Then we may pass to a further subsequence and assume that ψnj
converges to

some ψ ∈ Aut(BM ). This gives us a convergent subsequence (φnj
,ψnj

) → (φ,ψ),
contradicting the assumption that {(φn,ψn)} has no convergent subsequence.

Therefore, limn→∞ |φn(0)| = 1 and so

lim
n→∞

|ψn(0)| = lim
n→∞

|f(φn(0))| = 1,

since f is proper and ψn(0) = ψn(f(0)) = f(φn(0)). !

Let e1, . . . , em denote the standard basis of Cm and let e′1, . . . , e
′
M denote the

standard basis of CM .

Lemma 4.4. Without loss of generality, we may assume that

lim
n→∞

φn(0) = e1 and lim
n→∞

ψn(0) = e′1.

Proof. Passing to a subsequence, we can suppose that the limits

x := lim
n→∞

φn(0) and y := lim
n→∞

ψn(0)

both exist. Then we can fix rotations ϕ1 ∈ U(m) and ϕ2 ∈ U(M) such that
ϕ1(x) = e1 and ϕ2(y) = e′1. Then replace f with ϕ2 ◦ f ◦ ϕ−1

1 and {(φn,ψn)} with
{(ϕ1φnϕ

−1
1 ,ϕ2ψnϕ

−1
2 )}. !
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Fix kn ∈ U(m) such that

kn(e1) =
φn(0)

‖φn(0)‖

and let tn := tanh−1(‖φn(0)‖). Then knatn(0) = φn(0) and so

a−tnk
−1
n φn(0) = 0.

Since Aut(Bm) acts properly on B
m, we may pass to a subsequence and assume

that

αn := a−tnk
−1
n φn → α ∈ Aut(Bm).

Next, fix *n ∈ U(M) such that

*n(e
′
1) = f

(

φn(0)

‖φn(0)‖

)

.

Lemma 4.5. The sequence {a−tn*
−1
n ψn(0)} is relatively compact in B

M . Hence,
after passing to a subsequence, we may assume that

βn := a−tn*
−1
n ψn → β ∈ Aut(BM ).

Proof. By Theorem 3.1, there exists C > 0 such that: if v ∈ ∂ Bm, then

dBM

(

f(tv), tf(v)
)

≤ C

for all t ∈ [0, 1).

Let vn := φn(0)
‖φn(0)‖

∈ ∂ Bm. Notice that

*natn(0) = *n(tanh(tn)e
′
1) = tanh(tn)f(vn)

and ψn(0) = f(φn(0)) = f(tanh(tn)vn). So

dBM

(

a−tn*
−1
n ψn(0), 0) = dBM

(

ψn(0), *natn(0))

= dBM

(

f(tanh(tn)vn), tanh(tn)f(vn)) ≤ C.

Hence, {a−tn*
−1
n ψn(0)} is relatively compact in B

M . !

Next, recall that ψ−1
n ◦ f ◦ φn = f and so

a−tn ◦ (*−1
n ◦ f ◦ kn) ◦ atn = βn ◦ f ◦ α−1

n

for all n ≥ 1. Let

hn := *−1
n ◦ f ◦ kn and gn := βn ◦ f ◦ α−1

n .

Then

(4) a−tn ◦ hn ◦ atn = gn.

Passing to a subsequence, we can suppose that *n → * ∈ U(M) and kn → k ∈ U(m).
Then

hn → h := *−1 ◦ f ◦ k and gn → g := β ◦ f ◦ α−1

in C2
(

B
m,BM

)

.

Lemma 4.6. gn(e1) = e′1 and hn(e1) = e′1 for all n ≥ 1.
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Proof. Notice that

α−1
n (e1) = kna−tn(e1) = kn(e1) =

φn(0)

‖φn(0)‖
and

βnf

(

φn(0)

‖φn(0)‖

)

= atn*
−1
n f

(

φn(0)

‖φn(0)‖

)

= atn(e
′
1) = e′1.

So, gn(e1) = e′1. Then

hn(e1) = atngna−tn(e1) = atngn(e1) = atn(e
′
1) = e′1. !

We now will work in the parabolic model. In particular, for j ∈ {m,M}, let
Fj : Bj → Pj denote the biholomorphism defined in Section 2. Then using these
biholomorphisms, we can view g, g1, g2, . . . , h, h1, h2, . . . as maps Pm → PM . To
complete the proof, it suffices to show that there exist ϕ1 ∈ Aut(PM ) and ϕ2 ∈
Aut(Pm) such that

ϕ1 ◦ g ◦ ϕ2(z) = (z, 0).

Recall that Fm(e1) = 0 and FM (e′1) = 0 and so there exists a neighborhood O of
0 in C

m such that the maps g, g1, g2, . . . , h, h1, h2, . . . extend to C2 maps on O∩Pm

that map 0 ∈ C
m to 0 ∈ C

M .
We further note that when viewed as elements of Aut(Pj), we have

at(z1, , . . . , zm) = (e−tz1, e
− t

2 z2, · · · e−
t
2 zm)

and
as(z1, , . . . , zM ) = (e−sz1, e

− s
2 z2, · · · e−

s
2 zM )

for all s, t ∈ R, see Equation (1).
Given a function ϕ mapping into CM and 1 ≤ j ≤ M , let [ϕ]j denote the jth

component function of ϕ. Since gn and hn are C2 on O ∩ Pm,

[gn]j(z) = [gn]j(0) +
m
∑

k=1

∂[gn]j
∂zk

(0)zk +
m
∑

k,#=1

∂2[gn]j
∂zk∂z#

(0)zkz# + [En]j(z)

and

[hn]j(z) = [hn]j(0) +
m
∑

k=1

∂[hn]j
∂zk

(0)zk +
m
∑

k,#=1

∂2[hn]j
∂zk∂z#

(0)zkz# + [Ên]j(z)

where

lim sup
z→0

En(z)

‖z‖2
= 0 and lim sup

z→0

Ên(z)

‖z‖2
= 0.

We observe the following uniformity in the error terms of the hn.

Lemma 4.7.

lim sup
z→0



sup
n≥1

∥

∥

∥
Ên(z)

∥

∥

∥

‖z‖2



 = 0.

Proof. In the ball model, each kn acts by rotations and

kn(e1) =
φn(0)

‖φn(0)‖
→ e1.

Hence, in the parabolic model there is a neighborhood O′ of 0 in Pm, where
kn|O′ → k|O′ in the C∞ topology. Applying the same reasoning to {*n}, there
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is a neighborhood O′′ of 0 in PM where *n|O′′ → *|O′′ in the C∞ topology. These
facts imply that the error terms for hn = *−1

n ◦ f ◦ kn satisfy the estimate claimed
in the lemma. !

As a consequence of this uniformity in the error terms of the hn, we next observe
that g is a quadratic polynomial.

Lemma 4.8. g extends to a holomorphic function C
m → C

M and the component
functions of g are quadratic polynomials.

Proof. Since En = a−tn ◦ Ên ◦ atn , when z ∈ O ∩ Pm is non-zero we have

lim sup
n→∞

‖En(z)‖ = lim sup
n→∞

∥

∥

∥
a−tnÊn(atnz)

∥

∥

∥
≤ lim sup

n→∞
etn

∥

∥

∥
Ên(atnz)

∥

∥

∥

= lim sup
n→∞

etn ‖atnz‖
2

∥

∥

∥
Ên(atnz)

∥

∥

∥

‖atnz‖
2 ≤ lim sup

n→∞
‖z‖2

∥

∥

∥
Ên(atnz)

∥

∥

∥

‖atnz‖
2 .

Since atnz → 0, the previous lemma implies that

lim sup
n→∞

‖En(z)‖ = 0

locally uniformly on O ∩ Pm. Since gn → g in the C2 topology on O ∩ Pm, this
implies that the component functions of g are quadratic polynomials. Hence, g
extends to a holomorphic function C

m → C
M . !

Next, using the fact that that a−tn ◦hn ◦atn = gn, we will restrict the form of g.

Lemma 4.9.

g(z) =

(

λ 0
0 U

)

z +











∑

2≤k,#≤m Lk#zkz#
0
...
0











where λ > 0 and U is a (M − 1)× (m− 1) matrix.

Proof. Since a−tn ◦ hn ◦ atn = gn,

∂[gn]j
∂zk

(0) = σnjk
∂[hn]j
∂zk

(0)

and

∂2[gn]j
∂zk∂z#

(0) = σnjk#
∂2[hn]j
∂zk∂z#

(0)

where

σnjk =



















1 if j = k = 1,

e
1

2
tn if j = 1 and 2 ≤ k ≤ m,

e−
1

2
tn if 2 ≤ j ≤ M and k = 1,

1 if 2 ≤ j ≤ M and 2 ≤ k ≤ m
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and

σnjk# =















































e−tn if j = k = * = 1,

e−
1

2
tn if j = k = 1 and 2 ≤ * ≤ m, or j = * = 1 and 2 ≤ k ≤ m,

1 if j = 1 and 2 ≤ k, * ≤ m,

e−
3

2
tn if 2 ≤ j ≤ M and k = * = 1,

e−tn if 2 ≤ j ≤ M , 1 ≤ k ≤ m, and * = 1,

e−tn if 2 ≤ j ≤ M , k = 1, and 2 ≤ * ≤ m,

e−
1

2
tn if 2 ≤ j ≤ M and 2 ≤ k, * ≤ m.

Since gn → g and hn → h in the C2 topology near 0, when 2 ≤ j ≤ M we obtain

∂[g]j
∂z1

(0) = lim
n→∞

∂[gn]j
∂z1

(0) = lim
n→∞

e−
1

2
tn ∂[hn]j

∂z1
(0) = 0 ·

∂[h]j
∂z1

(0) = 0.

Likewise,

∂2[g]1
∂z1∂z#

(0) =
∂2[g]1
∂zk∂z1

(0) =
∂2[g]j
∂z21

(0) =
∂2[g]j
∂zk∂z1

(0) =
∂2[g]j
∂z1∂z#

(0) =
∂2[g]j
∂zk∂z#

(0) = 0

for 2 ≤ j ≤ M and 2 ≤ k, * ≤ m.
Since g(0) = 0 and g(Pm) = PM , the Jacobian matrix g′(0) must map the

(complex) tangent hyperplane of ∂ Pm at 0 into the (complex) tangent hyperplane
of ∂ PM at 0. So, we must have

g′(0)
(

R ·ie1 + C ·e2 + · · ·+ C ·em
)

⊂ R ·ie1 + C ·e2 + · · ·+ C ·eM

and

g′(0)
(

C ·e2 + · · ·+ C ·em
)

⊂ C ·e2 + · · ·+ C ·eM .

Thus ∂[g]1
∂z1

(0) > 0 and ∂[g]1
∂zk

(0) = 0, whenever 2 ≤ k ≤ m.
The above computations show that g has the desired form. !

Lemma 4.10.

(1) The columns of U are orthogonal and each has length
√
λ.

(2) Lk# = 0 for all 2 ≤ k, * ≤ m.

Proof. If w = (w2, · · · , wm) ∈ Cm−1, then (i‖w‖2, eiθw) ∈ ∂Pm for all θ ∈ R. So,

g(i‖w‖2, eiθw) =
(

λi‖w‖2 + e2iθ
∑

2≤k,#≤m Lk#wkw#
eiθUw

)

∈ ∂PM .

Hence,

Im



λi‖w‖2 + e2iθ
∑

2≤k,#≤m

Lk#wkw#



 = ‖Uw‖2

or equivalently

Im



e2iθ
∑

2≤k,#≤m

Lk#wkw#



 = ‖Uw‖2 − λ‖w‖2

for all w ∈ C
m−1 and θ ∈ R. Since θ ∈ R is arbitrary, this is only possible if Lk# = 0

for all k, *.
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Then
‖Uw‖ =

√
λ‖w‖

for all w ∈ C
m−1, which is only possible if the columns of U orthogonal and each

has length
√
λ. !

Suppose U1, . . . , Um−1 ∈ C
M−1 are the columns of U . Fix Um, . . . , UM−1 ∈

C
M−1 such that

1√
λ
U1, . . . ,

1√
λ
Um−1, Um, . . . , UM−1

is an orthonormal basis of of CM−1. Then let

U ′ :=

[

1√
λ
U1 · · ·

1√
λ
Um−1 Um · · · UM−1

]

∈ U(M − 1)

and

A :=

(

1 0
0 U ′−1

)

∈ U(M).

Notice that A ∈ Aut(PM ) and

(A ◦ alog(λ) ◦ g)(z) = (z, 0)

which completes the proof.
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