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Investigating Trust in Human-AI Collaboration for a Speech-Based Data Analytics 
Task

Abdullah Aman Tutula, Ehsanul Haque Nirjhara, and Theodora Chasparib 

aTexas A&M University, College Station, TX, USA; bUniversity of Colorado Boulder, Boulder, CO, USA 

ABSTRACT 
Complex real-world problems can benefit from the collaboration between humans and artificial 
intelligence (AI) to achieve reliable decision-making. We investigate trust in a human-in-the-loop 
decision-making task, in which participants with background on psychological sciences collaborate 
with an explainable AI system for estimating one’s anxiety level from speech. The AI system relies 
on the explainable boosting machine (EBM) model which takes prosodic features as the input and 
estimates the anxiety level. Trust in AI is quantified via self-reported (i.e., administered via a ques
tionnaire) and behavioral (i.e., computed as user-AI agreement) measures, which are positively cor
related with each other. Results indicate that humans and AI depict differences in performance 
depending on the characteristics of the specific case under review. Overall, human annotators’ 
trust in the AI increases over time, with momentary decreases after the AI partner makes an error. 
Annotators further differ in terms of appropriate trust calibration in the AI system, with some 
annotators over-trusting and some under-trusting the system. Personality characteristics (i.e., 
agreeableness, conscientiousness) and overall propensity to trust machines further affect the level 
of trust in the AI system, with these findings approaching statistical significance. Results from this 
work will lead to a better understanding of human-AI collaboration and will guide the design of 
AI algorithms toward supporting better calibration of user trust.
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1. Introduction

Artificial intelligence (AI) algorithms have been heralded as 
promising tools for supporting decision-making due to their 
ability to process large data samples and capture fine-grain 
patterns in data that are not easily discernible by a human 
observer (Ezer et al., 2019). Recently, AI algorithms have 
become more prevalent in decision-making tasks that are 
complex, sensitive, and carry significant consequences, such 
as the ones pertaining to health, education, command and 
control, and commerce (Phillips-Wren, 2012). Certain com
plex tasks within these domains require a collaborative 
approach, as neither humans nor AI agents can achieve suc
cess independently. AI is capable of finding patterns from 
vast amounts of data beyond human capacity, but struggles 
with cases deviating from learned patterns (D’Amour et al., 
2022). Conversely, humans possess unique skills such as 
intuition, inventiveness, and common sense, which are 
inherently more challenging for current AI systems 
(Hemmer et al., 2021). In this context, collaborative deci
sion-making between humans and AI involves the two 
leveraging their complementary expertise and working side- 
by-side to solve complex decision-making tasks that cannot 
be perfectly solved by either party.

In order for users to understand when they should trust 
the AI and when they should rely on their judgment for 
particular decisions, proper trust calibration in human-AI 

teaming is crucial. Trust of a human agent in an automated 
agent can be defined as the human agent’s attitude that the 
automated agent will help them achieve their goal in a situ
ation characterized by uncertainty and vulnerability (Lee & 
See, 2004). The notion of trust in a human-AI environment 
differs from that of automation. Since automation is charac
terized by static rules, trust in automation is often associated 
with the clarity and predictability of its actions (e.g., users 
may understand the mechanisms and logic behind a robot’s 
operations) (Kaplan et al., 2023). On the contrary, trust in 
AI often hinges on explainability and involves high uncer
tainty, especially as AI systems become more complex. In 
the context of human-AI teaming, trust can be defined as 
the “human agent’s willingness to rely on the AI system’s 
output driven upon positive expectations that the AI system 
is accurate and beneficial to the focal task” (Gillespie et al., 
2023). In order for the AI agent to become a trusted team
mate, it needs to be flexible and adaptive to the human part
ner and the environment in which it operates. At the same 
time, humans should be able to understand the capacity of 
the AI agent and calibrate their trust to the abilities and per
formance of the system (Bansal et al., 2019; Lee & See, 
2004). Miscalibrated trust may lead to wrongful decisions 
with severe consequences (Kaindl & Svetinovic, 2019; 
Okamura & Yamada, 2018; Parasuraman & Riley, 1997). 
Human teammates who over-trust the AI tend to 
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overestimate the ability of the AI agent to solve the problem, 
therefore they agree with the decision of the AI system even 
when it is wrong (Payne et al., 2008). On the contrary, 
human teammates who under-trust the AI agent tend to 
underestimate its capacity, thus disagreeing with the AI 
decision even though it is correct. Trust calibration is par
ticularly important in high-stake complex domains which 
tend to be bounded by legal or ethical constraints, thus, 
highly benefiting by the complementary skills of the human 
and the AI agent (Bansal et al., 2021; Jarrahi, 2018).

Trust is a multifaceted concept that encompasses both 
cognitive and affective dimensions, making its measurement 
a challenging yet critical aspect of collaborative decision- 
making systems. Measures of trust vary across disciplines 
and are highly dependent on the context of the application. 
Early studies have measured trust via self-reports, which 
have been administered once at the end of the collaborative 
task, pre/post-task, multiple times at the end of each trial, or 
over pre-specified intervals (Alarcon et al., 2018; Schaefer, 
2013). Given the subjectivity of self-reported measures, other 
work has used behavioral measures to infer trust, such as 
the extent to which a human user agrees with the automated 
system, depicts over-confidence to the automation, or 
underuses the automation (Drnec et al., 2016). With the 
advancement of sensor capabilities that continuously collect 
multimodal data, recent work has further introduced signal- 
based measures of trust. These include neural measures of 
action monitoring and error awareness that are captured via 
electroencephalogram signals (de Visser et al., 2018; Dong 
et al., 2015), as well as acoustic and linguistic markers that 
capture characteristics of trusted speech (Chen et al., 2020; 
Levitan et al., 2015).

Prior work on human trust in automation has demon
strated that trust depends on individual differences, context
ual factors, and system characteristics (Lee & See, 2004; Siau 
& Wang, 2018). Particularly, individual differences, such as 
one’s overall trust propensity, personality, and task expertise, 
can influence the initial levels of trust as well as the way 
trust evolves over time while the user is interacting with the 
autonomous system (B€ockle et al., 2021; Hoff & Bashir, 
2015; M€uller et al., 2019). Contextual factors that impact 
trust in automation include social norms and expectations 
regarding the system, as well as affective and cognitive varia
bles that describe the state of the user, such as fatigue, 
mood, and perceived cognitive demand (Merritt, 2011). In 
terms of system characteristics, prior work has explored the 
competence of a system and its ability to explain its decision 
as additional factors of trust (Cheng et al., 2019; Lai & Tan, 
2019; Okamura & Yamada, 2018; Yang et al., 2020). Trust 
in AI may vary over time based on the system’s perform
ance on specific tasks. Positive experiences and successful 
outcomes can bolster trust, while errors or suboptimal 
results may lead to fluctuations in trust levels (Schaefer 
et al., 2014). Explainable AI (XAI) can play a crucial role in 
assisting human users to properly calibrate their trust in AI 
since it explains the predictions in a way that is comprehen
sible by humans. Despite many state-of-the-art AI models 
depicting equivalent or even better performance than 

humans in complex tasks, a significant number of these 
operate as blackbox models, leaving users unable to under
stand the reason why the AI model makes a particular deci
sion. XAI focuses on opening these blackbox models and 
unveiling their reasoning. This can be often achieved via 
providing global explanations that offer a broad comprehen
sion of a model’s learned concepts (Guyon & Elisseeff, 2003; 
Kim et al., 2018) and local explanations that seek to explain 
the logic behind a specific AI decision (Baehrens et al., 
2010; Ribeiro et al., 2016). Leveraging XAI with appropriate 
interface design in collaborative human-AI decision-making 
tasks can potentially contribute to trust calibration (Naiseh 
et al., 2021, 2023). While there has been an extensive 
research on how user characteristics and system factors 
affect trust in automated systems such as robotic agents and 
autonomous vehicles (Bawack et al., 2021; Pop et al., 2015), 
the effect of such factors on human trust in AI is still 
under-explored (Tutul et al., 2021).

Here, we investigate a human-in-the-loop decision mak
ing task in which human annotators and AI work side-by- 
side to estimate one’s anxiety levels from speech. Human 
annotators with a background in psychology collaborated 
with an explainable AI algorithm to provide a final decision 
on a speaker’s level of anxiety. We measure trust in AI using 
self-reported (i.e., administered via a questionnaire) and 
behavioral (i.e., the extent to which the annotator agrees 
with the AI) measures. We aim to answer the following 
research questions: RQ1: Do humans and AI depict differen
ces in performance in the considered anxiety estimation task? 
As humans and AI collaborate to estimate anxiety levels 
from speech, it raises intriguing questions about the unique 
decision-making process of each party in the considered 
task. Human annotators may perform better than the AI in 
cases where they leverage contextual understanding and con
sider behavioral nuances, while they might perform worse 
when they need to process low-level acoustic measures. 
Answering this question can help us to unravel the unique 
contributions and limitations of both human and AI agents 
in a task of significant societal impact. RQ2: What is the 
association between behavioral and self-reported measures of 
trust in the considered human-AI collaboration task? Given 
the inherent complexity of trust dynamics in human-AI 
interactions, understanding the relationship between behav
ioral and self-reported measures of trust is crucial for gain
ing insights into the alignment or potential disparities 
between subjective perceptions and objective behaviors. 
RQ3: To what extent is human trust calibrated with the cap
acity of the AI system? Trust is foundational in fostering 
user acceptance and effective collaboration. However, for 
trust to be effective, it needs to be calibrated accurately with 
the AI system’s capabilities. Understanding the extent to 
which trust aligns with the actual capacity of the AI system 
is crucial for developing effective collaborative environments 
for trustworthy decision-making. RQ4: To what extent does 
trust in AI vary over time? Understanding how trust evolves 
over time is crucial for designing adaptive AI systems that 
can respond to changing user perceptions and requirements. 
Users may experience changes in trust as they interact more 
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with the AI system. RQ5: To what extent is trust in AI 
affected by the characteristics of the system and the traits of 
the human annotator? The motivation behind this research 
question arises from the recognition that trust in AI is a 
nuanced construct influenced by various factors. 
Understanding the multifaceted relationship between trust, 
system attributes, and human factors in the context of 
human-AI collaboration provides valuable insights for 
designing AI systems that are not only technically proficient 
but also align with user expectations and preferences.

Results indicate that humans and AI depict differences in 
performance depending on the nature of the case that is 
being reviewed. Behavioral and self-reported measures of 
trust in AI are further positively correlated. The levels of 
trust in AI, as well as the relation between trust in AI and 
AI capacity broadly differ among people with most users 
over-trusting the AI. Human annotators overall depict 
increased trust in the AI system over time, with momentary 
decreases in trust after the AI makes an error. The annota
tors’ characteristics further moderate this association; partic
ipants with high propensity to trust machines and more 
agreeableness characteristics depict high trust in AI, whereas 
conscientious annotators depict low trust in the AI system, 
which has an increasing trend over time. However, these 
associations only approached statistical significance. 
Implications of these findings on ways to achieve effective 
human-AI collaboration for decision-making are discussed.

2. Prior work

With the rise of AI, both academics and practitioners have 
shown a growing interest in human-AI interaction, espe
cially for addressing inherently challenging tasks that cannot 
be adequately solved by either of the two parties. Human 
trust in human-AI teaming is multifaceted and shaped by 
various factors such as the perceived reliability and perform
ance of the AI, the transparency of its decision-making pro
cess, and the user’s familiarity and experience with the 
technology (Glikson & Woolley, 2020). Moreover, trust is 
not a static attribute and can evolve over time based on user 
interactions, feedback, and the system’s ability to adapt to 
different situations (Ezer et al., 2019). Recent studies have 
delved into human trust in AI during cognitively demanding 
tasks, utilizing both the user’s adherence to AI decisions and 
self-reported measures from questionnaires. These investiga
tions have explored the impact of diverse explanations, 
interfaces, visual representations, and spatial layouts on user 
trust in AI across tasks such as age estimation, medical diag
nosis, university admissions, and identifying deceptive hotel 
reviews. Below we outline some of these studies and the 
main findings.

Chu et al. (2020) conducted a human-in-the-loop experi
ment where users were asked to predict the age of a person 
based on their image after viewing the decision of an AI 
model. Trust was quantified as the absolute difference 
between the user’s and the model’s estimate of a person’s 
age. Users were also presented different types of explana
tions by the AI system, which were not found to 

significantly affect human trust in AI, even after controlling 
for the quality of the explanation. Alam and Mueller (2021) 
further examined the effect of different explanations on trust 
and satisfaction with the AI in a medical diagnosis task. As 
part of the study, 80 undergraduate students who acted as 
patients were asked to provide self-reports of perceived trust 
level to the AI and user satisfaction. Participants were more 
satisfied and trusted the AI more when the AI system 
explained the reason for making a particular diagnosis com
pared to when it explained the general diagnosis process or 
did not provide any explanation at all. Zhang et al. (2020) 
explored an AI-assisted decision making framework for an 
income prediction task, in which the human users and the 
AI system depicted comparable performance (i.e., 65% and 
75% accuracy, respectively). Participants trusted the AI pre
diction more when the confidence level of the AI was high 
(i.e., above 80%). However, the confidence interval of the AI 
system did not appear to affect the user trust. Lundberg and 
Lee (2017) further assessed the effect of local explanations 
(i.e., explanations for a specific sample) on human trust and 
found that such explanations do not significantly affect trust 
in AI. Yang et al. (2020) explored the effect of visual repre
sentations and spatial layouts on users’ trust in AI for a leaf 
classification task, with visual representations having a 
greater impact on users’ trust. Cheng et al. (2019) ran an 
online experiment in which 199 people used several explan
ation interfaces provided by the AI algorithm for deciding 
university admissions. Interactive and white-box interfaces 
improved users’ comprehension of the algorithm more than 
static and black-box interfaces. Lai and Tan (2019) analyzed 
how showing different explanations and accuracy statements 
to the user can impact human trust in AI for the task of 
identifying deceptive hotel reviews. They found that users 
trust the instances that were correctly predicted by the AI 
more than incorrect ones. In addition, they showed that 
both feature-based and example-based explanations increase 
trust in AI. de Brito Duarte et al. (2023) showed that AI 
trust in recommendation system improves when AI explana
tions along with feature importance and counterfactual 
explanations are provided to the users. Communicating the 
AI’s accuracy to the user, irrespective of the specific numer
ical value, also enhanced the user’s trust in the AI. 
Collectively, these studies provide insights into the role of 
explanations, visual representations, and system confidence 
across diverse application domains. While the impact of AI 
explanations on human trust has not been consistently 
observed, certain studies highlight benefits in trust calibra
tion through the provision of visual representations and 
interactive interfaces. Interestingly, system confidence did 
not emerge as a consistent contributor to human trust, but 
knowledge regarding the system’s accuracy appeared to 
enhance trust among users.

In addition to system-based factors, individual character
istics can also affect trust in automation. Bawack et al. 
(2021) employed self-reports to quantify user trust in AI via 
an online survey of 224 U.S. based voice shoppers and found 
that agreeableness and conscientiousness are positively cor
related with trust, while neuroticism and extroversion are 

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 3



not correlated with trust. Chien et al. (2016) analyzed the 
effect of personality characteristics on self-reported trust in 
automation for 120 participants residing in U.S., Turkey, 
and Taiwan population. Results suggested a significant posi
tive correlation between agreeableness and initial trust in AI 
and also, between conscientiousness and initial trust in AI. 
However, no significant correlation was found between trust 
and other personality traits, such as neuroticism, openness, 
and extroversion. Kraus et al. (2020) analyzed the relation 
between the personality factors and trust in automated driv
ing. The results indicate that neurotic people hold lower 
trust in automated driving, while agreeable and extrovert 
people depict more trust in automated driving. No associ
ation was found between trust and user openness or con
scientiousness. In their study, Yang et al. (2020) did not find 
an association between trust and users’ expertise, familiarity 
with the considered task, and overall propensity to trust. 
However, other studies indicate that users with high propen
sity to trust machines show higher initial trust in automa
tion compared to their counterparts. This high initial trust 
declines to a larger extent when automation errors are found 
(Ebert et al., 2009; Madhavan et al., 2006; Merritt & Ilgen, 
2008).

In terms of exploring the association between self- 
reported trust and behavioral trust, Sharan and Romano 
(2020) conducted a study in which 171 volunteers were 
asked to play a card game assisted by an AI system. Trust 
ratings were measured via a questionnaire administered at 
the end of the task and behavioral trust concordance was 
measured as the total number of responses that were same 
as the AI suggestion. Findings suggest a significant low-to- 
moderate positive association between self-reported trust 
and behavioral trust (i.e., r ¼ 0.22, p < 0.05). Sofianos (2022) 
found that self-reported trust measures were significantly 
related with behavioral trust in a trust game played by two 
human participants. This association was moderated by 
one’s perception of the partner’s intentions. Ahmed and 
Salas (2009) also identified associations between behavioral 
and self-reported trust measures. However, these associa
tions were influenced by the cultural background of the par
ticipants. Conversely, there is evidence that indicates an 
incongruent relationship between the two types of trust. 
Kulms and Kopp (2019) evaluated trust in a cooperative 
game that requires users to perform a joint activity with a 
computer. Results indicated that varying the degree of 
anthropomorphism of the agent from computer-like to 
human-like did not impact behavioral trust, but increased 
self-reported trust levels. These studies underscore the intri
cate dynamics between self-reported and behavioral trust, 
emphasizing the need for a nuanced understanding of their 
interplay in human-AI interactions.

This paper presents the following contributions in rela
tion to prior work: (1) While prior studies examining trust 
in AI have focused on relatively objective vision-based task 
(Lai & Tan, 2019; Yang et al., 2020), this work considers a 
more subjective task of anxiety estimation based on speech; 
(2) This work examines users who possess a foundational 
understanding of the subject matter and hold domain 

knowledge in life science, as opposed to employing “naive” 
annotators recruited from the general population, such as 
annotators from Amazon Turk. This gives us a better sense 
on how users with more direct background with life science 
interpret the XAI decisions for anxiety detection that 
requires users’ perception on human psychology. 
Particularly when the AI is intended for decision-making in 
critical areas such as health and education, studying trust in 
AI for annotators who hold some domain knowledge in life 
science can be more appropriate compared to utilizing naive 
annotators, since it can more closely approximate practical 
settings where AI can be deployed; (3) This study examines 
how AI errors affect trust in AI over time, which has been 
studied before in automation (Ebert et al., 2009; Madhavan 
et al., 2006; Merritt & Ilgen, 2008), but not adequately 
explored before for XAI and perceptual tasks with a lot of 
uncertainty. Understanding how trust evolves over time and 
corresponding factors is crucial for designing systems that 
can effectively support users across different phases of inter
action; and (4) We investigated the extent to which humans 
and AI systems rely on the same or different acoustic meas
ures of speech when assessing public speech anxiety. 
Gaining insight into the different expertise and performance 
of both entities provides essential knowledge that guides the 
assignment of tasks according to the capabilities of each, 
ultimately leading to task execution that is more effective 
and efficient.

3. Explainable AI system for estimating anxiety

3.1. Data description

We used the VerBIO dataset (Yadav et al., 2020), a multi
modal bio-behavioral dataset of individuals’ anxiety 
responses while performing public speaking tasks in real-life 
and virual reality (VR) settings. The data includes 78 audio 
recordings collected from 55 undergraduate and graduate 
students (23 female, 32 male) between 18 and 30 years old. 
Each participant performed 10 different public speaking pre
sentations including PRE (1 session, Day 1), TEST (8 ses
sions, Day 2–3), and POST (1 session, Day 4) parts. During 
the PRE and POST sessions, participants gave a speech in a 
conference room in-front of a real-life audience that 
included professors and graduate students. The TEST por
tions took place in various VR environments (i.e., classroom, 
small theater, seminar room, boardroom) and in front of 
various types of VR audiences (e.g., positive, neutral, nega
tive). Before each public speaking presentation, participants 
were randomly assigned to a news article from a list of 
topics (i.e., history, travel, business, health, nature, culture, 
science) and were provided 10 minutes to prepare an oral 
presentation. Following that, they delivered a 5-minute 
speech to the audience. We only used the PRE and POST 
sessions of the dataset, since they involved a real-life audi
ence that can better simulate real life settings. We randomly 
selected four speech files out of the 78 speech files of the 
VerBIO dataset, which were provided as part of the annota
tion procedure twice in random order. Therefore, the anno
tators were asked to rate a total of 82 files. This served as an 
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additional checkpoint to evaluate the attention of each anno
tator in the decision making task. In order to obtain the 
ground truth for the study, a human expert with experience 
in behavioral coding listened to each audio and provided his 
perceived anxiety levels of the speaker on a 5-point Likert 
scale (i.e., 1: No anxiety, 5: Very high anxiety). The expert 
listened to the audio files as many times as necessary in 
order to make a reliable decision. We have used these scores 
as the ground truth in this study.

3.2. Designing an explainable AI algorithm for 
estimating anxiety from speech

The AI agent relied on an explainable AI algorithm based 
on the Explainable Boosting Machine (EBM) model (Nori 
et al., 2019), a glass-box model which produces interpretable 
explanations of the decision outcome. The EBM model’s 
explainability is rooted in three key factors: (1) The model’s 
input comprises four highly interpretable features that assess 
speech’s prosodic characteristics, directly linked to anxiety; 
(2) Global explanation graphs generated by the EBM model 
offer an overarching understanding of the anxiety outcome’s 
dependence on each feature, providing users with an overall 
view on how each feature is associated with anxiety; and (3) 
At the audio level, the local explanation graph further eluci
dates the dependence of anxiety outcomes on individual fea
tures, enabling users to better understand specific acoustic 
patterns within each audio file that influenced the EBM 
model’s decision.

The EBM estimates the speaker’s levels of anxiety based 
on four acoustic features, including the mean pause dur
ation, loudness (i.e., computed as the logarithm of the mean 
square energy), jitter (i.e., computed as the frame-to-frame 
pitch period length deviations), and shimmer (i.e., computed 
as the frame-to-frame amplitude deviations between pitch 
periods). The average of these measurements was calculated 
for the spoken segments of each audio clip over an analysis 
window of 30 miliseconds. These were selected since these 
are intuitive, easily interpretable, and related to the level of 
anxiety (Batrinca et al., 2013; Chollet et al., 2016). The EBM 
model finds the contribution of each feature to the outcome 
of the model, and has comparable performance to state-of- 
the-art ML methods, such as bagging and boosting. It is a 
generalized additive model that follows the following math
ematical formulation:

gðE y½ �Þ ¼ b0 þ
X

fjðxjÞ (1) 

Where g is the identity function in our model, b0 is the 
intercept, and E is the expected value. The function fj indi
cates how each feature xj contributes to the model’s predic
tion for estimating the level of anxiety. The pair-wise feature 
interactions were not considered in our experiment, since 
they would increase the complexity of the model and would 
likely be less intuitive for the users (Lou et al., 2012). 
Training is conducted on one feature at a time in a round- 
robin fashion using very low learning rate cycling through 
all features xj and learning the best feature function fj for 
each feature xj and the outcome of interest y. The 

contribution of each feature to the final prediction renders 
the EBM highly interpretable and a good fit for this study 
given its focus on the collaboration between the AI system 
and a human annotator, who will rely on this explanation to 
interpret the system’s decision-making process. The contribu
tion of each feature xj to the final prediction can be under
stood by plotting fj. We used leave-one-sample-out cross 
validation for evaluation due to the small number of samples. 
As hyper-parameters, we used learning rate of 0.01, early 
stopping rounds of 100, and the total number of maximum 
boosting rounds of 10,000. The Spearman’s correlation 
between the estimated and actual levels of anxiety for this 
model was 0.261 (p < 0.05), a result equivalent with prior 
work on the same (Yadav et al., 2020) and other (Booth 
et al., 2022) datasets. We could have used more features to 
improve the model performance but prior research 
(Poursabzi-Sangdeh et al., 2021) shows that using fewer fea
tures in a glassbox model results in users being able to simu
late the model predictions more accurately. We used 
Spearman’s correlation, since it captures the monotonic (i.e., 
rank) relation between two variables and the focal ground 
truth of anxiety is an ordinal variable (i.e., 1, :::5) rather than 
continuous (Hauke & Kossowski, 2011; Rebeki�c et al., 2015).

Using the output of the EBM model, we can visualize the 
correlation between each feature and the state of anxiety 
based on all the data via the global explanation graph 
(Figure 1). The feature values are shown on the graph’s x- 
axis, and their contributions to the anxiety outcome are 
shown on the y-axis. Positive contribution values (i.e., solid 
blue line; Figure 1) show a positive correlation between the 
associated acoustic feature and the anxiety outcome, whilst 
negative contribution values show the reverse relationship. 
Additionally, the graph shows, through shaded areas, the 
model’s level of confidence for each feature value. Higher lev
els of decision uncertainty are shown by thicker shaded areas. 
In Figure 1(a), we observe that anxiety related to public 
speaking tends to decrease as speakers get more loud during 
their speech, whereas the relationship between public speech 
anxiety and speech pause duration is the opposite (SEE 
Figure 1(b)). Prior studies also show that confident speakers 
depict high loudness (Monarth & Kase, 2007) and take fewer 
pauses (Jiang & Pell, 2017). The EBM model also has the 
ability to explain the decision for each sample via the local 
explanation graph, which depicts the contribution of each fea
ture in the level of anxiety. Figure 2 presents a local explan
ation graph for a sample audio, for which pause duration is 
the most important feature that is associated with increased 
anxiety level, while loudness is the least important one. As 
seen in the same figure, the annotators were further provided 
with a description of the local explanation graph which indi
cated the acoustic features that influenced the most and the 
least the decision outcome, as well as the features that were 
positively and negatively correlated with the outcome.

3.3. User interface to enable human-AI collaboration

We created a web interface (Figure 3) through which anno
tators interacted with the EBM model. The main elements 
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of the interface are: (1) An audio player for listening to the 
audio files; (2) The global explanation graphs (Section 3.2) 
explaining the contribution of each feature to the estimated 
anxiety level; (3) The local explanation graph (Section 3.2) 
explaining the relative importance of each feature for each 
audio file; (4) A comment box where participants can com
ment on the reasons behind their decision for each audio file; 
and (5) Help buttons so that annotators can quickly refer to 
explanations about the AI model as needed. We piloted the 
interface with five annotators, who tested the initial design. 
Annotators were provided with a mini-tutorial that explained 
the goal of the project, the role of each acoustic feature, as 

well as the functionality and output of the EBM model. Based 
on the comments of these five annotators, we introduced 
various “help” buttons to the interface that directed the user 
to a brief description of each component, such as the global 
and local explanation graphs and the features.

4. User study design

4.1. Participant recruitment

The main goal of the study is to analyze how people who 
possess a foundational understanding of the subject matter 

Figure 1. Global explanation graphs provided by the explainable boosting machine (EBM) that capture the effect of different features in estimating the anxiety lev
els. The feature values are shown on the graph’s x-axis, and their contributions to the anxiety outcome are shown on the y-axis.
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and hold domain knowledge in life science interact with an 
explainable AI as part of a speech-based data analytics task, 
and also examine their trust in the AI model. Therefore, eli
gibility criteria for the human annotators were: (1) being 
older than 18 years; and (2) being enrolled as an under
graduate student in the department of Psychological & Brain 
Sciences at Texas A&M University (TAMU). The second cri
terion was included so that annotators are familiar with 
basic concepts related to human behavior and they can bet
ter perceive and interpret the anxiety in speech. The fact 
that annotators had not yet obtained their degree allowed us 
to recruit participants from various academic levels. 
Recruitment was conducted via bulk emails. Our study 
includes 13 annotators (10 female, 3 male; 19.84 (M) ± 1.23 
(SD) years; 3 Asian, 6 White/Caucasian, 3 Hispanic/Latino, 
1 Black/African American). From these annotators, two 
were freshmen, three were in their sophomore year, five 
were juniors, and three were seniors.

4.2. Study protocol

The overall workflow of the study protocol is summarized 
in Figure 4. First, participants completed two questionnaires 
that recorded individual differences. These included the Big 
Five Inventory (John & Srivastava, 1999) that captures per
sonality traits and the Propensity to Trust Machines ques
tionnaire (Merritt et al., 2013) reflecting one’s general 
tendency to trust machines. The distribution of these scores 
for the annotators is shown in Table 1. Following that, the 
first author then conducted a one-to-one meeting with each 
participant, in which he explained the task, the EBM model, 
and the web interface, and answered their questions. The 
first author was also available throughout the duration of 
the experiment for any additional questions. After explain
ing the task and the interface to the annotators, the annota
tors were provided with access to the interface and were 

instructed to annotate the 82 files with the help of the AI 
model.

The annotation procedure is a cognitively demanding 
task, thus the annotators were told to annotate 8 batches of 
files spread across different points in time. Each batch 
included 10 files except from the last batch which included 
12 files. Annotators were instructed to devote roughly two 
hours to each batch. For each file, the annotator was asked 
to listen to the corresponding audio, view the state of anx
iety decision, local explanation graph, and global explanation 
graph of the EBM model, and provide their final decision in 
terms of the perceived anxiety level on a 5-point Likert scale 
(i.e., same scale as the ground truth; Section 3.1). Note that 
the annotators had been told that their final annotation 
score does not need to be aligned with the AI decision, and 
that they may agree or disagree with the AI. In addition, 
they were strongly advised to provide a comment for each 
audio file explaining their thought process and a concise 
reason on why they agree or disagree with AI decision. 
After completing each batch of files, annotators were further 
asked to rate the extent to which they trusted AI in making 
their decision on a 5-point Likert scale (i.e., 1: Not at all; 5: 
Extremely) which was used as the self-reported trust meas
ure in our analysis. Since the self-reported trust measure 
was based on each batch of files, annotators were instructed 
to listen and annotate a batch of files at a time, which can 
potentially mitigate recall error. Each annotator was com
pensated with $180 at the end of the study.

5. Data analysis and results

Here, we describe the data analysis methodology and corre
sponding results. We first provide the definitions of the 
main variables considered in our analysis (Section 5.1). 
Then, we examine the reliability of collected data by investi
gating the discrepancy of each annotator in rating the 

Figure 2. Example of a local explanation graph provided by the explainable boosting machine (EBM) that indicates the importance of each feature in making the 
final decision for a given sample. Larger absolute values indicate higher importance of the corresponding feature in estimating anxiety levels for the corresponding 
audio sample. Positive values contribute to the anxiety outcome, while the opposite holds for the negative values. A brief verbal explanation of the graph is also 
provided to the annotators.
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duplicate samples (Section 5.2). Following that, we study the 
errors performed by the human annotators and the AI sys
tem and conduct a quantitative analysis to better understand 
cases in which the human and the AI partner might depict 
differences in performance (Section 5.3). Next, we examine 
the association between behavioral and self-reported meas
ures of trust (Section 5.4), as well as the association between 
AI capacity and trust in AI to better understand the extent 
to which human annotators properly calibrate their trust in 
the capabilities of AI system (Section 5.5). We further 
explore how trust in AI evolves over time and in association 
to any errors conducted by the AI system (Section 5.6). 
Finally, we investigate individual factors of trust pertaining 
to overall trust propensity and personality characteristics 
and their interaction with trust evolving over time 
(Section 5.7).

5.1. Notation

In the following, we provide the definition of the basic vari
ables that are considered in our analysis, along with the 
mathematical notation (Table 2). For the sake of consist
ency, variables referring to the sample level are denoted 
with small letters, while variables referring to the batch level 
(i.e., containing many samples) are denoted with capital let
ters. We define the human error human errori, k of annotator 
i at sample k as the absolute difference between the ground 
truth and the annotation, while the AI error ai errork at 
sample k is measured via the absolute difference between 
ground truth and the AI decision. The capacity ai capk of 
the AI system at sample k is the inverse of the AI Error 
ai errork of sample k, i.e., ai capk ¼ 1

ai errork
: We further 

define Si, j as the self-reported trust of annotator i after batch 

Figure 3. Custom-made web interface used by the annotators to interact with the AI system. (a) Home page, including links to the audio samples, explanations of 
the acoustic measures, and guidelines about the annotation process; (b) drop down list, containing the four features used as an input of the AI model. After select
ing a feature, the user was able to inspect the global explanation graph for that feature; (c) Main web page through which the annotator can listen to the audio 
file, provide their rating (via a separate sheet), and add a comment explaining their rating (via the white text field). The annotator can also click on the button 
located at the top left of the page in order to see the anxiety score provided by the AI model and examine the local explanation graph (e.g., “importance of vocal 
measures for the target participant POST_P001, as determined by the machine learning algorithm”).
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j has been completed, and Di, j as the behavioral distrust 
measure of annotator i for batch j, quantified as the average 
absolute discrepancy between the AI decision and the anno
tator’s decision (Chu et al., 2020). Following that, the behav
ioral trust measure Bi, j of annotator i for batch j is defined 
as the inverse of the behavioral distrust measure, i.e., Bi, j ¼

1
Di, j

: Finally, the behavioral measure of trust bi, k of annotator 
i at sample k is defined as the inverse of the absolute dis
crepancy between the human annotator i and ML prediction 
for sample k.

5.2. Reliability of collected data

To evaluate the attention of the annotators during the deci
sion making task, we compute the average difference in the 

annotation scores for the four duplicate samples that were 
provided in the data. This score is low (i.e., 0.424 (M) ± 
0.277 (SD)) for the majority of the annotators, which indi
cates that overall annotators were attentive to the considered 
task. However, this error is relatively large (i.e., > 0.7) for 
Annotator 12 and Annotator 13, suggesting reduced atten
tion by these two annotators to the decision-making task. 
Thus, the data from these annotators were excluded from 
the following analysis. Of note, we get a lower average dif
ference in annotation scores for the duplicate samples after 
excluding these annotators’ data (i.e., 0.338 (M) ± 
0.195 (SD)).

5.3. Error analysis of human annotators and AI model

We first obtain an overall understanding of cases in which 
the human annotators and the AI system depict differences 
in performance. For this purpose, we create a scatter plot in 
which the x-axis represents the human error human errori, k 
of each annotator i at sample k, while the y-axis represents 
the AI error ai errork at sample k (Figure 5). We further 
identify the following four regions in this plot: (R1): AI per
forms well and annotator performs well (N ¼ 527); (R2): AI 
performs well and annotator performs poorly (N ¼ 221); 

Figure 4. Schematic workflow of the study procedure. (a) Annotators completed the Big Five Inventory, the propensity to trust machines questionnaire, and a gen
eral survey about their prior research experience, which served as a proxy of annotator task expertise; (b) annotators were presented with a mini-tutorial about the 
goal of the experiment, description of acoustic features, and overview of the explainable boosting machine (EBM) model; (c) annotators listened to an audio file; (d) 
annotators viewed the explanation and decision of the EBM model for the audio file; (e) annotators rated the anxiety level of the audio file. (f) Annotators provided 
their self-reported trust level after rating each batch of samples. Steps (c-e) were repeated per sample.

Table 1. Distribution of annotator characteristics.

ID Extroversion Agreeableness Conscientiousness Neuroticism Openness Propensity to trust machines General Propensity to trust
Range [8–40] [9–45] [9–45] [8–40] [10–50] [6–30] [12–60]

P1 21 35 38 34 40 25 28
P2 17 35 31 33 34 12 37
P3 18 39 36 33 36 21 37
P4 14 30 34 33 41 28 45
P5 20 42 44 14 41 30 34
P6 19 35 29 24 30 22 43
P7 22 35 35 23 28 21 36
P8 27 34 37 17 36 26 26
P9 27 32 34 31 31 29 55
P10 35 39 35 24 41 15 35
P11 33 37 36 25 27 25 38
P12 35 36 42 26 40 28 30
P13 36 38 27 38 45 22 39

23 ± 6.38 35.72 ± 3.22 35.36 ± 3.67 26.45 ± 6.58 35 ± 5.13 23.1 ± 5.4 37.63 ± 7.61

Table 2. Notation of variables considered in the analysis.

Variable Notation

Human error of annotator i at sample k human errori, k
AI error at sample k ai errork
AI capacity at sample k ai capk
Self-reported trust of annotator i at batch j Si, j
Behavioral trust of annotator i at batch j Bi, j
Behavioral distrust of annotator i at batch j Di, j
Behavioral trust of annotator i at sample k bi, k
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(R3): AI performs poorly and annotator performs well 
(N ¼ 46); (R4): AI performs poorly and annotator performs 
poorly (N ¼ 64). The boundaries of the above regions are 
defined by the average of the maximum and minimum val
ues of the human error (i.e., for the x-axis) and the AI error 
(i.e., for the y-axis). It is evident that the human annotators 
and the AI system depict different performance over sam
ples that belong to regions R2 and R3. Via a paired t-test, we 
further observe significant differences between the error dis
tributions of the two partners in these regions (i.e., R2: 
tð220Þ ¼ 29:2, p < 0.000, N ¼ 221; R3: tð45Þ ¼ −12:53, 
p < 0.000, N ¼ 46), as depicted in Figure 6.

Via qualitative analysis, we further attempt to better 
understand these observed discrepancies between the human 
annotators and the AI system. To accomplish this, we coded 

the 204 comments provided by the annotators after review
ing each audio sample (Section 4.2) and assigned each com
ment to one of nine categories (Table 3). Since our objective 
is to study different capabilities between human and AI 
decision-making, we did not include any comments to these 
categories that entirely focus on AI features. Additionally, a 
comment may fall under more than one category. We com
pute the average AI prediction score and the average human 
annotation scores for the samples belonging to each category 
(Table 3). Via a paired t-test, we find significant differences 
between the AI prediction score and the human annotation 
score for each comment category (e.g., p < 0.05) except for 
the categories C2, C7, and C8. Therefore, we did not consider 
these comment categories (e.g., C2, C7, and C8) in the fol
lowing analysis. Results indicate that human annotators tend 
to make fewer errors than the AI on average in cases in 
which they take into account the speech loudness (C3). 
Although speech loudness is included in the features of the 
AI model, it was computed as the mean loudness over the 
whole utterance. In contrast, it appears annotators consid
ered loudness in association to certain words, which was 
referred in the comments as “speech emphasis.” Besides, the 
annotators perform better than AI on average when they 
consider stuttering of the speaker (C4). A potential reason is 
that stuttering is a reliable marker of anxiety (Blood & 
Blood, 2007; Ollendick & Hirshfeld-Becker, 2002) which was 
not considered by AI. In addition, human annotators depict 
reduced error compared to the AI system on average when 
they consider the natural pauses of the speaker (C9). Even 
though the mean pause interval over the speech was 
included in the AI model, the AI model did not consider 
whether any pause was natural or the pause happened due 
to the nervousness of the speaker. The annotators depict 
these natural pauses not related to anxiety and provide 
lower anxiety score than AI and perform better than AI on 
average. On the contrary, the AI system makes less errors 
than the human annotators, when the latter take into 
account the speaker’s general impression (C1), speaking rate 
(C5), as well as accent (C6). A potential explanation of these 

Figure 5. Visualizing the association between the errors conducted by the 
humans and the AI model, across four different regions. (R1): AI performs well 
and annotator performs well; (R2): AI performs well and annotator performs 
poorly; (R3): AI performs poorly and annotator performs well; (R4): AI performs 
poorly and annotator performs poorly.

Figure 6. The distribution of human error and AI error for samples in which the human and the AI depict different performance. (a) R2 : the AI performs well and 
the human annotator performs poorly; and (b) R3 : the AI performs poorly and the human annotator performs well. Blue plots refer to human error and orange 
plots refer to AI error. The dotted vertical lines refer to the mean of these distributions.
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findings might be that the general impression of a speaker 
can be quite subjective, therefore human annotators perform 
worse than the AI system when they take this factor into 
account. Also, the AI system can quantify speaking rate 
more objectively compared to the human annotator, there
fore these features tend to be erroneously perceived by the 
human annotators. Human annotators depict more errors 
than the AI when they consider the speaker’s accent, poten
tially due to the fact that this affect the voice quality, but is 
not necessarily associated with the state of anxiety.

5.4. Association between behavioral and self-reported 
measures of trust

We use a linear-mixed effects (LME) model with random 
intercept to find the association between self-reported trust 
measures and behavioral trust measures. The use of the 
LME model stems from its ability to handle complex and 
multifaceted data structures, particularly repeated measures 
and nested data (i.e., multiple trust measurements per anno
tator in our case). The LME models are an extension of lin
ear regression that incorporates both fixed effects, 
representing population-level relationships, and random 
effects, capturing variability at the individual level. The LME 
model for this analysis is defined as follows:

Si, j ¼ b þ a1 � Bi, j þ xi (2) 

Where Si, j is the self-reported trust of annotator i after batch 
j has been completed, and Bi, j is the behavioral measure of 
trust of annotator i for batch j. In (2), a1 serves as a fixed- 
effect coefficient, which is constant for all observations, and 

xi serves as a random-effect coefficient, which is different 
for each participant i. The random effect coefficient xi incor
porates the random variability in trust from person to per
son. The coefficient a1 quantifies the association between 
self-reported and behavioral trust measures. The results sug
gest significant positive association between the two (i.e., 
a1 ¼ 1:56, p ¼ 0.002, N ¼ 88), a finding which is also sup
ported by prior studies (Sharan & Romano, 2020). Thus, in 
the following analysis, we will be using these two measures 
interchangeably.

5.5. Association between AI capacity and trust in AI

In this section, we examine the extent to which human 
annotators can calibrate their trust in AI according to the 
capacity of the AI system. Drawing from Lee and See 
(2004), we inspect the 2D scatter plots of AI capacity 
ai capk against the behavioral trust bi, k of annotator i at 
sample k for all samples k per annotator (Figure 7). 
Calibration pertains to the alignment between an individu
al’s trust in automation and the actual capabilities of the 
automation. Therefore, when the annotator’s trust is fully 
calibrated with the AI capacity, the points of the 2D scatter 
plots should follow the identity line (i.e., y ¼ x). Lee and See 
(2004) also represented good calibration of trust by the diag
onal line in trust vs automation capability plot, where the 
level of trust matches automation capabilities. On the con
trary, annotators over-trust the AI for the samples lying 
above the identity line, and under-trust the AI for the sam
ples lying below the identity line. The larger the distance of 
a sample from the identity line, the higher is the degree of 

Table 3. Coded categories of comments provided by the human annotators.

Comment type

Average  
human  
score

Average  
AI score

Paired t-test results 
between AI score and 

human score

Average  
ground  

truth Example

C1: General impression 2.1 ± 0.78 2.47 ± 0.23 tð85Þ ¼ −4:66, p  < 0.01 2.32 ± 0.75 Sounded pretty stressed. (P4)
C2 : Filler words 2.63 ± 0.79 2.55 ± 0.22 tð47Þ ¼ 0:68, p ¼ 0:50 2.72 ± 0.57 [ … ] Lack of filler words signal little to no 

stress. (P5)
C3 : Speech loudness 1.51 ± 0.38 2.49 ± 0.18 tð8Þ ¼ −9:65, p < 0:01 1.77 ± 0.42 [ … ] only thing having a positive effect on 

anxiety score was loudness, but changes in 
loudness seemed to be to make her point/ 
emphasize things rather than a sign of 
nervousness. (P11)

C4 : Stuttering/ 
stumbling

3.04 ± 0.54 2.52 ± 0.25 tð43Þ ¼ 6:88, p  < 0.01 2.86 ± 0.46 She was very nervous and you could hear her 
voice tremble. (P8)

C5: Speaking rate 2.84 ± 0.61 2.49 ± 0.26 tð19Þ ¼ 2:14, p  < 0.05 2.60 ± 0.49 Subject spoke incredibly fast in some places which 
is indicative of anxiety. (P9)

C6: Accent/Way of 
talking

2.16 ± 0.60 2.70 ± 0.29 tð14Þ ¼ −3:36, p  < 0.01 2.80 ± 0.54 I decided to go a little lower than the AI model 
because it sounds like this individual is 
struggling with choosing the right wording. 
(sounds like English is not the first language) 
so certain pauses might not be due to stress. I 
do not think the AI model accounts for these 
issues which is why I went a little lower when 
scoring. (P1)

C7: Audio artifact/noise 2.32 ± 0.66 2.45 ± 0.31 tð9Þ ¼ −0:70, p ¼ 0.50 2.50 ± 0.50 [ … ] I think the microphone was just terrible for 
this speech. (P4)

C8 : Perceived level of 
preparation

2.72 ± 0.97 2.81 ± 0.20 tð5Þ ¼ −0:24, p ¼ 0:82 2.67 ± 0.47 Speaker was unprepared and it showed 
[ … ]. (P15)

C9 : Natural pause 1.95 ± 0.58 2.51 ± 0.11 tð5Þ ¼ −2:63, p < 0:05 2.17 ± 0.37 [. .] the pause duration felt very natural 
considering the speed at which they were 
speaking, so I put a lower anxiety score. (P9)

For each category, the average human annotation anxiety score, average AI prediction anxiety score, average ground truth anxiety score with standard deviation 
in M6SD format, the paired t-test results between AI score and human anxiety score are reported, and examples of comments are provided.
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over-trust or under-trust in AI, depending on whether the 
point is above or below the line, respectively. We employ 
the degree of under/overtrust rather than the frequency, 
since the first gives emphasis to the intensity or magnitude 
of the focal phenomenon and is more sensitive to changes. 
Based on this rationale, we define three metrics of trust per 
participant. Over-trust is quantified as the average absolute 

distance of samples above the identity line. Under-trust is 
measured as the average absolute distance of all points 
below the identity line. Trust miscalibration is finally defined 
as the average absolute distance of all the points from the 
identity line, which is close to zero in the ideal case where 
annotators’ trust is fully calibrated with the capacity of the 
AI system.

Figure 7. 2D Scatter plots of AI capacity against the behavioral trust for each annotator. Each point of a plot represents one audio sample. The x-axis represents 
the AI capacity calculated as the inverse of AI error and the y-axis represents the behavioral trust of the annotator for the specific samples.
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The average of these measures across all samples is com
puted for each annotator and their corresponding distribu
tion is provided in Figure 8. These measures vary across 
annotators with some depicting relatively appropriate trust 
calibration to the capacity of the AI system (e.g., P1, P9; 
Figure 7; i.e., lower trust miscalibration metric), others over- 
trusting the AI system (e.g., P4, P7; Figure 7; i.e., higher 
over-trust metric), and others under-trusting the AI system 
(e.g., P11; Figure 7; i.e., higher under-trust metric). The 
average over-trust value per user (i.e., 4.12 (M) ± 2.73 (SD)) 
is higher than the average under-trust value per user (i.e., 
1.59 (M) ± 0.73 (SD)) and the paired-t test results between 
average over-trust value per user and average under-trust 
value per user is statistically significant (i.e., tð10Þ ¼ 3:42, 
p < 0.01). Therefore, human annotators mostly over-trust 
the AI system, which is consistent with prior findings sug
gesting that having a favorable experience with automation 
leads to confidence that extends beyond the system capabil
ities (Ullrich et al., 2021).

5.6. Evolution of trust over time

We further explore how annotators change their trust in AI 
over time, depending on the error of the AI system. We 
build a LME model with random intercept that estimates 
the behavioral measure of trust in AI as a function of time 
and AI error, as follows:

bi, k ¼ b þ a2 � ai errork þ b2 � k þ xi (3) 

Where bi, k denotes the behavioral measure of trust in AI of 
annotator i for sample k and ai errork denotes the AI error 
for the kth sample. In (3), a2 and b2 are the fixed-effect 
coefficients, which are constant for all observations, and xi is 
a random-effect coefficient, which is different for each par
ticipant i. When estimating the coefficients of the LME 
model in (3), we exclude the outlier samples for which the 
AI system is highly accurate, but the annotators depict very 
low trust in the system, and vice-versa, the samples for 
which the system performs very poorly, but the annotators 
depict overly increased trust. For this purpose, for each 
annotator i, we exclude the outlier samples for which the 
ratio of behavioral trust bi, j to AI capacity ai capk is too low 
or too highi.e., bi, k

ai capk 
is either lower than the 2.5% quantile 

or larger than the 97.5% quantile value of all samples from 
the corresponding annotator. This resulted in excluding 66 

samples out of the total 902 samples (i.e., 7:3%) from the 
LME model. Results indicate that annotators increase their 
trust in AI over time (i.e., b2 ¼ 6:92, p ¼ 0.009, N ¼ 836), 
but momentarily decrease their trust in AI when the AI sys
tem makes error (i.e., a2 ¼ −12:184, p ¼ 0.001, N ¼ 836). 
The observed overall increase of annotators’ trust in AI over 
time is also reflected in their comments. For instance, P1 
mentioned, “I was not sure how I felt about this one, so I 
relied heavily on the opinion of the AI model. This is also 
where I am realizing that I am trusting the opinion of the 
model much much more compared to when I started.”. 
Similarly, P10 commented that, “As stated before, as I con
tinue to use the AI’s observations and review them after I 
have reviewed the audio files, I see that the AI is able to 
make relatively accurate observations in my opinion.”. There 
was no comment from the annotators which indicates a 
momentary decline of trust in AI when the latter makes an 
error. However, the discovered negative association between 
AI error and human trust in AI is also consistent with prior 
work regarding trust in automation (Hancock et al., 2011).

5.7. Effect of personality characteristics and prior 
research experience on human trust in AI

Grounded in prior work that has found significant personal
ity effects on trust in automation (B€ockle et al., 2021; M€uller 
et al., 2019), we investigate the extent to which trust in the 
AI system depends on the characteristics of the annotator, 
such as their overall propensity to trust machines, their per
sonality, and their prior research experience. We build the 
following LME model with random intercept to analyze the 
effect of annotators’ characteristics on self-reported trust in 
AI over time:

Si, j ¼ b þ a3 � j þ b3 � Di, j þ c3 � Mi þ d3ðj � MiÞ

þe3 � Ai þ f3ðj � AiÞ þ g3 � Ci

þh3ðj � CiÞ þ i3 � Ei þ j3ðj � EiÞ þ k3 � Ri þ l3ðj � RiÞ þ xi

(4) 

In (4), Si, j denotes the self reported trust of annotator i 
for batch j, Di, j is the average behavioral distrust of annota
tor i for batch j, Mi is annotator’s i overall propensity to 
trust machines, Ai is annotator’s i agreeableness, Ci is anno
tator’s i conscientiousness, Ei is annotator’s i extroversion, 
and Ri is annotator’s i research experience encoded as a 
Boolean variable (i.e., 0 or 1 for the absence or presence of 

Figure 8. Distribution of over-trust, under-trust, and trust miscalibration metrics for all annotators.
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prior experience with behavioral coding, respectively). In the 
same equation, a3, b3, c3, d3, e3, f3, g3, h3, i3, j3, k3, l3 are 
fixed-effect coefficients which remain constant for all obser
vations, and xi is a random-effect coefficient which is differ
ent for each participant i. The model also considers the 
interaction between each of the annotator characteristics and 
time, so that we can understand whether the evolution of 
trust over time varies between different people. Results are 
provided in Table 4 (N ¼ 88), where it is important to note 
that the threshold of p < 0.1 is not employed as a criterion 
for statistical significance but is utilized as an indicator that 
the corresponding coefficients may be approaching statistical 
significance given the constraints of the small sample size. 
As expected, similar to findings in Section 5.4, results indi
cate a negative association between self-reported trust and 
behavioral distrust (b3 ¼ −2:04�), or else, a positive associ
ation between self-reported and behavioral trust. Agreeable 
annotators depict increased trust in the AI (e3 ¼ 2:71†), 
although this association does not reach statistical signifi
cance. Agreeable annotators’ trust decreases over time 
(f3 ¼ −4:76�), potentially due to the fact that these annota
tors initially start with higher levels of trust compared to 
their counterparts. Similar findings hold for annotators who 
have inherently high propensity to trust machines 
(c3 ¼ 2:20†, d3 ¼ −4:07�). On the contrary, conscientious 
annotators depict overall lower trust to AI compared to their 
counterparts (g3 ¼ −2:72†), an association which is not stat
istically significant, but their trust increases over time 
(h3 ¼ 6:64�). Extroversion and prior research experience do 
not appear to significantly affect trust in AI.

6. Discussion

This paper examines human trust in AI in a collaborative 
data analytics task, in which humans and AI worked 
together to estimate a speaker’s levels of anxiety from 
speech. We have explored five research questions via the 
conducted analysis. This section includes a summary of the 
research questions and corresponding findings, as well as a 
discussion of their implications.

In response to RQ1, we observe differences in perform
ance between the human annotators and the AI system. 
Human annotators achieve better performance than the AI 
when they consider speech speaker stuttering and the speak
er’s emphasis on certain words (Section 5.3), both of which 
are not explicitly modeled in the AI system. In addition, 
human annotators do better than the AI when they take 

into account the natural pauses of the speaker, a feature 
which is difficult to capture via the speech signal, since it 
requires additional context information. On the contrary, 
the AI performs better than the human annotators in cases 
when the latter considered the speaker’s accent and speaking 
rate as an indicator of anxiety. It further appears that the 
annotators perform worse than the AI when they take into 
account the general impression of the speaker for their deci
sion which is quite subjective. Human annotators’ superior 
performance in aspects such as recognizing speech speaker 
stuttering, emphasis on certain words, and natural pauses, 
reflects the unique ability of human cognition to consider 
context-dependent features that are not explicitly modeled 
in the AI model highlighting the potential of leveraging 
human expertise in collaborative tasks where such nuanced 
understanding is crucial. However, the AI’s better perform
ance in cases where human annotators relied on indicators 
like the speaker’s accent and speaking rate suggests that the 
AI system might be able to grasp dimensions that can be 
subjective and challenging for human annotators to assess. 
This suggests the complementary nature of human and AI 
capabilities, emphasizing the potential for effective collabor
ation where each entity contributes its strengths. 
Implications of these findings into future research could 
encompass the development of frameworks that offer expli
cit guidelines or training for human annotators, aiming to 
address subjective elements in the decision-making process. 
Additionally, future work can involve the design of systems 
that facilitate effective communication and the seamless inte
gration of human insights with machine capabilities. This 
includes the creation of interfaces that enable humans to 
comprehend and interpret AI decisions more easily, while 
also allowing AI systems to better understand human capa
bilities by incorporating human-like perceptual abilities in a 
personalized manner.

In exploring RQ2, we found significant positive correl
ation between self-reported and behavioral trust in AI 
(Sections 5.4 and 5.7). This aligns with similar findings in 
prior studies, such as the work by Sharan and Romano 
(2020), which also identified a moderate positive correlation 
between self-reported and behavioral measures of trust, the 
latter captured via reaction time and user agreement with 
the AI. It further suggests that behavioral measures can 
serve as a viable proxy for assessing user trust in AI, which 
can have important implications in the design of adaptive 
AI systems. Behavioral measures provide a continuous 
stream of data, allowing AI systems to adapt in real-time. 
For instance, if a sudden decrease in user trust is detected 
through behavioral indicators, the AI system can adjust its 
behavior or provide additional explanations to repair trust. 
This can further contribute to tailoring the system’s 
responses to each user. However, the fact that these results 
are found in a small sample size, combined with previous 
evidence that suggests an incongruence between behavioral 
and self-reported trust (Kulms & Kopp, 2019), also under
score the importance of further exploration into additional 
measures of trust that potentially can be more objectively 
quantified via brain activity, speech, and language (Chen 

Table 4. Linear Mixed Effect (LME) model estimates of fixed and interaction 
effects of individual factors and time for estimating self-reported trust in AI.

Individual factors Fixed-effect Interaction effect

Time j a3 ¼ 0:74
Behavioral distrust Di, j b3 ¼ −2:04�

Propensity to trust machines Mi, j c3 ¼ 2:20† d3 ¼ −4:07�

Agreeableness Ai, j e3 ¼ 2:71† f3 ¼ −4:76�

Consciousness Ci, j g3 ¼ −2:72† h3 ¼ 6:64�

Extroversion Ei, j i3 ¼ −0:41 j3 ¼ 1:37†

Prior research experience Ri, j k3 ¼ −0:26 l3 ¼ 0:86

� , † : p < 0:05, p < 0:1
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et al., 2020; de Visser et al., 2018; Dong et al., 2015; Levitan 
et al., 2015).

In addressing RQ3, our results indicate that annotators 
depict different levels of trust calibration with respect to the 
capacity of the AI system. While some annotators demon
strate effective trust calibration based on the AI’s profi
ciency, others exhibit trust miscalibrion (Section 5.5). The 
predominant pattern in trust miscalibration involves over
trust in the AI. One possible explanation for this finding 
could be that, despite possessing domain knowledge in life 
science, the human annotators, being undergraduate stu
dents with limited practical experience in the field, may lack 
a high level of confidence in their abilities. Prior studies also 
show that when individuals are unable to rely on their own 
judgment, reliance in automation is especially evident (Fan 
et al., 2008; Sanchez et al., 2014). These findings underscore 
the importance of addressing overtrust tendencies among 
annotators, especially when considering the practical deploy
ment of AI in collaborative decision-making tasks within 
specific sensitive domains. Strategies to enhance annotators’ 
awareness about the limitations and capabilities of the AI 
system, coupled with effective training on when to rely on 
AI predictions and when to exercise human judgment, could 
contribute to more balanced trust calibration (Aroyo et al., 
2021). From a system design perspective, incorporating feed
back mechanisms that highlight uncertainties and potential 
pitfalls in the AI’s decision-making process can be also 
beneficial (Buçinca et al., 2021).

In answering RQ4, trust in AI overall increases over time, 
but momentarily decreases when the AI makes more errors 
(Section 5.6). Since the AI system depicts moderate perform
ance, this increasing trend of trust in AI over time could be 
explained by the fact that human annotators might project 
their potentially positive initial experience with the AI to the 
audio samples that are being observed at the latter batches 
of the data collection. However, it appears that annotators 
can also momentarily differentiate between successful situa
tions and instances in which the AI makes an error, which 
is inline with prior work on human trust in robotic errors 
(Geiskkovitch et al., 2019; Ragni et al., 2016). This observed 
pattern is noteworthy in the context of trust in studies that 
involve human-AI collaboration. The possibility of more 
uncertainty in human-AI decision-making, compared to 
human-robot interaction, could have suggested that AI 
errors might irreversibly impact trust. However, this study’s 
results suggest otherwise. Further exploration of this finding, 
especially in studies involving subject matter experts with 
substantial experience in behavioral coding tasks, could offer 
valuable insights into the generalizability of these 
observations.

Finally, in response to RQ5, we found that overall pro
pensity to trust machines, agreeableness, and consciousness 
affect human trust in AI, while extroversion and prior 
research experience did not emerge as significant factors in 
this context. However, these results only approach statistical 
significance in our study. The majority of these findings 
coincide with prior work on human trust in general automa
tion (e.g., robotic agents), while it’s crucial to emphasize 

that this study contributes novel insights by providing pre
liminary evidence on how these individual factors distinctly 
influence human trust in AI systems. People with high pro
pensity to trust depict high trust, which decreases more over 
time compared to their counterparts (Section 5.7). This is in 
accordance to prior work that indicates that people with 
high propensity to trust depict higher initial trust in auto
mation, which decreases in the presence of an error (Ebert 
et al., 2009; Madhavan et al., 2006; Merritt & Ilgen, 2008). 
Our results suggest similar trends for agreeable people with 
approaching statistical significance. Also prior work has 
found that agreeable people hold high initial trust (Chien 
et al., 2016) and high overall trust (Bawack et al., 2021; 
Kraus et al., 2020) in the AI systems. On the contrary, con
scientious annotators depicted less trust in AI than their 
counterparts, although this result did not reach statistical 
significance, with increasing trends over time (Section 5.7). 
Previous results regarding the effect of the conscientiousness 
in trust in automation are inconclusive. Some studies do not 
suggest a correlation between conscientiousness and trust in 
AI (Kraus et al., 2020), while others demonstrate positive 
correlation between the two (Bawack et al., 2021) irrespect
ive of time. Other studies indicate that people with high 
conscientiousness have higher initial trust in AI (Chien 
et al., 2016). Collecting data from annotators with more 
extreme conscientiousness characteristics or explicitly 
manipulating the experimental conditions in terms of the 
quality and quantity of explanation provided by the AI sys
tem might help better answering this question. Our study 
does not indicate a significant association between extrover
sion and trust in AI, which is in line with prior work that 
did not find significant correlation between trust in AI and 
extroversion (Chien et al., 2016). Finally, prior research 
experience does not appear to be a moderating factor of 
trust in our experiment. Prior work indicates that user 
expertise is loosely related to dimensions of trust in automa
tion (K. E. Schaefer et al., 2014). For example, users with 
limited task expertise tend to over-trust automated systems 
(Nourani et al., 2020). Despite our participants possessing 
knowledge in life science, their limited prior research experi
ence in behavioral annotation (i.e., only 3 out of 11 partici
pants had prior experience) may explain the lack of 
significance in the research experience variable. The minimal 
variability in this variable could be a potential contributing 
factor to its non-significant role in influencing trust. The 
implications of these findings for system design carry signifi
cance for creating AI systems that effectively engage and 
interact with human users. For example, designing interfaces 
that cater to individuals with high propensity to trust and 
high conscientiousness might involve incorporating elements 
that foster a sense of reliability and transparency. For agree
able individuals, interfaces can prioritize user-friendly fea
tures and clear communication to maintain their trust. 
Finally, recognizing the decreasing trend of trust over time 
for individuals with high propensity to trust suggests the 
need for dynamic adaptation in system behavior. This could 
involve periodic reinforcement of reliability or adjusting the 
level of explanation to sustain trust.
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Despite the encouraging results, our study presents the 
following limitations. First, this paper relies on data from 
users with direct background from life science, which is 
inherently more difficult to acquire compared to crowd- 
sourced data. For this reason, our analysis contains data 
from a small number of participants, which raises considera
tions about the generalizability and statistical power of the 
results. With a limited number of participants, the findings 
may be more susceptible to the influence of individual varia
tions and outliers, potentially affecting the overall generaliz
ability of the study. Furthermore, the limited diversity 
within the small sample, as demonstrated via the low vari
ation in terms of personality characteristics and prior 
research experience, may impact the external validity of the 
results. Collecting data from a larger participant pool might 
allow us to better explain the impact of personality and 
prior research experience on the user trust and trust calibra
tion. Second, we measured self-reported trust via a one-item 
measure, which may oversimplify the complexity of the focal 
psychological construct raising reliability concerns. While 
acknowledging this as a limitation in our study, it is impor
tant to note that participants were asked to self-report their 
trust eight times throughout the study protocol, since our 
research aimed to capture the evolving nature of user trust 
over time. Given the study design, employing a validated 
questionnaire with multiple items might have introduced 
user fatigue and potentially heightened subjectivity in the 
measurement. As part of our future work, we will supple
ment the existing self-reported and behavioral measures of 
trust with neural measures that have been empirically vali
dated in human-automation settings (de Visser et al., 2018). 
Finally, as part of the study protocol, we did not explicitly 
control for the performance of the AI system (e.g., via 
manipulating this variable), which would have allowed us to 
better understand its effect on human trust.

7. Conclusion

In conclusion, this study delved into the dynamics of human 
trust in AI within a human-AI collaborative task that 
focused on estimating anxiety levels from speech. An 
explainable AI system, the EBM model, interacted with 
human annotators with background on psychological scien
ces and provided explanations about local and global feature 
importance, along with the AI decision. Trust in AI was 
captured via self-reports and behavioral measures. Human 
trust in the AI system increases over time with errors con
ducted by the AI being associated with momentary decrease 
in user trust. The study revealed nuanced differences in per
formance between human and AI partners, influenced by 
the characteristics of the cases under consideration. The 
findings from the study further underscore the importance 
of proper trust calibration, highlighting individual variations 
in overall trust in AI, where factors such as general propen
sity to trust, agreeableness, and conscientiousness emerged 
as influential determinants of trust in this collaborative 
human-AI setting. Overall, this work contributes to deepen
ing our knowledge for the development and deployment of 

trustworthy AI applications in real-world collaborative scen
arios. Moving forward, future work in this domain could 
explore additional techniques for enhancing the collabor
ation between humans and AI in tasks related to human 
state detection. This may involve refining the XAI system to 
further improve the interpretability and clarity of its explan
ations. Additionally, investigating the impact of different 
types of errors on user trust and developing strategies for 
effective error mitigation could be a valuable avenue. 
Incorporating professionals in psychology as study partici
pants offers the opportunity to broaden the research to 
diverse user populations, enhancing the practical relevance 
of the findings. Further investigation into neural measures 
could be pursued as a promising avenue for quantifying 
human trust at a moment-to-moment level.
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