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LQ Control of Traffic Flow Models via Variable Speed Limits
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Abstract—In this paper, an extension of a linear control
design for hyperbolic linear partial differential equations is
presented for a first-order traffic flow model. Starting from the
Lighthill-Whitham-Richards (LWR) model, variable speed limit
control (VSL) is applied through a modification of Greenshield’s
equilibrium flow model. Then, an optimal linear quadratic
(LQ) controller is designed on the linear LWR model. The LQ
state feedback function is found via the solution of a Riccati
differential equation. Unlike previous studies, the control input
is the rate of change of the input, not the input itself. The
proposed controller is then verified on both the linear and
nonlinear models. In both cases, the controller is able to
drive the system to a desired density profile. In the nonlinear
application, a higher control gain is needed to achieve similar
results as in the linear case.

I. INTRODUCTION

Congestion is a growing concern in major cities as it leads
to increased energy usage and pollution [1]. In 2022, the
average commuter in the Unites States spent around 73 extra
hours in traffic. This is up over 40% from 2016 [2], [3]. The
modeling of traffic flow and its control offer opportunities to
mitigate congestion, improve travel time, and reduce overall
energy usage associated with the transportation sector.

One approach to modeling traffic flow in cities and other
large scale systems like highways, is through a macroscopic
model that looks at the density and flow of traffic [4]. A
common macroscopic traffic flow model is the Lighthill-
Whitham-Richards (LWR) model, which consists of a hy-
perbolic conservation partial differential equation (PDE) in
density [5], [6]. As a first-order model, the LWR model relies
on an equilibrium flow equation to determine the velocity
of vehicles [4]. The equilibrium flow-density relationship
can be modeled various ways including using a triangular
relationship, Greenshield’s model, or an exponential model
[7]1-[9]. The LWR model is commonly used for large scale
traffic congestion control as it is both simple and accurate
(71, [10]-{12].

Macroscopic traffic congestion mitigation strategies rely
on either boundary control, such as ramp metering, or in-
domain control, such as using variable speed limits (VSL).
For example, ramp metering was used in [13], [14] where
backstepping control was used to drive a continuous traffic
flow model to a density setpoint. For the same purpose, a
model free reinforcement learning approach was also used
in [15]. Similarly, proportional-integral control was used for
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ramp metering [16] for a discrete traffic flow model. In addi-
tion to tracking a density setpoint, time and space dependent
density trajectories are tracked via boundary control in [7],
[17] with the goal of removing excess cars from the road
and matching desired inflows and outflows.

Alternatively to ramp metering, VSL control relies on
changing the speed limits within a stretch of highway. The
speed limit can be changed such that the flow entering a
traffic jam can be lessened or the flow leaving a traffic jam
can be increased so that the jam is mitigated faster. Both
ramp metering and VSL control were used in [18] to reduce
on-ramp queues and total travel time of vehicles within
highway links. Model predictive control was also used to
reduce total travel time through both ramp metering and VSL
control [19]. Both of these approaches use discrete traffic
models. VSL control on a continuous PDE was used in [20]
by developing feedback control laws that stabilize a desired
density profile.

A possible way to realize VSL control that has not been
explored is through a linear quadratic regulator (LQR).
In previous traffic applications, LQR has been used in
conjunction with non-cooperative Nash games to balance
the flow of vehicles [21]. This application, though, used
boundary feedback and was developed on a discrete model,
not a continuous traffic flow model. In other hyperbolic PDE
applications, LQR has been used as well. In [22], an infinite-
dimensional LQ controller was designed for boundary con-
trol of a system containing a continuous stirred tank and
a plug flow reactor. In [23], a state feedback operator that
controls the distributed jacket temperature of a reactor was
computed by solving a matrix Riccati differential equation.
Both applications have the same purpose of achieving a
desired chemical concentration.

Most in-domain VSL control of traffic flow has been
studied on discretized models [9], [18], [19], [24]. The
approach in [20] was the first to apply VSL continuously in
space and time. While LQR for infinite dimensional systems
has been proven effective in other areas, its application to
in-domain traffic control poses a challenge because the rate
of change of the control input is paramount. The speed
limit cannot change too quickly over space as that creates
unrealistic driving behavior such as large changes in the
acceleration of vehicles. This paper presents a novel LQR
formulation where instead of controlling the input, the rate of
change is controlled for a continuous hyperbolic PDE model.
This approach also differs from previous continuous VSL
approaches [20] as, instead of controlling the VSL rate, the
rate of change of the speed limit over the length of highway
is controlled.
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II. MODEL DESCRIPTION
A. Lighthill-Whitham-Richards Model

The LWR model [5], [6] is a conservation of mass equation

given by

dp  0Oq

—+—=0 1

at = 0z M
where p(z,t) is the traffic density and ¢(z,t) is a fundamen-
tal diagram which gives the equilibrium relationship between
traffic density and flow. The fundamental diagram is defined
as

q=pu (2)

where u = U(p) is the equilibrium relationship between
density and traffic velocity. A common equilibrium relation-
ship is Greenshield’s model which is a decreasing function
of density and is given as
L > 3)
pmax

where U,,q, is the maximum velocity and p,q. 1s the
maximum density. The relationship between traffic flow and
density using Greenshield’s model is shown in Fig. 1. In
Greenshield’s model, the critical density, p¢rit, Which is
where traffic goes from free flow to congested, is half of

U(P) = Uz <1 -
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Fig. 1. Fundamental diagram showing free flow region (green) and

congested region (red).

B. Linearized LWR Model

The linearized LWR model is obtained by defining the
perturbation variables as

p=po+Ap 4)

Po +AP)

p’I’TLCLI

uqurAuUmM(l )

Then, by substituting (4),(5) into (1) the linear LWR model
can be written as

Expanding all the terms gives

A A
0 p+UmaaZ<1_ ro )a p+

ot Pmaz ) 0%

A

poaUm(l— P ) -0 (7)
0z Pmaz
which simplifies to

9Ap po \ 9Ap
max ]- - 2 = 8
ot U < Pmazx 0z 0 ( )

III. CONTROL FORMULATION

A. Variable Speed Limit Control

Variable speed limit control involves changing the speed
limit in order to control the flow of traffic [9], [18], [20],
[24]. In this work, VSL is added to Greenshield’s model to
affect U4, and thus g. The equilibrium velocity (3) then
becomes

Uvs(p) = bUmaz (1 - P ) ©)

where b is the VSL rate. The maximum speed U, ., acts
as the speed limit and the VSL rate b works as the control
input to either decrease or increase the maximum speed. The
definition of the control input b introduces a new nonlinearity
into the model. Following the same procedure as before,
perturbed quantities for the rate of change of the speed limit
and velocity are introduced

b=by+ Ab (10)

(1)

u = (bo + Ab)Upnas (1 - "”Ap>

pmaw

The perturbation of density stays unchanged from (4). So,
(7) now becomes

0Ap 0A

po '\ 0Ap u
— +boUnaz | 1 — =0 (12
ot + 0 ( pmm> 0z +po 0z (12)
Inserting (11) into (12) gives
0Ap po '\ 0Ap
— + bgUpaz | 1 —
ot + ( Pmaz ) 0%
OAb 0A
pOUmaa: 1- ro . bOUmaa:ﬂip =0 (13)
Pmazx 0z Pmax 0z
which simplifies to
0Ap po '\ 9Ap
—— 4+ bgUpaz |1 —2 —_—
ot + ( Pmaz ) 0% +
A
PoUmaa (1 - £ )“ =0 (14)
Pmaz) Oz

The variable % is the change in the perturbation of the

OAp OAp AU VSL rate over the length of road. When there is no VSL,
5 T, trog =0 (6)  98b — () and by = 1, and (14) returns to (8).
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B. Optimal Control Design for Hyperbolic PDE model

The first step to derive the state feedback control policy
is to write the PDE in its equivalent state space formulation
on a Hilbert space H [23]. For a linear hyperbolic PDE of
the form

%:V%-l-Mx-l-Bou (15)
y = Cox (16)

this results in
z(t) = Ax(t) + Bu(t) a7
y(t) = Cu(t) (18)

where A is the linear operator defined as

A=V. d— + M-I (19)

on the domain
DA ={zeH: j—j € H and z(0) = 0} (20)

with V' € R™*" being a symmetric matrix and M, By, and
Cp being real continuous space-varying matrix functions.
In addition, = is assumed to be absolutely continuous. It
is proven in [23] that if V' < 0 then A generates an
exponentially stable C-semigroup.

The linear-quadratic optimal control problem on an infinite
time interval finds a control input wu,,; such that the func-
tional J(zp,u) is minimized. The cost functional is given
as

J(xo,u) = /OOO<Cx(t),QC'x(t)> + (u(t), Ru(t)) dt (21)

The solution of (21) can be found by finding the non-negative
self-adjoint operator P which solves

[A*P + PA+C*QC — PBR™'B*Plz =0 (22)

When (A, B) is exponentially stabilizable and (Q2C, A)
is exponentially detectable (22) has a unique, non-negative
solution P and (21) is minimized by the unique control input
Uppt given by

Uopt (t) = Kox(t) (23)
where the optimal feedback is
Koy=—-R'B*P (24)

The proof that (A, B) is exponentially stabilizable and
(QzC, A) is exponentially detectable given V < 0 is shown

in [23]. Furthermore,
P:=d(2)I (25)

where ®(z) is the solution of the matrix Riccati differential
equation given by

dd . . 1
Voo = Mo+ oM+ CyQoCo — ®ByRy ' By ® 26)
®(L) =0

where () is a positive matrix and Ry is a self-adjoint positive
matrix. Thus, (24) becomes

Ko = —Ry ' (2) By (2)®(2)1 27

C. LQ Control Deisgn for LWR Model with VSL
In order to find ®(z), we take (14) and transform it into

aAp = ~boUmaz (1 -2 Po ) aAp_

ot Pmax 0z
OAb
poUnmac (1 - fo ) (28)
Pmazx 0z
so that it is now in the form of (15). It follows that
V = —boUnas (1 9 0 )
pmaw
M=0
(29)
BO = _pOUmam (1 - PO )
Pmaz
Co=1

The condition of V' < 0 is met if pg < %pmam in (29). This
means that py must always fall in the free flow regime, which
is a valid assumption since the equilibrium profile should
never fall in the congested regime to avoid traffic jams. The
control input for the LWR model with VSL is the change of
the speed limit over the stretch of highway. Using (26) and
(29) the matrix Riccati equation becomes

do _ —1 %
V= =Qo— ®BoR; 'B;® 30)
(L) =0

As in [23], Ry = 1. The values for V and Bj will be
inserted into the equation at the end of the derivation for ®
for simplicity. Using separation of variables, (30) becomes

[} V z
7@:/ dz=2+C
/0 Qo — B®? 0

The left hand side of (31) can be solved by a combination
of integration by partial fractions and substitution. After
applying both methods, (31) becomes

lIl|B0‘I)+\/ | 1H|BO(I)—\/QOD:Z+C

3D

2B

of 32
Then,

By _ 2BovQo
5o r yo O

BV (2 )

By Vv

|Bo®++/Qo|=|Bo®— \ﬁ|exp< Or( ))

(33)

The solution to (33) can be either

By® + /Qo = (Bo® — \/Qo) exp( 0\ﬁ( +(J)>
(34)

Bo® + /Qo = —(By® — fexp( 0\ﬁ( +C)>

(35)
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Because of the condition that ®(L) = 0, only (35) can be
the solution for ®. The final solution for the state feedback
function ® using the condition ®(L) =0 is

Vs exp(E/ (s - 1)) - 1)

P = (36)
Bo<exp(230@( ~ L)+ 1)
Combining (23), (27), and (36) with z(t) = Ap for the linear

model leaves us with the final solution for the optimal control
input

(exp@B‘m (-)-1)

(exp<230@< -1)+1)

Uopt (2,1) = ——\/ Ap

(37
The parameter Qg is left as a tuning parameter and its
influence on the solution of ¢ is shown in Fig. 2.
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Fig. 2. Influence of Qo on the state feedback function, ®.

IV. SIMULATION RESULTS
A. Uncontrolled Scenario

The case study investigated in this paper simulates a
stretch of highway with an oscillating and increasing flow
entering it. This situation could occur because of both on-
ramp flow and traffic light operation. Because the base model
used for the LQ control is linear, the simulation is kept within
the free flow region so that no traffic jams, or shocks in the
system, occur. The initial density on the stretch of highway
is

p(0,2) = 10sin (WL ) + po (38)
and the upstream boundary condition is
mt
= L-107°
p(t,0) = 5exp(— 0~ t)sm<20) +po+4L (39)

The model parameters for the simulation are given in Table
I. Based off of the fundamental diagram shown in Fig. 1
and parameters in Table I, this means that the the density
across the highway must be kept below p.,;; = 80 cars/km.
The resulting density evolution and velocity of the highway
section is shown in Fig. 3.

TABLE I
MODEL PARAMETERS.

Parameter Value | Unit
Maximum density pmaz 160 [cars/km]
Maximum speed Uppaz 115 [kph]
Average density pg 50 [cars/km]
Road length L 2000 [m]
Simulation time 7T 120 [s]

The results of the baseline simulation using the linear
model are shown in Fig. 3(a),(b), and the results of the
baseline nonlinear simulation are shown in Fig. 3(c),(d). For
both models, the baseline scenario results stay within the free
flow regime as the maximum density reached is less than
perit- There is good agreement between the results of the
linear and nonlinear model. As the density at the beginning
of the length of road approaches p.;; at around 100 s, the

solutions between the two models start to differ.
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Baseline results for linear model (a), (b) and nonlinear model (c),

(d) given the initial and boundary conditions in (38), (39).

B. Linear LQR Results

The performance of the LQ controller is first investigated
using the linear LWR model. In order to evaluate the per-
formance, the total number of cars in the highway section is
calculated as

L
# of cars = / pdz (40)
0
As the average desired density is 50 cars/km, the desired
amount of cars left in the highway section is 100 cars. The
results of applying the developed LQ controller to the linear
model are shown in Fig. 4. Four different values of the
tuning parameter ()y are investigated. For Q¢ = le — 6, the
control is not enough to lower the density by a reasonable
amount. Towards the end of the simulation, at around 100
s, the density even starts to rise. For both Q9 = le — 5 and
Qo = be — 5 the control is enough to lower the density,
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but at a certain point it no longer drives the density to the
desired amount of cars left on the road. For Qg = le—5 this
stagnation happens at 80 s and for (o = 5e —5 this happens
at around 40 s. One thing to note, though, is that when
Qo = 5e — 5 the amount of cars does approach the desired
amount, but never reaches it. The controller is able drive the
linear system to the desired density when (9 = 5¢ — 4, and
it reaches it at around 20 s.
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Fig. 4. Total cars on highway section for varying values of Qo when
control is applied to linear model.

C. Nonlinear LOR Results
ab

For the nonlinear model, the control input is no longer b
instead it is the actual VSL rate, b. So, in order to apply the
control to the nonlinear model, first the linear model is used
to determine the optimal %, then the nonlinear control is

found by
L
0b
bopt = —d
Pt /0 9. ¢

The nonlinear model (1) then uses (9) for the equilibrium
velocity equation where b is defined as in (41). The results
for the same values of )y as used before, but this time on
the nonlinear model, are shown in Fig. 5. For Qo = le — 6,
the system is mostly unaffected. When Qg = le — 5 and
Qo = be — b the traffic is reduced, but it does not reach the
desired density. With Qg = 5e — 4, the controller is able to
get close to the desired density by 40 s, but does not achieve
1t.

(41)

D. Comparison

As shown in both Fig. 4 and Fig. 5, the performance
of the controller differs between the linear and nonlinear
implementation. In each case, for the same value of @), the
linear model is affected more than the nonlinear model. For
example, when Qo = 5e—4 the controller is able to drive the
system to the desired traffic density in the linear model, but
cannot do it for the nonlinear model. Similarly, the linear
model reaches the desired density at 20 s, whereas in the
nonlinear model it does not get close until 40 s.

To further investigate the performance of the designed
controller on the two models Fig. 6 and Fig. 7 show the
resulting density, velocity, and speed limit for the linear
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Fig. 5. Total cars on highway section for varying values of QQp when
control is applied to nonlinear model.

and nonlinear model, respectively. The results shown are
for Qo = be — 5. Looking at Fig. 6(a) and Fig. 7(a), it
can be seen that the nonlinear controller is not as effective.
The high density region resulting from the initial condition
at ¢ = 500 m to x = 1500 m is dissipated in the linear
model, and it never reaches the downstream boundary. On the
other hand, in the nonlinear model, the high density region
continues to move until it reaches the downstream boundary
at around 20 s. As well, the upstream boundary conditions
propagate further into the road in the nonlinear simulation,
but in the linear simulation the controller is able to mitigate
them quickly.

Another difference can be seen in the speed limits for
the linear and nonlinear model, Fig. 6(c) and Fig. 7(c),
respectively. In the nonlinear simulation, the controller needs
to keep a higher speed limit for longer at the end of the length
of road. The high speed limit lasts until just before 20 s in
the nonlinear model whereas in the linear model the high
speed limit region ends after around 5 s.

As explained earlier, the control input for the linear model
is the rate of change of the VSL rate over space %, but in
the nonlinear model it is the actual VSL rate, b. This could
explain the lag in response of the nonlinear model when
compared to the linear model.

V. CONCLUSIONS

In this paper, a LQ controller was designed for the LWR
model using variable speed limit control. First, the linearized
LWR model was defined and a variable speed limit was
applied to the model as a modification of Greenshield’s
model. Then, a state feedback function was computed via the
solution of a Riccati differential equation. In this application,
instead of the control input being just a distributed parameter,
the control input was the rate of change of the distributed
parameter. The designed controller was then verified on both
the linear and nonlinear LWR model, and the performance
of the two controllers was compared. Future work will
investigate how to tune )y as well as how to develop a
controller that can be used in either a mixed traffic or
congested traffic scenario to mitigate traffic jams in the
presence of shocks.
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