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ABSTRACT

Most existing pre-trained language models for source code focus on

learning the static code text, typically augmented with static code

structures (abstract syntax tree, dependency graphs, etc.). How-

ever, program semantics will not be fully exposed before the real

execution. Without an understanding of the program execution,

statically pre-trained models fail to comprehensively capture the

dynamic code properties, such as the branch coverage and the run-

time variable values, and they are consequently less e�ective at

code understanding tasks, such as retrieving semantic clones and

detecting software vulnerabilities.

To close the gap between the static nature of language mod-

els and the dynamic characteristics of programs, we introduce

TRACED, an execution-aware pre-training strategy for source code.

Speci�cally, we pre-train code language models with a combination

of source code, executable inputs, and corresponding execution

traces. Our goal is to teach code models the complicated execution

logic during the pre-training, enabling the model to statically es-

timate the dynamic code properties without repeatedly executing

code during task-speci�c �ne-tuning.

To illustrate the e�ectiveness of our proposed approach, we

�ne-tune and evaluate TRACED on three downstream tasks: static

execution estimation, clone retrieval, and vulnerability detection.

The empirical results show that TRACED relatively improves the

statically pre-trained code models by 12.4% for complete execution

path prediction and by 25.2% for runtime variable value predictions.

TRACED also signi�cantly outperforms statically pre-trained mod-

els in clone retrieval and vulnerability detection across four public

benchmarks.
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1 INTRODUCTION

Machine Learning (ML) for source code has enabled many soft-

ware engineering tasks, such as automated program repair [11, 21–

23], bug �nding [8, 55], and refactoring [7]. Recently, the com-

mon practice of training ML models for source code understand-

ing is based on pre-training a Transformer-based language model

on source code. These approaches treat source code programs

as static text [1, 6, 16, 49], sometimes augmented with program-

speci�c structures such as abstract syntax trees and dependency

graphs [10, 17, 18, 35], and adapt pre-training strategies for natural

language to learn program representations.

However, many source code understanding tasks require a more

comprehensive understanding of program behavior. For instance,

detecting semantic clones[32] involves determining if two pieces of

code behave similarly under similar inputs, even if their structures

are apparently di�erent. Likewise, detecting vulnerabilities often

requires developers to analyze whether a potentially problematic

location can be executed and what kinds of value �ows can expose

any vulnerability. While existing code models are primarily trained

to capture static code properties, they are not e�ective at reasoning

about program behavior. In fact, many of the deeper program se-

mantics only manifest when the code is executed. As a result, they

tend to underperform when it comes to tasks that require deeper

semantic understanding.

Figure 1: An motivating example from CodeNet’s coding challenge

No.3597 [41] reveals that statically pre-trained code languagemodels,

regardless of their size, could not reason about the branch coverage

given a speci�c input, while TRACED, enhanced with program exe-

cution features, correctly identify the execution path.

Motivating Examples. Figure 1 presents an example with sim-

ple execution logic to illustrate the failure of statically pre-trained

code models on the branch coverage prediction. We query three
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pre-trained code models, CodeX [13] (code-davinci-002), Unix-

Coder [17], and TRACED (ours), to predict the branch coverage,

according to the given program inputs. For CodeX, we prompt the

model with carefully designed questions, similar to [36], to ask for

the branch coverage prediction in the zero-shot setting. Speci�-

cally, we augment the prompts by adding comments at the end

of lines 12 and 16: // Will this line be executed? Yes or

no?. To give more hints regarding the data �ow, we further add a

comment at the end of line 10: // A is -1, since it accepts

the second value of the input. Unfortunately, even if provided

with additional hints of the required data �ow for branch prediction,

CodeX still failed to predict the correct coverage labels, suggesting

it cannot interpret this simple execution.

Besides the zero-shot prompting, we also study whether �ne-

tuning pre-trained code models to predict execution can lead to

better branch prediction. Speci�cally, we �ne-tune another pop-

ular pre-trained code model, UnixCoder [17], to predict branch

execution while ensuring the motivation example is not seen dur-

ing training. From the inference results in Figure 1, we notice that

UnixCoder cannot predict covered branches even after being �ne-

tuned. It predicts neither of the branches will be covered, indicating

that it does not have the basic understanding that, for this speci�c

example, at least one branch will always be taken on a valid input.

Our approach. To address the limitation of the statically pre-

trained code models, we propose TRACED, an execution-aware

pre-training strategy to capture the static and dynamic perspectives

of the source code. Speci�cally, we pre-train the Transformer-based

language model with multi-task objectives on predicting source

code, program states, and execution coverage, forcing the model to

reason about both program’s runtime behavior and the naturalness

of the source code [43] at the same time. We address several tech-

nical challenges, such as representing program execution states,

encoding the runtime variable values, and representing code cover-

age, to implement the pre-training strategy.

Representing Program States. During program execution, vari-

ables are used to store data that is used by the program. These

variables can have di�erent types, such as integers, �oating-point

numbers, pointers, and arrays. As the program executes, the values

of these variables change, re�ecting the changes in the program’s

state. Consequently, software developers typically monitor the vari-

able values, via debugging tools, to observe the execution facts [53]

and understand the dynamic behaviors of the program.

In this work, we de�ne the program state at a speci�c time step

of the execution as the set of values of every de�ned variable in

the current scope. In other words, the program state is equivalent

to the value mapping table of the debugger, which is monitored by

the developer when the program is paused by a speci�c breakpoint.

Value Quantization. While the runtime variable values are traced

as concrete values, directly learning them brought challenges to

machine learning models. Concrete values span over a wide range

of possible values, especially when considering di�erent data types

(integers, �oating-point numbers, arrays, pointers, etc.), leading

to a high-dimensional, complex, but sparse data distribution. This

increased data complexity and sparsity challenges the model to

learn patterns and relationships between the variable values, as it

must deal with many unique inputs, which causes the model to

over�t and memorize speci�c instances rather than generalize to

broader patterns. Additionally, noise, outliers, and irregularities of

concrete values also mislead the model’s learning process. We will

empirically demonstrate these limitations in §6.3.

To decrease the data complexity and increase the density, we

de�ne thirty value categories, covering a wide range of variable

types, to map the continuous but sparse variable values into discrete

bins. We call this process as value quantization, which is similar in

design to the quantization in signal processing1. This simpli�cation

potentially helps the model to be more resilient to noise and outliers,

allowing it to focus on learning the underlying execution patterns

and relationships between variables, rather than being sensitive to

speci�c instances or irregularities.

Representing Execution Coverage. While program state labels pro-

vide important information about the current state of the program,

they do not capture information about how the program arrived at

that state. To boost the training with more comprehensive execu-

tion features, besides the variable values, we also log the execution

coverage during the execution, in terms of which lines are executed

and which are not, and construct execution coverage features for

the model to learn.

Results. We �ne-tune and evaluate TRACED’s performance us-

ing three tasks: static execution estimation, clone retrieval, and

vulnerability detection. On statically predicting the program exe-

cutions, TRACED substantially improves the statically pre-trained

code models by 12.4% for execution path prediction and by 25.2%

for runtime variable value predictions. TRACED also obtains state-

of-the-art results in code understanding tasks: TRACED reports

91.2% MAP@R on CodeXGLUE-POJ104 [32], 50.4% F1 on ReVeal [8],

and 65.9% accuracy on CodeXGLUE-defect-detection [32].

Contributions. We make the following contributions:

• We present a simpli�ed and compact representation of pro-

gram executions, including the program states and the ex-

ecution coverage, to e�ectively guide code models to learn

program semantics and reason about program behavior.

• Wepropose a novel multi-task pre-training strategy to jointly

learn the static and dynamic code properties. As a result, the

pre-trained model with our approach will be empowered

with a decent execution awareness.

• We pre-train TRACED with the proposed trace represen-

tation and the execution-aware strategy and evaluate its

performance on several downstream tasks. The experiment

results demonstrate that TRACED signi�cantly outperforms

the statically pre-trained code models in these tasks.

• We will publicly release our data, code, and pre-trained mod-

els at https://github.com/ARiSE-Lab/TRACED_ICSE_24.git.

2 OVERVIEW

Figure 2 shows the overview of TRACED, consisting of three main

stages: (1) tracing the source code and engineering the features,

(2) execution-aware pre-training using the program traces, and

1https://en.wikipedia.org/wiki/Quantization_(signal_processing)
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(3) loading the pre-trained weights and performing task-speci�c

�ne-tuning.

Figure 2: Overview of TRACED work�ow.

Stage-1: Tracing & Feature Engineering. The goal of this stage

is to prepare the data for pre-training. The process begins with pro-

viding a source program and its executable inputs. The �rst step is

to execute the program with each input to generate corresponding

traces. The traces record the runtime variable values, together with

the execution coverage, logging the full execution history of the

program and revealing the changes to program states throughout

execution. To reduce the complexity and sparsity of the data, and

make it easier for the model to learn patterns and relationships be-

tween the variable values, we quantize the concrete runtime values

recorded in the traces into pre-de�ned value ranges. The quanti-

zation process maps continuous values to a �xed set of discrete

or bins. By quantizing the values, we create a �nite set of possible

outputs that can be used as ground-truth labels during training.

After quantization, we create program state labels and execution

coverage labels that will help the model to capture the program

executions. The dataset �nally ends up with a set of samples and

labels, where each sample includes the source code with its program

input and the labels represent the execution trace of this sample.

Stage-2: Execution-aware Pre-training with Traces. We uti-

lize the pre-processed samples and labels obtained from Stage-1 to

perform supervised pre-training. Speci�cally, we use a Transformer-

encoder-based model [31] to learn the program traces and improve

the model’s understanding of program execution. The model could

be either trained from scratch or loaded by the pre-trained weights

of existing code language models. To achieve the goal of produc-

ing execution-aware code representation, we propose three pre-

training objectives. The �rst objective is learning to generate the

source code. We believe that understanding the naturalness of code

text [20, 43] is fundamental for the model to capture more sophisti-

cated signals such as program execution. This objective is imple-

mented with masked language modeling (MLM), which masks a

certain percentage of tokens in the source code and trains the model

to reconstruct the masked tokens based on the surrounding context.

The second objective is learning to predict the program states. By

predicting program state labels that were generated in Stage-1, the

model learns to capture the data �ows and the side e�ects of code

execution. The third objective is to predict the execution coverage.

By predicting the execution coverage labels generated by Stage-1,

the model learns to capture the dynamic control �ow and helps the

model understand how the program state is reached and evolving.

Stage-3: Task-speci�c Fine-tuning. Finally, we applyTRACED

to several downstream tasks. We load the pre-trained weights of

TRACED, �ne-tune the model for a speci�c task, and keep updating

the model weights. Fine-tuning does not require the program to be

executed; rather, TRACEDwill reason about the execution statically

with its learned execution signals during the pre-training, and learn

to accomplish the task accordingly. In many useful applications,

we would not have program traces available. We consider three

downstream tasks for TRACED: static execution estimation, which

includes execution coverage and runtime variable value predictions,

clone retrieval, and vulnerability detection.

3 TRACING & FEATURE ENGINEERING

In this section, we introduce how TRACED builds the learnable

features from program traces for models to learn the program exe-

cutions.

3.1 Representing Program States

To imitate the way that human developers monitor variable values

to understand program behavior, we propose to train neural models

with the log of runtime variable values to recognize execution

patterns and infer dynamic program behaviors in a way that is

similar to human intuition. By taking the log of variable values

during the execution, we can represent the program states in a

more compact and interpretable form that is manageable for deep

neural nets to process.

We build the program state by taking snapshots of variable values

at program points during execution. When we take a snapshot at a

speci�c time step, similar to the moment that the program is paused

by a debugging breakpoint set right after line ; , we maintain a value

mapping," , to map the variable to its current value, similar to the

value mapping table of the debugger. To record the program state,

we take the value snapshot after each line of execution and log the

variables’ current values.

De�nition: Program State. Formally, we de�ne the program state

after the execution of a speci�c line, ; , as B (;), represented as a set

of variable values at this moment:

B (;) = {" (E, ;) | E ∈ + , ; ∈ !}

+ represents the set of all traced variables, and ! is the set of

lines with source code. Figure 3 shows an illustrative example of a

simple factorial program and the comments after the source code

indicate the program state after the execution of that line. Also,

we do not log the program state for lines without executable code,

such as line-8 of Figure 3.

Note that a source code line could be executed multiple times due

to a loop or recursion. While a more detailed representation of pro-

gram execution might provide additional insights, it also increases

the complexity and computational requirements of the model. As a

trade-o� between the complexity and performance, we use the last
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1 // INPUT: 4

2 int factorial() {

3 int x, y; // {'x': 32767, 'y': 32767}

4 x = atoi(argv[1]); // {'x': 4, 'y': 32767}

5 if (x < 0) { // {'x': 4, 'y': 32767}

6 y = -1;

7 return y;

8 }

9 y = 1; // {'x': 4, 'y': 1}

10 for (int i = 1; i <= x; i++) // {'x': 4, 'y': 24, 'i': 5}

11 {

12 y *= i; // {'x': 4, 'y': 24, 'i': 5}

13 }

14 return y; // {'x': 4, 'y': 24, 'i': 5}

15 }

Figure 3: Program states with concrete runtime values.

occurring execution of each line to �nalize the program states, so

that B (;) keeps getting updated until the execution terminates.

We apply such a trade-o� based on the observations of real execu-

tions. Speci�cally, the last occurring values are typically su�cient

to capture the results of loops and recursions. For example, when

calling a recursive function, only the last occurring value(s) of re-

turned variable(s) will be taken to ful�ll the following execution of

the caller. Similarly, the �nal values when loops �nish will take part

in the future execution. As shown in line-12 of Figure 3, variable

y gets multiplied inside a loop to calculate the factorial. Its value

changes in each iteration, but it is less informative to reason about

the program’s overall behavior, as only the �nal value is used as

the return value (line-14). Thus, we would represent y using the

value from the last occurring execution of the loop.

3.2 Quantized Variable Values

As we introduced in §1, the distribution of concrete values is sparse

and complex, consequently di�cult for a statistical model to �t. In

addition, concrete values are not always necessary. Some common

program behaviors are accompanied by extremely large or small

variable values – for example, in C, uninitialized variables are often

set to zero or uncommonly large variables, but the concrete values

are not meaningful because they depend only on the data remaining

on the stack, which could be randomly large or small. The model

could represent such behaviors by estimating the value ranges of

variables without accurately predicting their concrete values which

are not informative or meaningful. Figure 3 displays some of these

cases: after the execution of line-3, x and y are uninitialized and

randomly initiated as 32,767, which has no concrete meaning but

only makes the training data noisy and sparse.

To reduce the data complexity and increase the density, we de�ne

30 categories for quantized values in Table 1. To comprehensively

represent the variable values, the proposed quantized categories

consider both types, i.e., the data types and value types, that are

statically de�ned, and the dynamic runtime values. Our quantized

categories cover the most common variable types and value types,

which we have found su�cient to capture important program ex-

ecution behaviors and relationships. By focusing on the most fre-

quent value types, we can capture the essential features of program

execution. This makes our approach e�ective at capturing the gen-

eralized program execution behaviors and patterns. We empirically

illustrate our quantization strategy’s e�ectiveness in § 6.3.

Table 1: TRACED’s design of quantized variable values.

Data Type Value Types Concrete Value Quantized Value

Basic

Integer

0 < E ≤ 10, 000 Positive Regular

10, 000 < E Positive Large

0 Zero

−10, 000 ≤ E < 0 Negative Regular

E < −10, 000 Negative Large

Float/Double

0.0 < E ≤ 1.0 Positive Small

1.0 < E ≤ 10, 000.0 Positive Regular

10, 000.0 < E Positive Large

0.0 Zero

−1.0 < E < 0 Negative Small

−10, 000.0 ≤ E < −1.0 Negative Regular

E < −10, 000.0 Negative Large

Character

‘\0’ Null

E ∈ {a-zA-Z} Alphabetic

E ≠ ‘\0‘; E ∉ {a-zA-Z} Non-alphabetic

Boolean
0 False

1 True

Void - Void

Array

Integer
[E1, E2, . . . , E= ]; Initialized

@D0=C8I4 (E8 ) ∈ Integer Not Initialized

Float/Double
[E1, E2, . . . , E= ]; Initialized

@D0=C8I4 (E8 ) ∈ Float/Double Not Initialized

Character “⟨string⟩”
Initialized

Not Initialized

Pointer

Integer
0x0 Null

Not 0x0 Not Null

Float/Double
0x0 Null

Not 0x0 Not Null

Character
0x0 Null

Not 0x0 Not Null

3.3 Building Learnable Labels for Code Models

We used supervised pre-training with traces. We construct labels for

code models to learn two main perspectives of execution: program

states and execution coverage.

Program State Labels. As we discussed in previous sections,

we �rst trace the program variables during execution and log their

runtime values. We then quantize these values into pre-de�ned

categories. This process results in a sequence of program states,

each represented by a set of quantized variable values (as shown in

Figure 3), and we build the learnable features for the code model on

top of these program states. Speci�cally, we build labels for variables

that can be quantized into Table 1’s categories and train themodel to

predict these labels given their source code representations (§ 4.1.2).

The label for each variable is represented as a tuple: (data type,

value type, quantized value). For example, in Figure 3, the label of

variable X occurring at line-3 is (Basic, Integer, Positive Large), as the

current value of X is 32,767. We build such labels for all occurrences

of valid variables that can be quantized, and the set combining all

labels is considered as the program state labels of the code sample.

Execution Coverage Labels. To unify our design and reduce the

complexity of the model’s learning process, we also build execution

coverage labels for each occurrence of variables, aligning with the

program state labels. Concretely, we specify whether a variable

is covered or not. The variables within the executed lines will be

regarded as covered, and those within the unexecuted lines will

be labeled as not covered by execution. For example, in Figure 3,

Line-6 is not executed, so y at this line has the program state label

of (Basic, Integer, Not Covered), while y at line-9 is executed and
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has the program state label with concrete quantized value of (Basic,

Integer, Positive Regular).

4 MODEL

In this section, we explain the details of TRACED’s components

and learning objectives during pre-training and �ne-tuning.

Model Architecture. Figure 4 shows the high-level architec-

ture of TRACED’s pre-training. The backbone of TRACED is a 12-

layer Transformer encoder, similar to BERT [9] and RoBERTa [31],

which learns the generic code representations. On top of the back-

bone Transformer layers, TRACED stacks multiple multi-layer-

perceptron (MLP) layers as prediction heads for di�erent tasks.

During the pre-training, as shown in Figure 4, TRACED applies

a language model prediction head, i.e., LM layer, to predict the

masked token given its contextualized representation, a program

state prediction head to predict the program states labels that we

de�ned in § 3.3, and an execution coverage head to prediction

the execution coverage labels. For the task-speci�c �ne-tuning,

the backbone Transformer layers are loaded with the pre-trained

weights, while the prediction heads are replaced by a newly initial-

ized head customized for the speci�c downstream task.

Figure 4: High-level model architecture of TRACED. In the labels

for program state layers, NEG_REG means “Negative Regular", UNK

means “Unknown", and POS_REG means “Positive Regular", which

we have de�ned in Table 1.

4.1 Execution-aware Pre-training

4.1.1 Model Input of Pre-training. Each pre-training sample in-

cludes the source code of an executable program and a valid exe-

cutable input. As shown in Figure 4, the executable input and the

source code are �attened and concatenated as one sequence. To

distinguish the input from the source code, as they are di�erent

modalities, TRACED uses special [SEP] tokens to separate them

and indicate individual positions. To alleviate the out-of-vocabulary

concern of programming languages [25], TRACED takes a pre-

trained SentencePiece [28] subword tokenizer with vocabulary size

of 50,000. It uses this tokenizer to divide the concatenated sequence

into a new sequence of sub-tokens.

Formally, we de�ne the executable inputs as � = {41, ..., 48 } and

�attened source code as � = {21, ..., 2 9 }, then the �nal model input

will be I ={[CLS], 41, ..., 48 ,[SEP],[SEP], 21, ..., 2 9 ,[SEP]}. TRACED

truncates the executable inputs and the source code separately

if they are too long. TRACED sets the maximum length of the

executable input sequence to 64 tokens, and the source code to

960 tokens. These numbers are selected based on the statistics of

executable inputs’ length of our pre-training dataset (§5.2.1), and

�t the rest of the model input with source code.

Note that the execution traces are not part of the model input,

but are used as ground truth labels for the model to predict during

pre-training.

4.1.2 Learning Execution-aware Code Representations with Traces.

TRACED is pre-trained with multiple objectives to jointly capture

the static and dynamic perspectives of the source code.

Learning Code Text. Learning code text is the essential �rst

step toward understanding the execution of a program, as code text

is the primary source of capturing the code naturalness [20] and

other static properties. We implement the code text learning objec-

tive by adapting the masked language model objective [9, 16, 31].

Speci�cally, given the model input sequence, I, TRACED randomly

chooses 15% of tokens [9, 31] only from the source code sequence

� part and replaces with the special [MASK] token (e.g., printf in

Figure 4 is masked). It leaves the executable input sequence � as

is. The model is trained to encode the context of [MASK] into its

code representation, A<0B:43 , and reconstruct the concrete masked

tokens conditioned on the representation. We represent the loss of

learning code text as:

L2>34−C4GC =

∑

<0B:43

−;>6% (2<0B:43 | A<0B:43 ) (1)

In Figure 4, the LM (Language Model) layer receives the masked

token representation generated by the last Transformer layer. The

LM layer then predicts the concrete tokens by mapping the token

representation to the probability of each token in the vocabulary,

using an MLP (Multi-Layer Perceptron) layer. This process can be

thought of as a classi�cation task, where the number of classes is

equal to the size of the vocabulary. The goal is to learn a mapping

from the masked token representation to the most probable token

in the vocabulary, given its context.

Learning Program States. The second pre-training objective,

program state prediction (PSP), is designed to enable the model to

learn program execution behavior by predicting the program state

labels of the traced variables. These program state labels, as de�ned

in §3.3, contain information about the data types, value types, and

quantized values of the variables at the end of the program execu-

tion. Speci�cally, TRACED �rst identi�es the variable tokens in the

source code sequence, denoted as {2E0A | 2E0A ∈ + } ⊆ � , where +

is the set of all traced variables and � is the source code sequence.

It then extracts the representation, AE0A , of each variable token

and feeds it into the program state layer. The program state layer

predicts the variable’s joint likelihood of being the ground-truth

data type, 3E0A , value type, CE0A , and quantized value, @E0A . Note
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that if a variable is tokenized as multiple sub-tokens, all belonging

sub-tokens share the same program state label. Finally, TRACED

computes the loss of PSP as the sum of the losses of all variable

tokens used for predicting their program states. Mathematically,

the loss is expressed as follows:

L?A>6A0<−BC0C4 =

∑

E0A

−;>6% ( 3E0A , CE0A , @E0A | AE0A ) (2)

Learning Variable Coverage. The third pre-training objective,

variable coverage prediction (VCP), aims to learn the execution

coverage, which is crucial for understanding the control �ow of

the code given a speci�c input. Similar to the PSP objective, VCP

targets making predictions for variable tokens. Also, sub-tokens

belonging to the same variable will be assigned the same coverage

label. The loss of VCP is as follows:

LE0A−2>E =

∑

E0A

−;>6% (2>EE0A | AE0A ) (3)

For the e�ciency of joint optimization, we share the weights

between the program state layers and the execution coverage layers,

as they are instinctively both classi�ers optimized by cross-entropy

loss. Concretely, the coverage label will be learned jointly with the

quantized value: if a variable is covered, it will be assigned a speci�c

quantized value label, and otherwise, it will be assigned as “Not

Covered".

Finally, TRACED combines the losses of all three objectives and

computes their sum as the �nal loss of a pre-training sample. It

back-propagates the gradients through both the prediction layers

and the backbone Transformer layers to update their weights. We

denote the full set of TRACED’s learnable parameters as \ and

represent the loss as follows:

L(\ ) = L2>34−C4GC (\ ) + L?A>6A0<−BC0C4 (\ ) + LE0A−2>E (\ ) (4)

4.2 Task-speci�c Fine-tuning

TRACED loads the model weights of Transformers layers, which

are pre-trained to produce execution-aware code representations,

and further �ne-tunes the model for downstream tasks. We consider

three downstream tasks as the main applications for TRACED: (1)

Static estimation of program execution which includes both execu-

tion coverage prediction and runtime variable value prediction; (2)

Semantic Clone Retrieval; (3) Vulnerability Detection.

Static Execution Estimation. Our goal of pre-training is to

encode the execution patterns into the code representation, so

the model could estimate the program execution statically. As a

direct application, TRACED �ne-tunes the model to predict (1) the

execution coverage and (2) runtime variable values using source

code and program input. TRACED evaluates the �ne-tuned model

to estimate the execution of unseen programs in the same way.

Speci�cally, for execution coverage prediction, TRACED iden-

ti�es all the branching statements to locate the branches, � =

{11, 12, ..., 1<}, within the source code. It trains the model to pre-

dict a binary label, 0 means the branch is not covered by the current

execution and 1means covered, for each18 ∈ �. For themodel’s con-

venience tomake predictions, the special token [MASK] is inserted at

the beginning of each branch. For example, the following if-else

has two branches that are pre-processed for branch prediction: if

(condition) {[MASK] ...} else {[MASK] ... }. During the

�ne-tuning, the Transformer layers learn to encode the branch

information into the corresponding [MASK] token representation

with the built-in bi-directional attention and positional encoding.

Then the classi�cation head takes [MASK] representations to predict

whether a branch is covered by the current execution. For variable

value prediction, TRACED identi�es variables, + = {E1, E2, ..., E=}

and trains the model to predict their quantized values (§3.2) during

the execution.

Semantic Clone Retrieval. Detecting semantic clones is signif-

icant for software maintenance [26, 30], yet very challenging in

practice since the token and syntactic structures overlap among

semantic clones may be quite limited. This task requires the model

to estimate the program behaviors without executing the programs

and capture the similarity among them. It evaluates the model’s

semantic reasoning capacity to identify the code similarity and

retrieve clones: given a program as a query, and an arbitrary col-

lection of programs as candidates, the model needs to identify the

query’s semantic clones from possibly thousands of candidates.

Vulnerability Detection. Vulnerability detection is a crucial

task in software security, aiming to identify potential security vul-

nerabilities in software code that could be exploited by attackers.

The vulnerabilities may exist due to various reasons, including pro-

gramming errors, design �aws, or con�guration issues. Detecting

these vulnerabilities early in the software development lifecycle

can prevent potential attacks, mitigate risks, and save resources.

We �ne-tune TRACED’s pre-trained model on datasets consist-

ing of vulnerable and non-vulnerable code samples, so the model

learns to classify code functions as vulnerable or non-vulnerable

by estimating their execution behavior.

5 EXPERIMENTAL SETUP

5.1 Trace Collection

In this section, we explain how we traced the dynamic information

in programs to produce concrete traces, given the source code and

program input.

First, we compile the program using gccwith the options -g -O0.

Option -g preserves debug information, which is necessary in order

to read variables and source code locations using the debugger, and

option -O0 disables compiler optimizations, which could optimize

out some variables thus preventing them from being read at runtime.

We use this option because we seek to model the semantics of the

source code in terms of variable values rather than the optimized

machine code.

Second, we load the program with the given standard input

redirected to stdin and attach the gdb2 debugger, using the Python

API to implement the tracing command. Starting from the entry

point (main), we execute the program one line at a time using the

step command. At each line, we print out the concrete values of

all variables in scope. We also set breakpoints at the entry of each

user-de�ned function, where we log the values of each parameter.

For numeric types, we simply log their string representation. For

2https://www.sourceware.org/gdb
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char and char * (string) types, we log the human-readable values

of the chars/strings. We use gdb’s pretty-printer to print struct

types and statically allocated array types, such as int[<size>].

For pointer types, we print the memory address of the pointer as

a hex code. We only traced the functions that were de�ned in the

source code and skipped over all standard library functions.

5.2 Dataset

5.2.1 Pre-training Dataset. IBM’s CodeNet Dataset [41] includes

4,053 programming challenges for several programming languages

from the AIZU Online Judge and AtCoder platforms, and each

problem has up to thousands of implementations submitted by

distinct programmers. In this work, we focus on the C language

as the main resource for the pre-training and downstream tasks,

so we build our pre-training dataset with programming challenges

that have C solutions. Besides the large number of samples and

the complexity of programming challenges, we choose CodeNet to

build our datasets as it maintains at least one and at most twenty

executable inputs for each challenge, so we could execute and trace

the implementations of the challenge, and consequently build our

execution labels for the model to learn.

Out of 1,900 programming challenges with C solutions, we select

1,805 of them to build the pre-training dataset and leave the other

95 problems as held-out problems for evaluating the model’s capac-

ity for the downstream static execution estimation task. Splitting

samples strictly by challenge e�ectively avoids the issue of data

leakage from the training set to the held-out set. We randomly

sample up to 200 execution traces for each challenge, and this ends

up with 121,319 training traces.

5.2.2 Downstream tasks. In this section, we introduce the datasets

we use for each downstream task and explain the corresponding

evaluation metrics. The statistics of these datasets are in Table 2.

Static Execution Estimation. We build the dataset for this

task using CodeNet. We build the training samples from the 1,805

challenges that have been selected by the pre-training, and build

evaluation samples from the held-out 95 challenges to avoid model

memorization and data leakage.

Metrics. For the execution coverage prediction, we consider evalu-

ation metrics in two granularities: full execution path and branch

coverage. Concretely, for a sample with< branches, we denote the

full set of their labels as !� = {;11, ;12, ..., ;1<}, and the model pre-

diction set as !̂� = { ˆ;11, ˆ;12, ..., ˆ;1<}. If !� == !̂�, we regard the pre-

diction as matching the full execution path. For the branch coverage,

we compute the occurrence of ;18 == ˆ;18 , where 1 ≤ 8 ≤ <, and re-

port the accuracy, precision, recall, and F1. Similarly, for the = quan-

tized variable values within the program, &+ = {@E1, @E2, ..., @E<},

our model makes predictions as &̂+ = { ˆ@E1, ˆ@E2, ..., ˆ@E<}. If &+ ==

&̂+ , we say the model accurately predicts the full execution. For the

individual value match, we compute the occurrence of @E8 == ˆ@E8
and report the accuracy.

Semantic Clone Retrieval. We use CodeXGLUE-POJ104 [32,

33] as the dataset for this task. CodeXGLUE-POJ104 contains 104

programming challenges, and each has 500 C/C++ solutions sub-

mitted by di�erent programmers. CodeXGLUE [32] reconstructs

it as a public benchmark by splitting the dataset into Train (64

challenges), Dev (16 challenges), and Test (24 challenges) sets, with

no overlapped challenge between any two sets.

Metrics. MAP@R (Mean Average Precision @ R)3 is the main met-

ric of this task, where we follow the design of the CodeXGLUE

benchmark. Average precision at R is a common metric to evaluate

the quality of information retrieval; it measures the average pre-

cision scores of a set of the top-R clone candidates presented in

response to a query program. The "R" for CodeXGLUE is 499 as it

has 500 solutions for each challenge.

Vulnerability Detection. We utilized three publicly available

datasets: REVEAL (RV) [8], D2A [54], and CodeXGLUE-Devign

(CXG) [32, 55]. The REVEAL dataset was curated by Chakraborty

et al. to simulate a real-world scenario where bugs are relatively

rare, resulting in a ratio of approximately 1:10 between buggy and

benign samples. The D2A dataset is a balanced dataset focusing

on bug-�xing commits. It labels the previous version of modi�ed

functions as buggy and the �xed version as benign. Finally, the

CodeXGLUE-Devign dataset, introduced by Zhou et al., is also a

balanced dataset that has been reconstructed as a public benchmark

by CodeXGLUE, ensuring that all models can be evaluated using

the same train/valid/test splits.

Metrics. REVEAL is an imbalanced dataset, so we use F1 as the

evaluation metric. D2A and Devign are balanced datasets, so we

follow the original benchmark to report the classi�cation accuracy.

Table 2: Details of downstream tasks datasets.

Task Dataset Train Valid Test

Execution Estimation CodeNet 121,319 13,116 13,116

Clone Detection CXG-POJ104 32,000 8,000 12,000

Vulnerability Detection

REVEAL 15,867 2,268 4,535

D2A 4,644 597 619

CXG-Devign 21,854 2,732 2,732

5.3 Model Con�guration

TRACED’s backbone is a standard RoBERTaBASE architecture [31]

with 12 layers of Transformer-encoder, and each layer has 12 atten-

tion heads and the hidden dimension is 768. TRACED is initialized

with the pre-trained weights from UnixCoder [17]4, and we use

its BPE tokenizer to split the rare tokens into BPE sub-tokens. The

maximum sequence length is 1024 BPE tokens, and the longer se-

quence will be truncated. When the code sample is paired with

executable inputs, the maximum length for the executable input

is 64, and the source code is 960. Our experiments are conducted

on 2 × 24GB NVIDIA GeForce RTX-3090 GPUs. We further pre-

train the model for 10 epochs to learn the program execution with

two learning rates, 5e-5 and 2e-5, and report the best-performing

models for downstream tasks. For all the �ne-tuning tasks, we use

the learning rate of 8e-6. Learning rates typically decrease for later

phases [10, 16, 18], so TRACED follows the same design. We use

Adam optimizer [27] with the linear learning rate decay. Our model

is implemented mainly with Pytorch [12] and Huggingface [14].

3https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_
average_precision
4Speci�cally, we load unixcoder-base-nine, as its pre-training considers C language
code samples: https://huggingface.co/microsoft/unixcoder-base-nine. Note that this
checkpoint is pre-trained only with the MLM objective, while the original paper [17]
reports other better-performing variants that are not released publicly.
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6 EVALUATION

In this section, we ask the following four RQs:

• RQ1: How e�ective is TRACED in statically estimating the pro-

gram execution?

• RQ2: How does our proposed training strategy contribute to

learning the program execution?

• RQ3: Is our proposed quantized values for programs e�ective in

guiding the model to learn program executions?

• RQ4: How does TRACED perform w.r.t. statically pre-trained

baselines for code understanding tasks?

6.1 RQ1. E�ectiveness of TRACED in Static
Estimation of Execution

In this section, we demonstrate the e�ectiveness of TRACED in

statically estimating program execution. The evaluation is more

challenging and realistic than TRACED’s pre-training as it requires

the model to predict not only for individual variables but also

branches and the full execution path.

Baseline. In this RQ, we mainly compare the execution-aware

TRACEDwith UnixCoder [17]. Now we explain the reasons for this

choice. First, TRACED is initialized with the pre-trained UnixCoder

weights, so comparing TRACEDwith the UnixCoder performance is

a direct assessment of the impact of our proposed pre-training. Sec-

ond, UnixCoder reports the state-of-the-art performance in many

tasks, including clone detection, code search and summarization,

and code generation and completion, signi�cantly outperforming

other pre-trained code models, such as CodeBERT [16] and Graph-

CodeBERT [18]. Third, it consumes up to 1,024 tokens, while most

pre-trained code models [1, 6, 16, 18, 49] take at maximum 512 to-

kens. By consuming longer sequences, UnixCoder is able to handle

longer programs and make complete predictions without truncat-

ing code in many cases. As TRACED is also designed to consume

1,024 tokens, it is not fair to compare it in this task with baselines

with a maximum length of 512, as the baselines will necessarily

consider fewer branches for prediction.

Table 3: Performance on static execution estimation.

Model

Coverage Runtime Value

Full Path Branch Full Exec Var

Acc Acc Prec Rec F1 Acc Acc

UnixCoder 63.7 79.7 81.7 85.4 83.5 39.3 87.8

TRACED 71.6 83.1 84.6 88.1 86.3 49.2 89.2

-w/o MLM 70.4 82.6 85.3 86.0 85.6 49.0 89.2

-w/o PSP 69.0 81.4 83.0 86.9 84.9 44.0 87.4

-w/o VCP 66.1 80.3 82.4 85.6 84.0 46.7 89.0

-MLM-only 65.6 81.0 83.1 86.0 84.6 43.0 87.5

Result. The comparison is shown in Table 3, Row-1 vs. Row-2.

TRACED signi�cantly outperforms UnixCoder in the static esti-

mation of execution coverage and dynamic values of variables,

especially when the evaluation granularity is coarse, i.e., full exe-

cution path (Full Path column in Table 3) and the runtime values

of the full execution (Full Exec column in Table 3). TRACED cor-

rectly predicts the complete execution paths for 71.6% held-out

samples and accurately predicts all variable values for 49.2% exe-

cutions, revealing the execution-aware pre-training improves over

UnixCoder’s performance by 12.4% and 25.2%, respectively.

Case Study with Qualitative Examples. We present two qualita-

tive examples in Figure 5 and 6 to concretely compare TRACEDwith

UnixCoder in execution coverage and runtime value predictions,

respectively. Both samples have simple execution logic from the

human perspective, but the statically pre-trained UnixCoder still

fails to correctly estimate them. Figure 5 illustrates that UnixCoder

is not sensitive to distinct inputs that trigger di�erent execution

coverage, while TRACED is able to determine the numerical rela-

tions among varied values. Figure 6 illustrates TRACED’s capacity

in exposing abnormal program behaviors.

//Input: 19 100

#include <stdio.h>

int main(){

int A, N, T, B;

scanf("%d %d", &N, &A);

T = N * N;

B = T - A;

if (A > 0) {printf("%d", B);} // Branch-1

else {printf("%d", T);} // Branch-2

return 0;

}

UnixCoder Predictions (Wrong)

Branch-1: Not executed

Branch-2: Not executed

TRACED Predictions (Correct)

Branch-1: Executed

Branch-2: Not Executed

Figure 5: The qualitative example of execution coverage prediction.

The source code is the same as Figure 1, but the input triggers a

di�erent execution path. TRACED correctly �ips the prediction

while UnixCoder remains the same prediction.

//Input: 4 4320 4320 4320

#include <stdio.h>

int main (void) {

int n, a, max = 0, sum = 0, i;

for (i = 0; i < n; i++){ // Quantized value of n?

scanf("\%d", &a);

if (a > max) max = a;

sum += a;

}

printf("\%d\\n" , sum - max / 2);

return 0;

}

UnixCoder Prediction (Wrong)

n: Zero

TRACED Prediction (Correct)

n: Negative Large

Figure 6: The qualitative example of runtime value prediction. The

sample contains a vulnerability of type CWE-457 “Use of Uninitial-

ized Variable". The uninitialized n, which is randomly assigned as

-32767, is used in the for-loop. TRACED successfully exposes this

abnormal behavior statically by identifying = as a “Negative Large"

value while UnixCoder fails. Predictions of other variables are hid-

den for better illustration.
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Result-1: With a similar number of learnable parameters,

TRACED outperforms the state-of-the-art pre-trained code

model in the static estimation of program execution task.

Our proposed pre-training successfully encodes the execution

awareness into TRACED’s code representations.

6.2 RQ2. E�ectiveness of TRACED’s
Pre-training Objectives

One of the main contributions of this paper is proposing multi-task

pre-training to e�ectively learn the execution-aware code repre-

sentations. In this RQ, we study the e�ectiveness and contribution

of each of TRACED’s objectives, and consequently illustrate the

importance of the multiple tasks.

To conduct these experiments, we remove one pre-training ob-

jective at a time and pre-train the variant with exactly the same

setup as the main model. Then we �ne-tune the variant on the

static execution estimation task and compare the performance with

the main model. We also consider a variant that is pre-trained on

our dataset but only with MLM objectives. The results are shown

in Row 3-6 of Table 3. Removing any objective hurts TRACED’s

performance, suggesting that comprehensively learning both static

and dynamic code properties is more e�ective than learning one

perspective alone.

Result-2: TRACED’s multi-task pre-training helps the model

comprehensively learn both static and dynamic aspects of

source code. Removing any one of TRACED’s three pre-

training objectives noticeably hurts the model’s performance

in statically estimating program executions.

6.3 RQ3. E�ectiveness of TRACED’s Quantized
Variable Values

Another contribution of this paper is that the simpli�ed and com-

pact representation of program executions helps code models to

capture dynamic code properties. In this RQ, we empirically reveal

that the design of quantized variable values especially contributes

to the e�ective learning of the code models, as it reduces the data

sparsity of variable values but still de�nes su�ciently detailed value

categories to distinguish dissimilar values.

To isolate the evaluation of TRACED’s quantized values, we

pre-train several variants by only recreating quantized value labels,

i.e., @E0A in Equation 2, using di�erent value abstraction strategies.

For example, when we pre-train a variant studying the impact

of concrete values, we replace TRACED’s de�ned @E0A with the

concrete traced values. As di�erent strategies abstract values at

di�erent granularities, it is not feasible to compare them for the

value prediction task, since the coarse-grained strategy will bene�t.

Therefore, we only �ne-tune the studied variants for the execution

coverage prediction.

Baseline. First, we consider comparing with concrete values, as it

is the most intuitive strategy to represent variable values. Then, we

consider two data abstractions from LExecutor [45]: coarse and �ne-

grained. They share similar high-level intuition with us, mapping

concrete values to pre-de�ned bins to reduce data complexity and

consequently help the model’s learning. Note that LExecutor’s data

abstraction serves a di�erent goal than TRACED, and focuses on

Python while TRACED focuses on C, so we could not directly reuse

their pre-de�ned bins. As their de�nition of data abstraction is clear

and straightforward, we re-implement their data abstraction for

the C language and integrate it into our framework for comparison.

We discuss and compare LExecutor with TRACED in more detail

in the Related Work section (§7).

Figure 7: Comparing TRACED’s design of quantized variable values

with other value abstraction strategies.

Results. The comparison of value abstractions are shown in Fig-

ure 7. Unsurprisingly, concrete values report poor performance

compared to other data abstractions, empirically revealing the di�-

culties for code models to �t sparse and complex data distributions.

Interestingly, we notice both of LExecutor’s abstractions perform

slightly worse than TRACED. We speculate that LExecutor is not

as sensitive as TRACED to numeric relations in the conditional

statements, as they do not distinguish among small, regular, and

large values. Note that execution coverage is not the main focus

of LExecutor, so more �ne-grained categories are not required to

serve its goal, while they are empirically proven to be necessary

for TRACED’s scope.

Result-3: TRACED’s quantized variable values directly con-

tribute to the e�ectiveness of its execution-aware pre-training.

It reduces the data sparsity of concrete values but de�nes

su�ciently detailed value categories to distinguish dissimilar

values for reasoning about execution paths.

6.4 RQ4. TRACED’s Performance in Code
Understanding Tasks

In this RQ, we study TRACED’s performance on two code under-

standing tasks: semantic clone retrieval and function-level vulner-

ability detection. Note that samples for these tasks are not paired

with executable inputs, so the model needs to reason about the

general code semantics to make predictions.

Baselines.We consider �ve pre-trained code models with similar

parameter sizes to TRACED. CodeBERT [16] pre-trains a RoBERTa
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model with MLM and replaced token detection (RTD) tasks. Graph-

CodeBERT [18] is initialized with CodeBERT and continues pre-

training with augmented data �ow graphs to learn the static data de-

pendencies. PLBART [1] and CodeT5 [49] both apply the sequence-

to-sequence neural architecture, where PLBART adapts the BART [29]

model to learn code translation and summarization, and CodeT5

adapts [42] to predict the missing code tokens and locate the iden-

ti�ers. We also, again, consider UnixCoder as a baseline.

Table 4: Comparison of Clone Retrieval and bug detection.

Task Clone Retrieval Vulnerability Detection

Dataset POJ-104 RV D2A CXG

Metric MAP@R F1 Acc Acc

CodeBERT 85.2 45.5 61.0 63.2

GraphCodeBERT 86.7 46.6 58.3 62.9

PLBART-base 75.9 46.9 61.7 63.3

CodeT5-base* 65.9 46.5 62.1 64.4

UnixCoder 89.5 47.4 61.2 65.3

TRACED 91.2 50.4 62.1 65.9

*CodeT5-base has 223M parameters, roughly twice as large as other

baselines and TRACED. We report its performance as CodeT5-small has

only 60M parameters and performs poorly, and CodeT5 does not provide a

∼110M model.

Results. We show the results in Table 4. Even though the samples

in these benchmarks do not have executable inputs, TRACED still

outperforms the statically pre-trained models by a clear margin.

We speculate the reason is that TRACED could estimate the gen-

eral execution behaviors without speci�c inputs, and the program

semantics regarding these two code understanding tasks could be

better captured with such a general sense. Speci�cally, clone re-

trieval requires the model to identify the behavioral similarities

of code as semantic clones mostly di�er in code text and syntax.

Also, vulnerable code with potential anomalies could be directly

identi�ed by TRACED in some cases like Figure 6.

Result-4: TRACED outperforms statically pre-trained models

in clone retrieval and vulnerability detection tasks, suggesting

TRACED’s general estimation of execution helps it capture the

code semantics more e�ectively.

7 RELATED WORK

Pre-trained Models for Source Code. The research community

has shown a growing interest in developing pre-trained Trans-

former models for source code. These models can be broadly cat-

egorized into three primary architectures: Encoder-only [5, 6, 10,

16, 18, 24, 48], Decoder-only [2, 13, 50], and Encoder-decoder [1,

7, 15, 17, 35]. Encoder-only models predominantly employ MLM

objective and sequence understanding tasks (e.g., predicting next

statement [24] and contrasting semantics [10]). This architecture ex-

cels at understanding the static code features. Decoder-only models,

on the other hand, are typically trained by predicting code tokens

in a left-to-right manner. This architecture focuses on generating

code text based on learned patterns. The Encoder-decoder mod-

els combine the strengths of both Encoder-only and Decoder-only

models and are pre-trained using various tasks, including denoising

autoencoding for reconstructing wrongly permuted tokens [1], pre-

dicting missing identi�ers in the code [49], and recovering method

names from the source code [35].

These models primarily focus on learning the static aspects of

source code but often miss out on capturing the dynamic proper-

ties of code execution. This limitation restricts these models from

accurately inferring runtime behaviors, debugging issues, and un-

derstanding complex program states.

Modeling Program Execution. Pei et al. [38–40] proposed a se-

ries of pioneering works to learn the executions of binary programs

with Transformer-based models. They used concrete values from

registers, which are feasible in their scope because binary programs

have a smaller space of possible values and e�ects compared to

source code. On the other hand, our work focuses on encoding

execution at the source code level by imitating the developers’ code

practice. Variables in source code have more complicated data and

value types than machine registers. We introduce quantized values

in order to decrease the data complexity and sparsity.

Several works [3, 4, 36, 44, 51, 52] have attempted learning to

execute programs as a direct goal. Souza and Pradel [45] also pro-

posed LExecutor to predict missing values during execution. While

it shares similar intuition of mapping concrete values to discrete

categories, LExecutor is distinct from TRACED in several perspec-

tives. First, LExecutor focuses only on predicting the values, while

TRACED proposes a general pre-training strategy to encode the

comprehensive execution awareness, not only values but also exe-

cution coverage, into the code representation. Besides, to yield code

representations at a better quality, TRACED jointly learns both

code text and dynamic executions rather than sticking to a single

perspective. Due to the distinct aims and designs, we empirically

illustrate in RQ3 (§6.3) that LExecutor’s value abstractions are not

perfectly aligned with our scope.

Nie et al. [34] annotated programs with information about the

program’s possible executions without executing the code but pro-

vided only statically available information. Conversely, several

works [19, 37, 46, 47] require dynamic traces as input. We show that

TRACED’s pre-training is able to encode the execution awareness

into code representation and estimate the dynamic semantics with

static information alone.

8 THREATS TO VALIDITY

Internal Validity. First, the current design of quantized value is

not covering all variables within the program due to the complexity

of their data structures, value ranges, and/or memory allocations.

Second, currently, we only trace the program by feeding it valid

and executable inputs which will not terminate the program or

throw errors. This might make the model less capable of capturing

program termination and error-throwing behaviors.

External Validity. At present, TRACED supports only the C pro-

gramming language. This limitation is due to the reliance on the

capabilities of the tracer used to log the execution history, which

may not be readily available or equally e�ective for other program-

ming languages. In order to extend TRACED’s applicability, it is

necessary to ensure that the tracer employed can accurately and
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consistently capture the required information across di�erent lan-

guages. Adapting TRACED to multiple languages would require

the development or adaptation of tracers that can e�ectively handle

the intricacies of each language and produce comparable results,

enabling a consistent analysis of code behavior across a broader

range of programming languages.

9 CONCLUSION

In this paper, we propose TRACED, an execution-aware pre-trained

model that jointly learns the static and dynamic code properties, to

address the limitation of existing, statically pre-trained code models.

The evaluation empirically reveals that TRACED is more e�ective

in estimating code execution statically than statically pre-trained

models. TRACED also successfully transfers execution awareness

to code understanding tasks.
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