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ARTICLE INFO ABSTRACT

Article history: Modularity is a fundamental and intriguing property of fabrics. Given the same set of
threads, one can construct different geometries and therefore physical behavior simply
by changing how those threads are linked to each other. As a result, fabrics have been
been studied with great interest in engineering applications. However, most engineering
Keywords:  Spherical  coordinates, applications model fabrics as composite structures reinforced with a secondary material
Voronoi tessellation, Parametrization, that fills the gaps between thread elements.
3D Tiling In this work, we first show the existence of threads that are space-filling without the
need for other materials. We then introduce a simple approach to construct such space-
filling threads by using a single modular element that can be obtained by partitioning a
cube into two yin-yang type identical pieces. These yin-yang type congruent tiles can
directly be constructed by using a parametric approach. Another property of these tiles
is that they are foldable, i.e., they can be constructed by folding planar materials. We
show that there exist infinitely many such congruent tiles. We further demonstrate that
any 2-way 2-fold woven structure can be constructed by translated and rotated versions
of such congruent tiles.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction and Motivation space-filling tiles that offer immense possibilities for designing

) ) ) ) ) ) structural systems with properties such as fracture toughness
Fabric provides a wide variety of material properties through (40, 41].

different interlocking configurations of its threads. Simply by
changing the interlocking configurations, one can generate an
entire class of weaves (plain, twill, satin, just being among the
ones known in the vernacular) with significantly varied me-
chanical characteristics. Because of this, woven fabrics have
been studied in engineering research both as flexible systems
[36] as well as composites wherein the underlying fabric struc-
ture is typically reinforced with a secondary material that fills
the gaps between thread elements [45, 50, 2]. In recent liter- In current works on woven tiles [40, 41], each weave pat-

ature, we also find works that have explored woven fabrics as tern requires the construction of a specific type of woven tile
unique to that pattern. Consequently, the physical construction

of a space-filling woven pattern necessitates manufacturing new
*Corresponding author: tiles for each new pattern. Another problem with woven tiles is
e-mail: tolgayildiz@tamu.edu (Tolga Yildiz) that they could be geometrically interlocked [21, 24], i.e., in-

From a representational perspective, one of the most impor-
tant properties of weave patterns is their modularity — they can
be represented as an spatially organized assembly of cells that
represent the warp and weft directions of the woven threads
[30, 31, 32, 33]. Interestingly, this powerful system of represen-
tation has not yet been translated into a cogent design method-
ology for generating weave-inspired space-filling tiles.
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(a) Two woven (plain (10, 1) and twill (1100,, 1)) structures constructed
with our congruent tiles.

TeoLs

(b) Side view of two woven table tops with a cup of
tea standing on the top.

(c) Another view of two woven table tops with a cup
of tea standing on the top.

Fig. 1: These images show two woven planar 3D-printed slab structures constructed by the same congruent tiles. These structures are assembled using magnets. We
use colored tiles to show the underlying weaving structures: In this case, a plain weave on the left and a twill weave on the right. We used these planar slabs as table
tops. The examples show that the assembly can support a cup of tea when connected by magnets.

terlocked in a manner that either necessitates the use of flexible
blocks for assembly or requires cutting tiles in multiple non-
interlocking pieces [40, 41].

In this work, our goal is to cater to the need for a modular
approach that enables the creation of any desired weaving pat-
tern using a finite (preferably a singleton) set of woven tiles.
We further aim for these modular tiles to be simple enough to
be manufactured economically and allow for different produc-
tion techniques. Previously investigated woven tiles [41] are not
foldable and, as a result, are impossible to manufacture through
the folding of flat materials, which is especially essential to
manufacture large size building blocks economically. Our ap-
proach seeks to create a methodology such that these tiles are
guaranteed to be topologically interlocked [21] and can be man-
ufactured in a variety of ways (additive, subtractive, foldable) in
a wide variety of scales. For instance, guaranteeing foldability
from flat to 3D tiles can be instrumental in medium and large-
scale architectural and civil constructions owing to (1) easy pro-
duction through laser cutting, (2) efficient transportation as flat
pieces, and (3) in-situ construction through traditional means
such as concrete-filling. This may especially be useful for mod-
ular constructions in remote locations. For medium-scale appli-
cations, the ability to manufacture such tiles using subtractive
processes such as flank milling is also quite useful. Finally, fab-
ricating such tiles using additive manufacturing could be quite
useful for applications involving meso-scale meta-material de-
sign akin to previous works.

We present a parametric approach that is based on the de-
composition of a cube into two yin-yang type identical regions.
We guarantee that the shape of these two tiles is foldable by cre-
ating a foldable interface between them. These tiles correspond
to a part of warp and weft threads of 2-way 2-fold fabrics. By
connecting them in x and y directions, we can obtain the warp
and weft threads of any length. By mirroring the cubes in the
z direction, we can obtain any weaving patterns from plain to
twill and satin. As a result, the same proto-tile can be used to
generate all possible weave patterns without the need for tailor-
ing the proto-tile for different weaving pattern.

1.1. Basis and Rationale

To obtain all possible weaving patterns with a single con-
gruent tile that can be economically manufactured, the shapes

of these tiles must satisfy five conditions. These conditions
uniquely define the constraints of our approach.
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Fig. 2: Examples of multi-panel foldable and unfoldable saddles made from
planar steel surfaces sculpted by Ilhan Koman [3].

1. Yin-Yang Condition: The first condition is to create de-
compositions of the unit cell (in 2-fold 2-way fabrics, the unit
cell is a cube) into two congruent pieces. Based on the cube’s
isometries, these two congruent pieces should be closed under
at least one symmetry operation. This requirement suggests that
the center of the cube should be shared by the two congruent
shapes.

2. Saddle Condition: The second condition is to create a
saddle-shaped interface between the two congruent shapes. In
other words, the center should be a saddle point. A saddle in-
terface is critical to increasing the interlocking between the two
pieces.

3. Foldability Condition: To obtain a saddle surface that can
be folded and unfolded to a planar surface, we need to create
a foldable interface between the two congruent shapes. Such
a saddle surface can be constructed by multiple developable
panels, which are flat-shaped materials bent without deforma-
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tion, i.e., Gaussian curvature is always zero, such as paper or
thin metals. Developable panels can be inexpensively cut us-
ing laser cutters. Since cutting is just a 2D operation, it is also
fast to shape developable panels. It is also easy to transport
these panels since they are just thin flat shapes. Multiple de-
velopable panels can also be easily assembled to fold into large
shapes. Sculptor Ilhan Koman showed the existence of saddle
shapes using multiple developable panels [3] as shown in Fig-
ure 2, created by connecting every point on a curve on a unit
sphere to the center of the sphere with straight lines. For our
purposes, to make saddle surfaces piecewise linear approxima-
tion of developable surfaces is sufficient.
4. Assembly & Disassembly Condition: The saddle regions
that are in the interface of two modules should allow assembly
and disassembly. In other words, they should only be topo-
logically interlocked [21] and must not be geometrically inter-
locked [24]. It is also important to note that previous woven
tiles could be geometrically interlocked, which requires use of
flexible blocks for assembly [40, 41] Examples of complicated
saddle regions that do not allow assembly and disassembly are
shown in Figure 2. It should be clear that we need to avoid es-
pecially the kind of complex saddle shapes that are shown in
the bottom right of Figure 2.
5. Connectability Condition: There should be a large area to
connect the tiles that lie in the same direction, corresponding to
the same warp (y-direction) or weft (x-direction) threads.
Based on these five conditions, we develop a parametric ap-
proach to design a wide variety of congruent woven tiles (see
Figures 3 and 4 for examples).

S

(a) The local coordinates in
the unit cell, a cube.

Vs

(c) A yin-yang type decomposition of a
sphere: Tennis Balls.

(b) Circular warp and weft threads that work as Voronoi
sites to decompose the unit cell.

AN

(d) A yin-yang type decomposition of the
unit cell that can corresponds to 3D ver-
sions of strands [30].

Fig. 3: An illustration that demonstrates an example of desired yin-yang type
decomposition of the unit cell. They can be obtained with Voronoi decomposi-
tion of the cube by using higher-dimensional shapes that are closed under sym-
metry operation that can take warp threads into weft threads. In this example
two circular segments that are used as Voronoi sites are obtained by applying
such a symmetry operation a 90° rotation in z followed by a mirror in z.

1.2. Approach
Our approach stems from the decomposition of a cube using
Voronoi sites that are symmetric based on symmetry structures

of warp and weft threads. Starting from the conditions identi-
fied previously (Section 1.1), our approach stems from an con-
ceptual experiment that seeks to partition a cube into two iden-
tical parts such that their combination respects the warp-weft
relationship — the building block of a weave pattern. Consider
a cubical volume (Figure 3a) that encloses two semi-circular
arcs on the surface of the largest sphere inscribed in the cubical
volume (Figure 3b). Conceptually, an expansion of these arcs
on the surface of the sphere can be imagined to lead to a yin-
yang partition of the sphere’s surface (resembling a tennis ball
as shown in Figure 3c). In order to realize our original goal of
partitioning the cube, we simply sample points on these arcs to
identify two distinct sets of Voronoi sites and perform Voronoi
decomposition (Figure 3d). What is interesting about the inter-
facing surfaces between these two partitions is that it is com-
posed of four semi-conical surfaces that share their apex which
is both a saddle point and also lies at the center of the cube. In
conjunction, these two observations mean that our partition: (1)
results in congruent interlocking (yin-yang) tiles, (2) respects
the weave (warp-weft) relationship, and (3) can be folded from
a flat sheet (conical).

QX

(a) Internal Structure of the sphere decompositions.

e

(b) Internal Structure of the cube decompositions.

Fig. 4: The internal structure of the yin-yang type decompositions shown in
Figure 3 shows the internal structures for both sphere and cube are the same
and developable. They can be obtained by connecting the center of the sphere
with the curve on the sphere. The left images show how the interface results
in Voronoi decomposition. The middle image shows how the interface can be
created by connecting the space curve with the center point. The right image
shows actual pieces sufficiently separated to show their overall shape.

The key insight gained from our experiment is that the family
of curves (Figure 4a, left panel) that split the spherical surface
into yin-yang shapes (Figure 4a, right panel) are the same as the
boundary curves (Figure 4a, middle panel) on partitioning in-
terface of the cubical volume, In fact, if we connect each point
on these curves with the lines emanating from the center of the
cube, we guarantee to obtain the interface between two congru-
ent woven tiles. Note that the interface is developable and con-
sequently parameterizable. Alternately, this curve, which looks
like a boundary of Pringles Potato Crisps (Figure 4a, middle
panel), is the result of the Voronoi decomposition of the two
half-circles shown in Figure 3b. This observation can be ex-
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tended further to go beyond the specific example shown in this
experiment thereby offering a methodology to generate param-
eterizable and developable interfaces. This implies that we do
not need to compute Voronoi decomposition. We can directly
define such curves by simply creating control polygons with a
large variety of design options. We have identified that these
control polygons must be closed under warp-weft symmetry to
satisfy five conditions given in 1.1. Final boundary curves are
obtained from these control polygons by any spline or subdi-
vision algorithm that can preserve the original symmetry. By
connecting the final boundary curves with the sphere center, we
can create the interface between two yin-yang shapes. These
interfaces are conceptually similar to saddle shapes shown in
Figure 2.

1.3. Contributions

In this paper, we have four main contributions:

1. Parametric Approach: We developed a parametric ap-
proach to produce a family of congruent tiles that can be used
as basic modules that can be used to construct any planar slab of
arbitrary size as a fabric structure that is woven with any given
2-way 2-fold pattern.

2. Foldability: Any basic module in this family of congruent
tiles can be unfolded into a single panel and, therefore, manu-
factured economically using laser cutting.

3. Modular Design: These modular tiles can provide all possi-
ble 2-way 2-fold weaving patterns.

4. Design Power: By creating all possible 2-way 2-fold weav-
ing patterns, it is possible to obtain a wide variety of behaviors
using the same set of tiles.

We also make other minor contributions by relaxing strong
congruent conditions. Specifically, we demonstrate that any
woven pattern on a cylindrical slab could be obtained using only
three types of woven tiles. We further show the construction of
height fields without a significant change in the general method.
It is still possible to obtain any weaving pattern, however, based
on the shape of the slabs and weaving pattern each woven tile
must be different. We discuss how to cover any 2-manifold sur-
faces with woven tiles. For instance, we can always guarantee
to obtain a plain weaving pattern for any given 2-manifold mesh
surface. Finally, we develop a new notation for fabric patterns
that can express the structure of the patterns more effectively.

1 N N

(a) Top view of the fundamental regions (b) Matrix representations of the fundamen-
of three simplest 2D weaves, namely tal regions of three simplest 2D weaves
plain (102, 1); twill (1102,1); and twill shown in Figure 5a.

(11005, 1).

Fig. 5: Top view of three simplest 2-way 2-fold weaving structures and their
matrix representations [30]. Note that these are periodic, which means the ma-
trix repeats in each x and y direction. In these three cases, we show the min-
imum periods. These periodic structures can be viewed either as an infinite
plane that is periodically filled with these matrices as tiles; or a texture that is
mapped on toroidal surface[7, 6].

2. Previous Work

2-Way 2-Fold Fabrics such as plain, twill, and satin could
be considered the first composite structures in human history.
There are illustrations from ancient Egypt that show people
weaving fabrics using looms [11]. Large-scale woven structures
such as woven bridges have also been constructed for several
millennia [57, 56, 38, 39]. Basket weaving is another type that
has been around for a long time [43, 47, 26, 10]. Despite their
historical popularity, the construction of woven structures with
congruent space-filling tiles was not known or explored until
recently [40, 41]. The main problem with earlier woven tiles is
that each weaving pattern requires its own congruent tile. More-
over, these tiles can be arbitrarily long based on the periodicity
of the weaving pattern. This poses a serious challenge for phys-
ical production of these tiles, especially for cases such as satin
wherein each tile is significantly long. Moreover, creating these
tiles with common manufacturing processes such as milling or
laser cutting is impossible due to their complex geometry.

We seek to address these issues by developing a simple
method for obtaining all possible weaving patterns by using
rotated and translated versions of a single congruent tile. We
focus on representing 2-way, 2-fold weaving patterns that are
formally represented by Grunbaum and Shephard’s pioneering
work in the 1980s [30]. They developed a mathematical rep-
resentation for these weaving patterns using matrices of 0 and
1. These matrices that can be considered as two color images
as shown in Figure 5a provided methodologies to design and
discover new patterns. Using this representation, Grunbaum
and Shephard also demonstrated that weaving patterns that ap-
pear to be perfectly linked by visual inspection may not pro-
duce links that can make the woven structure to be hanged-
together [31, 32, 29, 27, 28]. In other words, in such struc-
tures some threads may not be linked with the rest of the fab-
ric and the resulting structures would come apart in pieces.
Grunbaum and Shephard call a weaving structure a fabric only
if it is hanging-together. After an extensive search, all hang-
together fabrics that are represented up to 17x17 matrices have
already been identified in the 1980s [31, 32, 15, 23, 16, 18].
There has also been extensive work on 2-way 2-fold fabrics
investigating their correspondences with 2D symmetry groups
[58, 59, 49, 53, 52, 51].

In Grunbaum and Shephard’s formalization [30], threads in
all types of fabrics are considered as strands, which are dou-
bly infinite open strips of constant width. These strands are
considered an infinitely long strip of paper or similar material
with zero or negligible thickness. They defined m-way n-fold
2D periodic fabrics, or (m,n) fabrics, as the ones that have the
strands in m different directions containing n number of layers
[33]. An m-way n-fold fabric is periodic if contains translations
of a fundamental region in at least two nonparallel directions.
They showed existence of (2,2), (2,4), (4,4), (3, 3), (3, 6) peri-
odic 2D fabrics [33]. In other words, in 2-Way 2-Fold fabrics,
the term 2-way comes from the fact that these fabrics consist
of two types of vertical or y-direction (warp) and horizontal or
x-direction (weft) threads. The term 2-fold comes from the fact
that any point in a 2D plane consists of two ordered strands that
are on top of each other, one strand at the top and another one at
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the bottom. The fundamental region for 2-Way 2-Fold periodic
fabrics is a square grid, which can be represented as a matrix
that actually provides this order, which is also called ranking as
shown in some examples in Figure 5.

(a) Thickened Voronoi sites that correspond
to warp and weft threads for Twill weave.

(b) A twill weave that consist of yin-yang
type woven tiles that are obtained using
Voronoi sites in Figure 6a with decomposed
unit cells.

Fig. 6: An illustration that demonstrates how to construct twill by using two
types of unit elements that are obtained by mirror operations.

3. Theoretical Foundations & Methodology

One of the issues with Grunbaum and Shephard’s formal-
ization is that it is only useful for truly 2D weaves with zero-
thickness strands. In particular, ranking order can be very com-
plicated in higher dimensions. To develop a formalization for
3D threads with non-zero thickness, there is a need to identify
the 3D correspondences of the concept of strands, and unit cells
such that it is possible to provide a well-defined representation.
We note that a 3D version of matrix representation can be ob-
tained by reinterpreting unit cells as cubes instead of squares
and replacing strands with yin-yang type 3D tiles, and ranking
order with matrix transformations. Such yin-yang type woven
tiles can be obtained by decomposing the cubes using Voronoi
decomposition using higher order Voronoi sites such as lines
and curves [41, 40] (see Figure 3 for an example). These yin-
yang type tiles correspond to actual warp and weft threads. Re-
gardless of the shape of each tile, this interpretation guarantees
the existence of exactly two distinct states (one for warp and
another for weft). Therefore, we do not need the ranking order
in contrast to earlier parametrizations of weaves. Furthermore,
the two states can be transformed into each other with a ma-
trix transformation that provides a mirror in z'. This gives us
the cyclic group GF(2) where each element is either identity
matrix / or mirror in z, M, as follows:

1 00 1 0 0
I={0 1 o] M.=[o 1 0 )
00 1 00 -1

The advantage of having such a cyclic group is that we can
replace the group with one of its isomorphic groups to obtain
simplified operations. For instance, consider replacing identity
matrix / with 0, and mirror matrix M, with 1. As a result, the
matrix multiplication turns into modulo 2 addition since / 2=,

'In this case, 90° rotations around x or y can also provide desired states.
However, We prefer to choose a mirror in z since it makes better sense as a
general operation.

IM, = M,, M,I = M,, and MZ2 = [. With these replacements,
we obtain the fundamental cyclic group GF(2) that directly cor-
responds to the original cyclic group of two matrices. This iso-
morphism also simplifies encoding of ranking orders. This sim-
plification turned out to be extremely useful for the formaliza-
tion of weaving tiles.

Using the group designed above, a fundamental domain for
2D weave can now be defined as 2D grids that consist of N X K
cubes (or voxels). We can identify each cube in this funda-
mental domain with two non-negative integers (n,m) where
n=0,...,N-l;andm =0,...,M—1 as Cy, . Similar to ma-
trix representation, to define a fabric we assign either O or 1 to
each cube for all » and m. In other words, we define a discrete
periodic function F : {0, ..., N-1}x{0,...,N—1} — {0, 1} that
can be represented as F'(n,m). We can also define the discrete
derivative in x and y direction as 6, F = F(n + 1,m) — F(n,m),
and 6,F = F(n,m + 1) — F(n,m) respectively. Note that if the
derivative is zero there is no change. But if the derivative is one
we take a mirror in order to get the orientation of the next cell,
which corresponds rank order change in Matrix representation.

To present and analyze 2-way 2-fold weaving structures we
also need a simple mathematical notation that captures the
essence of the fundamental textile structures. It has been ob-
served that all possible versions of the three fundamental fabric
types, i.e. plain, twill, and satin, can be viewed as a set of rows
with horizontal periodical patterns that are shifted and vertically
stacked over each other [14]. Grunbaum and Shephard called
these types of weaves genus-1 and used a (n, s) notation to clas-
sify these fabrics, where n is the length of a binary pattern and
s is the shift operator [30]. One problem with the (n, s) notation
is that it does not define the initial row pattern.

The three simplest fabric patterns in Figure 5 in (n, s5) nota-
tion are (2, 1), (3, 1), and (4, 1). It is possible to identify the first
two. However, for (4, 1) the initial pattern is not uniquely deter-
mined. It can be either 3 up and 1 down, or 2 up and 2 down. As
a solution, another notation called a/b/c is introduced [14]. In
this notation, the initial pattern is defined by two integers a and
b, where a is the number of up-crossings, and b is the number
of down-crossings. The additional integer ¢ denotes the shift in-
troduced in adjacent rows. Note that a + b correspond to n and
c corresponds to s in (n, s) notation. This notation differentiate
between two (4, 1) patterns as 3/1/1 and 2/2/1. Although this
notation solves the uniqueness problem for some simple cases,
it has limited power to describe more complex initial patterns
such as the ones that consist of several number different types
of up and down crossing that are followed each other.

We observe that there is a need for a new notation that
can provide group theoretical solutions to all ambiguities. To
achieve this, we simply replace n in (n, s) with a binary num-
ber N, that represents up and down patterns. For instance, the
decimal number Ny = 26, corresponds to the binary number
N, = 11010,, which represent a row of weaving structure that
is given as two up, one down, one up and one down. This can
be written using hexadecimal numbers to save space. For in-
stance, the three fabric patterns shown in Figure 5 can be given
in (Ny¢, 5) notation as (214, 1), (646, 1), and (Cy¢, 1). We assume
the binary sequence starts with 1 to uniquely define the length
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n. We also assume N, is an even number, i.e. it ends with O
to guarantee the row includes at least one change from one to

\ o \4‘

>
Vv P Tw

Fig. 7: Voronoi decomposition of the cube fundamental domain and resulting
partitions for different arc angles 6. From left to right, 6 = 6°, 6§ = 60°, § =
120°, 6 = 180°, , 6 = 240°, 6 = 330°

3.1. Studying Voronoi Sites Closed Under Warp-Weft Symmetry

To develop a parametric solution, we have analyzed a variety
of Voronoi decomposition of the unit cube by using symmetric
Voronoi sites. To identify the potentially useful symmetry op-
erations we start with the mathematical concept of strands [33].
The symmetry operations that take warp strands to weft strands
and vice versa can be obtained by a 90° rotation in z followed
by a mirror in z (See 3a for local coordinates). These two oper-
ations can be given by the following composite matrix:

0 -1 0
M=|1 0 0 2
0 0 -l

Note that the strands are mirror symmetric in x and y direc-
tions. If we strictly follow the concept of strands, the Voronoi
sites must also be mirror symmetric in both x and y directions.
Note that M alone does not enforce this condition. Note that
M? cannot move all Voronoi sites into their original positions
since

-1 0 0
M>*={0 -1 0 3)
0 0 1

and it is not an identity matrix. Therefore, in order to make
these Voronoi sites consistent, they should be self-mirror in x
and y. One such example of Voronoi sites is shown in Figure 3b.
This example consists of two half-circles that are closed under
matrix M. These particular curves create a boundary on the
surface of their sphere that resembles the curves on a tennis ball
(See Figure 3c). Figure 3d shows corresponding congruent tiles
that decompose the unit cell. This particular case obviously
is one of the most natural solutions since the same boundary
curves on the sphere can also be observed on other spherical
surfaces such as basketball.

To identify other potential solutions we systematically ex-
plored the effect of a variety of symmetric curve- and surface-
type Voronoi sites on the unit sphere. Figure 7 provides a gener-
alization on tennis ball decomposition. In this case, we used two
circular arcs that are closed under both M and M2, i.e. closed
under warp-weft symmetry. Note that if the arc angle is zero,
the arc turns into a point and decomposition does not produce
a saddle. On the other hand, when arc length increases sad-
dle starts to appear. for angles around 180°, we obtain a strong
saddle. For arc angles closer to 360° we still obtain saddles
that can theoretically be assembled and disassembled but it is
difficult because of friction. We also analyzed surface patches
that are closed under M and M? This surface patches generally
produced a useful set of tiles with a saddle interface with an
exception of two half-spheres. These examples suggested that
being closed under M and M? for Voronoi sites is useful to cre-
ate desired tiles.

We have also analyzed if this condition guarantees obtaining
desired tiles. Unfortunately, we observed that it is not guar-
anteed (1) to have the tiles that can be connected to the next
one and (2) to have the interface that may not be the saddle
when we use Voronoi sites that are closed under M and M?. In
other words, we cannot blindly apply the condition to be clo-
sure under V. = M and M?. In conclusion, studying Voronoi
sites mainly helps us conceptualize the general structures of
the tiles. However, this study with Voronoi sites closed under
symmetry demonstrated that warp-weft symmetry is important
but neither necessary nor sufficient to obtain woven tiles. Note
that while Voronoi decomposition offers an elegant conceptual
basis, it does not explicitly guarantee connectivity and assem-
bly/disassembly conditions. However, Voronoi decomposition
naturally guarantees foldability by providing a piecewise devel-
opable interface. That said, obtaining reasonable folding pat-
terns may not be trivial for most resulting shapes. We need an
explicit solution that can let us control parameters directly. This
study of Voronoi decomposition was still useful for us since it
helped to develop an intuition to identify such a robust paramet-
ric solution.

AN AAN]x
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(a) Geometrically interlocked boundary (b) Topologically interlocked boundary

Fig. 8: Cutting an unfolded cube with a curve demonstrate that the bound-
aries of the interface between the congruent tiles must create topologically in-
terlocked structures in 2D to satisfy assembly and disassembly condition. Note
that the top and bottom shapes in Figure 8b can freely move in y direction.

3.2. Studying Unfolded Boundary of the Cube

A good parametric solution also requires studying connectiv-
ity and assembly/disassembly conditions. Based on our study
of Voronoi decomposition, studying these two conditions can
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(a) Generic piecewise linear (b) A tetrahedral polygon (c) Another control polygon
curve that is closed under that is obtained by choosing that is obtained by choosing

‘Warp-Weft Symmetry. a=1landb=0.

Fig. 9: Parameterized control polygon (hexadecagon, i.e. 16,,gon) and two
extreme cases. Note that the polygon in 9b is also 16-sided since each point

consists of two coincident points.

a=1landb=1.

(a) The parameters a = 1.0 and b = 0.0

(b) The parameters a = 1.0 and b = 0.25

(c) The parameters a = 1.0 and b = 0.5

(d) The parameters a = 1.0 and b = 0.75

(e) The parameters a = 1.0 and b = 1.0

(f) The parameters a = 0.75 and b = 1.0

(g) The parameters a = 0.5and b = 1.0

(h) The parameters ¢ = 0.25 and b = 1.0

(i) The parameters a = 0.75 and b = 0.75

(j) The parameters a = 0.5 and b = 0.5

Fig. 10: Congruent woven tiles generated with piecewise linear curves
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directly be done in the boundary of the cube. For this study, we
consider an unfolded cube shown in Figure 8. The longer side
of this unfolding consists of four side squares of the cube. The
other two squares are just the top and bottom ones and we will
ignore them since they do not affect the two conditions. Now
consider the strip that consists of four squares. We can assign
a local 2D coordinate system to them, which is shown as two
arrows in Figure 8. Once we have a local 2D coordinate sys-
tem, it is straightforward to define curves. Now consider the
two curves in Figures 8a and 8b and assume that the shape is
cut through the curve. It is clear that the two 2D shapes in Fig-
ure 8a cannot be separated without going to 3D, which is the
definition of geometric interlocking for 2D objects [24]. On the
other hand, the two 2D pieces in Figure 8b can be disassem-
bled in the y direction without the need for disassembly in 3D.
This is because the second curve is given by a function on the
form y = f(x), i.e. it has only one y value for every x. In other
words, if there exists a local coordinate system such that the
boundary curve can be written as a function, we guarantee to
assemble and disassemble the pieces. Note that there still exist
other curves that allow assembly and disassembly such as the
one shown in Figure 9c.

Although the warp-weft symmetry is not strictly required, we
still prefer to use it since it gives us a well-defined framework.
If we impose warp-weft symmetry, these functions must be pe-
riodic such as a sine function shown in Figure 8b. Such a sine
function is appropriate since the resulting tiles can also satisfy
the connectivity condition. Note that the connectivity condition
suggests that the curve partition each square into unequal areas
preferably providing a large common area between two consec-
utive tiles in the same thread.

The discussion in the last two sections provides a qualita-
tive framework to develop a family of parametric curves that
can allow us to directly create congruent tiles using an explicit
approach. In the next section, we present one approach to con-
struct such a family of parametric curves. We need to point out
that although this particular approach provides a large set of so-
lutions, there can be others. For instance, we can also provide
another family using trigonometric functions by generalizing
the sine curve in Figure 8b.

3.3. A Family of Parametric Curves Closed Under Warp-Weft
Symmetry

In this section, we present our parametric family that can
guarantee to provide tiles that can satisfy all conditions, based
on the intuitions developed by explorations with Voronoi de-
compositions and unfolded cubes. We have identified a piece-
wise linear curve that form an hexadecagon (16-sided polygon)
that can be described by two parameters, called a and b, as
shown in Figure 9a. This polygon is still closed under warp-
weft symmetry. The corners of this set of parameterized poly-
gons include vertices of both tetrahedron (Figure 9b) and cube
(Figure 9c). Figure 10 shows the effect of the two parameters
a and b. To satisfy connectability condition a must be bigger
than for certain threshold determined by the sizes of connec-
tors. Since the saddle shapes become more prominent for larger
values of a we suggest keeping a > 0.5. Such larger values of
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(a) Polygon in 9a after one it- (b) Polygon in 9b after one (c)Polygon in 9c after one it-
eration of corner cutting sub- iteration of corner cutting eration of corner cutting sub-
division. subdivision. division.

Fig. 11: Examples of smoothed control polygons after one iteration of corner
cutting subdivision [22].

(a) The parameters a = 1.0 and b = 0.0 (b) The parameters a = 1.0 and b = 0.25

(c) The parameters a = 1.0 and b = 0.5 (d) The parameters @ = 1.0 and b = 0.75

(e) The parameters a = 1.0 and b = 1.0 (f) The parameters a = 0.75 and b = 1.0

(i) The parameters a = 0.75 and b = 0.75 (j) The parameters a = 0.5 and b = 0.5

Fig. 12: Congruent woven tiles generated with piecewise linear curves that are
created by vertex-insertion scheme [13].

a are also useful to increase the interface between two consec-
utive tiles in the same thread.

To obtain smoothed shapes, we consider these hexadecago-
nal polygons as control polygons that can be refined smoother
versions by using subdivision schemes of B-spline curves. Fig-
ure 11 shows examples of smoothed control polygons in one
iteration of corner-cutting subdivision, which is 2D version of
Doo-Sabin subdivision [22]. It is also possible to use vertex-
insertion, which is 2D version of Catmull-Clark subdivision
[13]. The application of these subdivision schemes for k times
creates a polygon of 16 x 2 corners. Figure 12 shows woven
tiles obtained by using polyhedra smoothed by vertex insertion.
Note that in the case of a = 1 and b = 0 in the vertices of
the tetrahedron, there are two coincident points of the polygon.
Therefore, the standard corner-cutting algorithm cannot smooth
this shape in the first iteration as shown in Figure 11b. The algo-
rithm for the computation of the multi panel foldable interface
is provided by the following algorithm.

Algorithm for the Creation of Foldable Interface:

(1) Compute positions of two points in each square based on
Figure 90 <a <1 and 0 < b < 1. Remark: There will be 16
points and these points will be closed under M and M?.

(2) Apply a subdivision scheme n times to obtain 16x2" points.
(3) Shoot a ray from the center of the cube toward the com-
puted corners of 16 X 2"-gon to find the intersections with the
boundary of the cube.

(4) Construct a new polygon by connecting new positions. If
two consecutive positions are in two different faces of the cube
add a new (interpolated) point in the intersection of the two
faces. The new polygon will have at least 16 X 2" corners.

(5) Triangulate the new polygon connecting all corners to the
center of the cube. This gives us the interface that decomposes
the cube into two tiles. Remark: The center of the cube is also
the center of this polygon because of warp-weft symmetry.

=
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Fig. 13: Folding (and unfolding) of a woven tile. Note that although this shape
can be unfolded into a single panel, this single panel actually consists of three
panels that are “merely” connected with each other. This is a shape that is
obtained from a smooth curve that approximates the control polygon that cor-
respondstoa =1and b = 1.

3.4. Foldable Woven Tiles
Connecting the parametric curve with the center point guar-
antees to obtain an foldable interface between two congruent
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tiles. Since the rest of the boundaries of the tiles comes from the
surface of the unit cube, the resulting tiles are guaranteed to be a
multi panel foldable since it consists of planar and multi panel
foldable faces that approximate developable surfaces. Having
this property is useful since custom-cut developable panels pro-
vide an alternative to 3D printing. Despite their advantages,
there is a major problem with developable shapes. Unfold-
ing a developable shape into a single flat surface, i.e. single
panel solutions, is a computationally very hard problem. For
instance, it is known that Edge-Unfolding Orthogonal Polyhe-
dra are Strongly NP-Complete [1]. Even simple-looking sub-
problem such as Packing Squares into a Square are strongly NP-
complete [42]. More interestingly, whether every convex poly-
hedron can be cut along its edges and flattened into the plane
without any overlap is still one of the classical open problems
in geometry [17]. Despite this theoretical difficulty, there ex-
ists no known convex polyhedron that cannot be unfolded with-
out self-intersection [20, 46]. On the other hand, it is already
proven that not all convex-faced polyhedra can be unfolded into
a single flat surface [12].

Fig. 14: Folding (and unfolding) a woven tile with planar faces that is obtained
by usinga=1and b = 1.

For many non-convex polyhedra finding single unfolding so-
lutions -if they exist- can take a significant amount of work
[44, 19]. On the other hand, for many complicated non-convex
polyhedra with convex faces, the solutions are known to ex-
ist. For instance, non-self-intersecting single-panel unfolding
solutions are known for some genus-1 surfaces. Our shapes
are similarly complicated since they all include saddle inter-
faces and some may include non-convex faces (See Figure 13).
Therefore, it is expected that it can be difficult to find solutions
even if the solutions exist. Fortunately, we were able to find
a method to obtain non-self-intersecting single panel unfolding
solutions for all our parametric congruent tiles. See Figure 13
for one of the most difficult examples. In this case, the solution
is formally a single panel, but the three pieces have very few
connections. If we have a truly developable surface, they will
not have any connections. Therefore, our algorithm is really a
type of multi-panel solution that give loosely connected single
panels.

Unfolding Algorithm:

(1) Separate the shape into two parts: (1) Cube boundaries,
and (2) Saddle interface. Remark: Note that the saddle inter-
face cannot be unfolded into a single non-overlapping flat piece

Fig. 15: Folding (and unfolding) a woven tile with planar faces that is obtained
by usinga =1and b = 0.

since its vertex defect is negative [5].

(2) Decompose saddle interface into multiple pieces.

(3) Attach those pieces to the main body that is obtained by
unfolding cube boundaries.

Figure 13 shows an example that uses this algorithm in which
the complicated saddle region is decomposed into two pieces
that can be unfolded without overlapping. Figures 14 and 15
provide two more examples in which the saddle regions are de-
composed into multiple triangles. We want to point out that
the solution in Figure 13 exists only because we do not have a
smooth curve. In the limit, the connections in edges will ap-
proach zero and we cannot have a single panel solution any-
more. On the other hand, we want to point out that multi-panel
unfolding and origami can always be considered viable options
[35,9, 34].

4. Implementation and Results

Our modular approach of obtaining any weaving pattern by
using a single tile has both topological and geometric limita-
tions. The topological limitation directly comes from a 2-way
2-fold constraint. To obtain any possible weaving pattern, the
underlying mesh, regardless of its geometry, must be a quad-
pattern cover-able quad mesh [37]. In fact, any positive genus
surface can be turned into a quad-pattern cover-able quad mesh
[37]. These mesh structures also include topological square
grids, i.e. (4,4) structures where every valence is 4, and ev-
ery face is a quadrilateral. We also need to point out that plain
weaving patterns do not have this topological requirement. Any
mesh can be covered with alternating knots, i.e. plain weaving,
by turning their edges into quadrilaterals [8, 6, 4, 7]. In conclu-
sion, to obtain any 2-way, 2-fold weaving pattern, it is sufficient
to start with a (4, 4) mesh structure.

The (4,4) mesh structures are common in many places. For
instance, height fields and tensor product surfaces can always
be represented as (4,4) mesh structures. Therefore, those sur-
faces can topologically be covered with 2-way 2-fold weaving
patterns. On the other hand, in these cases, the geometrical
constraints on the shape of surfaces play an important role. As
discussed, if the shape of the slab is a plane, we can always ob-
tain any weaving pattern using only one modular element. If the
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shape is a cylinder, we can obtain all weaving patterns with four
modular elements. If the shape is arbitrary, each weaving pat-
tern requires a specific solution. To demonstrate this, we show
a few select examples.

(a) ((102, 1) Plain woven planar slab.

(b) ((1100,, 1) Twill woven planar slab.

- - = -2 .
- - T s S
e :’33:::§§§$
S ::g:::

-

(¢) ((11111110,,3) Satin woven planar
slab.

(d) (110102, 1) Twill woven planar slab.

Fig. 16: Examples of Planar slabs.

4.1. Planar Slabs with 2-way 2-fold Weaving Patterns

Creation of planar slabs with any 2-way 2-fold weaving pat-
terns is relatively easy. We can use any single tile in Figures 10
or 12 to construct any weaving pattern. We show several vir-
tual and printed examples in Figure 16 created using the single
tiles from Figure 12e. We have also physically built a variety
of weaving patterns using modular tiles, as shown in Figure 1.
Since it is weaving patterns creates within planar slabs, there is
always a solution with our modular tiles.

4.2. Cylindrical Surfaces with Semi Congruent Tiles

An especially interesting case for our approach is cylinders.
Columns, which are one of the most common building struc-
tures, are essentially cylinders. We found that any weaving pat-
tern on a cylinder can be constructed using four unique tiles,
as shown in Figure 17. The cylinder case clearly demonstrates
the structure of the different weaving patterns. To demonstrate
the difference in warp and weft structures for different weaving
patterns, we have provided warp and weft threads separately
in Figure 18. In woven cylinders shown in Figure 18a and Fig-
ure 18b, warp threads form circles, and weft threads are straight
elements that run along horizontally in a column structure.

DRAD

Fig. 17: 4 different tiles needed for constructing a cylindrical surface.

4.3. Height Fields with Non-Congruent Tiles

To generalize our approach to more complicated geometries,
we need to extend cubes to more general cuboids, which are

b
¥ii

(b) ((1100,, 1) Twill woven cylinder.
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(c) (111111105, 3) Satin woven cylinder.

(d) ((11010,, 1) Twill woven cylinder.
Fig. 18: Cylindrical surfaces constructed with semi-congruent tiles. The top

row shows the complete assembly of tiles. The middle and bottom rows show
warp and weft assemblies.

(b) ((1100,, 1) Twill woven height field.

(a) ((102, 1) Plain woven height field.

(¢) ((11111110,,3) Satin woven height
field.

(d) (11010, 1) Twill woven height field.

Fig. 19: An example of woven height fields constructed with non-congruent
tiles.
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six-faced solids (i.e, hexahedra) with convex and planar quadri-
lateral faces such as rectangular prisms, rhombohedra, paral-
lelepipeds, or trigonal trapezohedron [48]. The resulting tiles
may not necessarily be congruent, but their mesh structures are
homeomorphic. Moreover, they can still be unfolded. Any
curved slab can be decomposed into cuboids connected with
(4,4) mesh structures.
Now, consider a curved slab that is defined as

z2={0, v, 2h(x,y) =T <z < h(x,y) + T}

where 2T is the thickness of the slab and z = h(x, y) is a height
field that is given by any function where O > x > M and 0 >
y = N with M and N are two positive integers. Such a slab
can be decomposed into desired cuboids with planar faces just
sampling x and y in integer locations n € 0,...,N and m €
0,...,M. Letp,,,; ; denote the eight corners of this cuboid
shape, where (i, j,k) € {0, 1)3, the position of each corner is
given by the following equation:

=hm+in+ j)+Qk—- DT

P,

Note that this cuboid is bounded by four planes, namely x =
m,x =m+ 1,y =n,and y = n+ 1. Figure 19 shows two
height fields constructed using four weaving patterns. In this
case, we can always obtain woven tiles using these four faces
to define the saddle curve described in Figure 9a. Note that
the top and bottom faces may not be planar. Those faces must
be decomposed into foldable surfaces, such as two triangles, to
unfold the resulting tiles.

5. Conclusion and Future Work

In this work, we demonstrated that modular elements exist
to construct all 2-way 2-fold woven planar slab structures. By
decomposing cubed into two yin-yang type identical tiles mod-
ular solutions, we have also shown that these modular solutions
are not unique. There exist infinitely many interesting mod-
ular elements that can be created by using two parameters and
smoothing operators. The shapes of these modular elements are
naturally foldable. In other words, they all can be folded from
single or multiple flat panels.

These tiles can potentially cover any slab obtained from a 2-
manifold surface. However, because of topological restrictions
from the mesh topology, it is only possible to obtain plain weav-
ing patterns [8, 6, 7]. On the other hand, it is possible to cre-
ate large regions of (4,4) tilings by using subdivision schemes
such as vertex intersection or corner cutting. In these regions,
it is possible to obtain desired patterns by moving irregularities
around extraordinary vertices [4]. Since this is a well-known re-
sult, we did not discuss it in the paper, and we do not think there
is a need for further research in this direction. Once the pattern
is known and slab geometry does not include self-intersections,
it can be possible to create woven tiles.

One interesting research direction is additional connector el-
ements and congruent tiles to obtain curved slabs. We suspect
that by adding a limited number of cylindrical connectors, it
could be possible to obtain curved regions with a limited num-
ber of tiles by using an organization reminiscent of quad-edge

data structure [9]. One problem with this approach is that fi-
nal structures have small holes that correspond to the faces and
vertices of the original meshes, which could be filled by vari-
ous methods. However, these practical issues are not directly
related to computer-aided geometry.

Another interesting research direction is to use tiles of dif-
ferent materials to obtain a variety of architectured material
structures. In fabrics, different patterns are obtained by col-
oring threads. For instance, just with twill, one can obtain pat-
terns that are known to herringbone, houndstooth, serge, shark-
skin, flannel cavalry, chino, covert, denim, drill, or gabardine
[25, 55, 54]. In this case, we can have more flexibility since
each tile (instead of the whole thread) can have different mate-
rials. In the near future, our goal is to take our method, which
is currently computational and theoretical, and work with ar-
chitects and engineers through physical construction as well as
finite-element studies of our tiles. We believe that this work
opens up new avenues to further investigate practical applica-
tions of modular woven tiled to construction science, mechan-
ics, and other domains.
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