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Abstract
Automatic taxonomy induction is crucial for web search, recom-
mendation systems, and question answering. Manual curation of
taxonomies is expensive in terms of human e�ort, making auto-
matic taxonomy construction highly desirable. In this work, we
introduce C��������L���� which is an in-context learning frame-
work designed to induct taxonomies from a given set of entities.
C��������L���� breaks down the task into selecting relevant can-
didate entities in each layer and gradually building the taxon-
omy from top to bottom. To minimize errors, we introduce the
Ensemble-based Ranking Filter to reduce the hallucinated content
generated at each iteration. Through extensive experiments, we
demonstrate that C��������L���� achieves state-of-the-art perfor-
mance on four real-world benchmarks. Source code available at:
https://github.com/qingkaizeng/chain-of-layer.

CCS Concepts
• Computing methodologies! Information extraction.

Keywords
Taxonomy Induction; Large Language Models; In-context Learning

ACM Reference Format:
Qingkai Zeng, Yuyang Bai, Zhaoxuan Tan, Shangbin Feng, Zhenwen Liang,
Zhihan Zhang, and Meng Jiang. 2024. Chain-of-Layer: Iteratively Prompting
Large Language Models for Taxonomy Induction from Limited Examples.
In Proceedings of the 33rd ACM International Conference on Information and
KnowledgeManagement (CIKM ’24), October 21–25, 2024, Boise, ID, USA.ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3627673.3679608

∗Equal contribution.
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3679608

science

physics chemistry

science

physics chemistry

science

physics chemistry

(a) Discriminative Methods: Scoring each entity pair and pruning
to taxonomic structure [6, 26]

Prompt:
Build a taxonomy whose
root concept is science
with the given list of
entities:
physics,
chemistry...

1. science
1.1 physics
...
1.2 chemistry
...

science

physics chemistry

(b) Generative Methods: Prompting LLMs to generate taxonomy

Figure 1: Two Types of Methods for Taxonomy Induction

1 Introduction
Taxonomy refers to a hierarchical structure that outlines the con-
nections between concepts or entities. It commonly represents these
relationships through hypernym-hyponym associations or “is-a”
relationships. Taxonomies are essential in aiding several tasks, such
as textual content understanding [10, 16, 34], personalized recom-
mendations [12, 31, 39], and questions answering [36]. However,
developing a taxonomy solely based on human experts can be a
time-consuming and costly process, often presenting challenges
in terms of scalability. Consequently, recent e�orts have focused
on automatic taxonomy induction, which aims to autonomously
organize a group of entities into a taxonomy.

Traditional approaches in taxonomy induction follow the dis-
criminative method illustrated in Figure 1a and aim to identify and
structure parent-child relations among entities in a hierarchical
manner. Early e�orts involve learning these relations by leveraging
the semantic connections between entities. The semantics can be
represented by lexical patterns [17, 24, 29, 38], distributional word
embeddings [9, 20, 26, 28], and contextual pre-trainedmodels [6, 13].
Following this, the identi�ed relations are organized into a taxo-
nomic structure using various pruning techniques [2, 21, 24, 32].
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Figure 2: The overview of the framework for C��������L���� (C�L): Given an entity list V and a root entity E0 2 V, C�L
systematically organizes the entities in V into hierarchical groups, incrementally adding them to the taxonomy in a top-down
manner at each iteration. In detail, at the :-th iteration, C�L�K selects a subset of entities Vsel from the k-level and extends
the existing taxonomy T:�1 with these entities. The newly generated parent-child relations (T: \ T:�1) are re�ned by an
Ensemble-based Ranking Filter to reduce the hallucinations into the output taxonomy T: in :-th iteration. The process
continues until all entities in V are integrated into the resulting taxonomy.

Recently, Large Language Models (LLMs) have shown impres-
sive skills in understanding and generating text, enabling them to
adapt to a wide range of domains and tasks [1, 23]. Consequently,
many studies have been conducted to leverage the capabilities of
LLMs for Information Extraction (IE) tasks using a generative ap-
proach [35]. Furthermore, increasing the number of parameters of
LLMs signi�cantly enhances their ability to generalize, surpassing
smaller pre-trained models, and enabling them to deliver outstand-
ing performance in few-shot or zero-shot settings [15]. Figure 1b
illustrates the pipeline depicting how generative methods operate
on the taxonomy induction task.

In the context of taxonomy induction with large language mod-
els, TaxonomyGPT [5] �rst attempts to prompt LLMs to predict
the hierarchical relation among the given concepts. However, Tax-
onomyGPT shows two major limitations in taxonomy induction.
First, it ignores the inherent structure of taxonomies during the
generation of new parent-child relations. The reason is that Tax-
onomyGPT produces parent-child relations among given entities
independently, leading to the loss of crucial taxonomic structure
information, such as sibling-sibling and ancestor-descendant rela-
tions. Consequently, this neglect results in structural inaccuracies
in the output taxonomy, including the emergence of multiple root
entities and circular relations. Second, as with all the methods based
on prompting LLMs, TaxonomyGPT also su�ers from the issue of
hallucination. For example, even though we have highlighted the
requirement in the instruction, LLMs still add entities that are not
related to the target taxonomy into the output taxonomy.

To address the above issues, we �rst introduce HF, Hierarchical
Format Taxonomy Induction Instruction to represent taxonomic
structures via hierarchical numbering format. For example, as shown
in Figure 1b, science is the sole root entity, so it is indexed as ‘1.
science’. Physics and chemistry, being child entities of science, are
thus indexed as ‘1.1 physics’ and ‘1.2 chemistry’. This format en-
sures that each entity within the taxonomy possesses a global view
of its hierarchical structure, like physics is the sibling entity of
chemistry since they share the same hierarchical format (‘1.x’). It
is important to note that all the methods proposed in this work
adhere to HF for representing the taxonomic structure.

Second, to reduce the hallucination generated by the inductive
process, we propose the C��������L���� (C�L) unlike prompt-
ing LLMs to generate target taxonomy in one iteration, C�L de-
composes the taxonomy induction task in a layer-to-layer manner.
Speci�cally, for each iteration, C�L selects a subset of entities from
the given entity set and expands the current taxonomy with these
selected entities. The key insight of this decomposition is to instruct
the LLMs to explicitly anchor each of their reasoning iterations
in the taxonomy induction task. Bene�ts on the iterative setting
of C�L, we incorporate an Ensemble-based Ranking Filter at each
iteration as a post-processing module to reduce the error prop-
agation from the current iteration to the next iteration. We also
develop C�L�Z��� to extend C�L to zero-shot settings where anno-
tated taxonomies are unavailable. C�L�Z��� uses LLMs to generate
taxonomies as demonstrations instead of relying on human anno-
tations.
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You are an expert in constructing a taxonomy from a list of concepts

The format of the generated taxonomy is: 1. Parent Concept 1.1 Child Concept.
Do not change any entity names when building the taxonomy.

Demo.  = 

Root entity  and entity list 

Instruction

Few-shot Demo.

Input

CoL iteration

User: Then, let's find all the -level entities from the remaining entity list.
Assistent: The current taxonomy is: 
User:  Check: Is the remaining entity list empty?
Assistent: Answer: Yes./No.

<Next Iteration or output taxonomy >

<Previous Iterations>

Do not add any comments. There should be one and only one root node of the
taxonomy. All entities in the entity list must appear in the taxonomy and don't
add any entities that are not in the entity list.

Build a taxonomy whose root concept is  with the given list of entities.

Figure 3: Prompt Overview of C��������L���� Framework
The e�cacy of HF and C�L has been validated through extensive

experiments onWordNet sub-taxonomies and three large-scale, real-
world taxonomies. The results demonstrate that both HF and C�L
outperform all baseline methods across multiple evaluation metrics.
We also explore the performance of C�L�Z��� on the benchmarks
mentioned above. Some interesting observations of C�L�Z��� are
presented in this work.

In summary, this study makes the following contributions:
• We introduce HF, the Hierarchical Format Taxonomy Induc-
tion Instruction, to utilize the hierarchical structure of the
entities to increase the quality of the inducted taxonomy.

• We introduce C��������L���� (C�L), an iterative taxonomy
induction framework that incorporates the Ensemble-based
Ranking Filter for reducing the hallucinations in the output
taxonomies generated by LLMs.

• Extensive experiments demonstrate that HF and C�L sig-
ni�cantly improve the performance of taxonomy induction
tasks on four datasets from various domains.

Scope and Limitation. This study represents an initial e�ort to
utilize LLMs for taxonomy induction. Our main focus is to identify
an e�ective in-context learning framework to harness the capabili-
ties of LLMs. We are aware that the performance of our proposed
approach on large-scale taxonomies is constrained by the limita-
tions in instruction-following capabilities and the context window
size of LLMs. However, how to facilitate the ability of LLMs to
handle extremely long prompts is beyond the scope of this paper.
We hope this work will inspire future research in this area.

2 Problem De�nition
We de�ne a taxonomy, denoted as T = (V, E), as a directed acyclic
graph composed of two components: a vertex setV and an edge
set E. In the task of taxonomy induction, the model is provided
with a set of conceptual entities, represented by V , where each
entity can be either a single word or a short phrase. The objective
is to construct the taxonomy T based on these given entities.

3 Methodology
In this section, we provide a comprehensive overview of our pro-
posed C��������L���� (C�L) framework designed for addressing
the taxonomy induction task. Speci�cally, C�L dissects the taxon-
omy induction task through a layer-to-layer approach. As shown in
Figure 3, Our C�L framework consists of four parts: instruction (HF,
Hierarchical Format Taxonomy Induction Instruction), few-shot
demonstration, input, and C�L iteration. In the instruction part
(Sec. 3.1), we con�gure the system message of the LLM, specify the
objectives of the task and the expected output format, and establish
a series of rules that help the model understand and accurately com-
plete the task. In Sec. 3.2, we describe and formalize the process of
inducting our demonstrations. In Sec. 3.3, we introduce the iterative
process of C�L and the Ensemble-based Ranking Filters tailored to
mitigate hallucinations that may arise during the process. Finally,
in Sec. 3.4, we extend our C�L to the zero-shot setting. The details
of each module in C�L are presented in Figure 2.

3.1 Hierarchical Format Taxonomy Induction
Instruction (HF)

To enable LLMs to more e�ectively and accurately complete the
taxonomy induction task, we propose HF, the Hierarchical Format
Taxonomy Induction Instruction. As shown in Figure 3, the instruc-
tion speci�es the objectives of the taxonomy induction task, which
can be decomposed into three components. In component (a), LLMs
are instructed to utilize the domain expertise to generate the desired
output. Component (b) provides instructions for the output format,
which is expected to adhere to a hierarchical numbering format.
This format ensures that each entity within the generated taxon-
omy possesses a comprehensive understanding of its hierarchical
structure. Finally, component (c) highlights a set of fundamental
rules R about the taxonomy induction task. These rules include: 1.
Do not use entities not covered in the given entity set and ensure
that all entities listed in the given entity list are present in the tax-
onomy (r1); 2. Maintain a single root entity within the taxonomy
(r2); 3. Refrain from adding comments (r3).

3.2 Few-shot Demonstration Construction
To enable themodel to better follow our instructions to complete the
task, we propose a method for constructing demonstrations for C�L
inference. For each demonstration38 , we decompose each taxonomy
T8 in hierarchical order and simulate the process of inducting the
entire taxonomy from top to bottom. At the end of each level of
induction, we prompt LLM whether the current taxonomy has
included all entities from the given entity set. If a negative response
is received, we will continue to expand the current taxonomy layer
downward until it encompasses all entities from the given entity
set. The demonstration 38 employed for expanding the :-th layer
of the demo taxonomy T:�1

d8
are presented as follows:

<messages of previous iteration>
Assistant: The current taxonomy is: T:�1

d8
User: Check: Is the remaining entity list empty?
Assistant: Answer: No.
User: Then, let’s �nd all the :-th level entities from the
remaining entity list.
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Figure 4: The details of the Ensemble-based Ranking Filter.

Assistant: The current taxonomy is:T:
d8
 T:�1

d8

–V:
B4;8

<beginning of next iteration>

We use the �rst �ve sub-taxonomies from WordNet’s training set
as demonstrations D(C ) = [d (C )

1 , · · · , d (C )
5 ] in this case for fair

comparison.

3.3 Inference via C��������L����
3.3.1 Ensemble-based Ranking Filter. It is well-known that large
language models are greatly a�ected by hallucinations during the
process of generating target texts, resulting in content that is sig-
ni�cantly di�erent from the target [14]. In the taxonomy induction
task, we mainly observe two categories of LLM hallucinations: (1)
The large language models do not strictly use the entities in the
given entity set but instead include non-target entities in the out-
put taxonomy; (2) The large language models introduce incorrect
parent-child relations into the output taxonomy.

To alleviate these issues, we propose a �lter module in the C�L
framework. Speci�cally, in the process of inducting each layer of
the taxonomy, the �lter removes incorrect parent-child relations in
each iteration of the model’s output, preventing the error caused
by hallucination propagating to the next iteration.

Our �lter design is based on an ensemblemechanism.We propose
a set of templates M and used a pre-trained mask language model
to rank the generated parent-child relations in each iteration for
all templates m 2M. We present the M as follows:

<query> is a/an <anchor>
<query> is a kind of <anchor>
<query> is a type of <anchor>
<query> is an example of <anchor>

<anchor> such as <query>
A/An <anchor> such as <query>

For each entity q in the entity list, we compute the probability
of tokens at the <anchor> position by placing q in the <query>
position (as a child entity) of template m and positioning one of
the remaining entities a at the <anchor> (as a parent entity). Then
we sort the token probabilities to determine the similarity ranking.
Subsequently, inference, represented by Sim(q, a |m), is computed
utilizing the reciprocal of this similarity ranking. Finally, we en-
semble the scoring results of each template to obtain the �nal �lter
score. The formula of the similarity score is:

score(q |a,M,V) = 1
|M|

’
m2M

Sim(q, a |m) (1)

For each query entity, we retain only the top ten parent can-
didates. If the parent-child relations output by the LLM are not
within this range, these relations will be �ltered out. In this pa-
per, we use a pre-trained masked language model specialized for
the scienti�c domain and tasks called SciBERT [3] to ensure that
the pre-trained models contain su�cient domain knowledge to
complete the ranking process.

3.3.2 Iterative Inference. After providing the instructions and con-
structing the few-shot demonstrations, we introduce the interactive
inference process of our C�L framework with the Ensemble-based
Ranking Filter. We provide the input entity candidates setV and
the initial taxonomy T 0 only including root entity v0 to the LLM
and expect the LLM to generate the output taxonomy T according
to the rules R and the de�ned format of the demonstrations D in
section 3.2. The whole inference process in C�L is donated as:

T = CoL(V,T 0,D,R) (2)

The inference starts with : = 0 and de�ne T 0 = v0,V0
B4;

= [v0].
And in the :-th iteration, we �rst prompt the LLM to generate the
:-th layer of the taxonomy, and update taxonomy T:�1 to T: , and
remaining entity list V:�1 to V: . The :-th inference process in
C�L is donated as:

T: ,V:
B4; = CoL � K(V:�1,T:�1,D,R) (3)

V: = V:�1 \ V:
B4; (4)

To alleviate the impact of the model’s hallucinations on the qual-
ity of the output taxonomy, we employ the Ensemble-based Ranking
Filter to �lter out the hallucinations in the generated parent-child
relations which are in (T: \ T:�1) at :-th iteration. Then we up-
date the output taxonomy T: and the remaining entity list V:

at :-th iteration. The processing of the Ensemble-based Ranking
Filter is donated as:

T: ,V:  EnsembleFilter(T: ,V: ,V:
B4; ) (5)

At the end of each iteration, we prompt the model to check if the
remaining entity listV: is empty or not. If we receive a positive
response, we then output the current taxonomy T: as the �nal
result T . Otherwise, we proceed to the next iteration.
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#Concepts #Edges Depth

WordNet 20.5 / 20.5 19.5 / 19.5 3.0 / 3.0
Wiki 102.6 / 252.0 101.8 / 255.0 2.2 / 3.0
DBLP 90.8 / 176.0 89.8 /175.0 2.8 / 4.0
SemEval-Sci 114.0 / 429.0 113.0 / 451.0 7.2 / 8.0

Table 1: Statistics of four taxonomy datasets. Each cell is
presented as */*, indicating the average for sampled sub-
taxonomies and the entire taxonomy, respectively.

3.4 Demonstrations Generation via LLMs
WhileC�L is designed to induct taxonomy from given entity sets via
the few-shot learning setting. In domains that lack well-inducted
taxonomies, we propose a zero-shot C�L alternative C�L�Z���.
The idea of C�L�Z��� is utilizing LLMs to generate taxonomies
instead of utilizing taxonomies annotated by human experts acts
as demonstrations.

The details of C�L�Z��� are as follows. We start with the root
entity E0 of the target taxonomy T . We follow the instruction
mentioned in section 3.1 to prompt LLM directly to generate the
taxonomies T

d (6)
8

, used to construct demonstration d (6)
8 following

the process in section 3.2. Thus we have D(6) = [d (6)
1 , · · · , d (6)

5 ].
Di�erent from C�L, C�L�Z��� remove the restriction of only using
the entities that are covered in the given entity set (A1) to free form
R0 = [A2, A3].

T
d (6)
8

= CoL � demo � generation(T 0,R0) (6)

T = CoL(V,T 0,D(6) ,R0) (7)

4 Experiments
Our proposed HF and C�L are evaluated on four benchmarks. The
experiments aim to address three research questions (RQs):

• RQ1:How does the performance of the proposed framework
compare to state-of-the-art baselines in taxonomy induction?

• RQ2: How does the proposed framework perform on scala-
bility and domain generalization?

• RQ3:Which components within the proposed framework
most signi�cantly impact the e�ectiveness of taxonomy in-
duction tasks? How can the hyperparameters for these com-
ponents be determined?

4.1 Experimental Setting
4.1.1 Datasets. We conducted our experiments using WordNet
sub-taxonomies created by [2]. This dataset comprises 761 non-
overlapping taxonomies, each with 11 to 50 entities and the depth
of each sub-taxonomy is 4. It means there are 4 entities along the
longest path from the root entity to any leaf entity. The WordNet is
divided into training (533), development (114), and test (114) sets.

Furthermore, we evaluate our framework using three large-scale
real-world taxonomies: (1) DBLP is constructed from 156,000 com-
puter science paper abstracts; (2) Wiki is derived from a subset of
English Wikipedia pages; (3) SemEval2016-Sci is derived from the
shared task of taxonomy induction in SemEval2016. For DBLP and
Wiki, we uses annotation results from [27].

Model WordNet

P0 R0 F10 P4 R4 F14
Supervised Fine-tuning

G����2T��� [26] 79.20 47.80 59.60 75.60 37.00 49.70
CTP [6] 69.30 66.20 66.70 53.30 49.80 51.50
CTP�L�����2�7B [6] 73.48 70.02 71.71 55.42 51.98 53.64

Zero-shot Setting
R�������MLM [13] 23.23 25.69 24.09 24.17 25.65 24.89
LMS����� [13] 37.50 47.64 41.59 36.27 38.48 37.34

Ours
HF (GPT�4) 81.13 78.35 78.37 53.27 54.63 53.87
HF (GPT�3.5) 85.92 61.75 69.62 45.91 43.57 44.15
C�L����� (GPT�4) 89.71 71.39 78.31 58.93 55.18 56.41
C�L����� (GPT�3.5) 86.92 60.06 69.61 48.78 42.04 44.50

5-shot Setting
T�������GPT (GPT�4) [5] 53.09 31.84 39.07 39.59 36.84 38.01
T�������GPT (GPT�3.5) [5] 62.97 41.77 48.95 49.20 43.85 46.24

Ours
HF (GPT�4) 85.33 79.30 81.58 58.96 59.22 59.08
HF (GPT�3.5) 80.48 72.59 75.37 49.95 49.26 49.46
C�L (GPT�4) 90.60 73.07 79.62 59.57 57.10 57.73
C�L (GPT�3.5) 85.69 60.16 69.39 47.90 41.92 44.26

Table 2: Performance comparison across WordNet sub-
taxonomies in three di�erent settings: Bold indicates the
highest performance within each setting, while underlined
denotes the second best performance within each setting.

Due to the sequence length limitation of LLMs, we conducted �ve
separate samplings for these three large-scale taxonomies, ensuring
that the size of each sampled sub-taxonomy ranged from 80 to
120 entities. The experimental results are averaged over these �ve
samplings. The dataset statistics are presented in Table 1.

4.1.2 Baseline Methods. We compare the proposed framework
with the following supervised �ne-tuning baseline methods:

• Graph2Taxo [26]: leverages cross-domain graph structures
and adopts constraint-based Directed Acyclic Graph (DAG)
learning for taxonomy induction.

• CTP [6]: �ne-tunes RoBERTa model to predict parent-child
pair likelihoods and integrates these into a graph using a
maximum spanning tree algorithm for precise taxonomy
induction. Additionally, we present results using a Llama-2-
7B model as the backbone for CTP.

We compare the following unsupervised and in-context learning
baseline methods:

• RestrictMLM [13]: utilizes a cloze statement, or ’�ll-in-
the-blank’, method to extract ’is-a’ relational knowledge
from BERT. However, this approach is limited to single-gram
entities due to the constraints of the schema.

• LMScore [13]: treats taxonomy induction as a sentence scor-
ing task using GPT-2. It assesses the natural �uency of sen-
tences that elicit parent-child relations.

• TaxonomyGPT [5]: approaches taxonomy induction as a
conditional text generation challenge. It represents the out-
put taxonomy as a collection of sentences, each describing a
parent-child relation within the output taxonomy.

For our proposed framework, we conduct experiments with
GPT�3.5�������16� and GPT�4�1106��������. For HF, we directly
prompt the LLMs using the HF instruct describe in Section 3.1.
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Model Wiki DBLP SemEval-Sci

P0 R0 F10 P4 R4 F14 P0 R0 F10 P4 R4 F14 P0 R0 F10 P4 R4 F14
Supervised Fine-tuning

G����2T��� [26] 43.02 36.50 39.49 39.28 34.12 36.52 47.85 30.23 37.05 46.63 28.49 35.37 82.45 36.15 50.27 79.37 34.52 46.87
CTP [6] 50.94 47.15 48.97 46.56 42.53 44.45 45.62 41.39 43.40 38.21 33.73 35.83 52.41 33.88 41.16 31.18 29.42 30.27
CTP�L�����2�7B [6] 67.74 64.16 65.78 63.64 60.07 61.80 48.73 39.88 43.86 44.39 35.81 39.64 61.98 54.09 57.77 48.33 41.92 44.90

Zero-shot Setting
R�������MLM [13] 49.88 54.08 51.85 30.01 30.21 30.11 - - - - - - 63.33 47.85 54.44 45.79 46.19 45.99
LMS����� [13] 18.77 25.94 21.74 19.78 19.95 19.86 17.14 21.54 19.04 25.84 26.12 25.98 48.80 33.24 39.51 42.20 42.58 42.39

Ours
HF (GPT�4) 92.96 94.48 93.68 91.55 91.31 91.41 52.70 64.69 57.65 30.76 29.58 29.91 78.56 54.68 64.02 45.12 46.64 45.85
HF (GPT�3.5) 75.85 71.55 73.36 71.67 73.63 72.03 50.20 48.28 48.76 27.66 26.51 26.98 70.25 40.91 51.17 28.69 28.11 28.29
C�L����� (GPT�4) 100.00 84.58 91.12 99.70 84.77 91.15 80.88 54.25 57.21 40.15 35.88 37.81 94.99 45.83 61.66 62.33 45.55 52.44
C�L����� (GPT�3.5) 99.72 57.92 72.65 99.17 58.23 72.76 76.78 38.39 49.36 53.72 30.61 38.02 93.12 22.43 35.59 56.52 22.13 31.54

5-shot Setting
T�������GPT [5] 69.26 63.48 65.19 89.55 86.71 87.98 28.98 14.40 17.15 34.27 22.17 25.97 53.09 31.84 39.07 39.59 36.84 38.01

Ours
HF�Z��� (GPT�4) 96.33 95.18 95.75 93.08 91.72 92.39 59.76 74.37 65.83 38.42 40.20 39.28 75.28 59.32 62.63 43.64 49.29 45.24
HF�Z��� (GPT�3.5) 88.88 80.36 84.38 83.67 74.92 78.98 62.42 53.76 57.53 32.68 28.59 30.38 57.00 36.89 44.38 29.51 29.88 29.35
C�L (GPT�4) 99.17 95.99 97.54 97.92 94.99 96.43 79.95 63.06 68.82 55.07 44.27 47.96 91.23 48.16 62.69 59.60 46.03 51.59
C�L (GPT�3.5) 99.00 73.25 83.73 97.54 71.99 82.41 79.74 42.21 54.76 55.35 28.70 37.66 95.75 26.66 41.35 59.73 26.05 35.99

Table 3: Performance on taxonomy induction on three large scale taxonomies: Bold for the highest among all. Underlined
for the second-best performance. Due to the scalability challenges discussed in Section 4.4, each method was applied to �ve
sub-taxonomies derived from the original, with results averaged. The R�������MLM results for DBLP are unavailable since
it only handles single-gram entities using a ’�ll-in-the-blanks’ schema. Due to GPT�4 not following the instructions of the
T�������GPT’s prompt, only the results from T�������GPT (GPT�3.5) were retained.

4.1.3 Evaluation Metrics. This section outlines the metrics for eval-
uating our taxonomy prediction models: Ancestor-F1 and Edge-F1.

Ancestor-F1: This metric assesses ancestor-descendant rela-
tions in predicted and ground truth taxonomies.

%0 =

��is-ancestorpred— is-ancestorgold
����is-ancestorpred��

'0 =

��is-ancestorpred— is-ancestorgold
����is-ancestorgold��

�10 =
2%0 ⇤ '0
%0 + '0

where %0 , '0 and �10 donate the ancestor precision, recall, and
F1-score, respectively.

Edge-F1: This metric, stricter than Ancestor-F1, compares pre-
dicted edges directly with gold standard edges. Edge-based metrics
are denoted as %4 , '4 , and �14 , respectively.

4.2 Results on the WordNet (RQ1)
In our experiments, we compare the performance of ourHF andC�L
to three major settings baseline methods (supervised �ne-tuning,
zero-shot setting, and 5-shot setting) on medium-sized WordNet.
As the experimental results are shown in Table 2, we have four
major observations as follows:

Firstly,HF (GPT-4) andC�L (GPT-4) variants consistently achieved
the highest F1 scores, validating the e�ectiveness of GPT-4 models
in taxonomy induction. They signi�cantly outperformed the LM�
S����� baseline, highlighting the superior text understanding and
generation capabilities of LLMs.

Second, despite using powerful LLMs like GPT-4, TaxonomyGPT
performed worse than methods such as CTP, which rely on �ne-
tuning BERT/Llama-2-7B models, across all six metrics. This sug-
gests that LLMs are sensitive to output format requirements. Tax-
onomyGPT’s approach of representing parent-child relationships
as independent sentences loses structural coherence. In contrast,
HF and C�L use a hierarchical number format to encode positional
information, improving performance.

Third, Graph2Taxo achieved the highest precision across all set-
tings, leveraging lexical patterns as direct input features. However,
its lower recall indicates a trade-o�, suggesting it may not fully
capture all taxonomic relations.

Last, comparingHF andC�L, we have the following observations:
(1) C�L�Z��� (GPT-4) outperforms HF�Z��� (GPT-4) with a 9.6%,
1.0%, and 4.5% increase in %4 , '4 , and �14 . This result demonstrates
that C�L is better suited for medium-sized taxonomy induction
tasks under the zero-shot setting. (2) Under the 5-shot setting, HF
(GPT-4) shows a 2.3% lead in �14 compared to C�L (GPT-4), indicat-
ing that direct prompting with HF achieves state-of-the-art results
when in-domain examples are provided.

4.3 Results on the Three Large-Scale
Taxonomies (RQ1 and RQ2)

In this section, we present the experiment results on three large-
scale taxonomies:Wiki, DBLP, and SemEval-Sci, as shown in Table 3.
This experiment tests domain generalization ability, with all super-
vised �ne-tuning trained on WordNet and then tested directly on
these taxonomies. Under the 5-shot setting, we use the �rst �ve
sub-taxonomies of the WordNet training set for a fair comparison.
Our observations are as follows:
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Figure 5: Performance analysis of the C�L across varying
scales and domains. It shows Edge, Ancestor, and Node F1-
scores for Wiki, DBLP, and SemEval-Sci taxonomies, ranging
from 20 to 160 entities. An in�ection point at the 80-entity
threshold across all metrics and domains, emphasizing the
scalability limitations of C�L.

First, in the supervised �ne-tuning setting, models such as CTP
and G����2T��� provide a foundation for understanding taxon-
omy induction’s intricacies. However, the proposed C�L (GPT-4)
shows the best performance in �14 across all three taxonomies.
Compared to the best-performing SFT model, C�L (GPT-4) has
increased �14 by 56.03%, 20.99%, and 10.07% on Wiki, DBLP and
SemEval-Sci, respectively. Compared to HF, C�L (GPT-4) has in-
creased �14 by 4.37%, 22.09% ,and 14.04% on Wiki, DBLP and
SemEval-Sci, respectively.

Second, C�L�Z��� demonstrates stronger domain adaptation ca-
pabilities than HF�Z��� under the zero-shot setting. In the context
of zero-shot learning, C�L (GPT-4) shows a 26.41% improvement
on �14 than HF (GPT-4) in DBLP, and for SemEval-Sci, C�L (GPT-
4) achieves 14.42% improvement than GPT�4. Although HF�Z���
shows a better �14 than C�L�Z���, the increase in HF�Z���’s
�14 over C�L�Z��� is only 0.285%, indicating that this marginal
improvement is insu�cient to prove that HF�Z��� has superior
domain adaptation capability compared to C�L�Z���.

These observations can be attributed to two reasons: (1) C�L
decomposes taxonomy induction into di�erent sub-tasks, such as
focusing on �nding parent-child relationships within a given layer,
which enables the model to learn how to do taxonomy induction
domain transfer across di�erent domains. (2) The Ensemble-based
Ranking Filter e�ectively improves the model’s precision without
sacri�cing recall. Compared to using the proposed �lter to post-
process the output results once, C�L allows the generated results
to be corrected by the proposed �lter at every iteration of building
the taxonomy. This mechanism enables the model to perform self-
correction on the output taxonomy based on the existing context.

4.4 Investigating the E�ects of Scalability on
the C��������L���� (RQ2)

In this section, we empirically investigate the scalability of our pro-
posed C��������L���� framework across varying scales (number
of entities in the given entity list), with particular emphasis on
identifying a critical threshold below which proposed C�L demon-
strates optimal performance. We conduct experiments on Wiki,
DBLP, and SemEval-Sci taxonomies. For each taxonomy, we ran-
domly select sub-taxonomies, using the root entity as the starting
point. We chose sub-taxonomies of various sizes, speci�cally with
20, 40, ..., 140, and 160 entities. To ensure the reliability of our re-
sults, we repeated the sampling process �ve times for each size,

Figure 6: Performance of ranking ranges in the Ensemble-
based Ranking Filter for maintaining parent-child relation-
ships. The Top-10 range shows the highest �10 scores across
all datasets and the highest �14 scores in Wiki and DBLP. In
SemEval-Sci, the Top-10 range achieves nearly the best �14
score, close to the Top-15 range.
thereby generating �ve distinct sub-taxonomies for every speci-
�ed number of entities. We not only report the trend of edge-level
F1-score (�14 and �10) as it changes with variations in the size of
the sub-taxonomy but also explore the trend of node-level F1-score
(�1=) on each dataset in Figure 5. Our observations are as follows.

First, as the scale of the taxonomy to be induced expands, both
the edge-level F1-score and node-level F1-score of the proposed
C�L framework exhibit a decline across all three benchmarks that
in di�erent domains. This correlation demonstrates that in the ap-
proaches that rely on prompting large languagemodels, the increase
in the number of entities signi�cantly increases the complexity of
the taxonomy induction task, leading to a relative performance
decline even though the target taxonomy is in the same domain.

Secondly, in comparison to DBLP and SemEval-Sci, C�L exhibits
robustness on the Wiki taxonomy. Speci�cally, even when expand-
ing the entity count in the taxonomy to 160, C�L on Wiki shows a
decrease in �14 and �10 of 30.01% and 22%, respectively, compared
to when the entity count is 20. In contrast, on DBLP, �14 and �10 de-
crease by 60.50% and 51.41%, respectively, and SemEval-Sci, �14 and
�10 decrease by 69.49% and 72.02%, respectively. This di�erential
performance decline indicates that LLMs have a stronger knowl-
edge understanding in general domains than in speci�c domains,
such as the scienti�c domain.

Last, we �nd that the node-level F1-score (�1=) also decreases
more drastically as the number of entities exceeds 80 on DBLP
and SemEval-Sci. Notably, the �1= remains relatively high with
20-80 entities, it sharply declines beyond this point. These �ndings
indicate that when the taxonomy scale exceeds a certain threshold
(beyond 80 entities), LLMs struggle to strictly adhere to the rules
mentioned in the instructions: using only the entities provided in
the given entity set to carry out taxonomy induction. This is also
one of the signi�cant reasons for the substantial decrease in the
performance of C�L as the taxonomy scale increases.

4.5 Investigating the E�ects of
Hyperparameters & Ablation Study (RQ3)

4.5.1 The selection of the best ranking range. To identify the best
ranking range for maintaining the parent-child relationships pro-
duced by C�L, we evaluated the top-10, top-15, and top-20 rankings
across three large-scale taxonomies. Given that the top-1 and top-5
rankings scored below 50%, we consider them too stringent to accu-
rately preserve the correct parent-child relationships. The results
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Dataset Con�guration Edge Ancestor

CoL Filter P4 R4 F14 P0 R0 F10
X ÿ 60.67 47.76 51.77 84.22 56.52 64.72

WordNet ÿ X 59.12 58.41 58.76 90.11 74.31 80.77
ÿ ÿ 59.57 57.10 57.73 90.60 73.07 79.62

Wiki X ÿ 98.08 46.27 61.09 99.49 45.58 60.66
ÿ X 98.58 93.08 95.73 99.51 93.96 96.63
ÿ ÿ 97.92 94.99 96.43 99.17 95.99 97.54

DBLP X ÿ 72.81 13.35 22.41 71.92 7.66 13.70
ÿ X 48.47 38.87 42.14 69.29 59.94 63.44
ÿ ÿ 55.07 44.27 47.96 79.95 63.06 68.82

SemEval-Sci X ÿ 57.29 20.10 29.32 93.33 13.91 23.94
ÿ X 54.22 49.75 51.86 86.29 53.74 65.97
ÿ ÿ 59.60 46.03 51.59 91.23 48.16 62.69

Table 4: Ablation study of two major modules in the pro-
posed framework: C��������L���� prompting (C�L) and
Ensemble-based Ranking Filter (Filter). All metrics are pre-
sented in percentages (%). Con�gurations indicate whether
C�L and the Ensemble-based Ranking Filter were employed.

are presented in Figure 6. The results are illustrated in Figure 6. Our
�ndings reveal that for both �14 and �10 , the top-10 ranking con-
sistently demonstrates the best or second-best performance across
all three datasets. Consequently, we selected the top-10 ranking as
the optimal range for preserving the parent-child relationship in
the Ensemble-based Ranking Filter.

4.5.2 Ablation Study. We conducted an ablation study on the four
benchmarks mentioned above to verify the e�ectiveness of two ma-
jor modules: C��������L���� prompting (C�L) and the Ensemble-
based Ranking Filter (Filter) in the proposed framework. The exper-
imental results are shown in Table 4. Our �ndings are as follows:

First, removing C�L or Ensemble-based Ranking Filter reduces
performance on three three large-scale taxonomies (Wiki, DBLP,
and SemEval-Sci). It proves that the incorporation of C�L and
Ensemble-based Ranking Filter provide crucial self-correction, re-
ducing hallucinated content.

Second, the most notable drop in recall and F1-score performance
occurs when the C�L is removed. It indicates that utilizing the
Ensemble-based Ranking Filter as a post-processing iteration for
the generated taxonomy proves overly stringent in maintaining the
parent-child relations, even when those relations are correct. On
the DBLP dataset, the absence of C�L results in a decrease of 65.7%
in '4 and 46.8% in �14 , despite a 50.2% improvement in %4 .

Third, removing the Ensemble-based Ranking Filter results in a
decline in precision performance across all four benchmarks. This
indicates that the proposed �lter e�ectively preserves the accuracy
of the parent-child relationship within the generated taxonomy.

Last, the introduction of C�L and the Ensemble-based Ranking
Filter does not signi�cantly impact the performance on WordNet. It
is becauseWordNet’s smaller scale allows models likeGPT�4 T����
to handle the task e�ectively without these enhancements.

4.6 Case Study
This section presents a case study to evaluate the strengths and
weaknesses of our proposed methods alongside several baselines.
We use samples from WordNet and provide outputs for C�L, C�L�
�/��F�����, HF (GPT�4), and HF (GPT�4)�F����� in a 5-shot setting.

4.6.1 CoL v.s. HF (GPT-4) / HF-Filter (GPT-4). By comparing the
outputs of the C�L in Figure 7(b) and HF (GPT�4) in Figure 7(c)) /
HF (GPT�4)�F����� in Figure 7(d), we demonstrate the e�ectiveness
and importance of our C�L framework and the Ensemble-based
Ranking Filter. Compared to the ground truth, the most noticeable
issue with HF (GPT�4)’s output is that it hallucinates an entity knife
that wasn’t in the given entity list and uses it to group all other
entities that should belong to table knife. This resulted in a lower
edge F1 score for the generated taxonomy.

When comparing the outputs of HF (GPT�4) and HF (GPT�4)�
F�����, we observe that without a layer-by-layer decomposition
approach like C�L, directly employing a �lter degrades the quality
of the induced taxonomy. Filtering HF (GPT�4)’s output results
in the complete removal of the sub-taxonomy under knife. This
signi�cantly lowers the node F1 score and edge F1 score of the
generated taxonomy because �ltered entities cannot be re-selected.
These �ndings highlight the critical importance and synergistic
e�ect of C�L and the Ensemble-based Ranking Filter.

4.6.2 CoL v.s. CoL-w/o-Filter. To illustrate the role of the Ensemble-
based Ranking Filter, we compare the outputs of C�L in Figure 8(b)
and C�L��/��F����� in Figure 8(c) against the ground truth in
Figure 8(a). As shown, the taxonomy induced by C�L closely aligns
with the ground truth, whereas C�L��/��F�����misclassi�es “roll”,
“bank”, and “loop” as siblings of “�ight maneuvers”. This demon-
strates the e�ectiveness of the Ensemble-based Ranking Filter,
which removes edges with lower ranks, such as “�ight maneuvers
- roll” and re-adds “roll” for selection in the next layer. This self-
correcting process helps LLMs induce more accurate taxonomies.

5 Related Works
Taxonomy Induction. The process of taxonomy induction typi-
cally includes identifying hypernyms (extracting potential parent-
child relationships from text) and and organizing them hierarchi-
cally. In the initial stage, embedding-based approaches [20] and
pattern-based methods [22, 29, 33] were widely used. The second
step was often viewed as graph optimization and solved by max-
imum spanning tree [2]. In this work, we focus on organizing a
given entity set to a taxonomy. Bansal et al. [2] approach this as
a structured learning problem and employ belief propagation to
integrate relational information between siblings. Mao et al. [21]
present an approach utilizing reinforcement learning to integrate
the phases of hypernym identi�cation and hypernym organization.
Shang et al. [26] utilize a graph neural network approach, demon-
strating improvement in large-scale taxonomy induction using the
SemEval-2016 Task 13 dataset [4]. Chen et al. [6] and Jain et al. [13]
utilize the pre-trained language model to approach taxonomy in-
duction, treating it as sequence classi�cation and sequence scoring
tasks, respectively. Langlais and Guo [18] proposed an automatic
taxonomy evaluation metric based on the pre-trained model. Tax-
onomyGPT [5] conducts taxonomy induction by leveraging the
in-context learning capabilities of LLMs. The proposed C�L in this
paper signi�cantly reduces hallucination and improves structural
accuracy by iterative prompting large language models.
Extracting Knowledge from LLMs. Research in extracting and
investigating the stored knowledge in Large Language Models
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Figure 7: The taxonomies generated via C�L, HF (GPT-4) and HF-Filter (GPT-4).
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Figure 8: The taxonomies generated via C�L and CoL-w/o-Filter

(LLMs) has become increasingly sophisticated, combining quan-
titative assessments with innovative extraction techniques. Prior
works like LAMA [25], TempLAMA [8], and MMLU [11] have laid
the groundwork by quantitatively measuring the factual and time-
related knowledge within these models. Based on these, recent
e�orts have ventured into knowledge extraction, as seen in works
that construct Knowledge Graphs (KGs) directly from LLM outputs.
Speci�cally, methodologies like the one introduced in Crawling
Robots [7] propose the extraction of named entities and relation-
ships through a novel robot role-play setting, indicating a shift
towards more interactive and dynamic extraction methodologies.
Parallel to this, the adoption of structured, prompt-based queries
has o�ered a pathway to not only retrieve but also systematically
organize the knowledge embedded within LLMs, making it acces-
sible and interpretable for human users [19, 37]. This emerging
body of work, including techniques that enhance training data
with explicit knowledge recitation tasks [30], aims at not just un-
derstanding but also e�ectively leveraging the vast reservoir of
information encapsulated in these advanced models, marking a

signi�cant leap forward in our quest to harness the full potential
of LLMs for knowledge-based applications.

6 Conclusion
In this work, we introduce C��������L���� (C�L), a novel frame-
work for taxonomy induction. By leveraging the hierarchical format
instruction (HF) and incorporating an Ensemble-based Ranking Fil-
ter, C�L breaks down the task into selecting relevant candidates
and gradually building the taxonomy from top to bottom and sig-
ni�cantly reduces hallucination and improves structural accuracy.
Extensive experimental results demonstrate that C�L outperforms
various baselines, achieving state-of-the-art performance. We en-
vision C�L as a powerful framework to address the challenges of
inducting accurate and coherent taxonomy from a set of entities.
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