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Abstract

Automatic taxonomy induction is crucial for web search, recom-
mendation systems, and question answering. Manual curation of
taxonomies is expensive in terms of human effort, making auto-
matic taxonomy construction highly desirable. In this work, we
introduce CHAIN-OF-LAYER which is an in-context learning frame-
work designed to induct taxonomies from a given set of entities.
CHAIN-OF-LAYER breaks down the task into selecting relevant can-
didate entities in each layer and gradually building the taxon-
omy from top to bottom. To minimize errors, we introduce the
Ensemble-based Ranking Filter to reduce the hallucinated content
generated at each iteration. Through extensive experiments, we
demonstrate that CHAIN-OF-LAYER achieves state-of-the-art perfor-
mance on four real-world benchmarks. Source code available at:
https://github.com/qingkaizeng/chain-of-layer.

CCS Concepts

« Computing methodologies — Information extraction.

Keywords
Taxonomy Induction; Large Language Models; In-context Learning

ACM Reference Format:

Qingkai Zeng, Yuyang Bai, Zhaoxuan Tan, Shangbin Feng, Zhenwen Liang,
Zhihan Zhang, and Meng Jiang. 2024. Chain-of-Layer: Iteratively Prompting
Large Language Models for Taxonomy Induction from Limited Examples.
In Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management (CIKM "24), October 21-25, 2024, Boise, ID, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3627673.3679608

“Equal contribution.
t Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °24, October 21-25, 2024, Boise, ID, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679608

3093

science

science

O
O O

physics chemistry

A
O O

physics

physics chemistry chemistry

(a) Discriminative Methods: Scoring each entity pair and pruning
to taxonomic structure [6, 26]

Prompt: science
Build a taxonomy whose 1. science
root concept is science 1.1 physics

with the given list of
entities:

physics,
chemistry...

1.2 chemistry

physics chemistry

(b) Generative Methods: Prompting LLMs to generate taxonomy

Figure 1: Two Types of Methods for Taxonomy Induction

1 Introduction

Taxonomy refers to a hierarchical structure that outlines the con-
nections between concepts or entities. It commonly represents these
relationships through hypernym-hyponym associations or “is-a”
relationships. Taxonomies are essential in aiding several tasks, such
as textual content understanding [10, 16, 34], personalized recom-
mendations [12, 31, 39], and questions answering [36]. However,
developing a taxonomy solely based on human experts can be a
time-consuming and costly process, often presenting challenges
in terms of scalability. Consequently, recent efforts have focused
on automatic taxonomy induction, which aims to autonomously
organize a group of entities into a taxonomy.

Traditional approaches in taxonomy induction follow the dis-
criminative method illustrated in Figure 1a and aim to identify and
structure parent-child relations among entities in a hierarchical
manner. Early efforts involve learning these relations by leveraging
the semantic connections between entities. The semantics can be
represented by lexical patterns [17, 24, 29, 38], distributional word
embeddings [9, 20, 26, 28], and contextual pre-trained models [6, 13].
Following this, the identified relations are organized into a taxo-
nomic structure using various pruning techniques [2, 21, 24, 32].
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Figure 2: The overview of the framework for CHAIN-OF-LAYER (CoL): Given an entity list V and a root entity vy € V, CoL
systematically organizes the entities in ‘V into hierarchical groups, incrementally adding them to the taxonomy in a top-down
manner at each iteration. In detail, at the k-th iteration, CoL-K selects a subset of entities Vsel from the k-level and extends
the existing taxonomy 7k-1 with these entities. The newly generated parent-child relations (7% \ 7%-1) are refined by an
Ensemble-based Ranking Filter to reduce the hallucinations into the output taxonomy 7k in k-th iteration. The process
continues until all entities in V are integrated into the resulting taxonomy.

Recently, Large Language Models (LLMs) have shown impres-
sive skills in understanding and generating text, enabling them to
adapt to a wide range of domains and tasks [1, 23]. Consequently,
many studies have been conducted to leverage the capabilities of
LLMs for Information Extraction (IE) tasks using a generative ap-
proach [35]. Furthermore, increasing the number of parameters of
LLMs significantly enhances their ability to generalize, surpassing
smaller pre-trained models, and enabling them to deliver outstand-
ing performance in few-shot or zero-shot settings [15]. Figure 1b
illustrates the pipeline depicting how generative methods operate
on the taxonomy induction task.

In the context of taxonomy induction with large language mod-
els, TaxonomyGPT [5] first attempts to prompt LLMs to predict
the hierarchical relation among the given concepts. However, Tax-
onomyGPT shows two major limitations in taxonomy induction.
First, it ignores the inherent structure of taxonomies during the
generation of new parent-child relations. The reason is that Tax-
onomyGPT produces parent-child relations among given entities
independently, leading to the loss of crucial taxonomic structure
information, such as sibling-sibling and ancestor-descendant rela-
tions. Consequently, this neglect results in structural inaccuracies
in the output taxonomy, including the emergence of multiple root
entities and circular relations. Second, as with all the methods based
on prompting LLMs, TaxonomyGPT also suffers from the issue of
hallucination. For example, even though we have highlighted the
requirement in the instruction, LLMs still add entities that are not
related to the target taxonomy into the output taxonomy.
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To address the above issues, we first introduce HF, Hierarchical
Format Taxonomy Induction Instruction to represent taxonomic
structures via hierarchical numbering format. For example, as shown
in Figure 1b, science is the sole root entity, so it is indexed as ‘1.
science’. Physics and chemistry, being child entities of science, are
thus indexed as ‘1.1 physics’ and ‘1.2 chemistry’. This format en-
sures that each entity within the taxonomy possesses a global view
of its hierarchical structure, like physics is the sibling entity of
chemistry since they share the same hierarchical format (‘1.x"). It
is important to note that all the methods proposed in this work
adhere to HF for representing the taxonomic structure.

Second, to reduce the hallucination generated by the inductive
process, we propose the CHAIN-OF-LAYER (CoL) unlike prompt-
ing LLMs to generate target taxonomy in one iteration, CoL de-
composes the taxonomy induction task in a layer-to-layer manner.
Specifically, for each iteration, CoL selects a subset of entities from
the given entity set and expands the current taxonomy with these
selected entities. The key insight of this decomposition is to instruct
the LLMs to explicitly anchor each of their reasoning iterations
in the taxonomy induction task. Benefits on the iterative setting
of CoL, we incorporate an Ensemble-based Ranking Filter at each
iteration as a post-processing module to reduce the error prop-
agation from the current iteration to the next iteration. We also
develop CoL-ZEro to extend CoL to zero-shot settings where anno-
tated taxonomies are unavailable. CoL-ZERO uses LLMs to generate
taxonomies as demonstrations instead of relying on human anno-
tations.
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---------------------- Instruction - -----------onuomon
You are an expert in constructing a taxonomy from a list of concepts (a) ‘
Build a taxonomy whose root concept is vy with the given list of entities.

The format of the generated taxonomy is: 1. Parent Concept 1.1 Child Concept.
Do not change any entity names when building the taxonomy. (b)

Do not add any comments. There should be one and only one root node of the
taxonomy. All entities in the entity list must appear in the taxonomy and don't
add any entities that are not in the entity list.

<Previous Iterations>

User: Then, let's find all the k-level entities from the remaining entity list.
Assistent: The current taxonomy is: 7 *

User: Check: Is the remaining entity list empty?

Assistent: Answer: Yes./No.

<Next Iteration or output taxonomy T >

Figure 3: Prompt Overview of CHAIN-OF-LAYER Framework

The efficacy of HF and CoL has been validated through extensive
experiments on WordNet sub-taxonomies and three large-scale, real-
world taxonomies. The results demonstrate that both HF and CoL
outperform all baseline methods across multiple evaluation metrics.
We also explore the performance of CoL-Zero on the benchmarks
mentioned above. Some interesting observations of CoL-ZERO are
presented in this work.

In summary, this study makes the following contributions:

e We introduce HF, the Hierarchical Format Taxonomy Induc-
tion Instruction, to utilize the hierarchical structure of the
entities to increase the quality of the inducted taxonomy.

o We introduce CHAIN-OF-LAYER (CoL), an iterative taxonomy
induction framework that incorporates the Ensemble-based
Ranking Filter for reducing the hallucinations in the output
taxonomies generated by LLMs.

Extensive experiments demonstrate that HF and CoL sig-
nificantly improve the performance of taxonomy induction
tasks on four datasets from various domains.

Scope and Limitation. This study represents an initial effort to
utilize LLMs for taxonomy induction. Our main focus is to identify
an effective in-context learning framework to harness the capabili-
ties of LLMs. We are aware that the performance of our proposed
approach on large-scale taxonomies is constrained by the limita-
tions in instruction-following capabilities and the context window
size of LLMs. However, how to facilitate the ability of LLMs to
handle extremely long prompts is beyond the scope of this paper.
We hope this work will inspire future research in this area.

2 Problem Definition

We define a taxonomy, denoted as 7~ = (V, &), as a directed acyclic
graph composed of two components: a vertex set V and an edge
set &. In the task of taxonomy induction, the model is provided
with a set of conceptual entities, represented by V, where each
entity can be either a single word or a short phrase. The objective
is to construct the taxonomy 7 based on these given entities.
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3 Methodology

In this section, we provide a comprehensive overview of our pro-
posed CHAIN-OF-LAYER (CoL) framework designed for addressing
the taxonomy induction task. Specifically, CoL dissects the taxon-
omy induction task through a layer-to-layer approach. As shown in
Figure 3, Our CoL framework consists of four parts: instruction (HF,
Hierarchical Format Taxonomy Induction Instruction), few-shot
demonstration, input, and CoL iteration. In the instruction part
(Sec. 3.1), we configure the system message of the LLM, specify the
objectives of the task and the expected output format, and establish
a series of rules that help the model understand and accurately com-
plete the task. In Sec. 3.2, we describe and formalize the process of
inducting our demonstrations. In Sec. 3.3, we introduce the iterative
process of CoL and the Ensemble-based Ranking Filters tailored to
mitigate hallucinations that may arise during the process. Finally,
in Sec. 3.4, we extend our CoL to the zero-shot setting. The details
of each module in CoL are presented in Figure 2.

3.1 Hierarchical Format Taxonomy Induction
Instruction (HF)

To enable LLMs to more effectively and accurately complete the
taxonomy induction task, we propose HF, the Hierarchical Format
Taxonomy Induction Instruction. As shown in Figure 3, the instruc-
tion specifies the objectives of the taxonomy induction task, which
can be decomposed into three components. In component (a), LLMs
are instructed to utilize the domain expertise to generate the desired
output. Component (b) provides instructions for the output format,
which is expected to adhere to a hierarchical numbering format.
This format ensures that each entity within the generated taxon-
omy possesses a comprehensive understanding of its hierarchical
structure. Finally, component (c) highlights a set of fundamental
rules R about the taxonomy induction task. These rules include: 1.
Do not use entities not covered in the given entity set and ensure
that all entities listed in the given entity list are present in the tax-
onomy (r1); 2. Maintain a single root entity within the taxonomy
(r2); 3. Refrain from adding comments (r3).

3.2 Few-shot Demonstration Construction

To enable the model to better follow our instructions to complete the
task, we propose a method for constructing demonstrations for CoL
inference. For each demonstration d;, we decompose each taxonomy
7; in hierarchical order and simulate the process of inducting the
entire taxonomy from top to bottom. At the end of each level of
induction, we prompt LLM whether the current taxonomy has
included all entities from the given entity set. If a negative response
is received, we will continue to expand the current taxonomy layer
downward until it encompasses all entities from the given entity
set. The demonstration d; employed for expanding the k-th layer
of the demo taxonomy 7;’:_1 are presented as follows:

<messages of previous iteration>

Assistant: The current taxonomy is: 7:;;_1

User: Check: Is the remaining entity list empty?
Assistant: Answer: No.

User: Then, let’s find all the k-th level entities from the
remaining entity list.
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Figure 4: The details of the Ensemble-based Ranking Filter.

(Vk

Assistant: The current taxonomy is: Tk —ghk-1y
d; d; sel;

<beginning of next iteration>

We use the first five sub-taxonomies from WordNet’s training set

as demonstrations D) = [dgt), s ,dét)] in this case for fair
comparison.

3.3 Inference via CHAIN-OF-LAYER

3.3.1 Ensemble-based Ranking Filter. 1t is well-known that large
language models are greatly affected by hallucinations during the
process of generating target texts, resulting in content that is sig-
nificantly different from the target [14]. In the taxonomy induction
task, we mainly observe two categories of LLM hallucinations: (1)
The large language models do not strictly use the entities in the
given entity set but instead include non-target entities in the out-
put taxonomy; (2) The large language models introduce incorrect
parent-child relations into the output taxonomy.

To alleviate these issues, we propose a filter module in the CoL
framework. Specifically, in the process of inducting each layer of
the taxonomy, the filter removes incorrect parent-child relations in
each iteration of the model’s output, preventing the error caused
by hallucination propagating to the next iteration.

Our filter design is based on an ensemble mechanism. We propose
a set of templates M and used a pre-trained mask language model
to rank the generated parent-child relations in each iteration for
all templates m € M. We present the M as follows:

<query> is a/an <anchor>

<query> is a kind of <anchor>
<query> is a type of <anchor>
<query> is an example of <anchor>
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<anchor> such as <query>
A/An <anchor> such as <query>

For each entity q in the entity list, we compute the probability
of tokens at the <anchor> position by placing q in the <query>
position (as a child entity) of template m and positioning one of
the remaining entities @ at the <anchor> (as a parent entity). Then
we sort the token probabilities to determine the similarity ranking.
Subsequently, inference, represented by Sim(q, a|m), is computed
utilizing the reciprocal of this similarity ranking. Finally, we en-
semble the scoring results of each template to obtain the final filter
score. The formula of the similarity score is:

score(qla, M, V) = Z Sim(q, a|m)
eM

1

. 1)

For each query entity, we retain only the top ten parent can-
didates. If the parent-child relations output by the LLM are not
within this range, these relations will be filtered out. In this pa-
per, we use a pre-trained masked language model specialized for
the scientific domain and tasks called SciBERT [3] to ensure that
the pre-trained models contain sufficient domain knowledge to
complete the ranking process.

3.3.2  lterative Inference. After providing the instructions and con-
structing the few-shot demonstrations, we introduce the interactive
inference process of our CoL framework with the Ensemble-based
Ranking Filter. We provide the input entity candidates set V and
the initial taxonomy 77 only including root entity v to the LLM
and expect the LLM to generate the output taxonomy 7 according
to the rules R and the defined format of the demonstrations D in
section 3.2. The whole inference process in CoL is donated as:

T = CoL(V,T°, D, R)

@)
The inference starts with k = 0 and define 7° = vy, (VS(L " [v0].
And in the k-th iteration, we first prompt the LLM to generate the
k-th layer of the taxonomy, and update taxonomy 751 to 7%, and
remaining entity list VK~ to V*. The k-th inference process in

CoL is donated as:

7k, VE, = CoL ~K(VF!, 7% D, R) (3)
VE =yt @k €)

To alleviate the impact of the model’s hallucinations on the qual-
ity of the output taxonomy, we employ the Ensemble-based Ranking
Filter to filter out the hallucinations in the generated parent-child
relations which are in (Tk \ Tk_l) at k-th iteration. Then we up-
date the output taxonomy 7~ k and the remaining entity list V k
at k-th iteration. The processing of the Ensemble-based Ranking
Filter is donated as:

T*, Yk — EnsembleFilter(7%, VK, VK ) ©

At the end of each iteration, we prompt the model to check if the
remaining entity list V ks empty or not. If we receive a positive
response, we then output the current taxonomy 7k as the final
result 7. Otherwise, we proceed to the next iteration.
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#Concepts #Edges Depth
WordNet 20.5/20.5 19.5/19.5 3.0/3.0
Wiki 102.6 / 252.0 101.8/255.0 2.2/3.0
DBLP 90.8 /176.0 89.8/175.0 2.8/4.0
SemEval-Sci  114.0 /429.0 113.0/451.0 7.2/8.0

Table 1: Statistics of four taxonomy datasets. Each cell is
presented as */*, indicating the average for sampled sub-
taxonomies and the entire taxonomy, respectively.

3.4 Demonstrations Generation via LLMs

While CoL is designed to induct taxonomy from given entity sets via
the few-shot learning setting. In domains that lack well-inducted
taxonomies, we propose a zero-shot CoL alternative CoL-ZERo.
The idea of CoL-ZEro is utilizing LLMs to generate taxonomies
instead of utilizing taxonomies annotated by human experts acts
as demonstrations.

The details of CoL-ZERro are as follows. We start with the root
entity vg of the target taxonomy 7. We follow the instruction
mentioned in section 3.1 to prompt LLM directly to generate the
dz(g)

taxonomies ‘7;@, used to construct demonstration following
i

the process in section 3.2. Thus we have DY = [dgg), e ,dég)].
Different from CoL, CoL-Zero remove the restriction of only using
the entities that are covered in the given entity set (r1) to free form
R’ = [rz,r3].

(6)
@)

74t = CoL — demo — generation(7°, R")

T = CoL(V,7°, D9 R)

4

Our proposed HF and CoL are evaluated on four benchmarks. The
experiments aim to address three research questions (RQs):

e RQ1: How does the performance of the proposed framework
compare to state-of-the-art baselines in taxonomy induction?

e RQ2: How does the proposed framework perform on scala-
bility and domain generalization?

e RQ3: Which components within the proposed framework
most significantly impact the effectiveness of taxonomy in-
duction tasks? How can the hyperparameters for these com-
ponents be determined?

Experiments

4.1 Experimental Setting

4.1.1 Datasets. We conducted our experiments using WordNet
sub-taxonomies created by [2]. This dataset comprises 761 non-
overlapping taxonomies, each with 11 to 50 entities and the depth
of each sub-taxonomy is 4. It means there are 4 entities along the
longest path from the root entity to any leaf entity. The WordNet is
divided into training (533), development (114), and test (114) sets.

Furthermore, we evaluate our framework using three large-scale
real-world taxonomies: (1) DBLP is constructed from 156,000 com-
puter science paper abstracts; (2) Wiki is derived from a subset of
English Wikipedia pages; (3) SemEval2016-Sci is derived from the
shared task of taxonomy induction in SemFEval2016. For DBLP and
Wiki, we uses annotation results from [27].
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Model WordNet
P, R, F1, P, R, F1.
Supervised Fine-tuning
GRAPH2TAXO [26] 79.20 47.80 59.60 75.60 37.00 49.70
CTP [6] 69.30  66.20 66.70 5330 49.80 51.50
CTP-LLamA-2-7B [6] 73.48 70.02 71.71 5542 5198 53.64
Zero-shot Setting
RESTRICTMLM [13] 2323  25.69 24.09 2417 25.65 24.89
LMSCORER [13] 37.50 47.64 4159 36.27 3848 37.34
Ours
HF (GPT-4) 81.13 7835 7837 53.27 54.63 53.87
HF (GPT-3.5) 8592 61.75 69.62 4591 4357 44.15
CoL-zERro (GPT-4) 8971 7139 7831 58.93 55.18 56.41
CoL-zEro (GPT-3.5) 86.92 60.06 69.61 4878 42.04 44.50
5-shot Setting
TaxoNoMYGPT (GPT-4) [5] 53.09 31.84 39.07 39.59 36.84 38.01
TaxoNoMYGPT (GPT-3.5) [5] 62.97 41.77 48.95 49.20 43.85 46.24
Ours

HF (GPT-4) 8533 79.30 81.58 5896 59.22 59.08
HF (GPT-3.5) 80.48 72.59 7537 49.95 49.26 49.46
CoL (GPT-4) 90.60 73.07 79.62 59.57 57.10 57.73
CoL (GPT-3.5) 85.69 60.16 6939 4790 41.92 44.26

Table 2: Performance comparison across WordNet sub-
taxonomies in three different settings: Bold indicates the
highest performance within each setting, while underlined
denotes the second best performance within each setting,.

Due to the sequence length limitation of LLMs, we conducted five
separate samplings for these three large-scale taxonomies, ensuring
that the size of each sampled sub-taxonomy ranged from 80 to
120 entities. The experimental results are averaged over these five
samplings. The dataset statistics are presented in Table 1.

4.1.2 Baseline Methods. We compare the proposed framework
with the following supervised fine-tuning baseline methods:

e Graph2Taxo [26]: leverages cross-domain graph structures
and adopts constraint-based Directed Acyclic Graph (DAG)
learning for taxonomy induction.

o CTP [6]: fine-tunes RoBERTa model to predict parent-child
pair likelihoods and integrates these into a graph using a
maximum spanning tree algorithm for precise taxonomy
induction. Additionally, we present results using a Llama-2-
7B model as the backbone for CTP.

We compare the following unsupervised and in-context learning
baseline methods:

e RestrictMLM [13]: utilizes a cloze statement, or ’fill-in-
the-blank’, method to extract ’is-a’ relational knowledge
from BERT. However, this approach is limited to single-gram
entities due to the constraints of the schema.

LMScore [13]: treats taxonomy induction as a sentence scor-
ing task using GPT-2. It assesses the natural fluency of sen-
tences that elicit parent-child relations.

e TaxonomyGPT [5]: approaches taxonomy induction as a

conditional text generation challenge. It represents the out-
put taxonomy as a collection of sentences, each describing a
parent-child relation within the output taxonomy.
For our proposed framework, we conduct experiments with
GPT-3.5-TURBO-16K and GPT-4-1106-PREVIEW. For HF, we directly
prompt the LLMs using the HF instruct describe in Section 3.1.



CIKM 24, October 21-25, 2024, Boise, ID, USA

Qingkai Zeng et al.

Wiki DBLP SemEval-Sci
Model
P, R, F1, P, R, F1. P, R, F1, P. R. F1, P, R, F1, P, R, F1.
Supervised Fine-tuning
GrarH2TAXO [26] 43.02 36.50 39.49 39.28 34.12 36.52 47.85 30.23 37.05 46.63 2849 3537 8245 36.15 5027 7937 3452 46.87
CTP [6] 50.94 47.15 4897 46.56 4253 4445 4562 4139 4340 3821 3373 3583 5241 33.88 41.16 31.18 2942 30.27
CTP-LraMa-2-7B [6] 67.74 64.16 65.78 63.64 60.07 61.80 48.73 39.88 43.86 4439 35.81 39.64 61.98 54.09 57.77 48.33 4192 44.90
Zero-shot Setting
ResTRICTMLM [13] 49.88 5408 51.85 30.01 30.21 30.11 - - - - - - 63.33  47.85 5444 4579 46.19 45.99
LMSCORER [13] 18.77 2594 21.74 1978 1995 19.86 17.14 21.54 19.04 2584 26.12 2598 48.80 33.24 39.51 4220 4258 42.39
Ours
HF (GPT-4) 92.96 94.48 93.68 9155 9131 9141 5270 64.69 57.65 30.76 29.58 2991 7856 54.68 64.02 4512 46.64 45.85
HF (GPT-3.5) 75.85 7155 7336 71.67 73.63 72.03 50.20 48.28 48.76 27.66 26.51 2698 70.25 4091 51.17 28.69 28.11 28.29
CoL-zero (GPT-4)  100.00 84.58 91.12 99.70 8477 9115 80.88 5425 57.21 40.15 35.88 37.81 94.99 4583 61.66 62.33 4555 52.44
CoL-zero (GPT-3.5) 99.72 57.92 7265 99.17 5823 7276 76.78 3839 4936 53.72 30.61 38.02 93.12 2243 3559 56.52 22.13 31.54
5-shot Setting
TaxoNomYGPT [5] 69.26 6348 65.19 89.55 86.71 87.98 2898 1440 17.15 3427 22.17 2597 53.09 31.84 39.07 39.59 36.84 38.01
Ours

HF-ZERo (GPT-4) 96.33 9518 9575 93.08 9172 9239 59.76 7437 6583 3842 4020 39.28 7528 59.32 6263 43.64 49.29 4524
HF-Zero (GPT-3.5) 88.88 80.36 84.38 83.67 7492 7898 6242 53.76 57.53 32.68 28.59 30.38 57.00 36.89 44.38 29.51 29.88 29.35
CoL (GPT-4) 99.17 9599 97.54 97.92 94.99 96.43 79.95 63.06 68.82 55.07 44.27 47.96 9123 48.16 62.69 59.60 46.03 51.59
CoL (GPT-3.5) 99.00 7325 8373 97.54 7199 8241 79.74 4221 5476 55.35 28.70 37.66 95.75 26.66 4135 59.73 26.05 3599

Table 3: Performance on taxonomy induction on three large scale taxonomies: Bold for the highest among all. Underlined
for the second-best performance. Due to the scalability challenges discussed in Section 4.4, each method was applied to five
sub-taxonomies derived from the original, with results averaged. The RESTRICTMLM results for DBLP are unavailable since
it only handles single-gram entities using a ’fill-in-the-blanks’ schema. Due to GPT-4 not following the instructions of the
TaxoNomYGPT’s prompt, only the results from TaxoNomYGPT (GPT-3.5) were retained.

4.1.3  Evaluation Metrics. This section outlines the metrics for eval-
uating our taxonomy prediction models: Ancestor-F1 and Edge-F1.

Ancestor-F1: This metric assesses ancestor-descendant rela-
tions in predicted and ground truth taxonomies.

|is-ancest0rpred N is-ancestorgoldl

‘T ’is—ancestorpred’
|is-ancestorpred N is-ancestorgoldl
R =
¢ \is—ancestorgold\
2P, * R
Flg = 2a”a
Pa+R,

where P4, R, and F1, donate the ancestor precision, recall, and
F1-score, respectively.

Edge-F1: This metric, stricter than Ancestor-F1, compares pre-
dicted edges directly with gold standard edges. Edge-based metrics
are denoted as Pe, R, and F1,, respectively.

4.2 Results on the WordNet (RQ1)

In our experiments, we compare the performance of our HF and CoL
to three major settings baseline methods (supervised fine-tuning,
zero-shot setting, and 5-shot setting) on medium-sized WordNet.
As the experimental results are shown in Table 2, we have four
major observations as follows:

Firstly, HF (GPT-4) and CoL (GPT-4) variants consistently achieved
the highest F1 scores, validating the effectiveness of GPT-4 models
in taxonomy induction. They significantly outperformed the LM-
ScoRrer baseline, highlighting the superior text understanding and
generation capabilities of LLMs.
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Second, despite using powerful LLMs like GPT-4, TaxonomyGPT
performed worse than methods such as CTP, which rely on fine-
tuning BERT/Llama-2-7B models, across all six metrics. This sug-
gests that LLMs are sensitive to output format requirements. Tax-
onomyGPT’s approach of representing parent-child relationships
as independent sentences loses structural coherence. In contrast,
HF and CoL use a hierarchical number format to encode positional
information, improving performance.

Third, Graph2Taxo achieved the highest precision across all set-
tings, leveraging lexical patterns as direct input features. However,
its lower recall indicates a trade-off, suggesting it may not fully
capture all taxonomic relations.

Last, comparing HF and CoL, we have the following observations:
(1) CoL-Zero (GPT-4) outperforms HF-Zero (GPT-4) with a 9.6%,
1.0%, and 4.5% increase in Pe, R, and F1.. This result demonstrates
that CoL is better suited for medium-sized taxonomy induction
tasks under the zero-shot setting. (2) Under the 5-shot setting, HF
(GPT-4) shows a 2.3% lead in F1, compared to CoL (GPT-4), indicat-
ing that direct prompting with HF achieves state-of-the-art results
when in-domain examples are provided.

4.3 Results on the Three Large-Scale
Taxonomies (RQ1 and RQ2)

In this section, we present the experiment results on three large-
scale taxonomies: Wiki, DBLP, and SemEval-Sci, as shown in Table 3.
This experiment tests domain generalization ability, with all super-
vised fine-tuning trained on WordNet and then tested directly on
these taxonomies. Under the 5-shot setting, we use the first five
sub-taxonomies of the WordNet training set for a fair comparison.
Our observations are as follows:
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Figure 5: Performance analysis of the CoL across varying
scales and domains. It shows Edge, Ancestor, and Node F1-
scores for Wiki, DBLP, and SemEval-Sci taxonomies, ranging
from 20 to 160 entities. An inflection point at the 80-entity
threshold across all metrics and domains, emphasizing the
scalability limitations of CoL.

First, in the supervised fine-tuning setting, models such as CTP
and GrarPH2TAXO provide a foundation for understanding taxon-
omy induction’s intricacies. However, the proposed CoL (GPT-4)
shows the best performance in F1, across all three taxonomies.
Compared to the best-performing SFT model, CoL (GPT-4) has
increased F1, by 56.03%, 20.99%, and 10.07% on Wiki, DBLP and
SemEval-Sci, respectively. Compared to HF, CoL (GPT-4) has in-
creased Fl, by 4.37%, 22.09% ,and 14.04% on Wiki, DBLP and
SemEval-Sci, respectively.

Second, CoL-ZERro demonstrates stronger domain adaptation ca-
pabilities than HF-ZEro under the zero-shot setting. In the context
of zero-shot learning, CoL (GPT-4) shows a 26.41% improvement
on F1, than HF (GPT-4) in DBLP, and for SemEval-Sci, CoL (GPT-
4) achieves 14.42% improvement than GPT-4. Although HF-ZEro
shows a better F1, than CoL-ZERro, the increase in HF-ZERO’s
F1, over CoL-ZERo is only 0.285%, indicating that this marginal
improvement is insufficient to prove that HF-Zero has superior
domain adaptation capability compared to CoL-ZERo.

These observations can be attributed to two reasons: (1) CoL
decomposes taxonomy induction into different sub-tasks, such as
focusing on finding parent-child relationships within a given layer,
which enables the model to learn how to do taxonomy induction
domain transfer across different domains. (2) The Ensemble-based
Ranking Filter effectively improves the model’s precision without
sacrificing recall. Compared to using the proposed filter to post-
process the output results once, CoL allows the generated results
to be corrected by the proposed filter at every iteration of building
the taxonomy. This mechanism enables the model to perform self-
correction on the output taxonomy based on the existing context.

4.4 Investigating the Effects of Scalability on
the CHAIN-OF-LAYER (RQ2)

In this section, we empirically investigate the scalability of our pro-
posed CHAIN-OF-LAYER framework across varying scales (number
of entities in the given entity list), with particular emphasis on
identifying a critical threshold below which proposed CoL demon-
strates optimal performance. We conduct experiments on Wiki,
DBLP, and SemEval-Sci taxonomies. For each taxonomy, we ran-
domly select sub-taxonomies, using the root entity as the starting
point. We chose sub-taxonomies of various sizes, specifically with
20, 40, ..., 140, and 160 entities. To ensure the reliability of our re-
sults, we repeated the sampling process five times for each size,
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Figure 6: Performance of ranking ranges in the Ensemble-
based Ranking Filter for maintaining parent-child relation-
ships. The Top-10 range shows the highest F1, scores across
all datasets and the highest F1. scores in Wiki and DBLP. In
SemEval-Sci, the Top-10 range achieves nearly the best F1,
score, close to the Top-15 range.

Fle

thereby generating five distinct sub-taxonomies for every speci-
fied number of entities. We not only report the trend of edge-level
Fl1-score (F1, and F1,) as it changes with variations in the size of
the sub-taxonomy but also explore the trend of node-level F1-score
(F1,) on each dataset in Figure 5. Our observations are as follows.

First, as the scale of the taxonomy to be induced expands, both
the edge-level F1-score and node-level F1-score of the proposed
CoL framework exhibit a decline across all three benchmarks that
in different domains. This correlation demonstrates that in the ap-
proaches that rely on prompting large language models, the increase
in the number of entities significantly increases the complexity of
the taxonomy induction task, leading to a relative performance
decline even though the target taxonomy is in the same domain.

Secondly, in comparison to DBLP and SemEval-Sci, CoL exhibits
robustness on the Wiki taxonomy. Specifically, even when expand-
ing the entity count in the taxonomy to 160, CoL on Wiki shows a
decrease in F1, and F1, of 30.01% and 22%, respectively, compared
to when the entity count is 20. In contrast, on DBLP, F1, and F1, de-
crease by 60.50% and 51.41%, respectively, and SemEval-Sci, F1, and
F1, decrease by 69.49% and 72.02%, respectively. This differential
performance decline indicates that LLMs have a stronger knowl-
edge understanding in general domains than in specific domains,
such as the scientific domain.

Last, we find that the node-level F1-score (F1,) also decreases
more drastically as the number of entities exceeds 80 on DBLP
and SemEval-Sci. Notably, the F1,, remains relatively high with
20-80 entities, it sharply declines beyond this point. These findings
indicate that when the taxonomy scale exceeds a certain threshold
(beyond 80 entities), LLMs struggle to strictly adhere to the rules
mentioned in the instructions: using only the entities provided in
the given entity set to carry out taxonomy induction. This is also
one of the significant reasons for the substantial decrease in the
performance of CoL as the taxonomy scale increases.

4.5 Investigating the Effects of
Hyperparameters & Ablation Study (RQ3)

4.5.1 The selection of the best ranking range. To identify the best
ranking range for maintaining the parent-child relationships pro-
duced by CoL, we evaluated the top-10, top-15, and top-20 rankings
across three large-scale taxonomies. Given that the top-1 and top-5
rankings scored below 50%, we consider them too stringent to accu-
rately preserve the correct parent-child relationships. The results
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Table 4: Ablation study of two major modules in the pro-
posed framework: CHAIN-OF-LAYER prompting (CoL) and
Ensemble-based Ranking Filter (Filter). All metrics are pre-
sented in percentages (%). Configurations indicate whether
CoL and the Ensemble-based Ranking Filter were employed.

are presented in Figure 6. The results are illustrated in Figure 6. Our
findings reveal that for both F1, and F1,, the top-10 ranking con-
sistently demonstrates the best or second-best performance across
all three datasets. Consequently, we selected the top-10 ranking as
the optimal range for preserving the parent-child relationship in
the Ensemble-based Ranking Filter.

4.5.2  Ablation Study. We conducted an ablation study on the four
benchmarks mentioned above to verify the effectiveness of two ma-
jor modules: CHAIN-OF-LAYER prompting (CoL) and the Ensemble-
based Ranking Filter (Filter) in the proposed framework. The exper-
imental results are shown in Table 4. Our findings are as follows:

First, removing CoL or Ensemble-based Ranking Filter reduces
performance on three three large-scale taxonomies (Wiki, DBLP,
and SemEval-Sci). It proves that the incorporation of CoL and
Ensemble-based Ranking Filter provide crucial self-correction, re-
ducing hallucinated content.

Second, the most notable drop in recall and F1-score performance
occurs when the CoL is removed. It indicates that utilizing the
Ensemble-based Ranking Filter as a post-processing iteration for
the generated taxonomy proves overly stringent in maintaining the
parent-child relations, even when those relations are correct. On
the DBLP dataset, the absence of CoL results in a decrease of 65.7%
in R, and 46.8% in F1., despite a 50.2% improvement in Pe.

Third, removing the Ensemble-based Ranking Filter results in a
decline in precision performance across all four benchmarks. This
indicates that the proposed filter effectively preserves the accuracy
of the parent-child relationship within the generated taxonomy.

Last, the introduction of CoL and the Ensemble-based Ranking
Filter does not significantly impact the performance on WordNet. It
is because WordNet’s smaller scale allows models like GPT-4 TurRBO
to handle the task effectively without these enhancements.

4.6 Case Study

This section presents a case study to evaluate the strengths and
weaknesses of our proposed methods alongside several baselines.
We use samples from WordNet and provide outputs for CoL, CoL-
w/0-FILTER, HF (GPT-4), and HF (GPT-4)-FILTER in a 5-shot setting.
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4.6.1 Col vs. HF (GPT-4) / HF-Filter (GPT-4). By comparing the
outputs of the CoL in Figure 7(b) and HF (GPT-4) in Figure 7(c)) /
HF (GPT-4)-FILTER in Figure 7(d), we demonstrate the effectiveness
and importance of our CoL framework and the Ensemble-based
Ranking Filter. Compared to the ground truth, the most noticeable
issue with HF (GPT-4)’s output is that it hallucinates an entity knife
that wasn’t in the given entity list and uses it to group all other
entities that should belong to table knife. This resulted in a lower
edge F1 score for the generated taxonomy.

When comparing the outputs of HF (GPT-4) and HF (GPT-4)-
FILTER, we observe that without a layer-by-layer decomposition
approach like CoL, directly employing a filter degrades the quality
of the induced taxonomy. Filtering HF (GPT-4)’s output results
in the complete removal of the sub-taxonomy under knife. This
significantly lowers the node F1 score and edge F1 score of the
generated taxonomy because filtered entities cannot be re-selected.
These findings highlight the critical importance and synergistic
effect of CoL and the Ensemble-based Ranking Filter.

4.6.2 Col v.s. CoL-w/o-Filter. To illustrate the role of the Ensemble-
based Ranking Filter, we compare the outputs of CoL in Figure 8(b)
and CoL-w/o-FILTER in Figure 8(c) against the ground truth in
Figure 8(a). As shown, the taxonomy induced by CoL closely aligns
with the ground truth, whereas CoL-w/0-FILTER misclassifies “roll”,
“bank”, and “loop” as siblings of “flight maneuvers”. This demon-
strates the effectiveness of the Ensemble-based Ranking Filter,
which removes edges with lower ranks, such as “flight maneuvers
- roll” and re-adds “roll” for selection in the next layer. This self-
correcting process helps LLMs induce more accurate taxonomies.

5 Related Works

Taxonomy Induction. The process of taxonomy induction typi-
cally includes identifying hypernyms (extracting potential parent-
child relationships from text) and and organizing them hierarchi-
cally. In the initial stage, embedding-based approaches [20] and
pattern-based methods [22, 29, 33] were widely used. The second
step was often viewed as graph optimization and solved by max-
imum spanning tree [2]. In this work, we focus on organizing a
given entity set to a taxonomy. Bansal et al. [2] approach this as
a structured learning problem and employ belief propagation to
integrate relational information between siblings. Mao et al. [21]
present an approach utilizing reinforcement learning to integrate
the phases of hypernym identification and hypernym organization.
Shang et al. [26] utilize a graph neural network approach, demon-
strating improvement in large-scale taxonomy induction using the
SemEval-2016 Task 13 dataset [4]. Chen et al. [6] and Jain et al. [13]
utilize the pre-trained language model to approach taxonomy in-
duction, treating it as sequence classification and sequence scoring
tasks, respectively. Langlais and Guo [18] proposed an automatic
taxonomy evaluation metric based on the pre-trained model. Tax-
onomyGPT [5] conducts taxonomy induction by leveraging the
in-context learning capabilities of LLMs. The proposed CoL in this
paper significantly reduces hallucination and improves structural
accuracy by iterative prompting large language models.

Extracting Knowledge from LLMs. Research in extracting and
investigating the stored knowledge in Large Language Models
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Figure 8: The taxonomies generated via CoL and CoL-w/o-Filter

(LLMs) has become increasingly sophisticated, combining quan-
titative assessments with innovative extraction techniques. Prior
works like LAMA [25], TempLAMA [8], and MMLU [11] have laid
the groundwork by quantitatively measuring the factual and time-
related knowledge within these models. Based on these, recent
efforts have ventured into knowledge extraction, as seen in works
that construct Knowledge Graphs (KGs) directly from LLM outputs.
Specifically, methodologies like the one introduced in Crawling
Robots [7] propose the extraction of named entities and relation-
ships through a novel robot role-play setting, indicating a shift
towards more interactive and dynamic extraction methodologies.
Parallel to this, the adoption of structured, prompt-based queries
has offered a pathway to not only retrieve but also systematically
organize the knowledge embedded within LLMs, making it acces-
sible and interpretable for human users [19, 37]. This emerging
body of work, including techniques that enhance training data
with explicit knowledge recitation tasks [30], aims at not just un-
derstanding but also effectively leveraging the vast reservoir of
information encapsulated in these advanced models, marking a
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significant leap forward in our quest to harness the full potential
of LLMs for knowledge-based applications.

6 Conclusion

In this work, we introduce CHAIN-0OF-LAYER (CoL), a novel frame-
work for taxonomy induction. By leveraging the hierarchical format
instruction (HF) and incorporating an Ensemble-based Ranking Fil-
ter, CoL breaks down the task into selecting relevant candidates
and gradually building the taxonomy from top to bottom and sig-
nificantly reduces hallucination and improves structural accuracy.
Extensive experimental results demonstrate that CoL outperforms
various baselines, achieving state-of-the-art performance. We en-
vision CoL as a powerful framework to address the challenges of
inducting accurate and coherent taxonomy from a set of entities.
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