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ARTICLE INFO ABSTRACT

Keywords: Dynamic interactions among several stochastic processes are common in many scientific fields. It
Concurrent regression is crucial to model these interactions to understand the dynamic relationship of the corresponding
Derivatives

multivariate processes with their derivatives and to improve predictions. In reality, full obser-
vations of the multivariate processes are not feasible as measurements can only be taken at
discrete locations or time points, and often only sparingly and intermittently in longitudinal
studies. This results in multivariate longitudinal data that are measured at different times for
different subjects. We propose a time-dynamic model to handle multivariate longitudinal data by
modeling the derivatives of multivariate processes using the values of these processes. Starting
with a linear concurrent model, we develop methods to estimate the regression coefficient
functions, which can accommodate irregularly measured longitudinal data that are possibly
contaminated with noise. Our approach can also be applied to settings when the observational
times are the same for all subjects. We establish the convergence rates of our estimators with
phase transitions and further illustrate our model through a simulation study and a real data
application.

Functional data
Local polynomial regression
Varying-coefficient model

1. Introduction

Since the seminal work of Fan (1992, 1993), local polynomial regression has received ever increasing attention in Statistics,
Econometrics and many other scientific disciplines for both theoretical research and applications. In particular, it provides a valuable
tool to capture the shape or derivatives of a curve and surface without suffering from the boundary effects encountered by kernel
regression, such as the Nadaraya-Watson estimator. The monograph Fan and Gijbels (1996) is an excellent source to get a compre-
hensive overview of the subject of local polynomial smoothing. A second area that Professor Fan made landmark contributions is the
area of varying-coefficient models (Cai et al., 2000; Fan et al., 2003; Fan and Zhang, 2000; 1999), which extends classical linear models
for vector responses and covariates to flexible linear models that can accommodate functional responses and functional covariates by
allowing time-dependent covariate effects that are reflected in the corresponding coefficient functions of the covariates. In this paper,
we extend the reach of both the local polynomial regression method and varying-coefficient approach to tackle a new problem that
aims at dynamic modeling of multivariate functional and longitudinal data.

The study of the dynamic relationship between a random function X and its derivative X has gained increasing attention recently.
Such random functions are termed “functional data” and the analysis of functional data are termed “functional data analysis (FDA)".
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Functional data occur frequently in economics and finance studies, e.g. daily stock prices (measured every second), daily interest rates
of different countries over a year, and GDP or unemployment rates of countries over long periods of time, to name just a few. The first
derivative of a random function is closely related to the dynamic structure of the function and provides information on changing
trends. Hence, it is of interest to study the dynamic relationship of a random function with its derivatives. For example, Bapna et al.
(2008) use the first derivative of the bidding process in auctions to model the bid velocity, and this can be extended to make online
bidding predictions.

Similar to a first-order system in engineering, there are several ways to study the relation of a function with its derivatives. Existing
work by Ramsay et al. (2007) and Liang and Wu (2008) use a pre-selected differential equation model, which is a parametric method
that relies heavily on specific knowledge of the data. A more flexible dynamic model is the linear or non-linear concurrent model
(Miiller and Yao, 2010; Verzelen et al., 2012), which is a nonparametric approach. Such an approach often leads to a simple and
interpretable model. For instance, when the goal is to explore the relationship between a function X and its derivative at a time t, the
linear concurrent model assumes a time-varying linear relation between X(t) and its derivative X (t). This model bears similarities to
the varying-coefficient model that has been widely used to model functional response with functional covariates (Chiang et al., 2001;
Fan and Zhang, 2000; Hoover et al., 1998; Huang et al., 2002; 2004; Liu and Miiller, 2008; Wang et al., 2008). However, there is a
fundamental difference here as the response, which is X (t), is not observed at all.

We exploit the concurrent approach to jointly model the derivatives of multivariate functional data using the information from the
multivariate functional data themselves. This allows all components of a multivariate functional process to contribute to the dynamics
feature of any specific component, leading to an efficient modeling scheme. The dynamics of multivariate functional data have been
explored in Miiller and Yang (2010) and Pigoli and Sangalli (2012). However, our goal and approach are different. Miiller and Yang
(2010) proposed methods to estimate the regression functions between Y*) and X(), where v1 and v, can be any integers that denote
the order of derivative and (X(t), Y(t)) is a bivariate stochastic process for which we have data available. Pigoli and Sangalli (2012)
focused on estimating the derivatives of multivariate functional data but not their relation to the multivariate functional data. To the
best of our knowledge, a rigorous study that establishes a dynamic relationship between the derivatives of multiple processes and these
multiple processes does not exist and is the goal of this paper.

Different linear models using derivatives as predictors or responses have been explored in Reddy and Dass (2006), Mas and Pumo
(2009), Bhat and Madushani (2016), and Rawat (2018). Verzelen et al. (2012) and Bone (2016) further provide a tool that estimates a
data-driven non-linear dynamic relationship. However, the estimation of their method relies on a precise estimate of X, which like
most other existing works assume that the functional data are fully or densely observed (Gervini and Gasser, 2005; Ramsay and Sil-
verman, 2005; Rice, 2004; Zhang and Wang, 2016). This is rarely the case for longitudinal studies involving human subjects, where
data are often recorded on a subject-specific irregular time grid that covers just a few time points for each subject. The measurements
may be further contaminated with noise or have random fluctuations (Miiller and Yao, 2010; Yao et al., 2015; Zhu and Dunson, 2012).
In this paper, we therefore propose a method that can handle both intensely and irregularly sampled functional data. Here “irregular”
means that the sampling schedule varies from subject to subject as opposed to a regular schedule, in which all subjects are sampled at
the same times. In addition to irregularity, most longitudinal studies can only afford to collect a few measurements per subject,
resulting in sparsely observed data. Such irregular and sparse designs are ubiquitous in longitudinal studies, where parametric ap-
proaches, such as the popular linear mixed-effects model of Laird and Ware (1982), are routinely applied. To substitute these para-
metric models by nonparametric models has been the prime interest of the nonparametric community of FDA. Rice (2004) and the
(Davidian et al., 2004) succinctly characterize the distinctions in statistical modeling approaches between the longitudinal and
functional data communities.

Our approach benefits from previous work on estimating the derivatives of longitudinal data. For instance, Liu and Miiller (2009)
provided a method to estimate the derivatives of any order for sparsely observed data and Dai et al. (2018) used functional principal
component analysis (Yao et al., 2005) to estimate derivatives. Miiller and Yao (2010) studied a concurrent linear model between a
univariate functional data X and its derivative X. Under Gaussian assumptions, X and X satisfy a first order stochastic differential
equation with a drift process and they estimated the components of this differential equation and studied the rates of convergence of
these estimates. We broaden their scope to the multivariate setting in this paper and remove the Gaussian assumption.

More specifically, let X(t) = (X! (t),X%(t), ..., XP(t))" denote a multivariate stochastic processes, where all X' share the same domain

.7 and p(t) = E(X(t)) denote the mean function of X(t). Our goal is to simultaneously model (X'(t), ..., XP(t))" and the derivatives X (t)
= (X )/(t), (XZ),(t), ey (XP )/(t))T with the following concurrent dynamic model:

X(1) = k(1) = BO{X(1) — n(0)} +Z(0), €h)

where p'(t) = ((u? )’ (t), ..., () (t))" is the derivative of p(t) = (u}(t), ..., (t))", Z(t) is a p-dimensional vector independent of X(t), and
B(t) = (BY(t));<q;<, is a p x p matrix with (d,[)th element B(t), a function of t.

Different from Miiller and Yao (2010), where a single process is considered, we are interested in the hidden relationships among the
different processes, quantified by the off-diagonal elements of B(t). For instance, at time t, a negative value of B'2(t) implies that a
trajectory X2 with positive value at t is associated with a downward trend of the trajectory X' shortly after time t, while an upward
trend is predicted for X! if X(t) is negative. Miiller and Yao (2010) used (1 /2)dlog(V(t))/dt, where V (t) is an estimate of var{X? (¢)}, to
estimate the univariate coefficient function B(t) in (1). However such an approach does not work for multivariate processes. Instead,
we propose a plug-in type estimator (see (6)) based on the normal equation in (2). This leads to substantial difference in theoretical
tools and results. In particular, we establish the uniform convergence rate of the estimates while Miiller and Yao (2010) focused on
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L2-convergence rate. Moreover, Miiller and Yao (2010) developed the convergence rate of the coefficient estimate for the case of sparse
functional data, where each process X/(t) can only be observed at a finite number of time points. In contrast, we provide the
convergence rate for sparse functional data as well as the case when the number of observation grows with sample size, leading to a
phase transition in the convergence rates.

We now compare model (1) with the conventional varying-coefficient model for functional data. If p = 1 and X*(t) and its de-
rivative (X! )'(t) can be observed at some time points t, then model (1) collapses to the conventional varying-coefficient model (Cai and
Li, 2008; Cai et al., 2009; Sentiirk and Nguyen, 2011; Fan and Zhang, 2000; Hoover et al., 1998; Huang et al., 2002; 2004; Li et al.,
2002; Morris and Carroll, 2006), which has also been called a functional linear model (Shen and Faraway, 2004). If p > 1 and all the

processes X/(t),j = 1,...,p, and their derivatives (X")/(t), j=1,...,p, can be observed at some time points, we can extend the con-
ventional varying-coefficient model to a multivariate setting, although this seems to have not been explored yet in the literature. In

’

reality, the derivative processes (X/) (t) cannot be observed at any time point t. This is a key distinction between the estimation
approach of a varying-coefficient model and the proposed model (1).

In summary, this paper proposes an interpretable dynamic model for multivariate functional data by leveraging the univariate
coefficient function B¥ and the additive structure for varying-coefficient models. Specifically, the sign and value of the univariate
coefficient functions reveals the relationship among the different functional covariates. We establish convergence rates of the esti-
mated coefficient functions under different design settings that include both densely and sparsely observed functional data. A
byproduct of the proposed dynamic model is that it is well suited to make short-term predictions of a process by leveraging not only the
current value of other covariates but also the current value of the process itself. This offers a major advantage for prediction as
traditional varying-coefficient models only use the current values of other covariates as predictors. We demonstrate this advantage in
an applied setting for cancer and GDP data in Section 4.

The rest of paper is organized as follows. We propose an estimate of the coefficient matrix B in Section 2. Assumptions and
theoretical results are included in Section 3. The numerical performance of the proposed method is illustrated in Section 4 through
Monte Carlo simulations and a real data application that links Cancer Death Rates and GDP (per capita). Section 5 contains a closing
discussion. Detailed proofs and additional numerical results are provided in the Supplementary Material.

2. Methodology

Let X!,1=1,...,p, be differentiable stochastic processes on a compact interval .7 CR, which is assumed to be [0,1], without loss of
generality.

Proposition 2.1. Assume E{X!(t)}*> < co,l=1,--,p, for dall te[0,1]. Denote oo(t) = E{X(t) —p(t)}{X(t) — u(t)}" and Zo:(t)
=E{X(t) —p(t) }{X (t) — n(t)} . If the inverse ¥o3 (t) of the matrix qo(t) exist for all t € [0,1], then model (1) implies that

B(1) = Zo1 (1)Zg0 (1), ©)

and Z(t) = X (t) — W (€) — Zo1(¢) 3 () {X(6) — p()}
Proposition 2.1 suggests that we can estimate B(t) = Zo; (t)Xo4 (t) from the observed data, even if they are contaminated with errors.

To see this, assume that for individualsi = 1, ...,n, we observe the repeated measurements (Tj;, Yyj),j = 1,...,N;, with ¥; = (Yi}7 Y‘g)T

and
Y, =X'(Ty) + e l=1,...,p,

ij

&)j=1,.. N;areiid. with E(e}) = 0 and E(egj)2 < 00,1l =1, ...,p. For simplicity, here

where the measurement errors e; = (e}j, ces €
we assume that each coordinate X, = 1, ...,p is observed at the same time points Tj,j =1,...,N;. Our method can be adapted to cases
where each coordinate is observed at irregular and different time grids with noise corruption, and the theoretical results in this paper
also hold for such a general setting.

Next we introduce an approach to estimate X (t) and Zoo(t), which then leads to a plug-in estimator of o1 (£)Zo4 (t). Because the
mean function can be estimated at a faster rate than the covariance, for technical brevity and following the practice in the FDA
literature, we assume that the mean function p(t) = (1 (t), ..., #?(t))" is known.

For 1 <d,1 < p, denote the (d,l) component of the covariance function Zoo(t) by

G¥(s.1) = E{X'(3) () HX'() ~ (0} ®
Note that
96,0 = TEQ) X0 - K0}

= E{XUs) — w9} (X)) (1)~ (&) (1)}
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This shows that X1 (t) = (3G%(s, £)],_,)

,p, and their partial derivatives 2G%(s, t). These can be achieved by the local polynomial regression method (Fan and Gijbels, 1996) as
follows.

1<ay<p- Along with Zoo () = (G¥(s,0)|5—)1<d1<p» We only need to estimate G%(s,t),d,1=1, ...

Let T = {Y§ —u%(T;)}{ Y4 —u'(Ti)} be the “raw covariance” and K(-) be a univariate density function on [~ 1,1]. We estimate
GY(s,t) by dpo(= Ziglo (s,t)), which is the arg min with respect to the argument ago for

Al odl dl .
Mo,l(aoo,a‘m,(xgl) = ZWI Z

=1 1<j#k<N;

Kooy (1) — 5) K (T 1) {rd o — (1 — ) — ol (Ti— >H , @

where Kj(s) = (1 /h)K(s /h) with bandwidth h, and the weight w; for the ith subject satisfies Y 7w;N;(N; —1) = 1. The assignment of the
weights w;, including the per-observation scheme w; = 1/3"I'N;(N; —1) and the per-subject scheme w; = 1/{nN;(N; —1)}, is discussed in
Zhang and Wang (2016). Moreover, the partial derivatives 0G%(s, t) /ot can be estimated by @o; (= @d: (s, t)) which is the arg min with
respect to the argument ag; for

n
A dl ol ol dl Al
Mln(aowafo:ao]vaflaaz(naoz) = ZW[ Z

L R e

—alh (T — 5) — o (Tue — 1) — &l (T — ) (T — 1) — oy (T — 5)” — oy (T — 1)2}2]

Khu.l (T' - S)Khul (Tl’\ - t) X {Fﬁc - aﬁf}
)

Note that we estimate G% (s, t) through Eq. (4) rather than Eq. (5) since (4) involves fewer parameters and thus produces an estimator
with lower variance.
Based on (4) and (5), we use

Zon(t) = (@5 )lior) scgzep 204 Zor (1) = (@1 (5:0],0) 1,
as the estimators of Zoo(t) and Zo; (t), respectively. Therefore, the estimator of B(t) is given by

B(t) = {Za () }{Zw(1)} - 6)
3. Theoretical properties

In this section we provide theoretical analysis of the methodology in Section 2. The following assumptions are needed to establish
the results.

A. Sampling design and covariance function.

(A1) The observed times {T;; : i =1,...,n,j = 1,...,N;} are i.i.d. copies of a random variable T on [0,1] whose density function f{(-)
satisfies, for some constant 0 < ¢; < oo,

< mi < < .
o < rrg[l(}r]l]f(t) < gl[g}lg]f(t) < l/cl
Moreover, the second derivative of f is bounded on [0,1].
(A2) The time variable T, stochastic vector process X and the error € are jointly independent.
(A3) For all non-negative integers v, and v, with v; + v; = 3, the partial derivatives

abl +v2
0Os¥1 01”2

G"(s,1),1<d, 1 <p,

exist and are continuous on [0,1] x [0,1].
(A4) The matrix Xgg satisfies

0 < inf ﬂmin(zoo(l)) < sup Amax (20()([))(00,
1€0.1] 1€(0,1]

where Amin(A) and Am.x (A) are the smallest and largest eigenvalues of a matrix A, respectively.

The boundedness assumption in (A1) and independence of T, X and € in (A2) are common assumptions in functional data analysis
(Li and Hsing, 2010; Yao et al., 2005; Zhang and Wang, 2016). Assumption (A3) requires that the partial derivatives ¢"*™2G%(s, t)
/0810t (11 +v2 = 1) be twice differentiable, which is a standard assumption. Assumption (A4) is another standard assumption in
varying-coefficient models to guarantee the uniqueness of B(t) (Gu and Volgushev, 2019; Huang et al., 2002; Wang et al., 2008).

B. Kernel function and bandwidth. Let g,, = [log(n)> L w?{N;(N; —1)/h%, + Ni(N; — 1)(N; — 2)/hg, + N;(N; — 1)
(Ni — 2)(N; — 4)}]"/2.

(B1) The kernel function K(-) is a symmetric probability density on [—1,1] and
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max{ /0 ' K(s)ds, /) ] s41<(s)ds} < oo.

(B2) There exists 0 < L; < oo, such that |[K(s) —K(t)| < Li|s —t|, for any s,t € [0,1].
(B3) For some 6 > 0, max{E|e![*", E[sup, o 1| X!(t) — ul(t)**’]} < 00,1 =1,...,p, and

ﬁn.uhzcy{logn(n)}‘s/(”")—»om as n—oo.

(B4) max{hg,,,,/h;,}—0, as n—oo and sup, {nmax;w;N;(N; — 1)}{co.

Assumptions (B1) and (B2) are classical assumptions for smoothing methods. Here the Lipschitz continuity condition simplifies the
proof and is satisfied by a rich class of kernel functions, such as the Epanechnikov kernel function K(s) = 3/4(1 —x?)1(|s| < 1). As-
sumptions (B3) and (B4) are standard and entail some restrictions on the bandwidth and moments of X and e to ensure the consistency
of the estimators. They are fairly standard assumptions.

Our first theorem establishes the convergence rate of @ (s, t),v = 0,1 in (4) and (5), respectively. Denote 0°G%(s,t) /ot® = G¥(s,t).

Theorem 3.1. Under (A1) — (A3) and (B1) - (B4), forv = 0,1,

=0, (fc + hg‘”> %)

Theorem 3.1 provides unified convergence rates for both the estimated covariance (v = 0) and partial derivatives (v = 1) with
different kinds of weights w; and generalized time design N;. To better understand the meaning of (7), we consider a special case when
the number N; of repeated measurements are the same for all subjects, i.e., N; = N. Under this setting the weights, for both per-
observation and per-subject scheme, are equal (i.e., w; = 1/{nN(N — 1)}) and we have a more transparent result.

v

0

~dl dl
max su; ay,(s,1) —=—G" (s,
lgd'lgps,té[hg_b.f'fhu,,] o(8:0) or (,7)

Corollary 3.1. Under (A1) — (A3) and (B1) — (B4), if N; = N and w; = 1/{nN(N —1)}, then, forv = 0,1,

~dl ab dl _
T e
Furthermore,
@) if N < o0 and hg, = O({n/log(n)} "/ ®*9) hold, then, for v =0,1,
()'“ n 1
odl g N Yl _ - |.
00 RG]~ {w) ) v

(i) if N/{n/log(n)}}/@+2+9 ¢ for 0 <y < 1,0 < C, < o0, and hg, = O({n/log(n)} Y/ ®+2+4) hold, then, for v = 0,1,

~({sin} ™)

@iii) if N/{n/log(n)}*/®*** 500 and he, = O({n/log(n)} "9 hold, then, forv = 0,1,

‘0({@}m>

The rates (7) in Theorem 3.1 are combinations of estimation variance f, ,/h% , and bias hZ . We observe that if the same bandwidth

v

@l (s,1) - iﬂc‘“ (s,0)

max sup o

19“9’\-,:6 [hG.D_lfll(jp]

s g
max sup a(d)i (s,1) — WG‘”(L 1)

I=disp o [fG01-has]

is used to estimate the covariance and derivatives, i.e., hgo = hg1, it will trigger larger variance for the derivative estimates. This
suggests to estimate the covariance and derivatives separately and to employ larger bandwidths for the derivative estimates. For
example, as shown in (8) of Corollary 3.1, for sparse functional data with a finite number of observations per subject, the bandwidths

heo= O(({n/log(n)}"/®) and hg; = O({n/log(n)}’l/s) lead to the bias-variance trade-off convergence rates O({n/log(n)}’l/B) and

o({n/ log(n)}’l/ *) for the covariances and derivatives estimates, respectively. These two rates are similar to the ones established in
Miiller and Yao (2010) for covariance function and its derivatives but here we went further to pursue cross-covariance functions as
well. We also provide the convergence rates of the estimates when the number of time designs N; increases with the sample size n,

leading to a phase transition in the convergence rates. In setting (ii) of Corrollary 3.1, the rate of derivative estimates can be of any

1/6

order between {n/log(n)}** and {n/log(n)}'/® as N grows with the sample size up to the order {n/log(n)}"/°. Furthermore, when N is

faster than the order {n/log(n)}/°, it attains the fastest convergence rate, i.e., {n/log(n)}*/°. This is substantially different from the

result that the covariate estimates is able to get a root-n rate when the data is very dense (Zhang and Wang, 2016). Whether root-n
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convergence rate is attainable for derivative estimates is still unknown in the existing literature and we believe this discovery is of
independent interest.

Next, we discuss the convergence rates of the coefficient function estimates Bin (6).
Theorem 3.2. Under (A1) — (A4) and (B1) - (B4),

- P
dl I _ Fnl 2 2
lg;ﬁgpsﬂhs’:{ghm]llg O -B"(1| =0, (ﬁ,,,o s P o T hGJ)v ®
where B(t) = (BY(t)),<q1<p: B(t) = (BY(t));24;<, and by = max{hgo,hg1}
() If N; = N < oo,w; = 1/{nN(N —1)}, and hg, = O({n/log(n)} /) hold, then
max  sup |BY(r) - BY(1)| = 0<{L}*ﬁ); (10)

V<A ISPy ey A=) log(n)

(i) If N; = N,w; = 1/{nN(N —1)}, N/{n/log(n)}} "/ @+ _,c for0 <y < 1,0 < C, < o0, and hg, = O({n/log(n)} Y/ %+ hold,
then

max  sup |§dl(t)_3d’(f)|:o({ " }—) an

1A ISP 1y, 1) log(n)

@iii) If N; = N,w; = 1/{nN(N —1)}, N/{n/log(n)} Y ®*¥ - 00 and h¢, = O({n/log(n)} /@), v = 1,2 hold, then

max su B4(p) — BU(¢ :0({ n }—%) (12)
]S’I'[Spr,te[/rm,ll)—h,,,]| ® ( )| log(n)

Since we plug the estimators Sgo(t) and S¢;(t) into B(t) = T01(t)Zod (t) to get the estimator B() = {0 ()00 ()} !, the
convergence rate of B(t) is naturally determined by the rates of Zgo(t) and o1 (t), or the maximum convergence rates of oo(t) and

ot (t). As discussed after Theorem 3.1 and Corollary 3.1, the convergence rates of the estimated derivatives are generally slower than
those of the corresponding covariance estimators. Actually the convergence rates of B hinges on the convergence rates of S (t). For
instance, when optimal bandwidths hgo = O((log(n)/n)"/®) and hg; = O((log(n)/n)"/®) are used, the resulting rate of B is

O((log(n)/n)**) in (10). This is the expected order of convergence for a derivative estimate which is consistent with the rate in (8)
when v = 1. The convergence rates for the other settings (11) and (12) matches with the results in Corollary 3.1.

4. Numerical studies

We now carry out numerical studies to illustrate the finite sample performance of the proposed methods. All simulations were
implemented via the software R (R Core Team, 2021) and the R package fdapace version 0.5.5 (Carroll et al., 2020) is used for the
estimation of mean and covariance functions.

4.1. Simulations

We consider the random process X = (X', X?) with three cases below.
Case 1: The two random processes are

X'(1) = p' (1) + A1 (1) + Asghy (1) and X*(1) = (1) + Bi, (1) + Bahy (1),

where
W (1) = 4t 4 ¢ 09 /002 / (0.1\/27:)7 A1) = 31+ ¢ (707032 / (0‘4\/%), (13)
#1(t) = V2sin(xnt), o (t) = v/2cos(nt), and (A1, A, B1,Bz)" is a Gaussian vector with zero mean and covariance matrix
10 0 1 0.1
SEEEL
01 03 0 1

Case 2: The two random processes are



Table 1

Median and median absolute deviation (in parentheses) of relative integrated squared errors (RISE) of Edl(t), 1 <d,l < 2 under Case 1 - Case 3.

Case 1 Case 2 Case 3
n N=8 N =20 N =30 N =51 N-=38 N =20 N =30 N =51 N-=38 N =20 N =30 N =51
B (t) 100 0.287 0.139 0.083 0.027 0.391 0.258 0.152 0.081 0.498 0.296 0.153 0.083
(0.242) (0.103) (0.052) (0.019) (0.306) (0.211) (0.113) (0.057) (0.341) (0.231) (0.110) (0.062)
200 0.190 0.086 0.038 0.016 0.281 0.132 0.059 0.041 0.348 0.135 0.075 0.036
(0.165) (0.060) (0.027) (0.010) (0.193) (0.122) (0.058) (0.028) (0.265) (0.131) (0.060) (0.033)
B2(t) 100 0.414 0.243 0.189 0.089 0.468 0.334 0.237 0.160 0.536 0.343 0.249 0.157
(0.345) (0.155) (0.138) (0.075) (0.373) (0.248) (0.175) (0.140) (0.377) (0.290) (0.176) (0.143)
200 0.227 0.148 0.074 0.053 0.313 0.196 0.112 0.071 0.355 0.184 0.094 0.082
(0.197) (0.126) (0.075) (0.041) (0.251) (0.133) (0.096) (0.072) (0.259) (0.131) (0.092) (0.075)
B2(t) 100 0.395 0.231 0.173 0.106 0.688 0.581 0.425 0.219 0.695 0.596 0.433 0.230
(0.378) (0.176) (0.141) (0.096) (0.513) (0.381) (0.252) (0.184) (0.550) (0.377) (0.274) (0.189)
200 0.198 0.145 0.077 0.058 0.592 0.413 0.276 0.161 0.616 0.423 0.303 0.173
(0.147) (0.119) (0.073) (0.050) (0.365) (0.221) (0.135) (0.109) (0.350) (0.225) (0.140) (0.111)
B%(t) 100 0.276 0.110 0.066 0.029 0.197 0.105 0.062 0.024 0.218 0.102 0.059 0.029
(0.260) (0.088) (0.055) (0.022) (0.165) (0.080) (0.049) (0.017) (0.176) (0.085) (0.048) (0.017)
200 0.137 0.075 0.033 0.019 0.153 0.061 0.029 0.016 0.127 0.082 0.027 0.018
(0.123) (0.054) (0.030) (0.013) (0.103) (0.045) (0.020) (0.010) (0.105) (0.056) (0.021) (0.012)
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X'(0) = p' (1) + D Andp,(1) and X2(1) = 42 (1) + Y Bugh,, (1),

where the mean functions u' and u® are the same as (13), M =20, ¢y, 1(t) = v2sin(mat), $y,(t) = v2cos(mat) and
(A1,...,Ay,B1,....,By)" is a centered Gaussian vector with cov(Ax,A;) = 58q/k?, cov(By,B;) = 88 /k3,cov(Ax, B) =
e~ (k=1+1)| /var(A)var(By) with 8y = 1 if k = I, otherwise 0.

Case 3: The two random processes are similar to Case 2 except that the number of eigenvalues is M = 50 for each process.

These three cases were designed to study the performance of the proposed method under different numbers of eigenvalues. For each
case, we generated the data {(Ty, Y}, Y?) :i=1,...,m;j=1,...,N;} with

Y, =X[(Ty) + e, 1=1,2.

The sample size n is set to be 100 and 200. The measurement errors efj are independently sampled from a centered Gaussian
distribution with variance 6> = 0.25. We consider the following four settings for the numbers of observations N; and the time points
T; : (i) N; are independently sampled from 2 + Po(6) (Po(&) represents the Poisson distribution with mean £) and Tj are independently
sampled from a uniform distribution on [0,1]. This leads to N = 8. (ii) N; are independently sampled from 10 + Po(10) and Ty are
independently sampled from a uniform distribution on [0,1], resulted in N = 20. (iii) N; are independently sampled from 10 +Po(20)
and Ty,j = 1,...,N; are randomly selected from the grids {(j — 1)/50 : j = 1, ..., 51} without replacement, hence N = 30. (iv) N; = 51
and T; = (j—1)/50 foralli=1,...,nandj =1,...,51.

Settings (i) is for sparse functional data and (ii) pertains to the setting with moderate number of measurements per subject. Setting
(iii) mimics the design of the data application in Section 4.2, and (iv) pertains to the setting of dense and regular functional data.

In the implementation, we used a Gaussian kernel to get the local polynomial estimates. For the settings (i) and (ii) with irregular
time designs (N = 8,20), the bandwidths used to estimate the covariance G'? between X! and X2 are the same as those used to estimate
the covariance functions, G, d = 1, 2, for X! and X2, which are selected by the generalized cross-validation (GCV) method. For setting
(iii) and (iv) with relatively dense and regular design (N = 30,51), add, d =1, 2, are calculated by the sample covariance while we used

2
1

Fig. 1. Median of 200 coefficient function estimates under Case 1 (top row), Case 2 (middle row) and Case 3 (bottom row) for the setting N = 8,n =
100. Solid line: true coefficient function; dashed line: median of function estimates.
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10% of the observed time domain as the bandwidths to get G'2. The bandwidths to estimate the partial derivatives are a constant factor
c times the bandwidths to estimate the corresponding covariance functions, i.e., hg1 = chgo, where the factor c is selected from
[1.5,2.5] empirically.

We performed Q = 200 simulation runs to evaluate the estimation results and evaluate the performance of the gth run by the
relative integrated squared errors (RISE):

’2

1 | ~dl
~dl fo ‘Bq () — B (1)| ar
RISE(B, ) = =
Jo [BA@)| dt
~dl
where BY(d,1= 1,2) are the true coefficient functions. Table 1 reports the median and mean absolute deviations (MAD) of {RISE(B q)
11=1,..,Q}

As expected, the performance of the proposed method, in terms of median and median absolute deviation (MAD), improves as the
sample size or average number of observations per subject increases; and the performance deteriorates as the number of eigenfunctions
increases from 2 in Case 1 to 50 in Case 3.

Fig. 1 presents the median of the 200 estimated coefficient function against the true coefficient functions for Case 1, Case 2 and Case
3 under the sparse setting N = 8 when n = 100, the most challenging setting. Overall, the proposed method is able to capture the shape
of the target functions although the estimated functions are more extreme at the peak and valley values due to the fewer observations
available near the boundary. Given that this is the worst scenario (largest bias) among the four settings, the result is encouraging.

4.2. Case study: cancer death rate and GDP per capita

We apply the proposed method to study the relations between the cancer death rate (number of death per 100,000 individuals) of a
nation/region and its gross domestic product per capita (GDP per capita). The primary interest is to investigate whether and how GDP
per capita affects the cancer death rate over time around the world.

The data, collected annually from 1990 to 2016, is available from https://ourworldindata.org/cancer. We only include observa-
tions for which both GDP per capita and the cancer death rates are recorded. This results in a total 4,724 observations from n = 182
countries or regions whose number of observations ranges from 4 to 27. Fig. 2 shows the logarithm of GDP per capita (left panel) and
the logarithm of cancer death rates (right panel) of five randomly selected regions and the estimated mean functions (solid lines)
among 182 countries/regions. Among these five selected countries/regions and the average estimates, the cancer death rates were
stationary in the 1990s except for Russia, then steadily dropped untill 2016. In contrast, the GDP per capita went up slowly except for
Russia, where the economic shock therapy, a sudden release of price and currency control, was implemented during the 1990s, after
the dissolution of Soviet Union in 1991.

Denoting LGDP(t) and LCDR(t) as the logarithm of GDP per capita and the logarithm of cancer death rates at time t, repectively, we
consider the following dynamic model:

o
W - P
QT / AN
. "--P'\ ..... .= Tn\ — \ _—
] Le=T" " 9L R ~
3o -° @A i P Treal ~
Q < o ———— = IR TR R~
g I = = N
“ -~ /’ - [ e
o ~ e Qo Tt ——
-’ o] —
QQ__ \‘;AI/ _
.
Dg_-;/—// gg_
(D m ]
° e e
_O ’-“';,..p""‘.—"'""‘- o P e T N —— -
g e A AT = o
w
0
™~
o
T T T T T T f T T T T T T
1990 1995 2000 2005 2010 2015 1990 1995 2000 2005 2010 2015
t(years) t(years)

Fig. 2. The logarithm of GDP per capita (left panel) and the logarithm of cancer death rates (right panel) of five randomly selected countries/
regions and the estimated mean functions (solid lines) among 182 countries/regions. Zooming in at year 2015 of the left panel, the six curves from
the top to bottom are Iceland (dotted), Trinidad and Tobago (twodash), Russia (longdash), estimated mean of log GDP (solid), Morocco (dotdash),
and Honduras (dashed) from top to bottom, respectively.
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LGDP (1) ~ B, ()LGDP(1) + By (1)LCDR(r) + INT, (1), (14)
LCDR () = B (t)LGDP(t) 4 B,(f)LCDR(t) + INT(1),

where INT; (t) and INT,(t) are intercept functions. We applied the proposed methods in Section 2 to estimate Bx,k = 1,2, 3, 4. The

covariance functions of LGDP and LCDR are estimated by their sample covariance. The bandwidths are chosen by visual inspection to

be hg o = 0.75 for the estimated covariances between LGDP and LCDR and hg; = 1.6 for the estimated derivatives.

Fig. 3 displays the estimates of the coefficient functions B;,i = 1,2, 3,4. The areas between two dashed lines in each panel are the
95% pointwise confidence intervals (C.I.) obtained from 300 bootstrap samples, where all bandwidths are chosen the same way as
those of the correspondent estimates, i.e., hgo = 0.75 and hg; = 1.6. Since we are interested in the effect of GPD per capita on cancer
death rates, we focus on the function Bs(t). In the figure for B3 (t) (lower left panel of Fig. 3), the estimated function and the 95% C.I. are
consistently negative after 1995. This suggests that LGDP is significantly negatively associated with new cancer death rates after 1995.
This may be due to the comprehensive services to get treatment of cancer patient are generally accessible in higher income countries.
For instance, it reports that more than 80% of children with cancer were cured in high-income countries, but only 15-45% are cured in
many low- and middle-income countries (Lam et al., 2019).

Next, we check the performance of the dynamic model (14) for prediction. We fit the model (14) using the data from year 1990 to

2015, then use the derivatives estimates of LCDR’(t) in t = 2015 to predict the log cancer rate at time t = 2016 for each country by
LEBRi(t) = LCDR;(t-1) + LCDRi(t—l). The mean squared prediction error MSPE = (1 / 182)2}312{L65Ri(t) — LCDR;(t)}?|,_s016 18
1.023 x 1075. We then compare this with two baseline methods, for which we choose conventional varying-coefficient models without

using the derivative information:

(M1) :
(M2) :

LCDR(t) = B;(t — 1)LGDP(r — 1) + By(t — 1)LCDR(t — 1) + INT(r — 1),
LCDR(7) =~ By (t — 1)LCDR( — 1) + INT(r — 1).

The resulting MSPE for (M1) and (M2) are 0.928 x 107> and 1.093 x 1072, respectively. The performance of the proposed dynamic
model is comparable to (M1) but substantially better than (M2). This may not come as a surprise as (M1) carries similar information as

the dynamic model and is in fact the same model, since we used LCDR(t) ~ LCDR(t) — LCDR(t —1). This explains why the prediction
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Fig. 3. Estimates of coefficient functions (solid curves) and 95% pointwise bootstrap confidence band for cancer death rates data.
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errors for (M1) and the dynamic model (14) are similar.

However, prediction based on (M1) only works for regularly recorded data, such as time-series data, where data for all subjects
were collected at regularly spaced time points. In contrast, the dynamic model can be used for irregularly measured functional or
longitudinal data and can make predictions at any future time point t even when there were no data collected near time t for a subject.

5. Conclusions and discussion

In this paper, we use both the information of a component process of a multivariate process and those from other components to
model the dynamic relation of these processes with the derivatives of the selected component. Such an approach provides an inter-

pretable multivariate dynamic model to reveal the relationship among different functional processes. Once an estimate of X (t) is
obtained, we can use it to predict the immediate future values of X(s) for s slightly larger than t by extrapolating X along its tangent at
time t. That is, X(s) ~ X(t) + X (t)(s — ©).

The concurrent model in (1) assumes an instantaneous relationship among the multivariate processes X(t) and their derivatives
X/(t). While this may be true for a process with its own derivative, there may be a delayed relation in time with other processes. For
example, Event A occurs first then leads to event B, hence the derivative for process B at certain time point is more likely to contain the
information of process A at a previous time point. These time lags depict the delayed relationship among processes and will be of
interest to researchers and practitioners. Similar time lags have been discussed in the study of longitudinal data. Schmid (2001) studied
dynamic regression models with lagged covariates. Sentiirk and Miiller (2008) and Sentiirk and Miiller (2010) considered the varying
coefficient model with the response Y depending on a period of the history of the covariate X. The role of derivatives has not been fully
exploited for such purposes, which suggests a direction for future research.

Another limitation of the proposed model is that our focus is primarily on linear modeling of the dynamic mechanism. More
complex dynamic mechanism using a nonlinear differential equation may be needed for other applications. Therefore, it is of interest
to model the dynamics using a nonlinear differential equation:

(X)) (1) =fa(t. X" (1), ... X" (1)) + 2(1), ford =1,...,p, (15)

where f;(-) are unknown functions.

A special case of a nonlinear dynamic model with a univariate process (p = 1) was studied in Verzelen et al. (2012). Their approach
could be extended to densely observed multivariate functional data but not for sparsely observed functional data. The extension to
sparsely observed functional data would be challenging beyond the linear dynamic setting.
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