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A RIGIDITY RESULT FOR PROPER HOLOMORPHIC MAPS
BETWEEN BALLS

EDGAR GEVORGYAN, HAORAN WANG, AND ANDREW ZIMMER

ABSTRACT. In this note, we prove a rigidity result for proper holomorphic
maps between unit balls that have many symmetries and which extend to
C2-smooth maps on the boundary.

1. INTRODUCTION

In this note, we study proper holomorphic maps between unit balls in complex
Fuclidean space and prove a rigidity result for maps that have many symmetries
and which extend to C%2-smooth maps on the boundary. There is extensive litera-
ture on proper holomorphic maps between balls, for details and references see the

survey [Hua01].

To state our result precisely, we need to introduce some basic terminology. Given
an open set V. C C™, we will let Aut(V) denote the automorphism group of V|
that is the group of biholomorphic maps V' — V. When V is bounded, a theorem
of Cartan says that Aut(V') has a Lie group structure where the map

(p,2) EAt(V) X Vi p(2) eV

is smooth.
Following D’Angelo—Xiao , given a holomorphic map f:V — W,
we consider the group
Gri={(¢,¢) : ¢ € Aut(V), ¢ € Aut(W), s o f = fog}.
As in D’Angelo-Xiao, we specialize to the case where f : B™ — B is a proper
map between (Euclidean) unit balls B™ ¢ C™ and BM c c*.

Example 1.1. If m < M and f : B™ — B is the holomorphic map given
by f(z) = (z,0), then Aut(B™) naturally embeds into G; and hence Gy is non-
compact.

Recently, D’Angelo—Xiao Corollary 3.2] proved that a proper rational
map between unit balls with a non-compact automorphism group is, up to post
and pre-composition by automorphisms, just the proper map in Example [[L1l In
this note, we establish the following generalization of their result.

Theorem 1.2. Suppose [ : I[Bm_—> B is a proper holomorphic map which extends

to a C%-smooth map B™ — BM. If Gy is non-compact, then there exist ¢1 €
Aut(B™) and o € Aut(BM) such that

pao fopr(z) = (20)
for all z € B™.
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Remark 1.3. In the special case when M < 2m — 1, a deep result of Huang [Hua99)
shows that every proper holomorphic map f : B"™ — BM, which extends to a C*-
smooth map on the boundary, satisfies the conclusion of Theorem [L.2] (without any
assumptions on Gy). Further, when M = 2m — 1 there exists a proper holomorphic
map f : B™ — B which extends to a C*-smooth map on the boundary but does
not satisfy the conclusion of Theorem [I.2]

Theorem [[.2] is somewhat related to an old conjecture involving complex hy-
perbolic m-space, denoted Hg'. This conjecture states that if 2 < m < M and
p: T — Isom(Hg ) is a convex co-compact representation of a uniform lattice
I’ < Isom(H¢"), then the image of p preserves a totally geodesic copy of H¢' in ]HLICV[
(see for instance [HuaOll Problem 3.2]).

Using the work of Cao-Mok [CM90], Yue [Yue96] proved this conjecture in the
particular case when M < 2m — 1.

Complex hyperbolic m-space is biholomorphic to the unit ball B™ and, under
this identification, Aut(B™) coincides with Isomg(Hg'), the connected component
of the identity in Isom(HS,). Further, if p : T’ — Isom(HM) is as in the conjecture,
then the theory of harmonic maps implies the existence of a p-equivariant proper
holomorphic map f : B™ — B (see [Yue96, pg. 348]). Also, since the orbit map
of any convex co-compact representation is a quasi-isometry, the map f extends to
a C%-smooth map 9B™ — dBM.

Hence this conjecture can be essentially restated as follows:

Conjecture 1.4. Suppose that f : B™ = BM is a proper holomorphic map which

extends to a C’-smooth map B™ — B™. If the image of the natural projection
G; — Aut(B™) contains a uniform lattice, then there exist ¢; € Aut(B™) and
pg € Aut(BM) such that

@20 fopi(z) = (z,0)

for all z € B™.

The proof of Theorem [[.2] is motivated by the proof of the Wong and Rosay
ball theorem [Won77] [Ros79], which states that a strongly pseudoconvex domain
Q ¢ C™ with non-compact automorphism is biholomorphic to the unit ball. In
the standard proof of this result, one considers a sequence {(p,} of automorphisms
of Q0 with no convergent subsequence. Fixing a point pg €  and passing to a
subsequence, one can suppose that ¢,(po) — = € 9. One then carefully con-
structs a sequence of affine dilations {4, } centered at x, where after passing to a
subsequence, the maps A,, o ¢, :  — C™ converge to a biholomorphism from the
domain 2 to an affine translation of the parabolic model of the unit ball.

The proof of Theorem [[.2] also uses a rescaling argument, but instead of using
affine maps, we use automorphisms of the unit ball.
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2. REMINDERS

Recall that U(m, 1) is the subgroup of GL(m+1, C) which preserves the Hermitian
two form

[z, W]m1 = 2101 + -+ + 2 Wi — Zm+1Wm+1-
We can identify Aut(B™) with the quotient group
PU(m, 1) := U(m,1)/(S* -id,,11)

via the action
A b () = Az+b
FE | ISR +d

We will identify U(m) with the subgroup

{P.J:Aewm&gPWmU.
Then, under the identification Aut(B™) = PU(m, 1), we have
U(m) = Staba g mm)(0) = {g € Aut(B™) : g(0) = 0}.

Further, if k = {A } € U(m), then k acts on B™ by

1
k(z) = Az.

We also consider the standard Cartan subgroup, A = {a; : t € R} C PU(m,1),
where

cosh(t) sinh(t)

ap = Idy,—1

sinh(t) cosh(t)

Notice that
a;(0) = (tanh(¢),0,...,0)
for all t € R.
Finally, we recall the parabolic model of the ball. Let

pmo.— {z €C™ :Im(z1) > |z + -+ |Zm|2} :

Then the map

Fnle) =

is a biholomorphism B™ — P™ with inverse

le(z)_<z1—i 229 2zm)'

zl—i-i’zl—i—i’ ,Zl—f—i

.1—Z1 Z9 Zm
(3 5 geeey
1—|—Zl 1—|—Zl 1—|—Zl

Notice that
(1) F,oa; 0 Fn—ll(z) — (e_tzl,e_t/2zQ, N ,e—t/2zm)

for all ¢t € R.
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3. THE IMAGE OF RADIAL LINES

In this section, we consider the case of proper holomorphic maps between unit
balls which extend to Lipschitz maps on the boundaries. For such maps, we show
that radial lines get mapped close to radial lines, where “closeness” is in terms of
the Kobayashi distance.

In what follows, let dg denote the Kobayashi pseudo-distance on a bounded
domain Q c C™.

Theorem 3.1. Suppose f : B™ — BM is a proper holomorphic map which extends
to a Lipschitz map B™ — BM . There exists C > 0 such that: if v e OB™, then

dgm (f(t’l}), tf(’l))) <C
for all t €10,1).

3.1. Properties of the Kobayashi metric. Before starting the proof, we need
to recall some properties of the Kobayashi pseudo-distance, for more background

see [ADbag9).

The fundamental property of the Kobayashi pseudo-distance is that it is non-
increasing with respect to holomorphic maps.

Proposition 3.2. If f: Q1 — Qs is a holomorphic map between domains, then
do, (f(2), f(w)) < da, (2,w)
for all z,w € Q4.

The Kobayashi pseudo-distance on the unit ball is actually a distance and can
be explicitly computed:

—1 |1_<Zuw>|2
9 dgm (z,w) = cosh p) 2
) e (7 ) \/<1—|z|| (L~ [l

for all z,w € B™.

The Kobayashi distance on the unit ball is also a proper geodesic Gromov hy-
perbolic metric space (in fact the Kobayashi metric on any bounded strongly pseu-
doconvex domain is a proper geodesic Gromov hyperbolic metric, see ). The
exact definition of this class of metric spaces is unimportant for our work, but we
will use one of their properties: the Morse Lemma.

To state the Morse Lemma, we need to recall a few preliminary definitions. If
(X,d) is a metric space and I C R is an interval, then a map o : I — X is:

e a geodesic if
d(o(s),o(t)) =|t—s| forall s,tel,
e an («, 3)-quasi-geodesic (where a > 1, 8 > 0) if

l|t—s|—ﬁ§d(a(s),a(t)) =alt—s|+p forall s,tel.
o

Finally, if I1,Io C R are intervals then we define the Hausdorff pseudo-distance
between two maps o1 : [1 — X and o2 : [» — X to be

d"* (o), o) = max {sup inf d(o1(t),02(s)), sup inf d(oq(t), 0'2(8))} .
tel, sels s€l, tel;

The Morse Lemma states that any two quasi-geodesics which start and end near
each other have bounded Hausdorff distance.
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Theorem 3.3 (The Morse Lemma). For anym > 1, a > 1, § >0, and R > 0,
there exists D = D(m,«, B, R) such that: if o1 : [a1,b1] — B™ and o2 : [az,ba] —
B™ are (a, 8)-quasi-geodesics in (B™,dg=) and
max {dgn (01(a1), 02(az)),dgm (01(b1),02(b2)) } < R,
then
dHauS(O'l, 0'2) S D.

Proof. A proof, which is valid for any proper geodesic Gromov hyperbolic metric
space, may be found in Chapter TII.LH Theorem 1.7]. O

3.2. Proof of Theorem B.I Since f is Lipschitz on B™ and f(dB™) c dBM,
there exists C' > 0 such that
(3) L= f(2)I < C1—zl])

for all z € B™.

For v € 9B™, define o, : [0,00) — B™ by 0, (t) = tanh(t)v. Then Equation (2)
implies that o, is a geodesic in (B™, dgm). We prove that the image under f of o,
in BM is a quasi-geodesic.

Lemma 3.4. If v € OB™, then f oo, is a (1,83)-quasi-geodesic in (BM dgw),
where

8= %10g(20) + dge (0, £(0)).

Proof. Fix v € 9B™ and fix 0 < s < t. Let 6, := foo,.
By the distance non-increasing property of the Kobayashi distance, we have

dpar (64 (5), 50(t)) = dem (f(00(t)), f(ow(s))) < dam(00(t),00(s)) =t —s.
By the triangle inequality,
dpm (&U(S), Gy (t)) > dgm (0,6,(t)) — dgm (0, 61,(8)).
Further, using Equations (@) and (3)

N S e (2O 1
L L e PRI Ate e FX O]
L T4lou®l 1 _ 1
=t— 3 log(2C).
Also,
dpa (0,64(s)) < dgam (0,5,(0)) + dgar (64,(0), 64 (s))
< dgw (0, f(0)) + dgm (0(0), 00 (s)) = dga (0, £(0))
Hence,
dgn (G (s), 60 (t)) = (t —5) = B
and &, is a (1, §)-quasi-geodesic. O

For w € 9B | define 7, : [0, 00) = B by 7,,(t) = tanh(t)w. Then Equation (2)
implies that 7, is a geodesic in (B, dga ).
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Lemma 3.5. There exists D > 0 such that: if v € OB™, then
g™ (Vf(wys f o 00) < D.

Proof. Let D satisfy the Morse Lemma (Theorem B.3) for B with parameters
a=1, 8, and R := dgm (0, f(0)).
Fix v € 9B™. Since t — (f 0 0,,)(¢) is a (1, 8)-quasi-geodesic,
g (0, (f 0 00)(t)) 2 t = B — dgar (0, (f 0 04)(0)) = ¢ — 5 — dg (0, f(0)).

So, (fooy)(t) # 0 when t > T := f + dgm (0, f(0)). For every natural number
n>T, let

flov(n)) M
= el <8
and let b,, := tanh™ (|| f (0, (n))||). Then v, (by) = (f 0 o) (n) and
dg2s (Y, (0), (f ©00)(0)) = dga (0, £(0)) = R.
So, by the Morse Lemma,

5™ (Yuul 10,61, f © Tuliom) < D

Since w, — f(v) and b,, — 00, sending n — oo implies that
dgi™® (Vy(wy, f 0 00) < D. O
We are now ready to complete the proof of Theorem [3.1]
Lemma 3.6. Ifv € 0B™, then
dgar (f(tv),tf(v)) < 2D+ B+ dga (0, f(0))
for allt €0,1).

Proof. Fix s > 0 such that tanh(s) = ¢t. By the previous lemma, there exists s’ > 0
such that

dgy (Y4 (0) (87), (f 0 0w)(s)) < D.
Further,
dgv (V) (8"): (f 0 0)(5))
> —dgu (0, £(0)) + [daa (V5() (5"), 0) = dgae (£(0), (f 0 7,)(5))]
> —dpu (0, £(0)) = B+ s — 5]
since vy (y) is a geodesic and f o o, is an (1, B)-quasi-geodesic. So,
|s" — 8] < D+ B+ dga (0, £(0)).
Then
dgae (f(tv), tf(v)) = dgar ((F 0 90)(5), 75 (0)(5))

<dpwr ((f000)(8), 110 () + dpar (V) (), Vr(0) (5))
<D+ |s" —s| <2D+ B+ dgm (0, £(0)).



A RIGIDITY RESULT FOR PROPER HOLOMORPHIC MAPS BETWEEN BALLS 7

4. THE PROOF OF THEOREM [1.2]

For the rest of this section, suppose that f : B™ — BM is a proper holomorphic
map where

(1) f extends to a C%-smooth map B™ — IB%—M,
(2) Gy is non-compact.

Remark 4.1. Notice that each element of Aut(B™) (respectively, Aut(B™)) ex-

tends to a smooth map on B™ (respectively, BY). Further, if ¥ € Aut(B") and
¢ € Aut(B™), then Gy is non-compact if and only if Gyofoe is non-compact. So
throughout the argument, we are allowed to replace f by a map of the form o fo,
where ¢ € Aut(B") and ¢ € Aut(B™).

Lemma 4.2. Without loss of generality, we may assume that f(0) = 0.

Proof. Since Aut(BM) acts transitively on B, there exists ¢ € Aut(B) with
©(f(0)) = 0. Then replace f by po f. O

Since Gy is non-compact, there exists a sequence {(¢n,%¥n)} in Gy with no con-
vergent subsequence.
We observe that the sequences {¢,(0)} and {1,,(0)} escape to the boundary.

Lemma 4.3. lim,_, |¢,(0)] = 1 = lim,—, [¢,(0)].

Proof. Assume for a contradiction that lim, o [¢,(0)| # 1. Then there exists a
subsequence ¢,,,(0) converging to some z € B™. Then, since Aut(B™) acts properly

on B™, we may pass to a further subsequence and assume that ¢, converges to
some ¢ € Aut(B™).
By the definition of G, we then have

Jim 4, (0) = Tim 4, (f(0)) = lim f(¢n,(0) = f(z) € B

Then we may pass to a further subsequence and assume that 1), converges to

some 1 € Aut(B). This gives us a convergent subsequence (n>%n;) = (0,0),
contradicting the assumption that {(¢,, 1)} has no convergent subsequence.
Therefore, lim,,_,  |¢,(0)] = 1 and so

since f is proper and ¥,,(0) = ¥, (f(0)) = f(¢,(0)). d

Let e1,...,en denote the standard basis of C™ and let €], ..., €, denote the
standard basis of CM.

Lemma 4.4. Without loss of generality, we may assume that
nh—>ngo On (0) =e1 and nh—>ngo ¢n(0) = ell'
Proof. Passing to a subsequence, we can suppose that the limits
z:= lim ¢,(0) and y:= lim ,(0)
n—oo n—oo

both exist. Then we can fix rotations ¢1 € U(m) and @2 € U(M) such that
¢1(x) = ey and @a(y) = €;. Then replace f with @0 f oy ! and {(¢n,,)} with
{(p10ne1 ", 02903 )} O
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Fix k, € U(m) such that

)
Fnler) = 15 ol

and let t,, := tanh ™" (||¢,,(0)]]). Then kyay, (0) = ¢, (0) and so
a_¢, ky tén(0) = 0.

Since Aut(B™) acts properly on B™, we may pass to a subsequence and assume
that

= a_g, ky bp — o € Aut(B™).
Next, fix ¢,, € U(M) such that

bl =1 ()

Lemma 4.5. The sequence {a_;, £, (0)} is relatively compact in B . Hence,
after passing to a subsequence, we may assume that

Bn = a_¢, b, o — B € Aut(BM).
Proof. By Theorem B.I] there exists C' > 0 such that: if v € 9B™, then
dgm (f(t’l}),tf(’l))) <C

for all t € [0,1).

P O) m 4
Let v, := ”%—go)” € 0B"™. Notice that

lnay, (0) = £y (tanh(ty,)e}) = tanh(t,) f(v,)

and ¥, (0) = f(¢,(0)) = f(tanh(t,)v,). So
dgar (a—¢, £ ¥n(0),0) = dgar (¥ (0), Lnar, (0))
= dgu (f(tanh(t,)v,), tanh(t,)f(v,)) < C.
Hence, {a_y, £; "1, (0)} is relatively compact in B . O
Next, recall that ¢, o f o ¢, = f and so
a_¢, 0l o foky)oay, = fnofoa,’

for all n > 1. Let

hy =t ofok, and g,:=pB,0foa,’.
Then
(4) a_¢, o hyoay, = gn.

Passing to a subsequence, we can suppose that ¢, — ¢ € U(M) and k,, — k € U(m).
Then

hy —h:=01ofok and g, —g:=pofoa?
e (57,57

Lemma 4.6. g,(e1) =€} and hy(e1) =€} for alln > 1.
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Proof. Notice that

a;l(el) = kna_4,(e1) = kn(er) = ”z:ES;'
and
a0 N (90O N
ot <|¢n(0)|> = a, by (||¢n(0)|) i, (€]) = €.

So, gn(e1) = €. Then

hn(e1) = ar, gna—t,(e1) = ar, gnle1) = a, (€}) = €.

O

We now will work in the parabolic model. In particular, for j € {m, M}, let
F; B’ — PJ denote the biholomorphism defined in Section 2. Then using these
biholomorphisms, we can view g, g1, 92, ...,h, h1, ha,... as maps P™ — PM. To
complete the proof, it suffices to show that there exist ¢; € Aut(PM) and ¢, €

Aut(P™) such that
p1ogopa(z) = (z,0).

Recall that F,,,(e1) = 0 and Fjs(e}) = 0 and so there exists a neighborhood O of
0 in C™ such that the maps g, g1, g2, - . ., h, h1, ha, . .. extend to C* maps on ONP™

that map 0 € C™ to 0 € CM .
We further note that when viewed as elements of Aut(P?), we have
at(21,, s 2m) = (e "2y, e Ty, -eiézm)
and )
as(21,,...,zn0) = (7521, 229, - € 2 2pp)
for all s,t € R, see Equation (L).

Given a function ¢ mapping into CM and 1 < j < M, let [p]; denote the j

component function of ¢. Since g, and h,, are C* on O NP™,

i) = [0, 0+ Y- 22 0y + Y T 0z 4 () (2)

k=1 k=1
and
_ - 8[hn]J - 82[hn]a n
[hn]J(z)_[hn]](O)—l-; B (0)zk+k; 20 Wz + [Baly(2)
where .
lim sup En(z) 0 and limsup "(z)
z=0 ||zl 20 4l

We observe the following uniformity in the error terms of the h,,.

Lemma 4.7.

limsup | sup ~——— | =0
z—0 n>1 ||ZH

Proof. In the ball model, each k,, acts by rotations and
¢ (0)

kn(el) = — — €].

llén (0)]]

Hence, in the parabolic model there is a neighborhood @’ of 0 in P™, where
knlor — k|los in the C*° topology. Applying the same reasoning to {¢,}, there
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is a neighborhood O” of 0 in PM where Lo — Lo in the C*° topology. These
facts imply that the error terms for h,, = £, o f o k,, satisfy the estimate claimed
in the lemma. (]

As a consequence of this uniformity in the error terms of the h,,, we next observe
that ¢ is a quadratic polynomial.

Lemma 4.8. g extends to a holomorphic function C™ — CM and the component
functions of g are quadratic polynomials.

Proof. Since E, =a_;, o E, oa,, when z € O NP™ is non-zero we have

limsup || £, (2)]| = lim sup Ha_t” E,(at, 2) H < limsupe' || E, (atnz)H
n—00 n—oo n—r00
, || Bntas,2) En(ar, 2)

= limsupe' ||ay, 2| 5— < limsup ||2||? 5
n—00 ||CLth|| n—00 ||athH

Since at, z — 0, the previous lemma implies that

lim sup || £ (2)]| = 0

n—r00

locally uniformly on ©@ N P™. Since g, — g in the C? topology on O N P™, this
implies that the component functions of g are quadratic polynomials. Hence, g
extends to a holomorphic function C™ — CM. O

Next, using the fact that that a_;, o h, cas, = gn, we will restrict the form of g.

Lemma 4.9.

Z2§k,€§m Lyezrze

)|

0
where X >0 and U is a (M — 1) x (m — 1) matriz.

Proof. Since a_¢, o hy 0 at, = g,

Agnlj v Olhal;
and
82[971]3' - 82[hn]j
8%82,3 (O) = Tnjht 82%6244 (
where

ifj=k=1,
tn ifj=1land 2 <k <m,
if2<j<Mand k=1,
if2<j<Mand2<k<m

N|=

Onjk =

N
~+
3

[
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and

et it j—k=0=1,

e"3tn ifj=k=1land2<l{<m,orj=f=1and2<k<m,
1 ifj=1land 2 <k, 0 <m,

Onjke = e 2t if2<j<Mandk=10=1,

e7th if2<j<M,1<k<m,and{=1,

e7th if2<j< M, k=1 and 2</{<m,

e"%ln if2<j< Mand2<kl<m.

Since g, — g and h,, — h in the C? topology near 0, when 2 < j < M we obtain

Olgli oy — v Olgnli oy _ i g, Olhnly o0 o OlRl
91 (0) —nli)rrgo 9 (0) —nh_)rrgoe - (0)=0 91 (0) =0.
Likewise,
lgh gy = Ol oy = L9k gy = P9l gy = Dlali gy — Pl9i gy _ g

82182e _82k821( 82% ) o 8Zk821 o 82182@ o 8Zk822 o

for2<j< Mand2<Ek{L<m.

Since g(0) = 0 and g(P™) = PM the Jacobian matrix ¢’(0) must map the
(complex) tangent hyperplane of 9 P™ at 0 into the (complex) tangent hyperplane
of PM at 0. So, we must have

g’(O)(R-iel —l—(C-eg—l----—i—(C-em) CR-iecy+Cea+---4+Crepy
and
g’(O)((C-eg +---+(C-em) CC-ea+---+C-ep.
Thus 68[—21(0) >0 and %[—g];(()) =0, whenever 2 < k < m.
The above computations show that g has the desired form. 0

Lemma 4.10.

(1) The columns of U are orthogonal and each has length /.
(2) Lie =0 for all2 < k, £ < m.

Proof. If w = (wa, -+ ,wy,) € C™ 1 then (i|w||?, e?®w) € OP™ for all § € R. So,
. ; /\ZH’LU||2 +62i92 Lypwiwy
2 if, 2<k, <m M
stilol ) = sk c oM.

Hence,

Im [ Nillw|? +¢** > Lywiwy | = [Uw]?

2<k,(<m

or equivalently

Im 62i0 Z Lyjwrw, | = ||Uw|\2 - /\HU)H2

2<k,<m

forallw € C™ ! and 6 € R. Since § € R is arbitrary, this is only possible if Lgy = 0
for all k, ¢.
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Then

IUw] = VAllwl|

for all w € C™ !, which is only possible if the columns of U orthogonal and each
has length v/\. d

MSulppose U,...,Un_1 € CM=1 are the columns of U. Fix Un,....,Uy_1 €
C™ 7" such that

1 1

ﬁUlu' ) ﬁUm—17Um7' -'7UM—1

is an orthonormal basis of of CM~1. Then let

and

U — [%m %Um_l Uy - UM_l] elUM-1)

A <(1) U,Ol) € U(M).

Notice that A € Aut(P™) and

(A o alog()\) Og)('z) = (270)

which completes the proof.
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