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ABSTRACT

Most existing pre-trained language models for source code focus on
learning the static code text, typically augmented with static code
structures (abstract syntax tree, dependency graphs, etc.). How-
ever, program semantics will not be fully exposed before the real
execution. Without an understanding of the program execution,
statically pre-trained models fail to comprehensively capture the
dynamic code properties, such as the branch coverage and the run-
time variable values, and they are consequently less effective at
code understanding tasks, such as retrieving semantic clones and
detecting software vulnerabilities.

To close the gap between the static nature of language mod-
els and the dynamic characteristics of programs, we introduce
TRACED, an execution-aware pre-training strategy for source code.
Specifically, we pre-train code language models with a combination
of source code, executable inputs, and corresponding execution
traces. Our goal is to teach code models the complicated execution
logic during the pre-training, enabling the model to statically es-
timate the dynamic code properties without repeatedly executing
code during task-specific fine-tuning.

To illustrate the effectiveness of our proposed approach, we
fine-tune and evaluate TRACED on three downstream tasks: static
execution estimation, clone retrieval, and vulnerability detection.
The empirical results show that TRACED relatively improves the
statically pre-trained code models by 12.4% for complete execution
path prediction and by 25.2% for runtime variable value predictions.
TRACED also significantly outperforms statically pre-trained mod-
els in clone retrieval and vulnerability detection across four public
benchmarks.
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1 INTRODUCTION

Machine Learning (ML) for source code has enabled many soft-
ware engineering tasks, such as automated program repair [11, 21—
23], bug finding [8, 55], and refactoring [7]. Recently, the com-
mon practice of training ML models for source code understand-
ing is based on pre-training a Transformer-based language model
on source code. These approaches treat source code programs
as static text [1, 6, 16, 49], sometimes augmented with program-
specific structures such as abstract syntax trees and dependency
graphs [10, 17, 18, 35], and adapt pre-training strategies for natural
language to learn program representations.

However, many source code understanding tasks require a more
comprehensive understanding of program behavior. For instance,
detecting semantic clones[32] involves determining if two pieces of
code behave similarly under similar inputs, even if their structures
are apparently different. Likewise, detecting vulnerabilities often
requires developers to analyze whether a potentially problematic
location can be executed and what kinds of value flows can expose
any vulnerability. While existing code models are primarily trained
to capture static code properties, they are not effective at reasoning
about program behavior. In fact, many of the deeper program se-
mantics only manifest when the code is executed. As a result, they
tend to underperform when it comes to tasks that require deeper
semantic understanding.

CodeX

Branch-1: Executed
Branch-2: Not Executed

Code w/ Inputs ‘

&

//Input: 19 -1 >

#include <stdio.h>
int main()

int A, N, T, B;
f("%d %d", &N, &A); .

MG ) [ UnixCoder %
10 E:J z 3; 3. [Branch-1: Not Executed
1 Branch-2: Not Executed
12 printf("%d", B); // Branch-1
13
14 else
15
16 printf("sd”,T); // Branch-2 [ TRACED (OQurs)
1
18 return 0; > Branch-1: Not Executed
19} Branch-2: Executed

Figure 1: An motivating example from CodeNet’s coding challenge
No.3597 [41] reveals that statically pre-trained code language models,
regardless of their size, could not reason about the branch coverage
given a specific input, while TRACED, enhanced with program exe-
cution features, correctly identify the execution path.

Motivating Examples. Figure 1 presents an example with sim-
ple execution logic to illustrate the failure of statically pre-trained
code models on the branch coverage prediction. We query three
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pre-trained code models, CodeX [13] (code-davinci-002), Unix-
Coder [17], and TRACED (ours), to predict the branch coverage,
according to the given program inputs. For CodeX, we prompt the
model with carefully designed questions, similar to [36], to ask for
the branch coverage prediction in the zero-shot setting. Specifi-
cally, we augment the prompts by adding comments at the end
of lines 12 and 16: // Will this line be executed? Yes or
no?. To give more hints regarding the data flow, we further add a
comment at the end of line 10: // A is -1, since it accepts
the second value of the input. Unfortunately, even if provided
with additional hints of the required data flow for branch prediction,
CodeX still failed to predict the correct coverage labels, suggesting
it cannot interpret this simple execution.

Besides the zero-shot prompting, we also study whether fine-
tuning pre-trained code models to predict execution can lead to
better branch prediction. Specifically, we fine-tune another pop-
ular pre-trained code model, UnixCoder [17], to predict branch
execution while ensuring the motivation example is not seen dur-
ing training. From the inference results in Figure 1, we notice that
UnixCoder cannot predict covered branches even after being fine-
tuned. It predicts neither of the branches will be covered, indicating
that it does not have the basic understanding that, for this specific
example, at least one branch will always be taken on a valid input.

Our approach. To address the limitation of the statically pre-
trained code models, we propose TRACED, an execution-aware
pre-training strategy to capture the static and dynamic perspectives
of the source code. Specifically, we pre-train the Transformer-based
language model with multi-task objectives on predicting source
code, program states, and execution coverage, forcing the model to
reason about both program’s runtime behavior and the naturalness
of the source code [43] at the same time. We address several tech-
nical challenges, such as representing program execution states,
encoding the runtime variable values, and representing code cover-
age, to implement the pre-training strategy.

Representing Program States. During program execution, vari-
ables are used to store data that is used by the program. These
variables can have different types, such as integers, floating-point
numbers, pointers, and arrays. As the program executes, the values
of these variables change, reflecting the changes in the program’s
state. Consequently, software developers typically monitor the vari-
able values, via debugging tools, to observe the execution facts [53]
and understand the dynamic behaviors of the program.

In this work, we define the program state at a specific time step
of the execution as the set of values of every defined variable in
the current scope. In other words, the program state is equivalent
to the value mapping table of the debugger, which is monitored by
the developer when the program is paused by a specific breakpoint.

Value Quantization. While the runtime variable values are traced
as concrete values, directly learning them brought challenges to
machine learning models. Concrete values span over a wide range
of possible values, especially when considering different data types
(integers, floating-point numbers, arrays, pointers, etc.), leading
to a high-dimensional, complex, but sparse data distribution. This
increased data complexity and sparsity challenges the model to
learn patterns and relationships between the variable values, as it
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must deal with many unique inputs, which causes the model to
overfit and memorize specific instances rather than generalize to
broader patterns. Additionally, noise, outliers, and irregularities of
concrete values also mislead the model’s learning process. We will
empirically demonstrate these limitations in §6.3.

To decrease the data complexity and increase the density, we
define thirty value categories, covering a wide range of variable
types, to map the continuous but sparse variable values into discrete
bins. We call this process as value quantization, which is similar in
design to the quantization in signal processing'. This simplification
potentially helps the model to be more resilient to noise and outliers,
allowing it to focus on learning the underlying execution patterns
and relationships between variables, rather than being sensitive to
specific instances or irregularities.

Representing Execution Coverage. While program state labels pro-
vide important information about the current state of the program,
they do not capture information about how the program arrived at
that state. To boost the training with more comprehensive execu-
tion features, besides the variable values, we also log the execution
coverage during the execution, in terms of which lines are executed
and which are not, and construct execution coverage features for
the model to learn.

Results. We fine-tune and evaluate TRACED’s performance us-
ing three tasks: static execution estimation, clone retrieval, and
vulnerability detection. On statically predicting the program exe-
cutions, TRACED substantially improves the statically pre-trained
code models by 12.4% for execution path prediction and by 25.2%
for runtime variable value predictions. TRACED also obtains state-
of-the-art results in code understanding tasks: TRACED reports
91.2% MAP@R on CodeXGLUE-POJ104 [32], 50.4% F1 on ReVeal [8],
and 65.9% accuracy on CodeXGLUE-defect-detection [32].

Contributions. We make the following contributions:

e We present a simplified and compact representation of pro-
gram executions, including the program states and the ex-
ecution coverage, to effectively guide code models to learn
program semantics and reason about program behavior.

e We propose a novel multi-task pre-training strategy to jointly
learn the static and dynamic code properties. As a result, the
pre-trained model with our approach will be empowered
with a decent execution awareness.

e We pre-train TRACED with the proposed trace represen-

tation and the execution-aware strategy and evaluate its

performance on several downstream tasks. The experiment
results demonstrate that TRACED significantly outperforms
the statically pre-trained code models in these tasks.

We will publicly release our data, code, and pre-trained mod-

els at https://github.com/ARiSE-Lab/TRACED_ICSE_24.git.

2 OVERVIEW

Figure 2 shows the overview of TRACED, consisting of three main
stages: (1) tracing the source code and engineering the features,
(2) execution-aware pre-training using the program traces, and

Uhttps://en.wikipedia.org/wiki/Quantization_(signal_processing)
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(3) loading the pre-trained weights and performing task-specific
fine-tuning.

Stage-1:
Tracing & Feature Engineering

Stage-2:
Execution-aware Pre-training

' Source Execute Program ! E Pre-training Tasks
! Code &Trace Traces | | :
' e N Generate ||
: Lo 7 Source Code | .
: . Code - Predict E
L P Language \ | Program States | |
' ! ': Model | . '
| h Predict :
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E Ground-truth Value | rr === !

i Pre-trained Weights Transfer '

Execution Labels Quantizationf
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. Ta;’:;’; ';j;'ﬁc || =—_| _, | Execution-aware |...! '
, = . :
| (Wo execution) - TRACED Model ' :
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Figure 2: Overview of TRACED workflow.

Stage-1: Tracing & Feature Engineering. The goal of this stage
is to prepare the data for pre-training. The process begins with pro-
viding a source program and its executable inputs. The first step is
to execute the program with each input to generate corresponding
traces. The traces record the runtime variable values, together with
the execution coverage, logging the full execution history of the
program and revealing the changes to program states throughout
execution. To reduce the complexity and sparsity of the data, and
make it easier for the model to learn patterns and relationships be-
tween the variable values, we quantize the concrete runtime values
recorded in the traces into pre-defined value ranges. The quanti-
zation process maps continuous values to a fixed set of discrete
or bins. By quantizing the values, we create a finite set of possible
outputs that can be used as ground-truth labels during training.
After quantization, we create program state labels and execution
coverage labels that will help the model to capture the program
executions. The dataset finally ends up with a set of samples and
labels, where each sample includes the source code with its program
input and the labels represent the execution trace of this sample.

Stage-2: Execution-aware Pre-training with Traces. We uti-
lize the pre-processed samples and labels obtained from Stage-1 to
perform supervised pre-training. Specifically, we use a Transformer-
encoder-based model [31] to learn the program traces and improve
the model’s understanding of program execution. The model could
be either trained from scratch or loaded by the pre-trained weights
of existing code language models. To achieve the goal of produc-
ing execution-aware code representation, we propose three pre-
training objectives. The first objective is learning to generate the
source code. We believe that understanding the naturalness of code
text [20, 43] is fundamental for the model to capture more sophisti-
cated signals such as program execution. This objective is imple-
mented with masked language modeling (MLM), which masks a
certain percentage of tokens in the source code and trains the model
to reconstruct the masked tokens based on the surrounding context.
The second objective is learning to predict the program states. By

418

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

predicting program state labels that were generated in Stage-1, the
model learns to capture the data flows and the side effects of code
execution. The third objective is to predict the execution coverage.
By predicting the execution coverage labels generated by Stage-1,
the model learns to capture the dynamic control flow and helps the
model understand how the program state is reached and evolving.

Stage-3: Task-specific Fine-tuning. Finally, we apply TRACED
to several downstream tasks. We load the pre-trained weights of
TRACED, fine-tune the model for a specific task, and keep updating
the model weights. Fine-tuning does not require the program to be
executed; rather, TRACED will reason about the execution statically
with its learned execution signals during the pre-training, and learn
to accomplish the task accordingly. In many useful applications,
we would not have program traces available. We consider three
downstream tasks for TRACED: static execution estimation, which
includes execution coverage and runtime variable value predictions,
clone retrieval, and vulnerability detection.

3 TRACING & FEATURE ENGINEERING

In this section, we introduce how TRACED builds the learnable
features from program traces for models to learn the program exe-
cutions.

3.1 Representing Program States

To imitate the way that human developers monitor variable values
to understand program behavior, we propose to train neural models
with the log of runtime variable values to recognize execution
patterns and infer dynamic program behaviors in a way that is
similar to human intuition. By taking the log of variable values
during the execution, we can represent the program states in a
more compact and interpretable form that is manageable for deep
neural nets to process.

We build the program state by taking snapshots of variable values
at program points during execution. When we take a snapshot at a
specific time step, similar to the moment that the program is paused
by a debugging breakpoint set right after line /, we maintain a value
mapping, M, to map the variable to its current value, similar to the
value mapping table of the debugger. To record the program state,
we take the value snapshot after each line of execution and log the
variables’ current values.
Definition: Program State. Formally, we define the program state
after the execution of a specific line, [, as s(I), represented as a set
of variable values at this moment:

s() ={M(v,l) |v eV, leL}

V represents the set of all traced variables, and L is the set of
lines with source code. Figure 3 shows an illustrative example of a
simple factorial program and the comments after the source code
indicate the program state after the execution of that line. Also,
we do not log the program state for lines without executable code,
such as line-8 of Figure 3.

Note that a source code line could be executed multiple times due
to a loop or recursion. While a more detailed representation of pro-
gram execution might provide additional insights, it also increases
the complexity and computational requirements of the model. As a
trade-off between the complexity and performance, we use the last
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1 // INPUT: 4

2 int factorial() {

3 int x, y; // {'x': 32767, 'y': 32767}

4 x = atoi(argv[1]); // {'x': 4, 'y': 32767}
5 if (x <0) { // {'x': 4, 'y': 32767}

6 y = -1;

7 return y;

8 3

9 y=1; 7/ {'x': 4, 'y': 1}

10 for (int i = 1; i <= x; i++) // {'x': 4, 'y': 24, '"i': 5%
11 {

12 y *x=1i; // {'x': 4, 'y': 24, 'i': 5}

13 }

14 return y; // {'x': 4, 'y': 24, 'i': 5}

15 3}

Figure 3: Program states with concrete runtime values.
occurring execution of each line to finalize the program states, so
that s(I) keeps getting updated until the execution terminates.

We apply such a trade-off based on the observations of real execu-
tions. Specifically, the last occurring values are typically sufficient
to capture the results of loops and recursions. For example, when
calling a recursive function, only the last occurring value(s) of re-
turned variable(s) will be taken to fulfill the following execution of
the caller. Similarly, the final values when loops finish will take part
in the future execution. As shown in line-12 of Figure 3, variable
y gets multiplied inside a loop to calculate the factorial. Its value
changes in each iteration, but it is less informative to reason about
the program’s overall behavior, as only the final value is used as
the return value (line-14). Thus, we would represent y using the
value from the last occurring execution of the loop.

3.2 Quantized Variable Values

As we introduced in §1, the distribution of concrete values is sparse
and complex, consequently difficult for a statistical model to fit. In
addition, concrete values are not always necessary. Some common
program behaviors are accompanied by extremely large or small
variable values - for example, in C, uninitialized variables are often
set to zero or uncommonly large variables, but the concrete values
are not meaningful because they depend only on the data remaining
on the stack, which could be randomly large or small. The model
could represent such behaviors by estimating the value ranges of
variables without accurately predicting their concrete values which
are not informative or meaningful. Figure 3 displays some of these
cases: after the execution of line-3, x and y are uninitialized and
randomly initiated as 32,767, which has no concrete meaning but
only makes the training data noisy and sparse.

To reduce the data complexity and increase the density, we define
30 categories for quantized values in Table 1. To comprehensively
represent the variable values, the proposed quantized categories
consider both types, i.e., the data types and value types, that are
statically defined, and the dynamic runtime values. Our quantized
categories cover the most common variable types and value types,
which we have found sufficient to capture important program ex-
ecution behaviors and relationships. By focusing on the most fre-
quent value types, we can capture the essential features of program
execution. This makes our approach effective at capturing the gen-
eralized program execution behaviors and patterns. We empirically
illustrate our quantization strategy’s effectiveness in § 6.3.
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Table 1: TRACED’s design of quantized variable values.

Data Type | Value Types Concrete Value | Quantized Value

0 < < 10,000 Positive Regular

10,000 < v Positive Large

Integer 0 Zero

—10,000 < v <0 | Negative Regular

v < —10,000 Negative Large

0.0<0<1.0 Positive Small

1.0 < v < 10,000.0 Positive Regular

10,000.0 < v Positive Large

Basic Float/Double 0.0 Zero

-1.0<0<0 Negative Small

—10,000.0 < v < —1.0 | Negative Regular

v < —10,000.0 Negative Large

\0 Null

Character v € {a-zA-Z} Alphabetic

v # \050 ¢ {a-zA-Z} Non-alphabetic

Boolean 0 False

1 True

Void - Void

Integer [o1,00, ..., un ] Initialized

quantize(v;) € Integer Not Initialized

01,02, ...,0n]; Initialized

Array Float/Double quantize(v;) [E FIoat/DoubI]e Not Initialized
e | e

Integer 0x0 Null

Not 0x0 Not Null

Pointer Float/Double Not gzg Not gﬁﬁ

0x0 Null

Character Not 0x0 Not Null

3.3 Building Learnable Labels for Code Models

We used supervised pre-training with traces. We construct labels for
code models to learn two main perspectives of execution: program
states and execution coverage.

Program State Labels. As we discussed in previous sections,
we first trace the program variables during execution and log their
runtime values. We then quantize these values into pre-defined
categories. This process results in a sequence of program states,
each represented by a set of quantized variable values (as shown in
Figure 3), and we build the learnable features for the code model on
top of these program states. Specifically, we build labels for variables
that can be quantized into Table 1’s categories and train the model to
predict these labels given their source code representations (§ 4.1.2).
The label for each variable is represented as a tuple: (data type,
value type, quantized value). For example, in Figure 3, the label of
variable X occurring at line-3 is (Basic, Integer, Positive Large), as the
current value of X is 32,767. We build such labels for all occurrences
of valid variables that can be quantized, and the set combining all
labels is considered as the program state labels of the code sample.

Execution Coverage Labels. To unify our design and reduce the
complexity of the model’s learning process, we also build execution
coverage labels for each occurrence of variables, aligning with the
program state labels. Concretely, we specify whether a variable
is covered or not. The variables within the executed lines will be
regarded as covered, and those within the unexecuted lines will
be labeled as not covered by execution. For example, in Figure 3,
Line-6 is not executed, so y at this line has the program state label
of (Basic, Integer, Not Covered), while y at line-9 is executed and
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has the program state label with concrete quantized value of (Basic,
Integer, Positive Regular).

4 MODEL

In this section, we explain the details of TRACED’s components
and learning objectives during pre-training and fine-tuning.

Model Architecture. Figure 4 shows the high-level architec-
ture of TRACED’s pre-training. The backbone of TRACED is a 12-
layer Transformer encoder, similar to BERT [9] and RoBERTa [31],
which learns the generic code representations. On top of the back-
bone Transformer layers, TRACED stacks multiple multi-layer-
perceptron (MLP) layers as prediction heads for different tasks.
During the pre-training, as shown in Figure 4, TRACED applies
a language model prediction head, i.e., LM layer, to predict the
masked token given its contextualized representation, a program
state prediction head to predict the program states labels that we
defined in § 3.3, and an execution coverage head to prediction
the execution coverage labels. For the task-specific fine-tuning,
the backbone Transformer layers are loaded with the pre-trained
weights, while the prediction heads are replaced by a newly initial-
ized head customized for the specific downstream task.

! ["A™ ["BASIC™, "INT", "NEG_REG"]

"[MASK]": "print£" 2 "B": ["BASIC", "INT", "UNK"]

+ |"T": ["BASIC", "INT", "POS_REG"]

[ — [ S ¢

[ Program States Layers ] [Exec Coverage Layer]

| LMLayer |

T Token Representations T T

Transformer Layers

Input Sequence T
[CLS] 19 -1 [SEP] [SEP] ...if (A>0) { [MASK] (" %d " ,B); } else { printf (" %d ", T)... [SEP]
A

->

Tokenize & Concatenate
___________________________ Lo

1
Source Code
' ' #include<stdio.h> H

i [ Executable Input int main () { '
! int A, N, T, B; H

scanf("%d %d", &N, &A); E (X
T=N*N; H
B=T - A; [ > g """" !

if (A>0) H
{printf ("sd", H
else
{printf("sd",
return 0;}

-1

. Execute

H

T} H &
H Trace

\ Pre-training Sample

Figure 4: High-level model architecture of TRACED. In the labels
for program state layers, NEG_REG means “Negative Regular", UNK
means “Unknown", and POS_REG means “Positive Regular", which
we have defined in Table 1.

4.1 Execution-aware Pre-training

4.1.1 Model Input of Pre-training. Each pre-training sample in-
cludes the source code of an executable program and a valid exe-
cutable input. As shown in Figure 4, the executable input and the
source code are flattened and concatenated as one sequence. To
distinguish the input from the source code, as they are different
modalities, TRACED uses special [SEP] tokens to separate them
and indicate individual positions. To alleviate the out-of-vocabulary
concern of programming languages [25], TRACED takes a pre-
trained SentencePiece [28] subword tokenizer with vocabulary size
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of 50,000. It uses this tokenizer to divide the concatenated sequence
into a new sequence of sub-tokens.

Formally, we define the executable inputs as E = {ey, ..., ¢;} and
flattened source code as C = {cy, ..., ¢; }, then the final model input
will be I ={[CLS], ey, ..., €;,[SEP],[SEP], c1, ..., Cj,[SEP]}‘ TRACED
truncates the executable inputs and the source code separately
if they are too long. TRACED sets the maximum length of the
executable input sequence to 64 tokens, and the source code to
960 tokens. These numbers are selected based on the statistics of
executable inputs’ length of our pre-training dataset (§5.2.1), and
fit the rest of the model input with source code.

Note that the execution traces are not part of the model input,
but are used as ground truth labels for the model to predict during
pre-training.

4.1.2  Learning Execution-aware Code Representations with Traces.
TRACED is pre-trained with multiple objectives to jointly capture
the static and dynamic perspectives of the source code.

Learning Code Text. Learning code text is the essential first
step toward understanding the execution of a program, as code text
is the primary source of capturing the code naturalness [20] and
other static properties. We implement the code text learning objec-
tive by adapting the masked language model objective [9, 16, 31].
Specifically, given the model input sequence, 7, TRACED randomly
chooses 15% of tokens [9, 31] only from the source code sequence
C part and replaces with the special [MASK] token (e.g., printf in
Figure 4 is masked). It leaves the executable input sequence E as
is. The model is trained to encode the context of [MASK] into its
code representation, 7, ;sked> and reconstruct the concrete masked
tokens conditioned on the representation. We represent the loss of
learning code text as:

Leode—text = Z _lOgP(Cmasked | rmasked) (1)
masked

In Figure 4, the LM (Language Model) layer receives the masked
token representation generated by the last Transformer layer. The
LM layer then predicts the concrete tokens by mapping the token
representation to the probability of each token in the vocabulary,
using an MLP (Multi-Layer Perceptron) layer. This process can be
thought of as a classification task, where the number of classes is
equal to the size of the vocabulary. The goal is to learn a mapping
from the masked token representation to the most probable token
in the vocabulary, given its context.

Learning Program States. The second pre-training objective,
program state prediction (PSP), is designed to enable the model to
learn program execution behavior by predicting the program state
labels of the traced variables. These program state labels, as defined
in §3.3, contain information about the data types, value types, and
quantized values of the variables at the end of the program execu-
tion. Specifically, TRACED first identifies the variable tokens in the
source code sequence, denoted as {cyqr | cvar € V} € C, where V
is the set of all traced variables and C is the source code sequence.
It then extracts the representation, ryqr, of each variable token
and feeds it into the program state layer. The program state layer
predicts the variable’s joint likelihood of being the ground-truth
data type, dpar, value type, tyqr, and quantized value, qyqr. Note
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that if a variable is tokenized as multiple sub-tokens, all belonging
sub-tokens share the same program state label. Finally, TRACED
computes the loss of PSP as the sum of the losses of all variable
tokens used for predicting their program states. Mathematically,
the loss is expressed as follows:

Lprogram—state = Z _logP( dvar, toar> Quar | rvar) (2)

var

Learning Variable Coverage. The third pre-training objective,
variable coverage prediction (VCP), aims to learn the execution
coverage, which is crucial for understanding the control flow of
the code given a specific input. Similar to the PSP objective, VCP
targets making predictions for variable tokens. Also, sub-tokens
belonging to the same variable will be assigned the same coverage
label. The loss of VCP is as follows:

Loar—cov = Z _logP(COUuar | ruar) (3)

var

For the efficiency of joint optimization, we share the weights
between the program state layers and the execution coverage layers,
as they are instinctively both classifiers optimized by cross-entropy
loss. Concretely, the coverage label will be learned jointly with the
quantized value: if a variable is covered, it will be assigned a specific
quantized value label, and otherwise, it will be assigned as “Not
Covered".

Finally, TRACED combines the losses of all three objectives and
computes their sum as the final loss of a pre-training sample. It
back-propagates the gradients through both the prediction layers
and the backbone Transformer layers to update their weights. We
denote the full set of TRACED’s learnable parameters as 6 and
represent the loss as follows:

L(0) = Leode—text (0) + Lprogram—state(8) + Loar—cov(6) (4)

4.2 Task-specific Fine-tuning

TRACED loads the model weights of Transformers layers, which
are pre-trained to produce execution-aware code representations,
and further fine-tunes the model for downstream tasks. We consider
three downstream tasks as the main applications for TRACED: (1)
Static estimation of program execution which includes both execu-
tion coverage prediction and runtime variable value prediction; (2)
Semantic Clone Retrieval; (3) Vulnerability Detection.

Static Execution Estimation. Our goal of pre-training is to
encode the execution patterns into the code representation, so
the model could estimate the program execution statically. As a
direct application, TRACED fine-tunes the model to predict (1) the
execution coverage and (2) runtime variable values using source
code and program input. TRACED evaluates the fine-tuned model
to estimate the execution of unseen programs in the same way.

Specifically, for execution coverage prediction, TRACED iden-
tifies all the branching statements to locate the branches, B =
{b1, by, ..., by }, within the source code. It trains the model to pre-
dict a binary label, 0 means the branch is not covered by the current
execution and 1 means covered, for each b; € B. For the model’s con-
venience to make predictions, the special token [MASK] is inserted at
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the beginning of each branch. For example, the following if-else
has two branches that are pre-processed for branch prediction: if
(condition) {[MASK] ...} else {[MASK] }. During the
fine-tuning, the Transformer layers learn to encode the branch
information into the corresponding [MASK] token representation
with the built-in bi-directional attention and positional encoding.
Then the classification head takes [MASK] representations to predict
whether a branch is covered by the current execution. For variable
value prediction, TRACED identifies variables, V = {v1, v, ..., 05}
and trains the model to predict their quantized values (§3.2) during
the execution.

Semantic Clone Retrieval. Detecting semantic clones is signif-
icant for software maintenance [26, 30], yet very challenging in
practice since the token and syntactic structures overlap among
semantic clones may be quite limited. This task requires the model
to estimate the program behaviors without executing the programs
and capture the similarity among them. It evaluates the model’s
semantic reasoning capacity to identify the code similarity and
retrieve clones: given a program as a query, and an arbitrary col-
lection of programs as candidates, the model needs to identify the
query’s semantic clones from possibly thousands of candidates.

Vulnerability Detection. Vulnerability detection is a crucial
task in software security, aiming to identify potential security vul-
nerabilities in software code that could be exploited by attackers.
The vulnerabilities may exist due to various reasons, including pro-
gramming errors, design flaws, or configuration issues. Detecting
these vulnerabilities early in the software development lifecycle
can prevent potential attacks, mitigate risks, and save resources.
We fine-tune TRACED’s pre-trained model on datasets consist-
ing of vulnerable and non-vulnerable code samples, so the model
learns to classify code functions as vulnerable or non-vulnerable
by estimating their execution behavior.

5 EXPERIMENTAL SETUP

5.1 Trace Collection

In this section, we explain how we traced the dynamic information
in programs to produce concrete traces, given the source code and
program input.

First, we compile the program using gcc with the options -g -00.
Option -g preserves debug information, which is necessary in order
to read variables and source code locations using the debugger, and
option -00 disables compiler optimizations, which could optimize
out some variables thus preventing them from being read at runtime.
We use this option because we seek to model the semantics of the
source code in terms of variable values rather than the optimized
machine code.

Second, we load the program with the given standard input
redirected to stdin and attach the gdb? debugger, using the Python
API to implement the tracing command. Starting from the entry
point (main), we execute the program one line at a time using the
step command. At each line, we print out the concrete values of
all variables in scope. We also set breakpoints at the entry of each
user-defined function, where we log the values of each parameter.
For numeric types, we simply log their string representation. For

Zhttps://www.sourceware.org/gdb
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char and char =* (string) types, we log the human-readable values
of the chars/strings. We use gdb’s pretty-printer to print struct
types and statically allocated array types, such as int[<size>].
For pointer types, we print the memory address of the pointer as
a hex code. We only traced the functions that were defined in the
source code and skipped over all standard library functions.

5.2 Dataset

5.2.1  Pre-training Dataset. IBM’s CodeNet Dataset [41] includes
4,053 programming challenges for several programming languages
from the AIZU Online Judge and AtCoder platforms, and each
problem has up to thousands of implementations submitted by
distinct programmers. In this work, we focus on the C language
as the main resource for the pre-training and downstream tasks,
so we build our pre-training dataset with programming challenges
that have C solutions. Besides the large number of samples and
the complexity of programming challenges, we choose CodeNet to
build our datasets as it maintains at least one and at most twenty
executable inputs for each challenge, so we could execute and trace
the implementations of the challenge, and consequently build our
execution labels for the model to learn.

Out of 1,900 programming challenges with C solutions, we select
1,805 of them to build the pre-training dataset and leave the other
95 problems as held-out problems for evaluating the model’s capac-
ity for the downstream static execution estimation task. Splitting
samples strictly by challenge effectively avoids the issue of data
leakage from the training set to the held-out set. We randomly
sample up to 200 execution traces for each challenge, and this ends
up with 121,319 training traces.

5.2.2 Downstream tasks. In this section, we introduce the datasets
we use for each downstream task and explain the corresponding
evaluation metrics. The statistics of these datasets are in Table 2.

Static Execution Estimation. We build the dataset for this

task using CodeNet. We build the training samples from the 1,805
challenges that have been selected by the pre-training, and build
evaluation samples from the held-out 95 challenges to avoid model
memorization and data leakage.
Metrics. For the execution coverage prediction, we consider evalu-
ation metrics in two granularities: full execution path and branch
coverage. Concretely, for a sample with m branches, we denote the
full set of their labels as LB = {lby, Ibs, ..., by }, and the model pre-
diction setas LB = {151, 152, ey lem}. IfLB == LB, we regard the pre-
diction as matching the full execution path. For the branch coverage,
we compute the occurrence of [b; == ll;l-, where 1 < i < m, and re-
port the accuracy, precision, recall, and F1. Similarly, for the n quan-
tized variable values within the program, QV = {qu1, qua, ..., qum },
our model makes predictions as OV = {qd1, gda, ..., gom }. If OV ==
OV, we say the model accurately predicts the full execution. For the
individual value match, we compute the occurrence of qu; == qv;
and report the accuracy.

Semantic Clone Retrieval. We use CodeXGLUE-POJ104 [32,
33] as the dataset for this task. CodeXGLUE-POJ104 contains 104
programming challenges, and each has 500 C/C++ solutions sub-
mitted by different programmers. CodeXGLUE [32] reconstructs
it as a public benchmark by splitting the dataset into Train (64
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challenges), Dev (16 challenges), and Test (24 challenges) sets, with
no overlapped challenge between any two sets.

Metrics. MAP@R (Mean Average Precision @ R)? is the main met-
ric of this task, where we follow the design of the CodeXGLUE
benchmark. Average precision at R is a common metric to evaluate
the quality of information retrieval; it measures the average pre-
cision scores of a set of the top-R clone candidates presented in
response to a query program. The "R" for CodeXGLUE is 499 as it
has 500 solutions for each challenge.

Vulnerability Detection. We utilized three publicly available
datasets: REVEAL (RV) [8], D2A [54], and CodeXGLUE-Devign
(CXG) [32, 55]. The REVEAL dataset was curated by Chakraborty
et al. to simulate a real-world scenario where bugs are relatively
rare, resulting in a ratio of approximately 1:10 between buggy and
benign samples. The D2A dataset is a balanced dataset focusing
on bug-fixing commits. It labels the previous version of modified
functions as buggy and the fixed version as benign. Finally, the
CodeXGLUE-Devign dataset, introduced by Zhou et al,, is also a
balanced dataset that has been reconstructed as a public benchmark
by CodeXGLUE, ensuring that all models can be evaluated using
the same train/valid/test splits.

Metrics. REVEAL is an imbalanced dataset, so we use F1 as the
evaluation metric. D2A and Devign are balanced datasets, so we
follow the original benchmark to report the classification accuracy.

Table 2: Details of downstream tasks datasets.

Task Dataset Train Valid Test
Execution Estimation CodeNet 121,319 | 13,116 | 13,116
Clone Detection CXG-PQOJ104 32,000 8,000 | 12,000
REVEAL 15,867 2,268 4,535

Vulnerability Detection D2A 4,644 597 619
CXG-Devign 21,854 2,732 2,732

5.3 Model Configuration

TRACED’s backbone is a standard RoBERTagasg architecture [31]
with 12 layers of Transformer-encoder, and each layer has 12 atten-
tion heads and the hidden dimension is 768. TRACED is initialized
with the pre-trained weights from UnixCoder [17]*, and we use
its BPE tokenizer to split the rare tokens into BPE sub-tokens. The
maximum sequence length is 1024 BPE tokens, and the longer se-
quence will be truncated. When the code sample is paired with
executable inputs, the maximum length for the executable input
is 64, and the source code is 960. Our experiments are conducted
on 2 X 24GB NVIDIA GeForce RTX-3090 GPUs. We further pre-
train the model for 10 epochs to learn the program execution with
two learning rates, 5e-5 and 2e-5, and report the best-performing
models for downstream tasks. For all the fine-tuning tasks, we use
the learning rate of 8e-6. Learning rates typically decrease for later
phases [10, 16, 18], so TRACED follows the same design. We use
Adam optimizer [27] with the linear learning rate decay. Our model
is implemented mainly with Pytorch [12] and Huggingface [14].
3https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_
average_precision

4Specifically, we load unixcoder-base-nine, as its pre-training considers C language
code samples: https://huggingface.co/microsoft/unixcoder-base-nine. Note that this

checkpoint is pre-trained only with the MLM objective, while the original paper [17]
reports other better-performing variants that are not released publicly.
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6 EVALUATION

In this section, we ask the following four RQs:

e RQ1: How effective is TRACED in statically estimating the pro-
gram execution?

e RQ2: How does our proposed training strategy contribute to
learning the program execution?

o RQ3: Is our proposed quantized values for programs effective in
guiding the model to learn program executions?

e RQ4: How does TRACED perform w.r.t. statically pre-trained
baselines for code understanding tasks?

6.1 RQL1. Effectiveness of TRACED in Static
Estimation of Execution

In this section, we demonstrate the effectiveness of TRACED in
statically estimating program execution. The evaluation is more
challenging and realistic than TRACED’s pre-training as it requires
the model to predict not only for individual variables but also
branches and the full execution path.

Baseline. In this RQ, we mainly compare the execution-aware
TRACED with UnixCoder [17]. Now we explain the reasons for this
choice. First, TRACED is initialized with the pre-trained UnixCoder
weights, so comparing TRACED with the UnixCoder performance is
a direct assessment of the impact of our proposed pre-training. Sec-
ond, UnixCoder reports the state-of-the-art performance in many
tasks, including clone detection, code search and summarization,
and code generation and completion, significantly outperforming
other pre-trained code models, such as CodeBERT [16] and Graph-
CodeBERT [18]. Third, it consumes up to 1,024 tokens, while most
pre-trained code models [1, 6, 16, 18, 49] take at maximum 512 to-
kens. By consuming longer sequences, UnixCoder is able to handle
longer programs and make complete predictions without truncat-
ing code in many cases. As TRACED is also designed to consume
1,024 tokens, it is not fair to compare it in this task with baselines
with a maximum length of 512, as the baselines will necessarily
consider fewer branches for prediction.

Table 3: Performance on static execution estimation.

Coverage Runtime Value

Model Full Path Branch Full Exec | Var
Acc Acc | Prec | Rec F1 Acc Acc

UnixCoder 63.7 79.7 81.7 854 | 835 39.3 87.8
TRACED 71.6 83.1 | 84.6 | 88.1 | 86.3 49.2 89.2
-w/o MLM 70.4 82.6 | 85.3 | 86.0 | 85.6 49.0 89.2
-w/o PSP 69.0 81.4 83.0 86.9 | 84.9 44.0 87.4
-w/o VCP 66.1 80.3 82.4 85.6 | 84.0 46.7 89.0
-MLM-only 65.6 81.0 83.1 86.0 | 84.6 43.0 87.5

Result. The comparison is shown in Table 3, Row-1 vs. Row-2.
TRACED significantly outperforms UnixCoder in the static esti-
mation of execution coverage and dynamic values of variables,
especially when the evaluation granularity is coarse, i.e., full exe-
cution path (Full Path column in Table 3) and the runtime values
of the full execution (Full Exec column in Table 3). TRACED cor-
rectly predicts the complete execution paths for 71.6% held-out
samples and accurately predicts all variable values for 49.2% exe-
cutions, revealing the execution-aware pre-training improves over
UnixCoder’s performance by 12.4% and 25.2%, respectively.
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Case Study with Qualitative Examples. We present two qualita-
tive examples in Figure 5 and 6 to concretely compare TRACED with
UnixCoder in execution coverage and runtime value predictions,
respectively. Both samples have simple execution logic from the
human perspective, but the statically pre-trained UnixCoder still
fails to correctly estimate them. Figure 5 illustrates that UnixCoder
is not sensitive to distinct inputs that trigger different execution
coverage, while TRACED is able to determine the numerical rela-
tions among varied values. Figure 6 illustrates TRACED’s capacity
in exposing abnormal program behaviors.

//Input: 19 100
#include <stdio.h>
int main(){
int A, N, T, B;
scanf ("%d %d", &N, &A);
T=N=x*N;
B=T-A;
if (A > @) {printf("%d", B);} // Branch-1
else {printf("%d", T);} // Branch-2
return 0;

}
UnixCoder Predictions (Wrong)

Branch-1: Not executed
Branch-2: Not executed
TRACED Predictions (Correct)
Branch-1: Executed

Branch-2: Not Executed

Figure 5: The qualitative example of execution coverage prediction.
The source code is the same as Figure 1, but the input triggers a
different execution path. TRACED correctly flips the prediction
while UnixCoder remains the same prediction.

//Input: 4 4320 4320 4320
#include <stdio.h>
int main (void) {
int n, a, max = @, sum = @, i;
for (i = 0; i <n; i++){ // Quantized value of n?
scanf("\%d", &a);
if (a > max) max = a;
sum += a;
}
printf("\%d\\n" ,
return 0;

sum - max / 2);

3

UnixCoder Prediction (Wrong)
n: Zero

TRACED Prediction (Correct)
n: Negative Large

Figure 6: The qualitative example of runtime value prediction. The
sample contains a vulnerability of type CWE-457 “Use of Uninitial-
ized Variable". The uninitialized n, which is randomly assigned as
-32767, is used in the for-loop. TRACED successfully exposes this
abnormal behavior statically by identifying n as a “Negative Large"
value while UnixCoder fails. Predictions of other variables are hid-
den for better illustration.
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Result-1: With a similar number of learnable parameters,
TRACED outperforms the state-of-the-art pre-trained code
model in the static estimation of program execution task.
Our proposed pre-training successfully encodes the execution
awareness into TRACED’s code representations.

6.2 ROQ2. Effectiveness of TRACED’s
Pre-training Objectives

One of the main contributions of this paper is proposing multi-task

pre-training to effectively learn the execution-aware code repre-

sentations. In this RQ, we study the effectiveness and contribution

of each of TRACED’s objectives, and consequently illustrate the

importance of the multiple tasks.

To conduct these experiments, we remove one pre-training ob-
jective at a time and pre-train the variant with exactly the same
setup as the main model. Then we fine-tune the variant on the
static execution estimation task and compare the performance with
the main model. We also consider a variant that is pre-trained on
our dataset but only with MLM objectives. The results are shown
in Row 3-6 of Table 3. Removing any objective hurts TRACED’s
performance, suggesting that comprehensively learning both static
and dynamic code properties is more effective than learning one
perspective alone.

Result-2: TRACED’s multi-task pre-training helps the model
comprehensively learn both static and dynamic aspects of
source code. Removing any one of TRACED’s three pre-
training objectives noticeably hurts the model’s performance
in statically estimating program executions.

6.3 RQ3. Effectiveness of TRACED’s Quantized
Variable Values

Another contribution of this paper is that the simplified and com-
pact representation of program executions helps code models to
capture dynamic code properties. In this RQ, we empirically reveal
that the design of quantized variable values especially contributes
to the effective learning of the code models, as it reduces the data
sparsity of variable values but still defines sufficiently detailed value
categories to distinguish dissimilar values.

To isolate the evaluation of TRACED’s quantized values, we
pre-train several variants by only recreating quantized value labels,
i.e., §uar in Equation 2, using different value abstraction strategies.
For example, when we pre-train a variant studying the impact
of concrete values, we replace TRACED’s defined gyqr with the
concrete traced values. As different strategies abstract values at
different granularities, it is not feasible to compare them for the
value prediction task, since the coarse-grained strategy will benefit.
Therefore, we only fine-tune the studied variants for the execution
coverage prediction.

Baseline. First, we consider comparing with concrete values, as it
is the most intuitive strategy to represent variable values. Then, we
consider two data abstractions from LExecutor [45]: coarse and fine-
grained. They share similar high-level intuition with us, mapping
concrete values to pre-defined bins to reduce data complexity and
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consequently help the model’s learning. Note that LExecutor’s data
abstraction serves a different goal than TRACED, and focuses on
Python while TRACED focuses on C, so we could not directly reuse
their pre-defined bins. As their definition of data abstraction is clear
and straightforward, we re-implement their data abstraction for
the C language and integrate it into our framework for comparison.
We discuss and compare LExecutor with TRACED in more detail
in the Related Work section (§7).
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Figure 7: Comparing TRACED’s design of quantized variable values
with other value abstraction strategies.

Results. The comparison of value abstractions are shown in Fig-
ure 7. Unsurprisingly, concrete values report poor performance
compared to other data abstractions, empirically revealing the diffi-
culties for code models to fit sparse and complex data distributions.
Interestingly, we notice both of LExecutor’s abstractions perform
slightly worse than TRACED. We speculate that LExecutor is not
as sensitive as TRACED to numeric relations in the conditional
statements, as they do not distinguish among small, regular, and
large values. Note that execution coverage is not the main focus
of LExecutor, so more fine-grained categories are not required to
serve its goal, while they are empirically proven to be necessary
for TRACED’s scope.

Result-3: TRACED’s quantized variable values directly con-
tribute to the effectiveness of its execution-aware pre-training.
It reduces the data sparsity of concrete values but defines
sufficiently detailed value categories to distinguish dissimilar
values for reasoning about execution paths.

6.4 RQ4. TRACED’s Performance in Code
Understanding Tasks

In this RQ, we study TRACED’s performance on two code under-
standing tasks: semantic clone retrieval and function-level vulner-
ability detection. Note that samples for these tasks are not paired
with executable inputs, so the model needs to reason about the
general code semantics to make predictions.

Baselines. We consider five pre-trained code models with similar
parameter sizes to TRACED. CodeBERT [16] pre-trains a RoBERTa
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model with MLM and replaced token detection (RTD) tasks. Graph-
CodeBERT [18] is initialized with CodeBERT and continues pre-
training with augmented data flow graphs to learn the static data de-
pendencies. PLBART [1] and CodeT5 [49] both apply the sequence-
to-sequence neural architecture, where PLBART adapts the BART [29]
model to learn code translation and summarization, and CodeT5
adapts [42] to predict the missing code tokens and locate the iden-
tifiers. We also, again, consider UnixCoder as a baseline.

Table 4: Comparison of Clone Retrieval and bug detection.

Task Clone Retrieval | Vulnerability Detection
Dataset POJ-104 RV | D2A CXG
Metric MAP@R F1 Acc Acc
CodeBERT 85.2 455 | 61.0 63.2
GraphCodeBERT 86.7 46.6 | 58.3 62.9
PLBART-base 75.9 46.9 61.7 63.3
CodeT5-base” 65.9 46.5 | 62.1 64.4
UnixCoder 89.5 474 | 61.2 65.3
TRACED 91.2 50.4 | 62.1 65.9

*CodeT5-base has 223M parameters, roughly twice as large as other
baselines and TRACED. We report its performance as CodeT5-small has
only 60M parameters and performs poorly, and CodeT5 does not provide a
~110M model.

Results. We show the results in Table 4. Even though the samples
in these benchmarks do not have executable inputs, TRACED still
outperforms the statically pre-trained models by a clear margin.
We speculate the reason is that TRACED could estimate the gen-
eral execution behaviors without specific inputs, and the program
semantics regarding these two code understanding tasks could be
better captured with such a general sense. Specifically, clone re-
trieval requires the model to identify the behavioral similarities
of code as semantic clones mostly differ in code text and syntax.
Also, vulnerable code with potential anomalies could be directly
identified by TRACED in some cases like Figure 6.

Result-4: TRACED outperforms statically pre-trained models
in clone retrieval and vulnerability detection tasks, suggesting
TRACED’s general estimation of execution helps it capture the
code semantics more effectively.

7 RELATED WORK

Pre-trained Models for Source Code. The research community
has shown a growing interest in developing pre-trained Trans-
former models for source code. These models can be broadly cat-
egorized into three primary architectures: Encoder-only [5, 6, 10,
16, 18, 24, 48], Decoder-only [2, 13, 50], and Encoder-decoder [1,
7, 15, 17, 35]. Encoder-only models predominantly employ MLM
objective and sequence understanding tasks (e.g., predicting next
statement [24] and contrasting semantics [10]). This architecture ex-
cels at understanding the static code features. Decoder-only models,
on the other hand, are typically trained by predicting code tokens
in a left-to-right manner. This architecture focuses on generating
code text based on learned patterns. The Encoder-decoder mod-
els combine the strengths of both Encoder-only and Decoder-only
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models and are pre-trained using various tasks, including denoising
autoencoding for reconstructing wrongly permuted tokens [1], pre-
dicting missing identifiers in the code [49], and recovering method
names from the source code [35].

These models primarily focus on learning the static aspects of
source code but often miss out on capturing the dynamic proper-
ties of code execution. This limitation restricts these models from
accurately inferring runtime behaviors, debugging issues, and un-
derstanding complex program states.

Modeling Program Execution. Pei et al. [38—40] proposed a se-
ries of pioneering works to learn the executions of binary programs
with Transformer-based models. They used concrete values from
registers, which are feasible in their scope because binary programs
have a smaller space of possible values and effects compared to
source code. On the other hand, our work focuses on encoding
execution at the source code level by imitating the developers’ code
practice. Variables in source code have more complicated data and
value types than machine registers. We introduce quantized values
in order to decrease the data complexity and sparsity.

Several works [3, 4, 36, 44, 51, 52] have attempted learning to
execute programs as a direct goal. Souza and Pradel [45] also pro-
posed LExecutor to predict missing values during execution. While
it shares similar intuition of mapping concrete values to discrete
categories, LExecutor is distinct from TRACED in several perspec-
tives. First, LExecutor focuses only on predicting the values, while
TRACED proposes a general pre-training strategy to encode the
comprehensive execution awareness, not only values but also exe-
cution coverage, into the code representation. Besides, to yield code
representations at a better quality, TRACED jointly learns both
code text and dynamic executions rather than sticking to a single
perspective. Due to the distinct aims and designs, we empirically
illustrate in RQ3 (§6.3) that LExecutor’s value abstractions are not
perfectly aligned with our scope.

Nie et al. [34] annotated programs with information about the
program’s possible executions without executing the code but pro-
vided only statically available information. Conversely, several
works [19, 37, 46, 47] require dynamic traces as input. We show that
TRACED’s pre-training is able to encode the execution awareness
into code representation and estimate the dynamic semantics with
static information alone.

8 THREATS TO VALIDITY

Internal Validity. First, the current design of quantized value is
not covering all variables within the program due to the complexity
of their data structures, value ranges, and/or memory allocations.
Second, currently, we only trace the program by feeding it valid
and executable inputs which will not terminate the program or
throw errors. This might make the model less capable of capturing
program termination and error-throwing behaviors.

External Validity. At present, TRACED supports only the C pro-
gramming language. This limitation is due to the reliance on the
capabilities of the tracer used to log the execution history, which
may not be readily available or equally effective for other program-
ming languages. In order to extend TRACED’s applicability, it is
necessary to ensure that the tracer employed can accurately and
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consistently capture the required information across different lan-
guages. Adapting TRACED to multiple languages would require
the development or adaptation of tracers that can effectively handle
the intricacies of each language and produce comparable results,
enabling a consistent analysis of code behavior across a broader
range of programming languages.

9 CONCLUSION

In this paper, we propose TRACED, an execution-aware pre-trained
model that jointly learns the static and dynamic code properties, to
address the limitation of existing, statically pre-trained code models.
The evaluation empirically reveals that TRACED is more effective
in estimating code execution statically than statically pre-trained
models. TRACED also successfully transfers execution awareness
to code understanding tasks.
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