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We present a package, Generator, for geometric molecular property prediction based on topological

features of quantum mechanical electron density. Generator computes Quantum Theory of Atoms in
Molecules (QTAIM) features, at density functional theory (DFT) level, for sets of molecules or reac-
tions in a high-throughput manner, and compiles features into a single data structure for processing,
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analysis, and geometric machine learning. An accompanying graph neural network package can be
used for property prediction and allows users to readily use computed features for learning tasks. To
test the efficacy of electron density-based data for machine learning, we benchmark several datasets
including QM8, QM9, LIBE, Tox21, and a Green 2022 Reaction dataset. This wide dataset diversity
underscores the flexibility of QTAIM descriptors and our package. In addition, we made our code
high-throughput methods compatible with new versions of BondNet and Chemprop architectures to
allow for both reaction and molecular property prediction out-of-the-box. To motivate the use of
QTAIM features for varied prediction tasks we also perform extensive benchmarking of our new mod-
els to existing benchmark models as well as to our own models without QTAIM features. We show
that almost universally, QTAIM features improve model performance on our algorithms, ChemProp,
and BondNet. We also determine that QTAIM can aid in generalizing model performance to out-of-
domain (OOD) datasets and improve learning at smaller data regimes. Combined, we hope that this
framework could enable QTAIM-enhanced structure-to-property predictions - especially in domains
with less data, including experimental or reaction-level datasets with complex underlying chemistries.

The Quantum Theory of Atoms in Molecules (QTAIM) is a rich

and storied methodology for demarcating and describing the elec-
tronic density distribution of a molecule. QTAIM identifies local
maxima in density p and partitions the electronic density into
atomic basins defined by zero-flux surfaces , S(Q), that satisfy
Vp(r)-n(r) = 0. Electronic properties such as energetics and elec-
tron delocalization can be integrated over each enclosed basin. p
is also characterized by a set of critical points, which can be clas-
sified as nuclear (NCP), bond (BCP), ring (RCP), or cage (CCP)
critical points depending on their second-derivative distributions.
CPs provide a compact set of descriptors that fully describe chem-
ical bonding from the electronic density p. In other words, using
QTAIM, we can determine bonding networks, as well as higher-

@ Department of Chemistry and Biochemistry, University of California, Los Ange-
les, Los Angeles, California 90095-1569 USA. Email: santiagovargas921@gmail.com,
ana@chem.ucla.edu

b Department of Materials Science and Engineering, University of California, Los An-
geles, California 90095-1569 USA

¢ California NanoSystems Institute, Los Angeles, California 90095 USA.

T Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 00.0000/00000000.
+ These authors contributed equally to this work

order information on electronic motifs, such as bond delocaliza-
tion, and the electronic richness or depletion of a bond. Being
a density-driven description, QTAIM is built on either theoretical
calculations or x-ray diffraction information, and thus is applica-
ble across computational and experimental disciplines.. Exem-
plar studies functionalize QTAIM to understand ligand-receptor
interactions in biological systemslz], predict chemical activation
barriersB], describe toxicityli‘, and estimate spectroscopic parame-
ters in organic compounds.m Table 1 shows a representative set of
descriptors alongside previous interpretations for properties they
report on. Given QTAIMs high descriptiveness and prior use in
QSAR approaches, we believe that it can be leveraged to improve
machine-learned predictions of molecular, protein, and periodic
system properties. QTAIM’s unique bond definitions, rooted in
quantum chemical information, can also serve as powerful alter-
natives to cheminformatic heuristics such as bond cutoffs® for
resolving bonding in difficult chemistries involving metals, multi-
center bonds, and aromaticity.

Our goal is to merge the interpretive richness and relevance of
QTAIM descriptors with powerful geometric learning algorithms.
Previous QTAIM/ML approaches incorporated a limited set of
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Value
Electron Localization
Function(ELF)

Laplacian (V?p)

Derived Concepts

electrophilic/nucleophilic sites®Z
atomic graph, electrophilic/nucleophilic sites®
interaction strengths w/ nuclei,

Electrostatic Potential (¢) other electrons2!10

Energy Density Valence shell polarization112
Delocalization Index (&) n-character'’
ETA Index interaction typel4

Localized Orbital Locator | e localization">

Table 1 A set of QTAIM features and how they have been interpreted
in the past.

hand-selected features based on prior heuristics216%18 and thus,
potentially missed leveraging many useful features. With our ap-
proach, we integrate a rich set of over 20 atom and 20 bond
critical point features for an exhaustive toolkit of electronic de-
scriptors (Table S1). Integrating these features into graph neu-
ral networks (GNNs) allows for greater applicability to systems
with varying chemical structures and unexplored chemical mo-
tifs where heuristics have not yet been developed.1? In addition,
graphs are a flexible data structure that can readily intake spa-
tial information such as atomic positions and/or bond lengths to
further inform predictions. Given the power and ubiquity of geo-
metric learning in chemical spaces, coupling them to chemically-
informed features could extend their applicability and ability to
generalize on smaller datasets20"23, Notably, graph neural net-
works (GNNs) often perform poorly under low data regimes242>
- regimes where experimental and high-accuracy quantum chem-
ical calculations may operate and electronic descriptors could of-
fer a strategy for bridging performance and small datasets. Fur-
thermore, GNNs suffer from poor out-of-domain (OOD) extrapo-
lation and we probe whether QTAIM features can help alleviate
this shortcoming.2* We note one other study (that is not peer-
reviewed at the time of writing) 26l that takes a somewhat simi-
lar approach to using QTAIM for geometric machine learning but
ours differs in having benchmarks on standard datasets, testing
on spin/charge-varying datasets, testing out-of-domain perfor-
mance, and providing tools for generating and training QTAIM-
informed geometric learning models for both molecules and reac-
tions.

We make a few important advances to the use of QTAIM in
machine learning. First, we create a set of easy-to-use, pythonic
tools for computing QTAIM descriptors at scale and using them for
machine learning tasks. These tools include high-throughput job-
runners for calculating QTAIM values, utilities for descriptive/vi-
sual statistics, parsing utilities for compiling data into single data
structures, and ready-to-use graph neural network architectures.
These tools work together in an ecosystem for using QTAIM in
geometric learning. We also compute QTAIM values on several
datasets with a mind towards using standard datasets for bench-
marking and/or pushing development towards algorithms to treat
edge chemical domains with varying charges, spins, and reactiv-
ities. In addition, we benchmark the use of QTAIM features to
demonstrate their ability to improve model performance, perfor-
mance on smaller datasets, and out-of-domain predictivity. We
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hope that these contributions can serve as an important founda-
tion for further studies using hybrid QTAIM/ML approaches to
tackle machine learning in difficult chemical domains with ex-
perimental or small datasets. In addition, these tools can serve as
an important basis for developing more advanced QTAIM-enabled
machine learning algorithms.

1 Methods

1.1 Quantum Chemical Calculations

QTAIM calculations build on top of quantum chemical density cal-
culations. Our package can intake any format compatible with
Multiwfn2Z or Critic228 and thus could use a number of DFT
codes such as NWChem, Q-Chem, or Gaussian. We use ORCA22
as it is open-source, free under academic licenses, and imple-
ments a wide range of basis sets, and levels of theory. For now,
we have implemented options files that allow the user to write
a wide-range of custom ORCA input files including relativistic
corrections, individual atomic basis sets, and parallelization op-
tions. Generalization to other quantum chemical packages re-
quires new methods for writing input files but otherwise can fit
into our ecosystem for high-throughput QTAIM and molecular/re-
action graph neural networks. We chose differing levels of theory
for our dataset construction considering the relative expense of
computed properties in each dataset - we wanted to ensure that
the cost of DFT and subsequent QTAIM calculations did not ri-
val the expense of computed properties. We outline the different
levels of theory below.

1.2 QTAIM Calculations

Our current implementation uses critic228 or Multiwfn?Z to han-
dle QTAIM calculations. All datasets here, however, leverage Mul-
tiwfn due to its richer set of QTAIM descriptors including spin in-
formation, energies, etc (Table S1). These calculations intake any
density file format supported by Multiwfn including .cube and
.wihn files and yield a single text file for analysis.

1.3 Dataset construction

We format our datasets into standard JSONs here that can either
be user constructed using standard tools from rdkit=% and pymat-
gen® or using our in-built scripts that handle construction and
formatting (Figure[L). These scripts parse molecular and spin in-
formation from an xyz and include it in the resultant database
file. Initial bonding guesses can optionally be handled by rdkit.
The resulting json has a few notable data structures used to write
DFT input files and perform subsequent machine learning:

Molecules (pymatgen molecules) - Pymatgen molecules,
without bonding information, used to featurize the molecules for
machine learning and write input files with coordinates at atomic
sites.

Molecular graphs (pymatgen MoleculeGraphs) - Pymat-
gen molecular graphs with added bonding information from
molecules.

IDs - index of the molecule in the json, can be user specified

Names (for xyz construction) - the name of the file from
which this datapoint was constructed.



Spin(if specified) - molecular spin state, otherwise singlet

Charge(if specified) - molecular charge, otherwise neutral

Bonds(if specified) - we include an option to specify bonding
using rdkit’s tools but any user-specified bonds work. These bonds
can be optionally overwritten by the BCPs determined by QTAIM.

Given the dataset, our script reads in
several options including information on writing DFT input
files, QTAIM parser information, and reaction/molecular options.
Users can also specify custom options for executables used in run-
ning DFT and/or QTAIM calculations. Folders of input files serve
as jobs for a high-throughput manager/runner built to our pack-
age. This runner randomly selects folders and checks for pending
QTAIM and DFT jobs. Incomplete tasks are performed and the
implementation allows for concurrent jobs on high-performance
computing resources.

create_files.py

Finalized directories of QTAIM properties contain either jsons
(critic2) or text files (Multiwfn) with QTAIM information in-
cluding bonding, energetics, and critical point types. Our

parse_data.py  script intakes these folders, and merges
QTAIM information into the original json. This merge process
involves parsing a user-specified set of QTAIM features, and op-
tionally, imputation. We compile all of the QTAIM values for the
dataset and use these to compute mean and median values for
imputation where information is missing or where QTAIM and
prior bond definitions are not in alignment. The user can also se-
lect to update bond definitions using QTAIM BCPs and whether to
parse the dataset as a dataset of molecules or reactions. Atom and
bond mappings are computed between final bond definitions and
features. This is vital for the construction of reaction-property
datasets where atom/bond-mapping across different numbers of
reactions/products is non-trivial. The finalized output of these
processes is a new json containing pymatgen objects, bonding in-
formation, QTAIM features, mappings, and optional features such
as spin and charges. The entire pipeline allows for QTAIM calcu-
lations at scale, and as such, we include several large datasets for
further experimentation and development.

1.4 Dataset visualization and statistics

Included in our toolkit are also basic visualization scripts that
compute summary statistics such as mean, mode, median for de-
bugging and visualization purposes. We compute these features
for each element in the dataset and output a breakdown of statis-
tics at the elemental level as well. For visualization, we break
down QTAIM descriptors at the global and element level with log
scaling for highly-variable features (which is often the case for
NCP energies). These tools were created to allow users to filter
features with low variability and heavy outliers.

2 Datasets

We selected key datasets across varying levels of computational
complexity and computed properties to highlight the flexibility
of our package. Key considerations for these datasets and the
level of theory for subsequent QTAIM calculations were the fol-
lowing: first, we wanted to highlight important features of our
package such as support for reactions and spin/charge. Second,

we informed the level of theory in our QTAIM calculations with
the relative expense of computed properties. In other words, in-
expensive orbital energies of organic molecules only justified a
modest level of theory in our dataset construction. Conversely,
more expensive vertical excitation or vibrationally-corrected free
energies on metal-containing complexes justified more expensive
calculations. We wanted to reflect real use cases where computing
descriptors should be considerably less expensive than the prop-
erties they are used to predict. Finally, we sought to integrate
datasets that are either already in use by the community or could
be adopted readily to test the limits of new models on domains
such as molecules with varying spins and charges, transition met-
als, and reactions. We briefly describe the datasets we based our
QTAIM datasets on as well as the labels we used to test and vali-
date the use case for QTAIM descriptors in machine learning:

2.1 QM9

Perhaps the most widely-adopted dataset for structure-to-
property benchmarking, QM9 is a dataset of optimized, small
organic compounds consisting of 134,000 structures.®132/ These
structures are limited to up to 9 heavy (CONF) atoms and up to
29 atoms including H. We constructed a train-test split of 90/10
and the validation set was constructed from the training set with
a split of 80/20 for model selection and hyperparameter tuning.
We benchmarked on 3 of the reported properties in the dataset,
namely the energy of highest occupied molecular orbital (egomo),
energy of lowest unoccupied molecular orbital (epymo), and the
HOMO-LUMO gap (A¢). We used this limited set as it included
only size-intensive properties. Algorithms were trained in a multi-
task fashion to predict all three properties. QTAIM properties for
this dataset were computed at TPSS=3/def2-SVP34 with D3BJ=>
dispersion. Here we aimed to study the efficacy of QTAIM fea-
tures at lower levels of theory, given the comparatively low level
of theory and cost of computed target values.

2.2 QM8

QM8 encompasses a set of time-dependent density functional the-
ory (TD-DFT) calculations of electronic excited states.3Z30The
dataset contains 22,000 molecules, which are a subset of QM9
with up to 8 CONF atoms, and further refinement for strained ge-
ometries. Computed properties include the vertical excitation en-
ergies for the two lowest-lying excited states and corresponding
oscillator strengths. For benchmarking, we only trained/tested
on the excitation energies at second-order approximate coupled-
cluster (CC2)3Z/def2-TVZP8 level of theory, yielding two target
variables. We constructed a random train-test split of 90/10 and
the validation set was constructed from the training set with a
random split of 80/20 for model selection and hyperparameter
tuning. Algorithms were trained in a multi-task fashion to pre-
dict both properties. QTAIM properties for this dataset were com-
puted at PBE032/def2-TZVP34 level of theory. Here we aimed to
study the efficacy of QTAIM features at higher levels of theory (hy-
brid functionals via PBEO) given the expense of vertical excitation
properties (labels for machine learning).
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2.3 Tox21

The Toxicology in the 21st Century (Tox21) dataset measures the
toxicity of 8,000 compounds across 12 different toxicity targets
including nuclear receptors and stress response pathways. 4041
Structures in this dataset are provided as SMILES structures
with RDKit®? embedding their geometries prior to optimization.
GFN2-xTB42l further optimized these structures prior to DFT and
QTAIM. We constructed a random train-test split of 90/10 and
the validation set was constructed from the training set with a
split of 80/20 for model selection and hyperparameter tuning.
Algorithms were trained in a multi-task fashion to predict all 12
properties (toxicity toward 12 targets). QTAIM properties for this
dataset were computed at TPSS=3/def2-SVP24 with D3BJ3>! dis-
persion following geometry optimization. The dataset consists of
various missing values across the 12 labels so we imputed mode
values for training but at testing no imputation was performed.
Here we aimed to study the efficacy of QTAIM features at high
levels of theory given the experimental nature of this dataset. We
did, however, use a relatively cheap method for geometry opti-
mizations to probe how robust QTAIM is to the quality of the
geometry.

2.4 LIBE

Lithium-ion Battery Electrolyte (LIBE) is a dataset composed of a
diverse set of lithium-ion battery solid electrolyte interface (SEI)
species. These structures were generated via fragmentation and
combination operations on the principal molecules known to be
present in the Li-ion battery SEIs. The dataset contains 17,000
structures of varying spin and charge states “labeled” with both
raw and corrected enthalpies, entropies, and free energies43. We
used the rigid-rotor harmonic oscillator (RRHO) approximated
free energies™® as a training target, units are reported in eV as
in the original publication(Figure S2). To approximate molecular
formation energies, we performed an energy correction calcula-
tion via linear regression to approximate individual atomic ener-
gies at infinite separation (Figure S3, Table S4). We constructed
a random train-test split of 90/10 and the validation set was con-
structed from the training set with a random split of 80/20 for
model selection and hyperparameter tuning. The inclusion of the
LIBE dataset was also of note as there is currently no benchmark

predicting molecular properties on this dataset and it would allow
us to test the ability of QTAIM descriptors to generalize across dif-
ferent charge and spin states. LIBE also contains metals with non-
standard bonding interactions - an instance where QTAIM’s rig-
orous bonding definitions should fare well. TPSS=3/def2-SVpP34
with D3BJ=2 dispersion.

2.5 Grambow 2022

To test QTAIM performance on predicting reaction-level prop-
erties we benchmarked a dataset recently published by Green
et. al.#® This dataset consists of 12, 000 reactions with bar-
rier heights and reaction enthalpies computed at three levels of
theory. Reactions in the dataset involve only C, N, O, and/or
H atoms with up to 7 heavy atoms. We benchmarked predict-
ing activation energies at the highest level of theory they were
computed (CCSD(T)-F12a40/def2-TZVP24). We constructed a
random train-test split of 90/10 and the validation set was con-
structed from the training set with a random split of 80/20 for
model selection and hyperparameter tuning. QTAIM here was
computed at TPSS33/def2-SVP34 with D3BJ> dispersion level of
theory given the large number of individual molecules in the en-
tire dataset.

3 Models

A host of geometric learning algorithms were developed or
adapted to interoperate with our QTAIM generation framework:
molecular graph neural networks spanning graph convolutional
networks (GCNs), residual convolutions, heterograph graph at-
tention (GAT) layers, Chemprop (albeit only for molecular prop-
erty predictions with atomic QTAIM features), and a variant of
the BondNet architecture for reaction-level property predictions.
Further details on each architecture implementation follow.

3.1 Molecular Representation

Molecules, and molecules within reactions, are represented simi-
larly as heterographs with atom, bond, and global feature nodes
(Figure[2). Heterographs, as opposed to homographs with bonds
as edges, allow for separate relationships between each differ-
ent edge type and enable the addition of a separate global node

type to store important molecular-level information. Graphs

User Constructed Input Files for DFT & Updated JSONs with | Visualization and
JSON QTAIM QTAIM info Summary Statistics
A
1
1 \ 4 \ 4
il
For Molecules: For Reactions:
Folder of XYZs QTAIM Embed Bondnet

Fig. 1 An outline of the current workflow for QTAIM property prediction. Users can either start from a JSON of data or use our helpers to parse xyz

files into compatible JSON formats.
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(G=(B,A,g)) consist of B as bond information vectors, A is
atom-level information, and g is the molecular-level feature vec-
tor. This followed prior work that also featurized molecules as
complex knowledge graphs4Z->0. Notably, we also intake user in-
formation on molecular charge and spin information, and trans-
form it into one-hot encoded vectors in the global feature vector
g. Features from the original graph encoding are transformed
via iterative message-passing steps to yield an updated molecu-
lar graph G’ = (B’,A’,g’) with updated node features B/, A’, g'.
These features are embedded into a fixed-size vector prior to a
dense, feedforward network for property prediction similar to
other molecular property graph neural networks24.,

O - Global Nodes

g - MW, spin, charge, n_, ., etc. O- Atom Nodes
a, - ring inclusion, n, s

Q/ QTAIM NCP info "™ Q @ sondNodes
g2a edge
a2b edge
) \ ) a2a edge

b, - ring inclusion, bond length, QTAIM BCP N
info bh2b edge
. g2b edge

Fig. 2 The heterograph construction of our molecular property prediction
algorithm.

3.2 Molecular-Property Graph Neural Network

Our graph neural network models rely on complex encoder archi-
tectures where neural message passing is used to update a rich set
of features in a graph prior to a global graph pooling operation
to embed the graph into a meaningful, learned vector represen-
tation (Figure [3). Under the message passing paradigm, these
updates are computed as a function of differentiable update and
aggregate functions on neighbor features. These functions can
take an arbitrary number of forms and herein lies much of the
rich diversity of graph neural networks developed.>1>2 Typically,
these functions are applied in various successive rounds to prop-
agate information further across the initial graph. A pitfall lies
with the potential pitfall of over smoothing where features be-
come uniform across the graph. This updated graph is then em-
bedded into vectors using a number of different methods to make
it amenable to traditional neural networks for supervised learning
tasks. These embedding schemes have also been an active area of
research with schemes such as set2set>3, setTransformers>#, and
self-attention graph (SAG) pooling> created to balance compu-
tational complexity with expressiveness.

We implemented several graph neural network architectures in
our approach to ensure a wide-range of algorithms were bench-
marked with/without QTAIM descriptors. These architectures in-
cluded different update and pooling functions to ensure that rel-
atively up-to-date models were compared. For update functions,
we used traditional graph convolutions®®, graph attention mech-
anisms®Z, and residual convolutions®8. These layers were se-
lected for their diversity and ability to learn at different model
depths with attention and residual connections typically being

Iterative Message
Passing: GAT,

GCN, RCN Graph

Embedding

Fig. 3 The full framework of our molecular property algorithms. Several
different message passing and global pooling operations are implemented
for intensive and extensive molecular properties.

more resistant to oversmoothing®2. These layers have use across
the chemical structure-to-property domain with strong results in
cases including [], [1, []. Pooling functions ultimately intake raw
or processed graphs and compute a fixed-sized representation for
visualization or tasks via a dense neural network. These layers are
highly important and vary in complexity from simple sum oper-
ations to complex setTransformer architectures incorporating at-
tention and beyond®#6?, Here we integrate 4 such operations
into our potential space of graph neural networks: global sum-
ming, weighted global summing, set2set, and global attention
pooling. These layers were selected to span a space of expressive-
ness and cost for our benchmarking and provide a wide toolkit for
future QTAIM-enabled machine learning experiments. In order to
merge QTAIM-features with nodes in our heterographs, we parsed
Multiwfn’s outputs to map features at NCP/BCPs to nodes based
on attractors that aligned with atomic positions. For BCPs, Mul-
tiwfn also outputs attactors that terminate bond paths, which we
parsed to their respective bonds. This avoided any non-nuclear
attractors (NNAs) appearing as atom nodes in our graphs.

3.3 ChemProp

Chemprop is a flexible framework for computing a host of dif-
ferent molecule-level and reaction-level properties4&. The algo-
rithm incorporates a local embedding from atom/bond features,
a graph-level embedding function that transforms finalized rep-
resentation graphs to a fixed-size vector, and a standard feed-
forward neural network for property prediction. We adopted our
QTAIM generator to construct atom-level QTAIM features in a for-
mat compatible with Chemprop’s featurization. Here we limit
ourselves to atom-level molecular features, excluding both bonds
and reactions due to the inflexibility of Chemprop for user-defined
bonds and the added complexity of atom-mappings. Hyperparam-
eter optimization was performed using their convenient bayesian
optimization functionalities.

3.4 BondNet

BonDNet is a reaction-property graph neural network originally
constructed for the prediction of reaction AG,,, values in sin-
gle bond dissociation reactions. It consists of two modules, the
graph-to-graph and graph-to-property modules, each constitute
the processing of the original feature graph towards final pre-
diction. The graph-to-graph module intakes the original knowl-
edge graph G(B,A,g) and transforms it, via successive message-
passing steps, to the final graph G(B’,A’,g’). Updates are per-
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formed on each separate reaction molecule prior to the construc-
tion of a global reaction difference graph. The reaction graph is
constructed via the mapping of atoms and bonds in reactants to
corresponding atoms in the products prior to a simple subtraction.
The finalized reaction graph is embedded into a fixed-size vector
via a global embedding set2set layer prior to feed-forward neu-
ral network layers for property prediction. Here QTAIM descrip-
tors offer a promising avenue for highlighting nuanced changes
in electronic structure between products and reactants, even at
distal locations from the reaction site. We adapted our code to
work natively with newer variants of the BonDNet architecture.
This architecture was recently updated to improve generalizabil-
ity for custom user descriptors and arbitrary reaction molecularity
- essential quality of life updates that make it a prime model for
testing an integrated QTAIM/ML approach®®l, Furthermore, this
updated architecture allows for custom bond definitions, thus, we
integrate QTAIM bond path connectivities to define bonds within
our molecular graphs.

3.5 Benchmarks

QTAIM-enabled algorithms were pitted against a diverse set of
molecular-graph property algorithms. Our aim here was not nec-
essarily to outperform SOTA models but to demonstrate that mod-
els with QTAIM features could approach these models in perfor-
mance and thus serve as the basis for more-advanced QTAIM-
enabled algorithms. Benchmarks on molecular properties were
performed using Schnet, PaiNN, and Chemprop. We briefly
overview Schnet and PaiNN here. The Schnet architecture intro-
duced the concept of continuous convolution filters. These convo-
lution operations allow for the arbitrary position of atoms within
the model representation and give SchNet improved performance
over their direct legacy algorithms, DTNNs. PaiNN is an equivari-
ant neural network architecture, it couples ideas from SchNet to
new representations, enabling more data-efficient learning. Per-
haps the biggest algorithmic development of PaiNN is the use of
equivariant message passing functions that incorporate not only
rotationally invariant distances but also rotationally equivariant

neighbor directions as part of the message-passing update func-
tion. This allows the algorithm to predict tensorial properties, as
well as generalize well with less data. Its efficient representations
also allow for effective models with fewer parameters and shorter
inference times. We note that our baseline GNN architectures are
comparatively less sophisticated than many of these algorithms,
and as such, we hope to bridge performance gaps with these mod-
els via the inclusion of QTAIM features alone. These models were
benchmarked competitively on QM8 and QM9 as the remaining
datasets required spin/charge information or covered reaction-
level properties.

Other benchmarks to note are the use of our QTAIM-enabled
algorithms vs. those without on the LIBE, Green, and Tox21
datasets. Here we opted to remove the above benchmark datasets
to avoid added complexities in treating classification tasks,
reaction-property predictions, and spin/charge-varying molecules
with algorithms that cannot encode this information. To gauge
the effect of QTAIM on model learning, we benchmarked model
test performance on LIBE, QM8, and QM9 given 102, 103, 10%,
(and 10° for QM9) training data points. These learning curves
are often used in machine learning to measure the learning ca-
pacity of a model and extrapolate to how accuracy varies with
dataset size.

4 Results and Discussion

4.1 QM9

Evaluating model performance on QM9, we note how our QTAIM-
enhanced models are able to compete with (and in most metrics
beat) the performance of the otherwise best-performing model,
Chemprop (Table 3). We also augmented Chemprop with QTAIM
NCP-only features but here we actually see a slight drop in testing
performance. We emphasize that Chemprop does not include vital
BCP QTAIM features and thus does not leverage the comprehen-
sive set of QTAIM descriptors. Even here, the performance differ-
ence between QTAIM-enabled and non-QTAIM Chemprop models
is quite small and also suggests the model is near or at capacity,
not that QTAIM features are not informative. Our model, with

QM9 QTAIM-Embed(QTAIM) Test Performance

homo (MAE: 0.0025, R?: 0.9791)

lumo (MAE: 0.0032, R%: 0.9918)

gap (MAE: 0.0038, R%: 0.9893)

0.6

—0.10 0.20
—o1s 0.15
0.10
~0.20
] g 0.05
o o
£ -0.25 £
© ©
T T 000
$ ~0.30 3
= ¥ —0.05
-0.35
-0.10
—0.40 : -0.15
0.4 0.3 ~0.2 —0.1 ~0.1
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Fig. 4 Parity plot of our model, with QTAIM, on the qm9 test set. The equivalent model, without QTAIM can be found in S8
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the inclusion of QTAIM features, is able to outperform all other
models on all but 1 task on MAE metrics. Analyzing scatterplots
of QM9 test performance, we can also determine the robustness
of QTAIM-informed models with few outlier points between pre-
dicted and true labels.

Model HOMO LUMO Gap Average
Schnet 0.04 0.03 0.0525 0.0408
PaiNN 0.0136 0.0146 0.0158 0.0146
ChemProp
(w/out QTAIM) 0.0028 0.0031 0.0038 0.0032
Our Best
(w/out QTAIM) 0.0058 0.0076 0.0090 0.0075
ChemProp
(w/ QTAIM) 0.0030 0.0035 0.0042 0.0036
Our Best
(w/ QTAIM) 0.0024 0.0032 0.0038 0.0031

Table 2 Test performance (MAE, Hartrees) of various geometric learning
algorithms on orbital energies in QM9.

In addition, we examine the learning curves of our models with
and without QTAIM features. To give each set of models even
footing, we conducted hyperparameter tuning on models with
and without QTAIM features separately and thus these curves
(and overall test performance) correspond to the best models for
each descriptor set. We see QTAIM yielding a distinctive improve-
ment in performance in the low data regime with consistent ad-
vantages in test performance across all training set sizes (Figure
S$30). Beyond 10,000 structures, however, there is little improve-
ment in test performance of the QTAIM-informed model suggest-
ing the mode is at capacity to generalize or that mainly irreducible
errors remain.

4.2 QM8
Across both tasks (first and second vertical excitation energies)
QTAIM-enabled models were the top-performing algorithms (Ta-
ble 3). Chemprop with QTAIM and our models with QTAIM
yielded improved test errors over all other models with a notable
gap in performance between QTAIM/ML models and all others.
Again, we note that Chemprop’s QTAIM featurization was limited
to only QTAIM NCP features, and even then, this led to increased
performance. Finally, when examining predicted versus true plots
of our models, it becomes evident that QTAIM-enhanced models
exhibit greater robustness, displaying fewer outlier residual errors
compared to their non-QTAIM equivalent.

The learning curves further reinforce the advantage of QTAIM-
enabled models, illustrating a consistent improvement in perfor-

Model E1-CC2 E2-CC2 Average
Schnet 0.034 0.0322 0.0333
PaiNN 0.0147 0.0186 0.0167
ChemProp
(w/out QTAIM) 0.0373 0.0270 0.0322
Our Best
(w/out QTAIM) 0.0130 0.0130 0.0130
ChemProp
(w/ QTAIM) 0.0052 0.0060 0.0056
Our Best
(w/ QTAIM) 0.0062 0.0067 0.0064

Table 3 Test performance (MAE, Hartrees) of various geometric learning
algorithms on orbital energies in QM8.

mance across varying training set sizes (Figure S29). Addition-
ally, the learning curves for both QTAIM and non-QTAIM models
do not appear to reach saturation, implying that additional train-
ing data could potentially lead to further reductions in prediction
errors for both types of models.

4.3 LIBE

The LIBE dataset presents a more challenging task due to its
inclusion of spin-varying and charged species. Moreover, the
dataset exhibits a wide range of molecular free energies which
further add to the difficulty of learning energetics here. In pit-
ting QTAIM/ML versus non-QTAIM models we note that our non-
QTAIM models do directly describe spin and charge as one-hot
encoded global features while the QTAIM/ML models add QTAIM
features, including o spin,  spin, and spin density at each criti-
cal point, to further inform learning. Both models perform quite
well with the top QTAIM/ML model yielding a reduced error on
formation energies from 76.26 meV/Atom to 45.09 meV/Atom
and an increased proportion of predicted energies within chemi-
cal accuracy to true labels (8.5% vs. 5.4%) versus its non-QTAIM
equivalent (Table 5).

Model MAE (meV/Atom)
QTAIM-Embed
(Ours, No QTAIM) 76.26
QTAIM-Embed
(Ours, QTAIM) 45.09

Table 4 Test performance of our geometric learning algorithms on for-
mation energies in LIBE.

In addition, no discernible trends can be gleaned across pre-

Journal Name, [year], [vol.], 1 |7



s

R?:0.98
MAE(meV/atom): 45.09
EwWT %: 8.45

Predicted(eV)

> » N 5

Target(eV)

‘o
s

Fig. 5 Parity plot of our model, with QTAIM, on the LIBE test set. The
equivalent model, without QTAIM can be found in S12-S14

dicted vs. true values for the QTAIM/ML models while non-
QTAIM models perform slightly worse on low spin, positively-
charged species (Fig. 5, S12). Learning curves here present
a more obfuscated picture with the non-QTAIM model outper-
forming the QTAIM/ML model on the smallest training set (Fig-
ure S26). This narrative shifts at larger dataset sizes as the
QTAIM/ML model, again, outperforms the top non-QTAIM model.
Here, there is no pronounced improvement in the learning curves
between the two sets of models as QTAIM models have a slightly
more aggressive learning curve - indicative of their ability to in-
crease model generalizability at higher data regimes.

4.4 Green 2022

The Green 2022 dataset represents a comprehensive compilation
consisting of approximately 12,000 gas-phase reactions, metic-
ulously calculated at high-level theory (CCSD(T)-F12a40/def2-
TZVP3%),
learning approaches by incorporating two lower levels of theory
(©B97X-D3%2/def2-TZVP8, and B97-D3%3/def2-mSVP%). Re-
markably, our experimental results demonstrate a performance
on par with the original authors’ findings, achieving compara-
ble results without necessitating a transfer learning approach at
lower levels of theory®®. Notably, the original authors employ
significantly higher levels of theory for transfer learning, specif-
ically ®B97X-D3/def2-TZVP=8l and B97-D3%3/def2-mSVP=8. In
contrast, our descriptors are limited to the TPSS=2/def2-SVp=8
level, yet they enable us to attain comparable performance. It
would be intriguing for the original authors to explore and com-
pare the transfer learning process from the lowest level of the-
ory to the highest level of theory (without the intermediate-level

This dataset was constructed to facilitate transfer
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of theory). This would effectively simulate the relative perfor-
mance of QTAIM versus transfer-learning labels at inference time.
Furthermore, when evaluating their non-transfer learned models,
it’s observed that those roughly align (4.17 kcal/mol versus 4.07
kecal/mol) with our Bondnet training without QTAIM integration
(Table 6). The incorporation of QTAIM features with Bondnet,
however, elevates its performance, surpassing the non-transfer
learned models with a reduced mean absolute error (MAE) of 2.6
kcal/mol (Figure S15, S16). This discrepancy underscores the
advantageous impact of QTAIM integration in enhancing model
accuracy and predictive capabilities.

Model Test MAE (kcal/mol)
Bondnet
(w/out QTAIM) 4.18
Bondnet
(w/ QTAIM) 2.60

Table 5 MAE Performance of our model with/without QTAIM on Green
2022 barriers.

4.5 OOD Tests

Model HOMO LUMO Gap Average
Our Best
(w/out QTAIM) 0.0177 0.0320 0.0376 0.0291
Our Best
(w/ QTAIM) 0.0155 0.0243 0.0330 0.0243

Table 6 Test performance (MAE, Hartrees) of various geometric learning
algorithms on orbital energies in QM9 OOD.

Beyond a measure of train/test performance, we wanted to
demonstrate whether QTAIM could functionalize machine learn-
ing models to make out-of-domain predictions. We conducted
two sets of experiments here. First, we trained/tested mod-
els with/without QTAIM features on the LIBE dataset where
the training set was trimmed to only include examples of neu-
tral molecules and the test set was refined to only include test
molecules with charges € {—1,1}. The baseline model included
only a one-hot encoding of molecular charge in the global fea-
ture node; the QTAIM-enabled model adds QTAIM features to
the model. None of the prior benchmark models include native
support for spin and charge; therefore we only conducted this
experiment on our own architecture. Second, we tested model
performance of our GNNs with/without QTAIM features on sub-
selected variants of QM9 train/test sets. Here we stratified the
datasets along molecular size: molecules in the training set with
fewer than 13 atoms included were included in the OOD training



set and those with more than 13 atoms in the original test set
included in the OOD test set.

Model MAE (meV/Atom)
QTAIM-Embed
(Ours, No QTAIM) 191.65
QTAIM-Embed
(Ours, QTAIM) 119.13

Table 7 Test performance of our geometric learning algorithms on for-
mation energies in LIBE OOD.

For QM9 stratification, there is a significant decline in model
performance between both QTAIM and non-QTAIM models. De-
spite this, QTAIM-informed models demonstrate a moderate abil-
ity to generalize to much larger molecules despite being trained
entirely on small molecules. We also note that the filtering of
the QM9 dataset to only molecules with fewer than 13 atoms re-
sults in a training set of only 4,000 molecules. This compar-
atively small (2 orders of magnitude smaller than the full QM9
test set) training set also shows how QTAIM could be an effec-
tive tool for leveraging smaller datasets. We note the systematic
overprediction of THE LUMO/gap energies and underprediction
of THE HOMO energies in the QTAIM informed model, and cou-
ple this to the mean values for each label in the training and
testing set: -0.263 Ha, -0.057 Ha, 0.206 Ha in training and -
0.239 Ha, 0.0131 Ha, 0.252 Ha in the test set for HOMO, LUMO,
gap respectively. Here these systematic changes can be partially
attributed to the comparative difference between the two label
distributions as well as to the model itself. The mean absolute
error (MAE) values highlight the effectiveness of QTAIM, with
an average MAE of 0.0243 Ha compared to 0.0291 Ha without
QTAIM (Table 7). LIBE OOD tests also show a marked drop in
testing performance, though not to the extent of the QM9 OOD
test (Table 7). The QTAIM model here remains quite service-
able while the model without QTAIM features is drastically worse
versus in-domain testing. Changes in performance can be par-
tially attributed to the reduction in training data (only 5,200
molecules in training). This notion is somewhat qualified by our
learning tests (Figure S26) where non-QTAIM models had bet-
ter test errors (<125 meV/Atom) with only 1,000 training exam-
ples. Notably, both models exhibited a trend of overpredicting for
positively charged molecules and underpredicting for those with
a -1 charge, yet this deviation was less pronounced in QTAIM-
informed models where a greater portion of test examples were
within chemical accuracy (2.88% vs. 1.35%) (Fig. 6). These re-
sults show that QTAIM can be an effective method for improving
model robustness in out-of-domain experiments, especially in the
context of charged species.

5 Conclusions

Here we present a framework for leveraging QTAIM descriptors
as general, robust features for geometric machine learning tasks.
Our framework extends to both molecular and reaction-level pre-
dictive tasks and thus can be applicable in a wide-set of use cases.
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Fig. 6 Parity plot of our model, with QTAIM (a) and without QTAIM
(b)

We created tools for both high-throughput calculation of QTAIM
descriptors and a custom machine learning package for easily im-
plementing models that use these features.

Furthermore, we performed extensive testing to demonstrate
how QTAIM can functionalize machine learning models to per-
form better on out-of-domain tasks and smaller datasets. In the
case of QMS, our test showed that QTAIM features helped both
our architectures and Chemprop improve model performance
given identical datasets - suggesting our featurization package
could be used with outside machine learning models as well. In
the future, we plan on writing more “translation” functionalities
to allow users of other architectures to leverage QTAIM features
for their learning tasks.

Future work in this space should see further integration beyond
algorithms to include more databases and DFT codes. For exam-
ple, the native dovetailing of this software into the larger Materi-
als Project ecosystem could see QTAIM integrated into their work-
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flows. At present, the Materials Project only natively supports Q-
Chem®® (for molecular DFT) as a DFT software - a commercial
software we aimed to avoid to increase accessibility. Additional
work could also see integration of input files and execution scripts
for other DFT packages such as Gaussian, NWChem, etc. We also
implement reaction parsing and processing with compatibility for
BondNet and Chemprop (to a lesser extent) but native dataset
compatibility for more algorithms could facilitate benchmarking
and development.

Also in development are graph-neural networks that could
leverage QTAIM-descriptors while avoiding computationally-
expensive message-passing graph neural networks. The aim here
would be to rely on QTAIM descriptors to capture distal relation-
ships between nodes (atom, bonds) rather than using iterative
message-passing steps to achieve this task. From a conceptual
DFT standpoint, the native integration of parsers and data struc-
tures that support ring and cage critical points would be benefi-
cial.

Author Contributions

S.V. contributed to conceptualization, analysis, writing, visualiza-
tion, validation, methodology, and software. W.G. contributed
in conceptualization, writing, and software. A.A. contributed re-
sources, supervision, and writing.

Code Availability

Code for generating QTAIM datasets can be found at: https:
//github.com/santi921/qtaim_generator

Code for performing molecular machine-learning can be found at:
https://github.com/santi921/qtaim_embed

Code for reaction-property machine-learning can be found at:
https://github.com/santi921/bondnet

Datasets are available here: https://figshare.com/projects/
qtaim-generator/196192

Conflicts of interest

There are no conflicts to declare

Acknowledgements

Acknowledgements: S. V. was supported by the Department of
Energy Computational Science Graduate Fellowship under grant
DE-SC0021110. This work was supported by the NSF CHE-
2203366 grant to A.N.A. Computational. This work used Bridges-
2 at Pittsburgh Supercomputing Center through allocation [allo-
cation number] from the Advanced Cyberinfrastructure Coordina-
tion Ecosystem: Services and Support (ACCESS) program, which
is supported by National Science Foundation grants #2138259,
#2138286, #2138307, #2137603, and #2138296.

Notes and references

1 C.F. Matta and A. A. Arabi, Future Medicinal Chemistry, 2011,
3, 969-994.

2 S. Rojas, O. Parravicini, M. Vettorazzi, R. Tosso, A. Garro,
L. Gutiérrez, S. Anddjar and R. Enriz, European Journal of
Medicinal Chemistry, 2020, 208, 112792.

10| Journal Name, [year], [vol.], 1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

S. Vargas, M. R. Hennefarth, Z. Liu and A. N. Alexan-
drova, Journal of Chemical Theory and Computation, 2021,

17, 6203-6213.

U. J. Rangel-Pefia, L. A. Zarate-Hernandez, R. L. Camacho-
Mendoza, C. Z. GOmez-Castro, S. Gonzalez-Montiel,
M. Pescador-Rojas, A. Meneses-Viveros and J. Cruz-Borbolla,
Journal of Molecular Modeling, 2023, 29, year.

S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher,
S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson and G. Ceder,
Computational Materials Science, 2013, 68, 314-319.

E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-
Garcia, A. J. Cohen and W. Yang, Journal of the American
Chemical Society, 2010, 132, 6498-6506.

Y. Grin, A. Savin and B. Silvi, The ELF Perspective
of chemical bonding, 2014, http://dx.doi.org/10.1002/
9783527664696 .ch10.

R. F. W. Bader, P. J. MacDougall and C. D. H. Lau, Journal of
the American Chemical Society, 1984, 106, 1594-1605.

P. Balanarayan, R. Kavathekar and S. R. Gadre, The Journal of
Physical Chemistry A, 2007, 111, 2733-2738.

S. R. Gadre, C. H. Suresh and N. Mohan, Molecules, 2021, 26,
3289.

P. Carpio-Martinez, J. E. Barquera-Lozada, A. M. Pendas and
F. Cortés-Guzman, ChemPhysChem, 2019, 21, 194-203.

D. I. Ramirez-Palma and F. Cortés-Guzman, Physical Chem-
istry Chemical Physics, 2020, 22, 24201-24212.

F. Cortés-Guzman, J. I. Rodriguez and J. S. Anderson, in In-
troduction to QTAIM and beyond, Elsevier, 2023, p. 1-19.

B. Niepoétter, R. Herbst-Irmer, D. Kratzert, P. P. Samuel,
K. C. Mondal, H. W. Roesky, P. Jerabek, G. Frenking and
D. Stalke, Angewandte Chemie International Edition, 2014, 53,
2766-2770.

H. Schmider and A. Becke, Journal of Molecular Structure:
THEOCHEM, 2000, 527, 51-61.

E. E. Ondar, M. V. Polynski
ChemPhysChem, 2023, 24, year.
M. Gallegos, J. M. Guevara-Vela and M. Pendds, The Journal
of Chemical Physics, 2022, 156, year.

V. V. Petrova, A. V. Domnin, Y. B. Porozov, P. O. Kuliaev and
Y. V. Solovev, Journal of Computational Chemistry, 2023, 45,
170-182.

W. L. Hamilton, Synthesis Lectures on Artificial Intelligence and
Machine Learning, 14, 1-159.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and G. E.
Dahl, Neural Message Passing for Quantum Chemistry, 2017.

and V. P. Ananikov,

J. Gasteiger, J. Grof$ and S. Giinnemann, Directional Message
Passing for Molecular Graphs, 2022.

Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse,
A. S. Pappu, K. Leswing and V. Pande, Chemical Science, 2018,
9, 513-530.

S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa,
M. Kornbluth, N. Molinari, T. E. Smidt and B. Kozinsky, Nature
Communications, 2022, 13, year.

S. M. Vadaddi, Q. Zhao and B. M. Savoie, 2023.


https://github.com/santi921/qtaim_generator
https://github.com/santi921/qtaim_generator
https://github.com/santi921/qtaim_embed
https://github.com/santi921/bondnet
https://figshare.com/projects/qtaim-generator/196192
https://figshare.com/projects/qtaim-generator/196192
http://dx.doi.org/10.1002/9783527664696.ch10
http://dx.doi.org/10.1002/9783527664696.ch10

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

M. Wen, S. M. Blau, X. Xie, S. Dwaraknath and K. A. Persson,
Chemical Science, 2022, 13, 1446-1458.

C. Isert, K. Atz, S. Riniker and G. Schneider, RSC Advances,
2024, 14, 4492-4502.

T. Lu and F. Chen, Journal of Computational Chemistry, 2011,
33, 580-592.

A. Otero-de-la Roza, E. R. Johnson and V. Luafia, Computer
Physics Communications, 2014, 185, 1007-1018.

F. Neese, F. Wennmohs, U. Becker and C. Riplinger, The Jour-
nal of Chemical Physics, 2020, 152, year.

RDKit: Open-source cheminformatics, http://www.rdkit.
org.
R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. von Lilienfeld,

Scientific Data, 2014, 1, year.

L. Ruddigkeit, R. van Deursen, L. C. Blum and J.-L. Rey-
mond, Journal of Chemical Information and Modeling, 2012,
52, 2864-2875.

J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys.
Rev. Lett., 2003, 91, 146401.

A. Hellweg and D. Rappoport, Physical Chemistry Chemical
Physics, 2015, 17, 1010-1017.

S. Grimme, J. Antony, S. Ehrlich and H. Krieg, The Journal of
Chemical Physics, 2010, 132, year.

R. Ramakrishnan, M. Hartmann, E. Tapavicza and O. A. von
Lilienfeld, The Journal of Chemical Physics, 2015, 143, year.
O. Christiansen, H. Koch and P. Jgrgensen, Chemical Physics
Letters, 1995, 243, 409-418.

F. Weigend and R. Ahlrichs, Physical Chemistry Chemical
Physics, 2005, 7, 3297.

J. P. Perdew, M. Ernzerhof and K. Burke, The Journal of Chem-
ical Physics, 1996, 105, 9982-9985.

A. Mayr, G. Klambauer, T. Unterthiner and S. Hochreiter, Fron-
tiers in Environmental Science, 2016, 3, year.

R. Huang, M. Xia, D.-T. Nguyen, T. Zhao, S. Sakamuru,
J. Zhao, S. A. Shahane, A. Rossoshek and A. Simeonov, Fron-
tiers in Environmental Science, 2016, 3, year.

C. Bannwarth, S. Ehlert and S. Grimme, Journal of Chemical
Theory and Computation, 2019, 15, 1652-1671.

E. W. C. Spotte-Smith, S. M. Blau, X. Xie, H. D. Patel, M. Wen,
B. Wood, S. Dwaraknath and K. A. Persson, Scientific Data,
2021, 8, year.

R. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G.
Truhlar, The Journal of Physical Chemistry B, 2011, 115,
14556-14562.

K. Spiekermann, L. Pattanaik and W. H. Green, Scientific Data,
2022, 9, year.

T. B. Adler, G. Knizia and H.-J. Werner, The Journal of Chemi-
cal Physics, 2007, 127, year.

M. Wen, S. M. Blau, E. W. C. Spotte-Smith, S. Dwaraknath
and K. A. Persson, Chemical Science, 2021, 12, 1858-1868.
E. Heid, K. P. Greenman, Y. Chung, S.-C. Li, D. E. Graff, F. H.
Vermeire, H. Wu, W. H. Green and C. J. McGill, Journal of
Chemical Information and Modeling, 2023, 64, 9-17.

C. Chen, W. Ye, Y. Zuo, C. Zheng and S. P. Ong, Chemistry of

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Materials, 2019, 31, 3564-3572.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. San-
toro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer,
N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li
and R. Pascanu, Relational inductive biases, deep learning, and
graph networks, 2018.

K. T. Schiitt, O. T. Unke and M. Gastegger, Equivariant mes-
sage passing for the prediction of tensorial properties and molec-
ular spectra, 2021.

K. T. Schiitt, F. Arbabzadah, S. Chmiela, K. R. Miiller and
A. Tkatchenko, Nature Communications, 2017, 8, year.

O. Vinyals, S. Bengio and M. Kudlur, Order Matters: Sequence
to sequence for sets, 2016.

J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi and Y. W. Teh, Set
Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks, 2019.

J. Lee, 1. Lee and J. Kang, International conference on ma-
chine learning, 2019, pp. 3734-3743.

T. N. Kipf and M. Welling, Semi-Supervised Classification with
Graph Convolutional Networks, 2017.

P. Veli¢kovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lid and
Y. Bengio, International Conference on Learning Representa-
tions, 2018.

K. He, X. Zhang, S. Ren and J. Sun, 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

T. K. Rusch, M. M. Bronstein and S. Mishra, A Survey on Over-
smoothing in Graph Neural Networks, 2023.

A. M. Schweidtmann, J. G. Rittig, J. M. Weber, M. Grohe,
M. Dahmen, K. Leonhard and A. Mitsos, Computers amp;
Chemical Engineering, 2023, 172, 108202.

R. D. Guha, S. Vargas, E. W. C. Spotte-Smith, A. R. Ep-
stein, M. C. Venetos, M. Wen, R. Kingsbury, S. M. Blau and
K. Persson, Al for Accelerated Materials Design - NeurIPS
2023 Workshop, 2023.

J.-D. Chai and M. Head-Gordon, Physical Chemistry Chemical
Physics, 2008, 10, 6615.

A. D. Becke, The Journal of Chemical Physics, 1997, 107,
8554-8560.

K. A. Spiekermann, L. Pattanaik and W. H. Green, The Journal
of Physical Chemistry A, 2022, 126, 3976-3986.

E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao,
N. Mardirossian, P. Pokhilko, A. F. White, M. P. Coons, A. L.
Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson, I. Kali-
man, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine,
J. Liu, S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser,
D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B. J. Al-
brecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale,
D. Barton, K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard,
E. J. Berquist, H. G. A. Burton, A. Carreras, K. Carter-Fenk,
R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-Shabica,
S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen,
H. Do, S. Ehlert, P.-T. Fang, S. Fatehi, Q. Feng, T. Fried-

Journal Name, [year], [voll1-J12 |11


http://www.rdkit.org
http://www.rdkit.org

hoff, J. Gayvert, Q. Ge, G. Gidofalvi, M. Goldey, J. Gomes,
C. E. Gonzdlez-Espinoza, S. Gulania, A. O. Gunina, M. W. D.
Hanson-Heine, P. H. P. Harbach, A. Hauser, M. F. Herbst,
M. Hernandez Vera, M. Hodecker, Z. C. Holden, S. Houck,
X. Huang, K. Hui, B. C. Huynh, M. Ivanov, A. Jasz, H. Ji
H. Jiang, B. Kaduk, S. Kéhler, K. Khistyaev, J. Kim, G. Kis,
P. Klunzinger, Z. Koczor-Benda, J. H. Koh, D. Kosenkov,
L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa,
T. Kus, I. Ladjanszki, A. Landau, K. V. Lawler, D. Lefran-
cois, S. Lehtola, R. R. Li, Y.-P. Li, J. Liang, M. Liebenthal,
H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y. Liu, M. Loipersberger, A. Lu-
enser, A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer,
S.-P. Mao, A. V. Marenich, T. Markovich, S. Mason, S. A.
Maurer, P. F. McLaughlin, M. F. S. J. Menger, J.-M. Mewes,
S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan,
G. Paran, A. C. Paul, S. K. Paul, F. Pavos$evié, Z. Pei, S. Prager,
E. I. Proynov, A. R4k, E. Ramos-Cordoba, B. Rana, A. E. Rask,
A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele,
M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada,

12 | Journal Name, [year], [vol.], 1

W. Skomorowski, D. W. Small, C. J. Stein, Y.-C. Su, E. J. Sund-
strom, Z. Tao, J. Thirman, G. J. Tornai, T. Tsuchimochi, N. M.
Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Ya-
mada, K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang,
X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A.
Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai,
S. Coriani, C. J. Cramer, G. Cserey, A. E. DePrince, 3rd, R. A.
DiStasio, Jr, A. Dreuw, B. D. Dunietz, T. R. Furlani, W. A.
Goddard, 3rd, S. Hammes-Schiffer, T. Head-Gordon, W. J.
Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt, J. Kong,
D. S. Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy,
J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A.
Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P. Steele,
J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G. Truhlar,
T. Van Voorhis, T. A. Wesolowski, K. B. Whaley, H. .. Wood-
cock, 3rd, P. M. Zimmerman, S. Faraji, P. M. W. Gill, M. Head-
Gordon, J. M. Herbert and A. I. Krylov, J. Chem. Phys., 2021,
155, 084801.



	Methods
	Quantum Chemical Calculations
	QTAIM Calculations
	Dataset construction
	Dataset visualization and statistics

	Datasets
	QM9
	QM8
	Tox21
	LIBE
	Grambow 2022

	Models
	Molecular Representation
	Molecular-Property Graph Neural Network
	ChemProp
	BondNet
	Benchmarks

	Results and Discussion
	QM9
	QM8
	LIBE
	Green 2022
	OOD Tests

	Conclusions

