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Inter-finger Small Object Manipulation With
DenseTact Optical Tactile Sensor

Won Kyung Do , Bianca Aumann , Camille Chungyoun , and Monroe Kennedy , Member, IEEE

Abstract—The ability to grasp and manipulate small objects in
cluttered environments remains a significant challenge. This letter
introduces a novel approach that utilizes a tactile sensor-equipped
gripper with eight degrees of freedom to overcome these limitations.
We employ DenseTact 2.0 for the gripper, enabling precise control
and improved grasp success rates, particularly for small objects
ranging from 5 mm to 25 mm. Our integrated strategy incorporates
the robot arm, gripper, and sensor to manipulate and orient small
objects for subsequent classification, effectively. We contribute a
specialized dataset designed for classifying these objects based on
tactile sensor output and a new control algorithm for in-hand ori-
entation tasks. Our system demonstrates 88% of successful grasp
and successfully classified small objects in cluttered scenarios.

Index Terms—Dexterous manipulation, in-hand manipulation,
grasping.

I. INTRODUCTION

GRASPING objects commonly found in daily environ-
ments is essential for human-robot collaboration tasks.

Nevertheless, in-hand manipulation and grasping in cluttered
settings continue to pose significant challenges in robotics. Re-
cent research has increasingly focused on incorporating tactile
feedback as a vital element in control systems to manage contact
kinematics and manipulation tasks more effectively.

Despite this, the specific issue of grasping small objects in
cluttered environments remains largely unresolved. When a
robot interacts with an object, the situation changes, requiring
a revised approach. This adaptability is common in human
interactions but challenging for robots. The solution involves
enabling robots to manipulate or identify small objects in clut-
tered scenarios.

Tactile sensors are instrumental in overcoming these issues.
When grasping objects in cluttered spaces, traditional external
vision systems often prove insufficient. Visuotactile sensors,
however, offer a remedy by providing high-resolution data
in localized areas. Additionally, hemispherical tactile sensors
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Fig. 1. Overview of the grasping and classifying of small objects in cluttered
environments. The left image shows the process of grasp and control to classify
the object, the right top shows the result of images from the sensor, and the right
bottom shows the result of classification confidence of object labels.

like DenseTact offer enhanced sensing capabilities and greater
adaptability in terms of deformation, which is advantageous for
compliance control.

In this study, we use tactile sensing and extra degrees of
freedom on the gripper to tackle grasping, manipulating, and
classifying small objects in cluttered environments. The tran-
sient dynamics of small objects, simulation challenges, and
inadequacy of traditional controls post-grasp complicate the
problem.

The main contributions of this letter shown in Fig. 1 are:
1) Development of a novel gripper with DenseTact 2.0, fea-

turing 8 degrees of freedom for rolling manipulation.
2) Establishment of an integrated strategy involving the robot

arm, gripper, and sensor for the manipulation and orien-
tation of small objects for classification.

3) Creation of a dataset for classifying small objects based
on tactile sensor outputs.

4) Successful classification and manipulation of objects
smaller than the sensor and gripper sizes.

5) Design of a new control algorithm for in-hand orientation
tasks involving ‘unknown’ small objects.

The letter is structured as follows: Section II reviews related
works; Section III outlines the problems addressed; Section IV
discusses the methodologies for gripper development, percep-
tion, object grasping, manipulation, and classification; Section V
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presents the results and demonstrations, and conclusions and
future work are discussed in Section VI.

II. RELATED WORKS

Grasping and manipulating small objects through tactile sen-
sor input is a complex endeavor. A plethora of research initiatives
have been aimed at various facets of this task. Specifically,
in-hand manipulation has emerged as an active research do-
main in recent years. Works such as those cited in [1], [2]
have proficiently tackled challenges associated with continu-
ous contact or variations in friction during object interactions.
In-hand manipulation employing external vision is discussed
in [3], [4] and the use of Adaptive RL (reinforcement learning)
policy derived from simulation torque input in robotic hands [5].
However, despite solutions to the sim-to-real problem, grasping
objects in cluttered environments complicates policy training.
Both model-based and model-free RL approaches often struggle
in such dynamically altering environments. Moreover, relying
solely on external vision for object orientation may become
unfeasible during gripping, as the object becomes partially or
fully occluded.

Tactile sensors, particularly visual tactile sensors, play a
crucial role in in-hand manipulation and classification tasks.
Placing a tactile sensor at the tip of the gripper enables intricate
activities such as cable manipulation [6], [7], box packing [8],
3D pinching between fingers [9], [10], and grasping of both
soft and rigid objects [11]. However, these tasks primarily focus
on manipulating larger objects or involve specialized object
manipulation, thus limiting their generalizability for handling
small objects.

Tactile sensors are also effective in object or environmental
classification. They can detect the hardness of objects, whether
the sensor is vision-based or electrical transduction-based [12],
[13], [14], [15]. Classification of objects can be accomplished
using multiple tactile sensors in a single grasp [16] or with
vision-based tactile sensors [17]. However, the majority of these
sensors are designed for classifying larger or deformable objects
and may not be appropriate for small object classification in clut-
tered environments due to issues such as sensing resolution and
gripper size. To address these challenges, we have developed a
new gripper equipped with a sensor designed to both manipulate
and classify small objects from a single grasp.

III. PROBLEM STATEMENT

This letter addresses the integrated tasks of grasping, reori-
enting, and classifying small objects (5 mm ∼ 25 mm) using
optical tactile sensor input, all in a quasi-static state. The ob-
jects are smaller than the sensor size (30 mm diameter). The
components of the problem statement in this letter are defined
as follows:! Grasping in Cluttered environment: The primary challenge

is grasping a small object from a cluttered bowl. We assume
that the gripper interacts only with the objects, not the bowl
itself. The task is solved using a robotic arm equipped with
soft tactile sensors.! Object Reorientation: After it is grasped, the object must
be reoriented within the gripper for stable holding. This is
achieved using a multi-degree of freedom (DOF) gripper.

! Object Classification: Finally, classification is performed
using the tactile sensor on the gripper. Vision-based meth-
ods are unsuitable due to occlusion when the object is
grasped.

IV. METHOD

A. Hardware Setup

1) Gripper for Inter-Finger Manipulation: Numerous grip-
per designs have been proposed for various tasks [18]. Among
these, grippers capable of grasping small objects in cluttered
environments often focus on specific usage or are limited to
two parallel grippers. Even simple grippers typically require
grasp detection and the prediction of the grasp pose to handle
unknown objects using external vision [19]. However, small
objects are challenging to grasp in cluttered environments, and
the environment constantly changes as the gripper interacts with
it. To address this challenge, we developed a gripper that can both
grasp and manipulate small objects while the object is between
the fingers.

Given the nature of cluttered environments, where stable
grasps are not guaranteed, and implementing re-grasping strate-
gies or object manipulation through interaction with the environ-
ment can be difficult, we opted for a gripper with an additional
DOF and compliant fingertips. This choice enhances our ability
to achieve and maintain stable grasps.

We implemented four degrees of freedom for each finger to
maximize inter-finger manipulation during grasping, enhanc-
ing the manipulation range during successful grasps. Effective
inter-finger manipulation demands a maximal contact area be-
tween the fingertips of each finger. Assuming a deformable,
hemispherical fingertip shape–beneficial for the unpredictability
of cluttered environments–the contact workspace can be max-
imized if we rotate the fingertip in multiple directions while
maintaining contact, ensuring the object remains securely held.
To meet these requirements, we introduce a gripper design
featuring two fingers with 4 DOF revolute joints for each finger.
The left side of Fig. 3 presents this design, accompanied by
a camera. As the fingers make contact and initiate the grasp,
in-hand manipulation can be achieved through anti-symmetric
fingertip motion by controlling the rotation along the x and z axes
and the translation in the y direction in the gripper’s frame. A
gripper with 4 degrees of freedom offers enhanced control when
grasping small objects, as demonstrated in Fig. 6. The gripper’s
working range during finger contact is illustrated in Fig. 4. The
gripper uses four 2XL430-W250-T Dynamixel motors, boasting
a total of eight degrees of freedom. This provides the gripper with
a more expansive workspace and allows for dexterity beyond
that of a conventional two-finger gripper. The gripper’s arms are
3D-printed, ensuring it remains lightweight and reduces load.

2) Dimensions: The gripper is installable to the Franka
robot arm by replacing the end-effector. The size of
the arm between each joint is (p12, p23, p34, p4 ft) =
(24 mm, 95.52 mm, 24 mm, 55 mm), where pij is the
length between i-th and j-th joint, where ft refers to the fingertip.
The diameter of the hemispherical part of the fingertip is 31 mm,
which is suitable for grasping a small object with a size of
5 mm ∼ 25 mm. STL and URDF files, complete with accurate
mass and inertia values, are available on the project webpage.
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Fig. 2. Pipeline includes small-object grasping, pinching, classifying, and sorting. The first row depicts the overall process, while the second row displays process
images and label classification confidence.

Fig. 3. 8-DOF gripper realistic model. The gripper can be attached directly to
the Franka robot arm.

Fig. 4. Joint limit of the gripper for each joint.

3) Tactile Compliance Design: Soft fingertips in grippers
have been shown to facilitate in-hand manipulation [20], [21].
We chose the DenseTact 2.0 sensor as the gripper’s fingertip
due to its compliant gel component [22], [23], which offers
advantages over flat-surface sensors like Gelsight and Digit [24],
[25]. The soft, rounded gel enhances the contact area and

friction, leading to secure grasps, especially for small ob-
jects.The compliant nature of the DenseTact 2.0 gel allows
the gripper to adapt to uncertainties and distribute force more
evenly during grasping. This adaptability is particularly useful
for handling objects of varying shapes and poses. In contrast
to sensors like SoftBubble [26], DenseTact 2.0’s hemispherical
design offers a larger sensing area per volume, contributing to
more precise in-hand manipulation.

When integrated with our multi-DOF gripper, the compliant
features of the DenseTact 2.0 silicone enhance the gripper’s
versatility for manipulating a diverse range of objects. The
fingertip can deform up to 20 mm, facilitating a secure grasp
and minimizing object damage. Additionally, DenseTact 2.0’s
deformation feedback aids in precise control, crucial for tasks
like object orientation and dense-environment grasping.

B. Perception From Tactile Sensor

We used a tactile sensor on the gripper’s end-effector to de-
termine the object’s pose and position. Opting for a pattern-less
DenseTact 2.0 sensor, we focused on sensor deformation instead
of force estimation, given the object’s negligible mass and our
quasi-static manipulation assumption. The sensor was calibrated
using the method in [23], enabling depth image-based point
cloud generation.

For experiments, we isolated relevant points from the point
cloud by setting a 3 mm threshold against the undeformed state.
We then segmented the deformed points using DBSCAN [27],
with specific distance and sample count parameters. A random
4% sample from the undeformed section was added to improve
clustering. DBSCAN was chosen for its real-time applicability
over alternatives like HDBSCAN [28]. During real-time control,
the point cloud was truncated to 5000 points, allowing a frame
rate of 10 ∼ 13 Hz on an Intel Core i7-11800H CPU. Fig. 5
shows the segmented point cloud.

After segmenting, up to four labels were extracted, allowing
the sensor to recognize a maximum of four objects per perception
step. The label with the most points was prioritized during
control. For classification, all labels contributed to the training
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dataset. Thus, the labeled point cloud is effectively transformed
into inputs for either control or classification tasks.

C. Grasping Small Object in Cluttered Environment

Grasping a small object in a cluttered, ever-changing envi-
ronment is challenging. We tackled this issue by using depth
data from the robot arm and the adaptive capabilities of soft
fingertips. The use of soft fingertips enhances adaptive grasping
capabilities, especially in cluttered environments characterized
by high uncertainty. Thus, if the gripper can position itself to
the desired point in the cluttered environment, a simple closing
motion with the soft fingertip can easily achieve grasping, even
in a highly uncertain cluttered environment.

However, objects need to be in a specified region of interest
for successful grasping. The challenge amplifies in a cluttered
space with diverse small objects, like a bowl filled with assorted
items, as the pile’s profile changes during grasping attempts. To
counter this, we use depth data from a RealSense camera on
the Franka arm to identify the highest points in our target area,
shown in Fig. 3.

Our goal is to fine-tune the gripper’s pose to maximize grasp-
ing success. We determined the optimal position and orientation
within a square region, 24 mm on each side, centered on the target
point. From the camera’s depth information, we extracted the top
800 elevation points in our target region. We then calculated the
average position of these points in the world frame, represented
as Wpmean = [xmean, ymean, zmean]T . A vector, v, is defined as
the difference between this mean position and the center of the
opening rim of the bowl (fixed point), Wpcen. Additionally, the
orientation angle, θ, the angle for the 7th joint of the franka arm,
is derived from the horizontal components of this vector:

Wv = Wpmean − Wpcen, θ = tan−1

(
vx
vy

)
(1)

During the Detection and Grasping phase, the gripper first
moves to the position 60 cm above the desk. As shown in the
first bottom left image of Fig. 2, the depth camera detects the pile
and returns the position to grasp. During this stage, the gripper
remains open. Next, the gripper moves to the center position,
adjusting the orientation of the last joint by the computed rotation
angle, θ. Following this adjustment, the gripper advances guided
by the vector v, ensuring its trajectory towards the pile is both
optimal in angle and position, thereby maximizing the success
rate of the grasp. Finally, the gripper grasps the object by closing
the gripper, and we move the gripper’s position 2 seconds after
the gripper grasps the object.

D. In-Hand Orientation of Small Objects

After the gripper grasps an object and detects it within the
fingertip via DenseTact, the small objects that have been grasped
often deviate from the center of the gripper’s fingertip. This
deviation necessitates additional inter-finger manipulation for a
stable grasp and proper classification. To address this challenge,
we introduce a control strategy for securely grasping unknown
small objects utilizing tactile feedback.

Even though the initial state of the gripper remains consistent,
the objects it grasps are unpredictable and unfamiliar. Conse-
quently, the controller’s primary goal is to align the fingertip’s

Fig. 5. Tactile sensor measurement results are as follows: (a) displays the
sensor’s captured RGB input, while (b) presents the estimated depth output.
(c) Features the filtered and labeled depth output, and (d) illustrates the clustered
point cloud using DBSCAN, overlaid on the tactile sensor.

position with the detected object while ensuring consistent
pressure between the two fingertips of the gripper. Therefore,
the objectives of our controller are to: 1) to maintain a specific
distance between the fingertips, ensuring a stable grasp, 2) to
maneuver the gripper within its joint limits; and 3) to center the
fingertip’s origin with the grasped object.

We select the state of our controller as

x = {Gy,Gθx,Gθz} ∈ R3 (2)

where the G refers to the gripper frame, Gy is the y-coordinate
position of the fingertip in the gripper frame, Gθx,Gθz are the
angles of the fingertip coordinate frame in x and z axis of
the gripper frame respectively, as defined in the left image of
the Fig. 6. According to the figure, the Jacobian of one finger
can be defined as the following:

ẋall = Jall q̇, Jall =
(
Jv Jw

)T
, Jall ∈ R6×4 (3)

where xall ∈ R6 refers to the position and angular position of
the fingertip, and q = (q1 q2 q3 q4) ∈ R4 is the joint value
of the one finger of the gripper. From the Jacobian of the joint,
we can extract the corresponding differential value of each
state by building the new Jacobian. Furthermore, since we have
additional DOF for the new Jacobian, we can control the gripper
to move within the joint limit through null space:

J =

⎛

⎜⎝
Jv,2
Jw,1

Jw,3

⎞

⎟⎠ ∈ R3×4, J+ = (JTJ + λ2I)−1JT (4)

where Jv,i or Jw,i is the i-th row of the velocity Jacobian or
angular Jacobian respectively. Then, the desired joint position
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Fig. 6. Axis of the gripper and controller input specified in the fingertip
coordinate frame. The image below shows the magnified view of the gripper
while grasping an object.

can be computed by integrating the desired velocity through a
geometric controller. The desired joint velocity can be computed
as:

q̇ = J+vdes + (I − J+J)fpen(q) (5)

where fpen(q) = −C(qcurr − qmid). fpen refers to the penalty
term to ensure the joint inside of the range, C is constant for
the penalty term, qmid is the median of joint value in the joint
range. The vdes is the desired fingertip velocity. From the desired
fingertip velocity, we can get the desired joint position command.

Due to the absence of prior information about the object,
and given our objective is its classification, the controller’s
goal needs dynamic adjustments. Based on tactile sensor input,
we compute the controller’s goal as minimizing the θab while
maintaining the grasp of object, where θab is:

θab = cos−1 a · b
|a||b| , v̂rot =

b× a

|a||b| (6)

a = Gpft,L − Gpft,R, b = Gpobj,R − Gpft,R (7)

where Gpft,L and Gpft,R are the position of the left and right
fingertip (center of the hemispherical tactile sensor, the origin
of the fingertip coordinate frame), and Gpobj,R is the position
of the detected object in the right fingertip in the gripper frame.
Those values are also shown in the bottom image of Fig. 6. We
derive Gpobj,R by averaging the bottom 30% of point clouds
with the lowest deformation values. This means we leverage the
point clouds that occupy the top 30% in terms of the r value,
as illustrated in the top right image of Fig. 6. This strategy lets
the gripper determine the subsequent movement point without
settling on the currently detected state. From the above value,

we can get the desired velocity:

vdes = Kp

⎛

⎜⎝
ṗft,R

ωx

ωz

⎞

⎟⎠ =
Kp

∆t

⎛

⎜⎝
Cy − λ

v̂rot,xθab
v̂rot,zθab

⎞

⎟⎠ (8)

whereKp ∈ R3×3,∆t is a constant value,Cy is a constant value
which refers to the offset of the fingertip from the contact, and
λ is the deformed radius value of the detected object in the
DenseTact. From the first row, the gripper can maintain constant
pressure while keeping contact between the fingertip and the
object. Since the gripper detects the object before the controller
starts, the object will always exist while the controller is exe-
cuted. v̂rot,x, v̂rot,z are the x and z components of the rotation
axis, respectively. The process finishes when the fingertip and
the object’s center align. The controller is operated for one finger
of the gripper, and the other finger gets the same value to achieve
the anti-symmetric movement for a stable grasp rolling without
slipping.

Given the small, lightweight nature of the target objects,
inertial and force inputs are less relevant and unpredictable. We
thus use a position controller that integrates the commanded
velocity (5) in a quasi-static state, and this controller choice
is driven by motor control limitations as well as the pipeline’s
real-time processing speed (10 Hz ∼ 13 Hz).

While the controller could be modeled through optimization
or RL, these options present challenges. The complex gel defor-
mation we’re tackling is best represented by hyperelastic ma-
terial models like the Ogden hyperelastic model, which require
computationally heavy FEM programs [29]. Additionally, RL
or dynamic learning approaches often need extensive simulated
data, making them less practical for our task. Other issues
involve sim-to-real gaps and errors in dynamic modeling.

E. Small Object Segmentation

1) Dataset Collection: Tactile sensors are crucial for object
identification in grasping, particularly with soft fingertips that
significantly occlude the object. External vision proves insuf-
ficient for object verification in such cases. Leveraging the
high-resolution (640× 640× 3) input from tactile sensors, we
curated a dataset of objects grasped between two such sensors.
Each object was positioned on one sensor and encapsulated by
pressing the other sensor onto it. Live RGB and depth images
were captured once the object became discernible. For each
object type, 50 RGB and 50 corresponding depth images were
collected during a single press.

The dataset also accommodates scenarios of grasping one
or two small objects simultaneously. We focused on select
combinations due to the exponential increase in potential object
pairings, denoted by n(n−1)

2 for n different objects. Our dataset
comprises 20 types of small objects, including 9 varieties of
screws and 11 daily objects.

The screw dataset was designed such that the screws vary by
length, head diameter, and thread size. Different combinations
of variables are changed across the dataset classes. Each screw
is either 1/2”, 3/8”, or 1/4” in length. Furthermore, each screw
has a head diameter and thread spacing combination of either
4–40, 4–48, 10–24, 10–32, or 1/4”–28.
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Fig. 7. Pipeline architecture for small object classification.

2) Preprocessing Step of the Image Input: Given the rela-
tively small size of the dataset when compared to the variety
of object types (20 distinct objects), directly utilizing the raw
input from the tactile sensor becomes impractical. Additionally,
there’s a potential for classification errors when the gripper
unintentionally captures two small objects simultaneously. This
challenge can be addressed by integrating an additional input
layer and conducting suitable image preprocessing.

Initially, we incorporated input from the labeled image de-
rived through DBSCAN, along with the RGB and depth images
generated by the tactile sensor. Following this, the labeled and
deformed pointcloud was extracted and projected onto the depth
image. We then employed PCA analysis to ascertain the orien-
tation and center of the deformed point. Given the prior labeling
of the deformed pointcloud, PCA analysis was conducted for
each labeled pointcloud. As indicated in section IV-B, PCA can
handle up to four labels in a single tactile input.

Relying on the central values and angles obtained from the
PCA, the images were cropped to a size of 300× 300, and
rotated according to the identified angle. By integrating RGB,
depth, and labeled images, the resulting input dimension became
300× 300× 5. This preprocessing approach enhances the effi-
ciency of network training, even with a limited dataset size.
Furthermore, the labeling step allows the localization of the
classified objects and completes the segmentation of the multiple
objects detected from the raw sensor image.

3) Model for Classification: The network architecture cho-
sen for classification is grounded in the ResNet18 framework, a
decision driven by the compact size of our dataset, as shown in
Fig. 7. Rather than maintaining the model in its static form and
solely training the concluding MLP layer, we opted to activate
the final fourth layer block for training while keeping the other
layer blocks of ResNet18 static [30]. Preceding the initial layer
block of ResNet18, a 2D convolutional layer accepts the input,
which is subsequently processed through batch normalization,
ReLU, and a max-pooling layer. After the fourth layer block of
ResNet18, two fully connected layers are employed, utilizing
a hidden channel size 256. Ultimately, a softmax function is

Fig. 8. Classification result of screw objects and classified labels for 466
touches.

invoked to classify the object type. The classification confidence
can be visualized as a one-hot vector in Fig. 7, or as a bar chart
in Fig. 1, or in Fig. 2.

Training was conducted on a composite dataset, incorporat-
ing single-object and multi-object datasets. This amalgamation
inherently led to a disparity in the dataset count for individual
object types. To counterbalance this, 12% of the total dataset
was randomly collected as a testing set for every object category.
The number of datasets per class was recorded while splitting
training and testing datasets. This count was then employed as
a weight in the cross-entropy loss calculation throughout the
training phase. Utilizing the Adam optimizer, we set a learning
rate of 2× 10−5 and a weight decay of 1× 10−4 over a span
of 400 epochs and with a batch size of 8. The training duration
was approximately an hour, executed on four NVIDIA A4000
GPUs.

V. EXPERIMENT

A. Classification

Before physically demonstrating the complete procedure,
the classification results were evaluated using the test dataset.
The right image in Fig. 8 displays the confusion matrix for
the classified screws. In the left image, the classified label, thread
size, and length of each screw are indicated at the bottom of their
respective images. Label 21 is designated for instances involving
two screws, while Label 22 signifies that the sensor either
detected a plane or failed to detect the screw. Given that Labels
1 and 2 share identical lengths and head sizes but differ in thread
type, it’s understandable that Label 2 is occasionally classified
as Label 1. A similar misclassification occurs between Labels 3
and 4. Due to the combinations required for a two-screw dataset
exceeding 45 distinct cases, achieving uniform dataset size via
human input proved challenging. Nonetheless, by accumulating
a broader combination of datasets or gathering additional data
during demonstrations, we believe classification errors can be
reduced.

Fig. 9 presents the confusion matrix for the classification
of other objects. The left image annotates the corresponding
labels for each object. We opted for a diverse set, including
various types of pills, earrings, and letter clips. Despite the
dataset’s limited size, the classifier has demonstrated proficiency
in correctly identifying most objects.
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Fig. 9. Classification result of small random objects and classified labels for
93 test touches.

B. Full Pipeline

Building on the methods described and as shown in Fig. 2, we
structured the grasping, reorienting, and classification sequence
into a finite state machine with several key states: ‘initial,’
‘detect,’ ‘ready for grasp,’ ‘grasp,’ ‘control,’ and ‘classification.’
In the ‘detect’ phase, the system cycles back to detection if the
depth camera provides inadequate sensor values. Sensor feed-
back determines grasp success after the ‘grasp’ phase; failure
redirects the process back to the ‘detect’ phase. When the gripper
grasps multiple objects at the same time, the controller can drop
one during rolling, classifying just one screw if the screws are
spaced widely. However, screws sometimes interlock or touch in
ways that necessitate finger sliding rather than the rolling method
outlined in the letter. Consequently, during ‘classification,’ if the
sensor detects ‘two screws’ (interlocking or touching) or ‘plane’
(detects only the other finger), the system reverts to the ‘initial’
state for a new cycle.

Given the small object sizes and the sensor’s high deformabil-
ity, one tactile sensor usually suffices for single object detection
and manipulation. Experiments were conducted using output
from a single sensor while the other finger moved in tandem. As
the objects classified are symmetrical, consistent sensor read-
ings are assured for both fingers. Classification of asymmetric
objects, though feasible, would require data from both object
facets.

C. Demonstration Result

Utilizing the established pipeline and integrating all pro-
cesses, we executed the object sorting task autonomously, elim-
inating the need for human intervention. The left side of Fig. 10
illustrates the experimental setup during the demonstration,
whereas the right side depicts the confusion matrix derived
from the demonstration results. The cluttered environment is
represented in a transparent bowl and only the depth camera
was employed to detect the highest point of the pile. For this
experiment, all objects in the bowl are screws. The pile com-
prises 50 objects with Labels 3, 6, and 8. These objects are
considerably larger in size compared to others. Additionally, 100
objects with Labels 1, 5, and 7, recognized by their smaller head
size, are present within the environment. The variation in object
numbers stems from the gripper’s inherent tendency to seize
larger objects, due to its grasping characteristics. Importantly,
the entire grasping process remained devoid of human influence

Fig. 10. Experimental setup and demonstrated result of the whole process for
198 grasps.

(for instance, altering the pile profile during the demonstration
or manual re-grasping). The gripper still exhibited a marked
preference for grasping larger-headed screws.

The process of grasping the objects proved largely success-
ful. Out of 225 attempts, there were 198 successful grasps.
In contrast, there were 12 instances of unsuccessful grasping
and 12 trials where the results were classified under Labels
21 or 22, indicating scenarios where two screws were grasped
simultaneously or when a plane was detected. Consequently,
88% of the trials resulted in successful object extraction from
the cluttered environment and subsequent object classification.

The results presented in Fig. 10 highlight a recurring mis-
classification. Specifically, objects with Labels 1 or 7 were fre-
quently mistaken for Label 5, while objects Labeled 3 and 8 were
often misclassified under Label 6. This trend can be attributed
to the gripper’s occasional tendency to grasp the head of the
screw first and hold the grasp. When this happens, even after the
finger position is changed, there is a possibility that the sensor
only observes the head part of the screw. Both Labels 1 and 7
possess long screws that share head sizes with Label 5, while
Labels 3 and 8 have similar characteristics with Label 6. One of
the results of the example can be observed in the sensing results
displayed in Fig. 2. Given that objects under Labels 1, 5, and 7
have identical screw heads, misclassifications amongst them are
plausible. However, Labels 5 and 6 are not mistakenly classified
under other Labels, mainly due to the shorter lengths of these
objects, which increased the likelihood of head detection during
dataset collection. There were instances of failed trials where
the gripper occasionally grasped two objects simultaneously,
rendering the secondary object invisible to the sensor. Such
challenges could be potentially addressed by leveraging sensor
feedback from both fingertips.

VI. CONCLUSION

In this study, we present a novel approach for manipulat-
ing and classifying small objects in cluttered settings using
optical tactile sensors. Our key innovation is a gripper fitted
with DenseTact 2.0, designed to enhance both grasping success
and post-grasp manipulation, thanks to its highly deformable
soft fingertip. A unique manipulation strategy using a newly
devised Jacobian combination ensures stable grasps and precise
classification.
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Our network model efficiently classifies objects, even with
a limited dataset, demonstrating broad applicability to general
small objects. The end-to-end pipeline operates autonomously,
underscoring the potential for human-free small object classifi-
cation and manipulation. This work not only advances current
grasping strategies and object pose estimation techniques but
also lays the groundwork for more versatile robotic grasping
solutions.

This control strategy relies on highly curved and soft de-
formable surface sensors, limiting its application to such sen-
sors. Future research could focus on utilizing tactile sensors on
both fingertips to improve grasping stability and classification,
addressing the concurrent grasping of multiple objects, and ex-
tending the gripper’s functionality in human-robot collaborative
settings. Future work could involve integrating extra perception
stages to grasp specific objects in cluttered environments using
our proposed approach.
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