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ABSTRACT: The ability to synthesize elastomeric materials with n Molecular HI

programmable mechanical properties is vital for advanced soft Model 3‘.}{\{ Mechanical
matter applications. Due to the inherent complexity of hierarchical lnse g gy Mo § Properties
structure—property correlations in brush-like polymer networks, = % N .

the application of conventional theory-based, so-called Human bg §
Intelligence (HI) approaches becomes increasingly difficult. / \ oS v ot "‘7"

Herein we developed a design strategy based on synergistic v N ™ /,3»30\ e

combination of HI and Al tools which allows precise encoding of % M 0?}870:8:,7, deformation
mechanical properties with three architectural parameters: degrees 0 o (AoATY

of polymerization (DP) of network strands, n,, side chains, n,, l Al

backbone spacers between side chains, n, Implementing a

multilayer feedforward artificial neural network (ANN), we took advantage of model-predicted structure—property cross-
correlations between coarse-grained system code including chemistry specific characteristics S = [I, v, b] defined by monomer
projection length ! and excluded volume v, Kuhn length b of bare backbone and side chains, and architecture A = [n,, ng, n.] of
polymer networks and their equilibrium mechanical properties P = [G, ] including the structural shear modulus G and firmness
parameter . The ANN was trained by minimizing the mean-square error with Bayesian regularization to avoid overfitting using a
data set of experimental stress-deformation curves of networks with brush-like strands of poly(n-butyl acrylate), poly(isobutylene),
and poly(dimethylsiloxane) having structural modulus G < 50 kPa and 0.01 < f§ < 0.3. The trained ANN predicts network
mechanical properties with 95% confidence. The developed ANN was implemented for synthesis of model networks with identical
mechanical properties but different chemistries of network strands.

dvanced applications, such as soft robotics and person- and development of materials for microelectronics.”>>°

alized medicine, require elastomers with well-controlled Extensive data mining produces Data Banks comprised of
mechanical properties. To achieve this goal, a recently comprehensive molecular parameters, including the constitu-
developed approach implements a brush-like strand architec- ent atoms, chemical bonds, bond angles, interatomic
ture to encode mechanical properties of elastomers and interactions, and electronic structure. This ab initio approach
gels,l_lz This methodology has allowed the synthesis of is difficult to apply to the design of polymer networks due to
networks with a wide range of softness, strain-stiffening, and their hierarchical organization spanning across length scales
extensibility, which is impossible to realize in conventional from monomers to network mesh size, resulting in emerging

mechanical properties with no direct correlations with the
chemical structure. However, hierarchical structure—property
correlations open a path for the development of a coarse-
grained AI approach, where the chemical specificity is
encrypted in the mesoscopic structural elements such as
number density, contour length, and Kuhn length of network
strands introduced below.

We demonstrate the synergistic interplay of the HI and Al
approaches in the design of polymer networks with targeted

elastomers and gels made by cross-linking linear chains (Figure
1)."7*' However, a broad practical implementation of this
design-by-architecture strategy is hindered by a multiplicity of
structural parameters such as degree of polymerization (DP) of
the brush backbone between cross-links, n,, side chains ny, and
backbone spacer between side chains, ng. This requires further
development of multivariable molecular models of networks
and multiscale computer simulations, collectively called
Human Intelligence (HI), for the elucidation of correlations
between network molecular structure and targeted mechanical

propertie5,12:22—z4 Received: August 10, 2023 “F?}Iarrugw
In contrast with HI, Artificial Intelligence (AI) based Revised:  October 10, 2023
approaches allow correlating the network structure with Accepted:  October 19, 2023

targeted mechanical properties without the need for the Published: October 27, 2023

development of theoretical models. The Al methodology has
been successfully implemented in drug design, protein folding,
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Figure 1. Examples of stress—elongation curves measured upon
uniaxial extension of poly(n-butyl acrylate) (PBA) brush elastomers
(thick black lines) with different architectures of network strands [n,,
ny n,] characterized by the degree of polymerization of the brush
backbone between cross-links, n,, side chains n,, and backbone spacer
between side chains, n,. Red lines show the best fit to function 6,,,,.(1)
(eq 1), which shape is described by the structural shear modulus G
and strain-stiffening parameter f8. The values of the fitting parameters
[G,f] for shown data sets from left to right are [46.97 kPa, 0.108],
[27.43 kPa, 0.057], [15.76 kPa, 0.031], [2.48 kPa, 0.097], and [0.65
kPa, 0.072]. For all data sets, R? values are better than 0.995 and
errors in G and f are less than 2%.

mechanical properties, by considering one of the basic network
topologies: covalently cross-linked unentangled brush-like
strands (Figure 2).">*! Their nonlinear elastic response to
uniaxial extension at a constant volume is described by the
following equation of state***>**

Oume(4) = (47 = /1_‘)% 1+ 2(1 - M)_

(1
relating true stress with the sample elongation ratio A = L/L, >
1, describing deformation from initial length, L, to length, L.
The shape of the stress—strain curve is defined by two
parameters: the structural shear modulus, G, accounting for the

network topology and strand architecture, and the strain-
stiffening parameter, f, characterizing the finite extensibility of
network strands manifested in divergence of stress at finite A.

HI and AI have the same goal: predict correlations between
mechanical properties P = [G, f] and network structure,
comprised of chemistry-specific characteristics S = [I, v, b]
(monomer projection length [ on the end-to-end distance in all
trans (zigzag) conformation and excluded volume v (or
number density p = v'), the Kuhn length b of the bare
backbone and side chains) and network architecture A = [n,,
ng ] (Figure 2). In the HI approach, different conformational
regimes of brush strands are analyzed to derive analytical
expressions for G and S in terms of the S and A
descriptors.'»****313* This allows extrapolation of the
established P(S,A) correlations as design rules to systems
that were not previously studied. However, HI activities are
time-consuming, rely on a deep understanding of polymer
physics, and require recalibration of P(S, A) correlations each
time when the chemistry of brush strands (S descriptors) is
changed.

In contrast, the coarse-grained Al approach does not involve
any theoretical analysis of the strands’ conformational states
and structure—property correlations. It utilizes a multilayer
feedforward artificial neural network (ANN)™ to discover
hidden P(S,A) correlations without any knowledge of
analytical expressions for macroscopic properties G and f in
terms of § and A descriptors. Unlike the conventional Al
methods, the coarse-grained approach does not rely on
submolecular descriptors (atoms, bonds, angles, etc.) by taking
advantage of the HI-established universality/hierarchy of
structure—property correlations. This allows for predicting
network architecture for a data set of only 73 brush networks
with 95% accuracy, as shown below.

We represent backbones of brush-like network strands as
semiflexible chains with the effective Kuhn length by due to
steric repulsion between side chains, maximum elongation
length R, = n,] and their number density p, = ¢/vn, that are
defined by the chemical S = [/, v, b] and architectural A = [n,,
ny n,] descriptors (Figure 2). The factor ¢ = ny/(ng + ny)
describes the dilution of the stress-supporting strands by
grafting side chains with DP = n separated by n, backbone
repeat units (Figure 2), where ¢ = 1 corresponds to linear
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Figure 2. Workflow of HI and AI network design encoded by monomer projection length I on the end-to-end distance in all trans (zigzag)
conformation, excluded volume v, and Kuhn length b of bare backbone and side chains, and network architecture A = [n,, g, n.]. The network
model is defined by the length of the fully extended backbone, R,,,,, effective backbone Kuhn length due to interactions between side chains, by,

and number density, p,, of network strands.
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chain networks with n, = 0. In this coarse-grained
representation, the brush strands with the degree of polymer-
ization of the backbone n, between cross-links are charac-
terized by an effective degree of polymerization (number of the
effective Kuhn segments per network strand)

Rmax

bx

nl_

-1 x
bK

a

B ®

This description provides molecular interpretation of the
strain-stiffening parameter g

(Ry) _ a[l _ %[1 - e@(‘%)]) 3)

p=-""
max
which quantifies by how much a network strand can be
stretched from its initial state with the mean-square end-to-end
distance (R?,) to its fully extended state. For known /3, we solve
eq 3 to obtain @ and thus determine the number of Kuhn
segments per network strand.

For networks of semiflexible strands, the structural shear
modulus is a product of the network topology coeflicient
(Ciop), number density of stress-supporting strands (p,), and
their average elastic energy in a network preparation state in
terms of the thermal energy kT,

(Rin)
T

= kBTCmP%ﬂa_l

K™ max x

G=C

i @
The coefficient Cy,, is determined by cross-link functionality,
fractions of dangling ends, and loops. The dangling ends
reduce the density of stress supporting strands by n,-dependent
factor in C, = Cy(1 = nx/NaPP), where N, is an apparent DP
of the precursor chains and Cy is a numerical coefficient
accounting for cross-link functionality and a loop effect. This
results in a relationship

Ga _ a

Bo  n,

—c

(%)
reflecting partitioning of monomers between stress supporting
and stress-free network strands, which was confirmed by
experiments and computer simulations.”>*"** Numerical
coefficients a = kzTCy/v and ¢ = kBTCﬂ/(vNaPP) are
determined by the selection of the polymerization scheme
and specific chemistry of the network strands and are obtained
by fitting experimental data. Note that n, is typically taken
from the monomer/cross-linker feed ratios, which is different
from an actual DP value by a multiplicative constant.

The number of Kuhn segments per network strand, @, is a
key parameter, which defines both G and f (eqs 3 and 4) and
controls the nonlinear response of the network strands (eq 1).
For brush networks, the Kuhn length by depends on a
particular conformational regime in the diagram of states
(Figure 3).>%%” For combs the weak steric repulsion between
loosely grafted side chains is not sufficient to stiffen brush
backbone such that by ~ b (the bare backbone Kuhn length)
and a = f. In bottlebrushes with densely grafted side chains, by
depends on the side chain length and grafting density. For
example, in the stretched backbone (SBB) regime, we obtain
1 ¢!

pl3/2b1/2 nslc/Zq)* (6)

where ®@* =~ 0.7 corresponds to crossover between comb and
bottlebrush regimes determined in computer simulations®**’
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Figure 3. Diagram of states of different conformation regimes of
bottlebrush and comb strands. SBB, stretched backbone subregime;
SSC, stretched side chain subregime; and RSC, rod-like side chain
subregime. The crossover boundaries between regimes are given by
@' = p(b])**n/2®* (Comb/SBB), ¢! = pbPn % (SBB/SSC),
and @' = pPnl®* (SSC/RSC). The crossover boundaries are
calculated by setting the value of the crowding parameter ®* = 0.7
obtained in computer simulations.***” The lower boundary (solid
red) for the forbidden region ¢~ = 1 + n,, was calculated with n, =1
Kuhn lengths in different regimes are given by the following
-1
bx = b(Comb), by = /)13/;b1,2n7;2¢* (SBB), and

be & 1/ZLII/Z((pfl/CD*)I/Z (SSC). The following set
P

~

equations:

of parameters

was used for diagram calculations: p~' = v = 0.195 nm?, I = 0.255 nm,
b =1.79 nm.

and used in construction of diagram of states (Figure 3). Thus,
using eq 6 we can write down

1/2
a = C,/ngn)!

(7)
where C, is a constant depending on the polymer specific
chemistry. Equations 3, S, and 7 provide relationships between
macroscopic network properties described by P = [G, f3] and
brush strand chemistry S = [/, v, b] and architecture A = [n,
ny n,]. These equations define a line in 3D space [y, ngy, n,],
which corresponds to a particular G and f values adding
flexibility in selection of strand molecular architecture. This
approach was implemented to design of brush networks with
programmable mechanical properties using poly(n-butyl
acrylate) (PBA), poly(isobutylene) (PIB), and poly-
(dimethylsiloxane) (PDMS) polymers as building
blocks.'>*"** However, these HI-determined structure—
property correlations require knowledge of the network
parameters [a, ¢, C,], which should be obtained each time
the brush chemistry and network architecture are changed.
The established relationships between the network archi-
tecture and its deformation response indicate that, with a large
enough data set, we should be able to use an Al-based
approach to predict network architectures with desired
properties and vice versa. For our data set of 73 brush
networks of poly(n-butyl acrylate) (PBA), golyisobutylene
(PIB), and poly(dimethylsiloxane) (PDMS),"**"** we use a
multilayer feedforward artificial neural networks (ANN) with
Bayesian regularization™ to find relationships between a set of
n input variables i; (input n-dimensional vector I with
components i;) and a set of corresponding k output (target)
variables ¢, (output k-dimensional vector T with components

j
t]) in the following form>>*®

=1 + ¢ (8)

https://doi.org/10.1021/acsmacrolett.3c00479
ACS Macro Lett. 2023, 12, 1510-1516


https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00479?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00479?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00479?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00479?fig=fig3&ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://doi.org/10.1021/acsmacrolett.3c00479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Macro Letters

pubs.acs.org/macroletters

where f(I) is the unknown function and ¢; is the Gaussian noise
representing the experimental errors. ANN training involves

minimization of the sum of squared residuals

k
Ep = Z (tj -
j=1

where t; are the known output values and est; are the values
estimated by the ANN. Minimization of the objective function
in eq 9 was performed using the Levenberg—Marquardt
optimization method.”” To avoid overfitting in small data sets
containing exgerlmental errors, we implemented Bayesian
regularization. ThlS was done by adding an extra term to

the objective function®

estj)2

)

F = yEg + 0Ey (10)
where Ey is the sum of squared ANN weights. The parameters
of the objective function y and ¢ are initially set to 0 and 1
respectively and then updated at each Levenberg—Marquardt
step. The program for ANN-based data analysis was written in
MATLAB using built-in ANN functions, Levenberg—Mar-
quardt optimization, and Bayesian regularization.

The input layer is represented by five variables (i; Figure
4a). In particular, we reduced the structural S = [I, v, b] and
architectural A = [ng, Mg n,] sets describing a network to a five-
dimensional input vector
n,l

X

b (11)

b v n.l

SC

l) 13) (p) b

I=

)

This selection of the input vector components is rationalized
by the fact that the polymer properties are characterized by
chain rigidity described by the number of Kuhn segments per
side chain and brush backbone rather than their chemical DPs
[n, n.].*' Furthermore, brush diagram of states is a universal
function of ¢, where boundaries between different regimes
(Figure 3) and corresponding effective Kuhn lengths of brush
strands renormalized by repulsion between side chains (eq 6)
are expressed in terms of b/l and v/P, brush composmon @,
and the number of Kuhn segments per 51de chain n,l/b*® using
chemistry specific set of S = [I, v, b].**

The input layer is followed by two hidden layers consisting
of four neurons each (Figure 4a). The number of neurons in
the hidden layers was determined by using preliminary trial
and error tests to provide the desired performance without
overfitting. For example, an increase in the number of hidden
layers resulted in data overfitting with improved performance
on the training set but poor generalization performance. Each
neuron in the hidden layers performs a weighted summation of
the inputs prior to activation, which is then passed to a
nonlinear activation function.

The two-dimensional output vector describing mechanical
properties of the network has components

Gv
B’ ﬂ} (12)

We use Gv/f to eliminate the dependence of G on f and
monomer packing density (eq 4). This allows us to directly
correlate the mechanical properties with the strand rigidity and
network architecture. It is also possible to normalize the
structural modulus by kpT thus using a monomer-type specific
modulus, G, = kgT/v, as a normalization factor. However, this

m
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Figure 4. (a) Schematic representation of the neural network used for
brush networks. Results of the ANN for (b) normalized structural
modulus Gv/f and (c) firmness parameter f5. The following sets of
structural parameters are used in calculations: PBA (v =0.195 nm?, | =
0.255 nm, b = 1.79 nm); PIB (v = 0.111 nm? [ = 0.255 nm, b = 1.2
nm); PDMS (v = 0.127 nm® [ = 0.3 nm, b = 1.13 nm).*

is not necessary since measurements are conducted at a fixed
(e.g, room) temperature.

A data set is composed of I and T vectors of brush-like
networks with systematically varied S and A descriptors along
with the corresponding G and f measured experimentally.
Before network training runs, the data set is randomly divided
into three subsets: the training subset, the validation subset,
and the test subset. The training set is used for computing the
network weights and biases by the minimization of the
objective function. The validation subset is used for
monitoring error during the training process. Normally both

https://doi.org/10.1021/acsmacrolett.3c00479
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training and validation errors decrease at the beginning of the
network training. However, at the later stages, the error for the
validation set may start rising, even though the error for the
training set continues to decrease (network overfitting). To
avoid overﬁtting, a training run stops when the minimum error
is reached for the validation set. The test subset is excluded
from the network training and validation data sets. Instead, it is
used to calculate the error after the training is complete to
determine the network generalization capability. The percent-
age of the training, validation, and testing data is 80%, 10%,
and 10%, respectively.

Each time a neural network is trained, the output obtained
from each run can result in a different solution mainly due to
(a) different initial weights and bias values and (b) different
ways of data splitting into training, validation, and test sets (or
into training and testing). As a result, function approximation
using the same neural network architectures trained on the
same data set can produce different outputs for the same input
because it converges to different local minima. To avoid local
minima convergence and eliminate spurious effects caused by
random starting values, we trained multiple ANNs. In total, we
performed two sets of 400 simulation runs of random
partitioning of the data between training, validation and
verification data sets. For the best network, we achieved >95%
accuracy in correlation between measured and predicted values
of T vector components (Figure 4b,c). It appears that the
ANN provides a better prediction of the strain-stiffening
parameter f compared to G.

Finally, to test ANN we predict different network structures
with the nearly same stress—elongation curves but synthesized
with either different monomers or different architectures, i.e.,
different S and A descriptors, respectively. For obtaining
specific values of input vector I (eq 11), corresponding to G =
5.9 + 0.2 kPaand = 0.15 + 0.01, we performed a grid search
in a 3D space described by [n, ng, n,] (Figure Sa). The 3D
map (plot) provides different sets of [n, n, n,] for PBA
networks with the G and f within 5% from the desired value.
To validate these predictions, we synthesized PBA networks
(Supporting Information) with different [n, 1, n,] combina-
tions yet very similar deformation responses (Figure Sb). Such
maps can be created for any given chemical composition and
targeted mechanical properties. By sensibly adjusting [n,, n
n,], we also synthesized brush networks with PIB, PBA and
PDMS side chains (Supporting Information) that show nearly
identical stress—strain curves (Figure Sc).

We illustrated synergistic implementation of the HI- and Al-
based designs of brush-like networks with programmable
mechanical properties. The HI approach relies on an in-depth
analysis of conformational regimes and network topologies
(Figure 3), and synthesis of the network library to obtain
numerical coeflicients connecting S, A sets with network
mechanical characteristics described by G and f (eqgs 3, S, and
7). HI allows extrapolation of the network design rules outside
of the explored chemistries and architectures even for small
data sets. However, the application of HI tools becomes
increasingly limited for complex network architectures with
hierarchically organized structure—property correlations.

Conventional Al approaches to materials design, while
bypassing theoretical analysis, usually require large data sets,
including atomic and molecular details. This complicates the
design process to achieve the required predictive power. Here
we showed that judicious selection of the input parameters and
implementation of the ANN with Bayesian regularization, one
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Figure 5. Implementation of ANN for the synthesis of mechanically
similar networks with different chemistries and architectures. (a)
Possible [n,, fy, n,] combinations of PBA elastomers (v = 0.195 nm?,
[=0.255 nm, b = 1.79 nm) with G & 5.9 + 0.2 kPa and f = 0.15 +
0.01. Numbers 1 and 2 correspond to the samples in (b). (b) Nearly
identical stress—elongation curves with G & 6.0 kPa and f = 0.15 of
two PBA elastomers with different [n, ng, n,] codes as indicated and
(c) Architectural codes [ny, n, n,] of chemically dissimilar (PIB,
PBA, and PDMS) brush elastomers were adjusted to show nearly
identical deformation responses characterized by G = 10 kPa and f§ =
0.07.

could use a relatively small data set of 73 networks to achieve a
successful design of network architectures with programmed
mechanical properties (Figure Sb,c). The unique ANN
capability of predicting different network structures with
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similar mechanical properties provides multiple choices for
polymer synthesis as well as product optimization in terms of
safety, application limitations, and stability. The impact of Al
becomes even more evident in the design of brush-like
networks with mixed side chains™ and brush copolymer
networks,”'"**7* in which the number of the structural
parameters increases exponentially to be analyzed by HI tools
in the entire parameter space. Implementation of a recently
developed network forensic approach to network analysis*’
should allow for a better selection and quality verification of
the input data for Al training.
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