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Abstract— In this paper, an extension of a linear control 
design for hyperbolic linear partial differential equations is 
presented for a first-order traffic flow model. Starting from the 
Lighthill-Whitham-Richards (LWR) model, variable speed limit 
control (VSL) is applied through a modification of Greenshield’s 
equilibrium flow model. Then, an optimal linear quadratic 
(LQ) controller is designed on the linear LWR model. The LQ 
state feedback function is found via the solution of a Riccati 
differential equation. Unlike previous studies, the control input 
is the rate of change of the input, not the input itself. The 
proposed controller is then verified on both the linear and 
nonlinear models. In both cases, the controller is able to 
drive the system to a desired density profile. In the nonlinear 
application, a higher control gain is needed to achieve similar 
results as in the linear case. 

I. INTRODUCTION

Congestion is a growing concern in major cities as it leads 
to increased energy usage and pollution [1]. In 2022, the 
average commuter in the Unites States spent around 73 extra 
hours in traffic. This is up over 40% from 2016 [2], [3]. The 
modeling of traffic flow and its control offer opportunities to 
mitigate congestion, improve travel time, and reduce overall 
energy usage associated with the transportation sector. 

One approach to modeling traffic flow in cities and other 
large scale systems like highways, is through a macroscopic 
model that looks at the density and flow of traffic [4]. A 
common macroscopic traffic flow model is the Lighthill-
Whitham-Richards (LWR) model, which consists of a hy-
perbolic conservation partial differential equation (PDE) in 
density [5], [6]. As a first-order model, the LWR model relies 
on an equilibrium flow equation to determine the velocity 
of vehicles [4]. The equilibrium flow-density relationship 
can be modeled various ways including using a triangular 
relationship, Greenshield’s model, or an exponential model 
[7]–[9]. The LWR model is commonly used for large scale 
traffic congestion control as it is both simple and accurate 
[7], [10]–[12]. 

Macroscopic traffic congestion mitigation strategies rely 
on either boundary control, such as ramp metering, or in-
domain control, such as using variable speed limits (VSL). 
For example, ramp metering was used in [13], [14] where 
backstepping control was used to drive a continuous traffic 
flow model to a density setpoint. For the same purpose, a 
model free reinforcement learning approach was also used 
in [15]. Similarly, proportional-integral control was used for 
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ramp metering [16] for a discrete traffic flow model. In addi-
tion to tracking a density setpoint, time and space dependent 
density trajectories are tracked via boundary control in [7], 
[17] with the goal of removing excess cars from the road
and matching desired inflows and outflows.

Alternatively to ramp metering, VSL control relies on 
changing the speed limits within a stretch of highway. The 
speed limit can be changed such that the flow entering a 
traffic jam can be lessened or the flow leaving a traffic jam 
can be increased so that the jam is mitigated faster. Both 
ramp metering and VSL control were used in [18] to reduce 
on-ramp queues and total travel time of vehicles within 
highway links. Model predictive control was also used to 
reduce total travel time through both ramp metering and VSL 
control [19]. Both of these approaches use discrete traffic 
models. VSL control on a continuous PDE was used in [20] 
by developing feedback control laws that stabilize a desired 
density profile. 

A possible way to realize VSL control that has not been 
explored is through a linear quadratic regulator (LQR). 
In previous traffic applications, LQR has been used in 
conjunction with non-cooperative Nash games to balance 
the flow of vehicles [21]. This application, though, used 
boundary feedback and was developed on a discrete model, 
not a continuous traffic flow model. In other hyperbolic PDE 
applications, LQR has been used as well. In [22], an infinite-
dimensional LQ controller was designed for boundary con-
trol of a system containing a continuous stirred tank and 
a plug flow reactor. In [23], a state feedback operator that 
controls the distributed jacket temperature of a reactor was 
computed by solving a matrix Riccati differential equation. 
Both applications have the same purpose of achieving a 
desired chemical concentration. 

Most in-domain VSL control of traffic flow has been 
studied on discretized models [9], [18], [19], [24]. The 
approach in [20] was the first to apply VSL continuously in 
space and time. While LQR for infinite dimensional systems 
has been proven effective in other areas, its application to 
in-domain traffic control poses a challenge because the rate 
of change of the control input is paramount. The speed 
limit cannot change too quickly over space as that creates 
unrealistic driving behavior such as large changes in the 
acceleration of vehicles. This paper presents a novel LQR 
formulation where instead of controlling the input, the rate of 
change is controlled for a continuous hyperbolic PDE model. 
This approach also differs from previous continuous VSL 
approaches [20] as, instead of controlling the VSL rate, the 
rate of change of the speed limit over the length of highway 
is controlled. 
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II. MODEL DESCRIPTION 

A. Lighthill-Whitham-Richards Model 

The LWR model [5], [6] is a conservation of mass equation 
given by 

∂ρ 
∂t 

+ 
∂q 
∂z 

= 0 (1) 

where ρ(z, t) is the traffic density and q(z, t) is a fundamen-
tal diagram which gives the equilibrium relationship between 
traffic density and flow. The fundamental diagram is defined 
as 

q = ρu (2) 

where u = U(ρ) is the equilibrium relationship between 
density and traffic velocity. A common equilibrium relation-
ship is Greenshield’s model which is a decreasing function 
of density and is given as 

U(ρ) = Umax 

 
1− ρ 

ρmax 

 
(3) 

where Umax is the maximum velocity and ρmax is the 
maximum density. The relationship between traffic flow and 
density using Greenshield’s model is shown in Fig. 1. In 
Greenshield’s model, the critical density, ρcrit, which is 
where traffic goes from free flow to congested, is half of 
ρmax. 

Fig. 1. Fundamental diagram showing free flow region (green) and 
congested region (red). 

B. Linearized LWR Model 

The linearized LWR model is obtained by defining the 
perturbation variables as 

ρ = ρ0 + ∆ρ (4) 

u = u0 + ∆u = Umax 

 
1− ρ0 + ∆ρ 

ρmax 

 
(5) 

Then, by substituting (4),(5) into (1) the linear LWR model 
can be written as 

∂∆ρ 
∂t 

+ u0 
∂∆ρ 
∂z 

+ ρ0 
∂∆u 
∂z 

= 0 (6) 

Expanding all the terms gives 

∂∆ρ 
∂t 

+ Umax 

 
1− ρ0 

ρmax 

 
∂∆ρ 
∂z 

+ 

ρ0 
∂ 
∂z 

Umax 

 
1− ∆ρ 

ρmax 

 
= 0 (7) 

which simplifies to 

∂∆ρ 
∂t 

+ Umax 

 
1− 2 

ρ0 

ρmax 

 
∂∆ρ 
∂z 

= 0 (8) 

III. CONTROL FORMULATION 

A. Variable Speed Limit Control 

Variable speed limit control involves changing the speed 
limit in order to control the flow of traffic [9], [18], [20], 
[24]. In this work, VSL is added to Greenshield’s model to 
affect Umax and thus q. The equilibrium velocity (3) then 
becomes 

UV SL(ρ) = bUmax 

 
1− ρ 

ρmax 

 
(9) 

where b is the VSL rate. The maximum speed Umax acts 
as the speed limit and the VSL rate b works as the control 
input to either decrease or increase the maximum speed. The 
definition of the control input b introduces a new nonlinearity 
into the model. Following the same procedure as before, 
perturbed quantities for the rate of change of the speed limit 
and velocity are introduced 

b = b0 + ∆b (10) 

u = (b0 + ∆b)Umax 

 
1− ρ0 + ∆ρ 

ρmax 

 
(11) 

The perturbation of density stays unchanged from (4). So, 
(7) now becomes 

∂∆ρ 
∂t 

+ b0Umax 

 
1− ρ0 

ρmax 

 
∂∆ρ 
∂z 

+ ρ0 
∂∆u 
∂z 

= 0 (12) 

Inserting (11) into (12) gives 

∂∆ρ 
∂t 

+ b0Umax 

 
1− ρ0 

ρmax 

 
∂∆ρ 
∂z 

+ 

ρ0Umax 

 
1− ρ0 

ρmax 

 
∂∆b 
∂z 
− b0Umax 

ρ0 

ρmax 

∂∆ρ 
∂z 

= 0 (13) 

which simplifies to 

∂∆ρ 
∂t 

+ b0Umax 

 
1− 2 

ρ0 

ρmax 

 
∂∆ρ 
∂z 

+ 

ρ0Umax 

 
1− ρ0 

ρmax 

 
∂∆b 
∂z 

= 0 (14) 

The variable ∂∆b 
∂z is the change in the perturbation of the 

VSL rate over the length of road. When there is no VSL, 
∂∆b 
∂z = 0 and b0 = 1, and (14) returns to (8). 

4263 

Authorized licensed use limited to: The Ohio State University. Downloaded on August 12,2025 at 03:09:50 UTC from IEEE Xplore.  Restrictions apply. 



B. Optimal Control Design for Hyperbolic PDE model 
The first step to derive the state feedback control policy 

is to write the PDE in its equivalent state space formulation 
on a Hilbert space H [23]. For a linear hyperbolic PDE of 
the form 

∂x 
∂t 

= V 
∂x 
∂z 

+ Mx + B0u (15) 

y = C0x (16) 

this results in 

ẋ(t) = Ax(t) + Bu(t) (17) 
y(t) = Cx(t) (18) 

where A is the linear operator defined as 

A = V · d. 
dz 

+M · I (19) 

on the domain 

D(A) = {x ∈ H : dx 
dz 
∈ H and x(0) = 0} (20) 

with V ∈ Rn×n being a symmetric matrix and M , B0, and 
C0 being real continuous space-varying matrix functions. 
In addition, x is assumed to be absolutely continuous. It 
is proven in [23] that if V < 0 then A generates an 
exponentially stable C0-semigroup. 

The linear-quadratic optimal control problem on an infinite 
time interval finds a control input uopt such that the func-
tional J(x0, u) is minimized. The cost functional is given 
as 

J(x0, u) = 
 ∞ 

0 
⟨Cx(t), QCx(t)⟩ + ⟨u(t), Ru(t)⟩ dt (21) 

The solution of (21) can be found by finding the non-negative 
self-adjoint operator P which solves 

[A ∗ P + PA + C ∗ QC − PBR−1 B ∗ P ]x = 0 (22) 

When (A, B) is exponentially stabilizable and (Q 1 
2C, A) 

is exponentially detectable (22) has a unique, non-negative 
solution P and (21) is minimized by the unique control input 
uopt given by 

u opt(t) = K0x(t) (23) 

where the optimal feedback is 

K0 = −R−1 B∗ P (24) 

The proof that (A, B) is exponentially stabilizable and
(Q 1 

2C, A) is exponentially detectable given V < 0 is shown 
in [23]. Furthermore, 

P := Φ(z)I (25) 

where Φ(z) is the solution of the matrix Riccati differential 
equation given by 

V 
dΦ 
dz 

= M ∗ Φ + ΦM + C ∗ 0 Q0C0 − ΦB0R
−1 
0 B∗ 0 Φ 

Φ(L) = 0 
(26) 

where Q0 is a positive matrix and R0 is a self-adjoint positive 
matrix. Thus, (24) becomes 

K0 = −R−1 
0 (z)B ∗ 0 (z)Φ(z)I (27) 

C. LQ Control Deisgn for LWR Model with VSL 
In order to find Φ(z), we take (14) and transform it into 

∂∆ρ 
∂t 

= −b0Umax 

 
1− 2 

ρ0 

ρmax 

 
∂∆ρ 
∂z 
− 

ρ0Umax 

 
1− ρ0 

ρmax 

 
∂∆b 
∂z 

(28) 

so that it is now in the form of (15). It follows that 

V = −b0Umax 

 
1− 2 

ρ0 

ρmax 


M = 0 

B0 = −ρ0Umax 

 
1− ρ0 

ρmax 

 

C0 = I 

(29) 

The condition of V < 0 is met if ρ0 < 1 
2ρmax in (29). This 

means that ρ0 must always fall in the free flow regime, which 
is a valid assumption since the equilibrium profile should 
never fall in the congested regime to avoid traffic jams. The 
control input for the LWR model with VSL is the change of 
the speed limit over the stretch of highway. Using (26) and 
(29) the matrix Riccati equation becomes 

V 
dΦ 
dz 

= Q0 − ΦB0R
−1 
0 B∗ 0 Φ 

Φ(L) = 0 
(30) 

As in [23], R0 = 1. The values for V and B0 will be 
inserted into the equation at the end of the derivation for Φ 
for simplicity. Using separation of variables, (30) becomes  Φ 

0 

V 
Q0 − B2 

0 Φ
2 dΦ = 

 z 

0 
dz = z + C (31) 

The left hand side of (31) can be solved by a combination 
of integration by partial fractions and substitution. After 
applying both methods, (31) becomes 

V 
2B0 
√ 
Q0 

(ln |B0Φ + 
 

Q0| − ln |B0Φ − 
 

Q0|) = z + C 
(32) 

Then, 

ln 
B0Φ + 

√ 
Q0 

B0Φ − 
√ 
Q0 

 = 
2B0 
√ 
Q0 

V 
(z + C)  B0Φ + 

√ 
Q0 

B0Φ − 
√ 
Q0 

 = exp 
 
2B0 
√ 
Q0 

V 
(z + C) 

 

B0Φ+ 
 

Q0 
= 

 B0Φ− 
 
Q0 

 exp 
 
2B0 
√ 
Q0 

V 
(z+C) 

 

(33) 

The solution to (33) can be either 

B0Φ+ 
 

Q0 = (B0Φ − 
 

Q0) exp 
 
2B0 
√ 
Q0 

V 
(z + C) 

 

(34) 
or 

B0Φ + 
 

Q0 = −(B0Φ − 
 

Q0) exp 
 
2B0 
√ 
Q0 

V 
(z + C) 

 

(35) 
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Because of the condition that Φ(L) = 0, only (35) can be 
the solution for Φ. The final solution for the state feedback 
function Φ using the condition Φ(L) = 0 is 

Φ = 

√ 
Q0 

 
exp( 2B0 

√ 
Q0 

V (z − L)) − 1 
 

B0 

 
exp( 2B0 

√ 
Q0 

V (z − L)) + 1 
 (36) 

Combining (23), (27), and (36) with x(t) = ∆ρ for the linear 
model leaves us with the final solution for the optimal control 
input 

u opt(z, t)= 
∂b 
∂z 

=− 
 
Q0 

 
exp( 2B0 

√ 
Q0 

V (z − L)) − 1 
 

 
exp( 2B0 

√ 
Q0 

V (z − L)) + 1 
∆ρ 

(37) 
The parameter Q0 is left as a tuning parameter and its 

influence on the solution of Φ is shown in Fig. 2. 

Fig. 2. Influence of Q0 on the state feedback function, Φ. 

IV. SIMULATION RESULTS 
A. Uncontrolled Scenario 

The case study investigated in this paper simulates a 
stretch of highway with an oscillating and increasing flow 
entering it. This situation could occur because of both on-
ramp flow and traffic light operation. Because the base model 
used for the LQ control is linear, the simulation is kept within 
the free flow region so that no traffic jams, or shocks in the 
system, occur. The initial density on the stretch of highway 
is 

ρ(0, z) = 10 sin 
 
πz 
L 

 
+ ρ0 (38) 

and the upstream boundary condition is 

ρ(t, 0) = 5 exp(−L · 10−6 t) sin 
 
πt 
20 

 
+ ρ0 + 

t 
4L 

(39) 

The model parameters for the simulation are given in Table 
I. Based off of the fundamental diagram shown in Fig. 1 
and parameters in Table I, this means that the the density 
across the highway must be kept below ρcrit = 80 cars/km. 
The resulting density evolution and velocity of the highway 
section is shown in Fig. 3. 

TABLE I 
MODEL PARAMETERS. 

Parameter Value Unit 
Maximum density ρmax 160 [cars/km] 
Maximum speed Umax 115 [kph] 
Average density ρ0 50 [cars/km] 
Road length L 2000 [m] 
Simulation time T 120 [s] 

The results of the baseline simulation using the linear 
model are shown in Fig. 3(a),(b), and the results of the 
baseline nonlinear simulation are shown in Fig. 3(c),(d). For 
both models, the baseline scenario results stay within the free 
flow regime as the maximum density reached is less than 
ρcrit. There is good agreement between the results of the 
linear and nonlinear model. As the density at the beginning 
of the length of road approaches ρcrit at around 100 s, the 
solutions between the two models start to differ. 

(a) (b) 

(c) (d) 

Fig. 3. Baseline results for linear model (a), (b) and nonlinear model (c), 
(d) given the initial and boundary conditions in (38), (39). 

B. Linear LQR Results 
The performance of the LQ controller is first investigated 

using the linear LWR model. In order to evaluate the per-
formance, the total number of cars in the highway section is 
calculated as 

# of cars = 
 L 

0 
ρ dz (40) 

As the average desired density is 50 cars/km, the desired 
amount of cars left in the highway section is 100 cars. The 
results of applying the developed LQ controller to the linear 
model are shown in Fig. 4. Four different values of the 
tuning parameter Q0 are investigated. For Q0 = 1e − 6, the 
control is not enough to lower the density by a reasonable 
amount. Towards the end of the simulation, at around 100 
s, the density even starts to rise. For both Q0 = 1e − 5 and 
Q0 = 5e − 5 the control is enough to lower the density, 
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but at a certain point it no longer drives the density to the 
desired amount of cars left on the road. For Q0 = 1e−5 this 
stagnation happens at 80 s and for Q0 = 5e−5 this happens 
at around 40 s. One thing to note, though, is that when 
Q0 = 5e − 5 the amount of cars does approach the desired 
amount, but never reaches it. The controller is able drive the 
linear system to the desired density when Q0 = 5e − 4, and 
it reaches it at around 20 s. 

Fig. 4. Total cars on highway section for varying values of Q0 when 
control is applied to linear model. 

C. Nonlinear LQR Results 
For the nonlinear model, the control input is no longer ∂b 

∂z , 
instead it is the actual VSL rate, b. So, in order to apply the 
control to the nonlinear model, first the linear model is used 
to determine the optimal ∂b 

∂z , then the nonlinear control is 
found by 

b opt = 
 L 

0 

∂b 
∂z 

dz (41) 

The nonlinear model (1) then uses (9) for the equilibrium 
velocity equation where b is defined as in (41). The results 
for the same values of Q0 as used before, but this time on 
the nonlinear model, are shown in Fig. 5. For Q0 = 1e − 6, 
the system is mostly unaffected. When Q0 = 1e − 5 and 
Q0 = 5e − 5 the traffic is reduced, but it does not reach the 
desired density. With Q0 = 5e − 4, the controller is able to 
get close to the desired density by 40 s, but does not achieve 
it. 

D. Comparison 
As shown in both Fig. 4 and Fig. 5, the performance 

of the controller differs between the linear and nonlinear 
implementation. In each case, for the same value of Q0, the 
linear model is affected more than the nonlinear model. For 
example, when Q0 = 5e−4 the controller is able to drive the 
system to the desired traffic density in the linear model, but 
cannot do it for the nonlinear model. Similarly, the linear 
model reaches the desired density at 20 s, whereas in the 
nonlinear model it does not get close until 40 s. 

To further investigate the performance of the designed 
controller on the two models Fig. 6 and Fig. 7 show the 
resulting density, velocity, and speed limit for the linear 

Fig. 5. Total cars on highway section for varying values of Q0 when 
control is applied to nonlinear model. 

and nonlinear model, respectively. The results shown are 
for Q0 = 5e − 5. Looking at Fig. 6(a) and Fig. 7(a), it 
can be seen that the nonlinear controller is not as effective. 
The high density region resulting from the initial condition 
at x = 500 m to x = 1500 m is dissipated in the linear 
model, and it never reaches the downstream boundary. On the 
other hand, in the nonlinear model, the high density region 
continues to move until it reaches the downstream boundary 
at around 20 s. As well, the upstream boundary conditions 
propagate further into the road in the nonlinear simulation, 
but in the linear simulation the controller is able to mitigate 
them quickly. 

Another difference can be seen in the speed limits for 
the linear and nonlinear model, Fig. 6(c) and Fig. 7(c), 
respectively. In the nonlinear simulation, the controller needs 
to keep a higher speed limit for longer at the end of the length 
of road. The high speed limit lasts until just before 20 s in 
the nonlinear model whereas in the linear model the high 
speed limit region ends after around 5 s. 

As explained earlier, the control input for the linear model 
is the rate of change of the VSL rate over space ∂b 

∂z , but in 
the nonlinear model it is the actual VSL rate, b. This could 
explain the lag in response of the nonlinear model when 
compared to the linear model. 

V. CONCLUSIONS 
In this paper, a LQ controller was designed for the LWR 

model using variable speed limit control. First, the linearized 
LWR model was defined and a variable speed limit was 
applied to the model as a modification of Greenshield’s 
model. Then, a state feedback function was computed via the 
solution of a Riccati differential equation. In this application, 
instead of the control input being just a distributed parameter, 
the control input was the rate of change of the distributed 
parameter. The designed controller was then verified on both 
the linear and nonlinear LWR model, and the performance 
of the two controllers was compared. Future work will 
investigate how to tune Q0 as well as how to develop a 
controller that can be used in either a mixed traffic or 
congested traffic scenario to mitigate traffic jams in the 
presence of shocks. 
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(a) (b) (c) 

Fig. 6. Density (a), velocity (b), and variable speed limit (c) of linear model with Q0 = 5e − 5. 

(a) (b) (c) 

Fig. 7. Density (a), velocity (b), and variable speed limit (c) of nonlinear model with Q0 = 5e − 5. 
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