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ABSTRACT

Complex real-world problems can benefit from the collaboration between humans and artificial
intelligence (Al) to achieve reliable decision-making. We investigate trust in a human-in-the-loop
decision-making task, in which participants with background on psychological sciences collaborate
with an explainable Al system for estimating one’s anxiety level from speech. The Al system relies
on the explainable boosting machine (EBM) model which takes prosodic features as the input and
estimates the anxiety level. Trust in Al is quantified via self-reported (i.e.,, administered via a ques-
tionnaire) and behavioral (i.e., computed as user-Al agreement) measures, which are positively cor-
related with each other. Results indicate that humans and Al depict differences in performance
depending on the characteristics of the specific case under review. Overall, human annotators’
trust in the Al increases over time, with momentary decreases after the Al partner makes an error.
Annotators further differ in terms of appropriate trust calibration in the Al system, with some
annotators over-trusting and some under-trusting the system. Personality characteristics (i.e.,
agreeableness, conscientiousness) and overall propensity to trust machines further affect the level
of trust in the Al system, with these findings approaching statistical significance. Results from this
work will lead to a better understanding of human-Al collaboration and will guide the design of
Al algorithms toward supporting better calibration of user trust.
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1. Introduction

Artificial intelligence (AI) algorithms have been heralded as
promising tools for supporting decision-making due to their
ability to process large data samples and capture fine-grain
patterns in data that are not easily discernible by a human
observer (Ezer et al., 2019). Recently, Al algorithms have
become more prevalent in decision-making tasks that are
complex, sensitive, and carry significant consequences, such
as the ones pertaining to health, education, command and
control, and commerce (Phillips-Wren, 2012). Certain com-
plex tasks within these domains require a collaborative
approach, as neither humans nor Al agents can achieve suc-
cess independently. AI is capable of finding patterns from
vast amounts of data beyond human capacity, but struggles
with cases deviating from learned patterns (D’Amour et al,,
2022). Conversely, humans possess unique skills such as
intuition, inventiveness, and common sense, which are
inherently more challenging for current AI systems
(Hemmer et al., 2021). In this context, collaborative deci-
sion-making between humans and Al involves the two
leveraging their complementary expertise and working side-
by-side to solve complex decision-making tasks that cannot
be perfectly solved by either party.

In order for users to understand when they should trust
the AI and when they should rely on their judgment for
particular decisions, proper trust calibration in human-Al

teaming is crucial. Trust of a human agent in an automated
agent can be defined as the human agent’s attitude that the
automated agent will help them achieve their goal in a situ-
ation characterized by uncertainty and vulnerability (Lee &
See, 2004). The notion of trust in a human-Al environment
differs from that of automation. Since automation is charac-
terized by static rules, trust in automation is often associated
with the clarity and predictability of its actions (e.g., users
may understand the mechanisms and logic behind a robot’s
operations) (Kaplan et al,, 2023). On the contrary, trust in
AI often hinges on explainability and involves high uncer-
tainty, especially as Al systems become more complex. In
the context of human-Al teaming, trust can be defined as
the “human agent’s willingness to rely on the AI system’s
output driven upon positive expectations that the AI system
is accurate and beneficial to the focal task” (Gillespie et al.,
2023). In order for the AI agent to become a trusted team-
mate, it needs to be flexible and adaptive to the human part-
ner and the environment in which it operates. At the same
time, humans should be able to understand the capacity of
the AI agent and calibrate their trust to the abilities and per-
formance of the system (Bansal et al., 2019; Lee & See,
2004). Miscalibrated trust may lead to wrongful decisions
with severe consequences (Kaindl & Svetinovic, 2019;
Okamura & Yamada, 2018; Parasuraman & Riley, 1997).
Human teammates who over-trust the AI tend to
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overestimate the ability of the AI agent to solve the problem,
therefore they agree with the decision of the AI system even
when it is wrong (Payne et al., 2008). On the contrary,
human teammates who under-trust the AI agent tend to
underestimate its capacity, thus disagreeing with the AI
decision even though it is correct. Trust calibration is par-
ticularly important in high-stake complex domains which
tend to be bounded by legal or ethical constraints, thus,
highly benefiting by the complementary skills of the human
and the AI agent (Bansal et al., 2021; Jarrahi, 2018).

Trust is a multifaceted concept that encompasses both
cognitive and affective dimensions, making its measurement
a challenging yet critical aspect of collaborative decision-
making systems. Measures of trust vary across disciplines
and are highly dependent on the context of the application.
Early studies have measured trust via self-reports, which
have been administered once at the end of the collaborative
task, pre/post-task, multiple times at the end of each trial, or
over pre-specified intervals (Alarcon et al., 2018; Schaefer,
2013). Given the subjectivity of self-reported measures, other
work has used behavioral measures to infer trust, such as
the extent to which a human user agrees with the automated
system, depicts over-confidence to the automation, or
underuses the automation (Drnec et al., 2016). With the
advancement of sensor capabilities that continuously collect
multimodal data, recent work has further introduced signal-
based measures of trust. These include neural measures of
action monitoring and error awareness that are captured via
electroencephalogram signals (de Visser et al., 2018; Dong
et al,, 2015), as well as acoustic and linguistic markers that
capture characteristics of trusted speech (Chen et al., 2020;
Levitan et al., 2015).

Prior work on human trust in automation has demon-
strated that trust depends on individual differences, context-
ual factors, and system characteristics (Lee & See, 2004; Siau
& Wang, 2018). Particularly, individual differences, such as
one’s overall trust propensity, personality, and task expertise,
can influence the initial levels of trust as well as the way
trust evolves over time while the user is interacting with the
autonomous system (Bockle et al, 2021; Hoff & Bashir,
2015; Miiller et al., 2019). Contextual factors that impact
trust in automation include social norms and expectations
regarding the system, as well as affective and cognitive varia-
bles that describe the state of the user, such as fatigue,
mood, and perceived cognitive demand (Merritt, 2011). In
terms of system characteristics, prior work has explored the
competence of a system and its ability to explain its decision
as additional factors of trust (Cheng et al., 2019; Lai & Tan,
2019; Okamura & Yamada, 2018; Yang et al., 2020). Trust
in AI may vary over time based on the system’s perform-
ance on specific tasks. Positive experiences and successful
outcomes can bolster trust, while errors or suboptimal
results may lead to fluctuations in trust levels (Schaefer
et al., 2014). Explainable AI (XAI) can play a crucial role in
assisting human users to properly calibrate their trust in Al
since it explains the predictions in a way that is comprehen-
sible by humans. Despite many state-of-the-art AI models
depicting equivalent or even better performance than

humans in complex tasks, a significant number of these
operate as blackbox models, leaving users unable to under-
stand the reason why the AI model makes a particular deci-
sion. XAI focuses on opening these blackbox models and
unveiling their reasoning. This can be often achieved via
providing global explanations that offer a broad comprehen-
sion of a model’s learned concepts (Guyon & Elisseeff, 2003;
Kim et al., 2018) and local explanations that seek to explain
the logic behind a specific AI decision (Baehrens et al,
2010; Ribeiro et al., 2016). Leveraging XAI with appropriate
interface design in collaborative human-AI decision-making
tasks can potentially contribute to trust calibration (Naiseh
et al, 2021, 2023). While there has been an extensive
research on how user characteristics and system factors
affect trust in automated systems such as robotic agents and
autonomous vehicles (Bawack et al., 2021; Pop et al., 2015),
the effect of such factors on human trust in Al is still
under-explored (Tutul et al., 2021).

Here, we investigate a human-in-the-loop decision mak-
ing task in which human annotators and AI work side-by-
side to estimate one’s anxiety levels from speech. Human
annotators with a background in psychology collaborated
with an explainable AI algorithm to provide a final decision
on a speaker’s level of anxiety. We measure trust in Al using
self-reported (i.e., administered via a questionnaire) and
behavioral (i.e., the extent to which the annotator agrees
with the AI) measures. We aim to answer the following
research questions: RQI: Do humans and Al depict differen-
ces in performance in the considered anxiety estimation task?
As humans and AI collaborate to estimate anxiety levels
from speech, it raises intriguing questions about the unique
decision-making process of each party in the considered
task. Human annotators may perform better than the Al in
cases where they leverage contextual understanding and con-
sider behavioral nuances, while they might perform worse
when they need to process low-level acoustic measures.
Answering this question can help us to unravel the unique
contributions and limitations of both human and AI agents
in a task of significant societal impact. RQ2: What is the
association between behavioral and self-reported measures of
trust in the considered human-Al collaboration task? Given
the inherent complexity of trust dynamics in human-Al
interactions, understanding the relationship between behav-
ioral and self-reported measures of trust is crucial for gain-
ing insights into the alignment or potential disparities
between subjective perceptions and objective behaviors.
RQ3: To what extent is human trust calibrated with the cap-
acity of the AI system? Trust is foundational in fostering
user acceptance and effective collaboration. However, for
trust to be effective, it needs to be calibrated accurately with
the Al system’s capabilities. Understanding the extent to
which trust aligns with the actual capacity of the AI system
is crucial for developing effective collaborative environments
for trustworthy decision-making. RQ4: To what extent does
trust in Al vary over time? Understanding how trust evolves
over time is crucial for designing adaptive AI systems that
can respond to changing user perceptions and requirements.
Users may experience changes in trust as they interact more



with the AI system. RQ5: To what extent is trust in Al
affected by the characteristics of the system and the traits of
the human annotator? The motivation behind this research
question arises from the recognition that trust in Al is a
nuanced construct influenced by various factors.
Understanding the multifaceted relationship between trust,
system attributes, and human factors in the context of
human-AI collaboration provides valuable insights for
designing AI systems that are not only technically proficient
but also align with user expectations and preferences.

Results indicate that humans and Al depict differences in
performance depending on the nature of the case that is
being reviewed. Behavioral and self-reported measures of
trust in Al are further positively correlated. The levels of
trust in Al, as well as the relation between trust in AI and
Al capacity broadly differ among people with most users
over-trusting the AI. Human annotators overall depict
increased trust in the AI system over time, with momentary
decreases in trust after the Al makes an error. The annota-
tors’ characteristics further moderate this association; partic-
ipants with high propensity to trust machines and more
agreeableness characteristics depict high trust in Al, whereas
conscientious annotators depict low trust in the AI system,
which has an increasing trend over time. However, these
associations only approached statistical significance.
Implications of these findings on ways to achieve effective
human-AT collaboration for decision-making are discussed.

2. Prior work

With the rise of Al, both academics and practitioners have
shown a growing interest in human-Al interaction, espe-
cially for addressing inherently challenging tasks that cannot
be adequately solved by either of the two parties. Human
trust in human-Al teaming is multifaceted and shaped by
various factors such as the perceived reliability and perform-
ance of the Al the transparency of its decision-making pro-
cess, and the user’s familiarity and experience with the
technology (Glikson & Woolley, 2020). Moreover, trust is
not a static attribute and can evolve over time based on user
interactions, feedback, and the system’s ability to adapt to
different situations (Ezer et al., 2019). Recent studies have
delved into human trust in Al during cognitively demanding
tasks, utilizing both the user’s adherence to Al decisions and
self-reported measures from questionnaires. These investiga-
tions have explored the impact of diverse explanations,
interfaces, visual representations, and spatial layouts on user
trust in AI across tasks such as age estimation, medical diag-
nosis, university admissions, and identifying deceptive hotel
reviews. Below we outline some of these studies and the
main findings.

Chu et al. (2020) conducted a human-in-the-loop experi-
ment where users were asked to predict the age of a person
based on their image after viewing the decision of an Al
model. Trust was quantified as the absolute difference
between the user’s and the model’s estimate of a person’s
age. Users were also presented different types of explana-
tions by the AI system, which were not found to
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significantly affect human trust in Al, even after controlling
for the quality of the explanation. Alam and Mueller (2021)
further examined the effect of different explanations on trust
and satisfaction with the AI in a medical diagnosis task. As
part of the study, 80 undergraduate students who acted as
patients were asked to provide self-reports of perceived trust
level to the AI and user satisfaction. Participants were more
satisfied and trusted the AI more when the AI system
explained the reason for making a particular diagnosis com-
pared to when it explained the general diagnosis process or
did not provide any explanation at all. Zhang et al. (2020)
explored an Al-assisted decision making framework for an
income prediction task, in which the human users and the
AI system depicted comparable performance (i.e., 65% and
75% accuracy, respectively). Participants trusted the Al pre-
diction more when the confidence level of the Al was high
(i.e., above 80%). However, the confidence interval of the Al
system did not appear to affect the user trust. Lundberg and
Lee (2017) further assessed the effect of local explanations
(i.e., explanations for a specific sample) on human trust and
found that such explanations do not significantly affect trust
in AL Yang et al. (2020) explored the effect of visual repre-
sentations and spatial layouts on users’ trust in Al for a leaf
classification task, with visual representations having a
greater impact on users’ trust. Cheng et al. (2019) ran an
online experiment in which 199 people used several explan-
ation interfaces provided by the AI algorithm for deciding
university admissions. Interactive and white-box interfaces
improved users’ comprehension of the algorithm more than
static and black-box interfaces. Lai and Tan (2019) analyzed
how showing different explanations and accuracy statements
to the user can impact human trust in AI for the task of
identifying deceptive hotel reviews. They found that users
trust the instances that were correctly predicted by the Al
more than incorrect ones. In addition, they showed that
both feature-based and example-based explanations increase
trust in AI. de Brito Duarte et al. (2023) showed that Al
trust in recommendation system improves when AI explana-
tions along with feature importance and counterfactual
explanations are provided to the users. Communicating the
AT’s accuracy to the user, irrespective of the specific numer-
ical value, also enhanced the user’s trust in the AL
Collectively, these studies provide insights into the role of
explanations, visual representations, and system confidence
across diverse application domains. While the impact of Al
explanations on human trust has not been consistently
observed, certain studies highlight benefits in trust calibra-
tion through the provision of visual representations and
interactive interfaces. Interestingly, system confidence did
not emerge as a consistent contributor to human trust, but
knowledge regarding the system’s accuracy appeared to
enhance trust among users.

In addition to system-based factors, individual character-
istics can also affect trust in automation. Bawack et al.
(2021) employed self-reports to quantify user trust in Al via
an online survey of 224 U.S. based voice shoppers and found
that agreeableness and conscientiousness are positively cor-
related with trust, while neuroticism and extroversion are



4 A. A. TUTUL ET AL.

not correlated with trust. Chien et al. (2016) analyzed the
effect of personality characteristics on self-reported trust in
automation for 120 participants residing in U.S., Turkey,
and Taiwan population. Results suggested a significant posi-
tive correlation between agreeableness and initial trust in Al
and also, between conscientiousness and initial trust in AL
However, no significant correlation was found between trust
and other personality traits, such as neuroticism, openness,
and extroversion. Kraus et al. (2020) analyzed the relation
between the personality factors and trust in automated driv-
ing. The results indicate that neurotic people hold lower
trust in automated driving, while agreeable and extrovert
people depict more trust in automated driving. No associ-
ation was found between trust and user openness or con-
scientiousness. In their study, Yang et al. (2020) did not find
an association between trust and users’ expertise, familiarity
with the considered task, and overall propensity to trust.
However, other studies indicate that users with high propen-
sity to trust machines show higher initial trust in automa-
tion compared to their counterparts. This high initial trust
declines to a larger extent when automation errors are found
(Ebert et al., 2009; Madhavan et al., 2006; Merritt & Ilgen,
2008).

In terms of exploring the association between self-
reported trust and behavioral trust, Sharan and Romano
(2020) conducted a study in which 171 volunteers were
asked to play a card game assisted by an AI system. Trust
ratings were measured via a questionnaire administered at
the end of the task and behavioral trust concordance was
measured as the total number of responses that were same
as the AI suggestion. Findings suggest a significant low-to-
moderate positive association between self-reported trust
and behavioral trust (i.e., r=0.22, p < 0.05). Sofianos (2022)
found that self-reported trust measures were significantly
related with behavioral trust in a trust game played by two
human participants. This association was moderated by
one’s perception of the partner’s intentions. Ahmed and
Salas (2009) also identified associations between behavioral
and self-reported trust measures. However, these associa-
tions were influenced by the cultural background of the par-
ticipants. Conversely, there is evidence that indicates an
incongruent relationship between the two types of trust.
Kulms and Kopp (2019) evaluated trust in a cooperative
game that requires users to perform a joint activity with a
computer. Results indicated that varying the degree of
anthropomorphism of the agent from computer-like to
human-like did not impact behavioral trust, but increased
self-reported trust levels. These studies underscore the intri-
cate dynamics between self-reported and behavioral trust,
emphasizing the need for a nuanced understanding of their
interplay in human-AI interactions.

This paper presents the following contributions in rela-
tion to prior work: (1) While prior studies examining trust
in AI have focused on relatively objective vision-based task
(Lai & Tan, 2019; Yang et al,, 2020), this work considers a
more subjective task of anxiety estimation based on speech;
(2) This work examines users who possess a foundational
understanding of the subject matter and hold domain

knowledge in life science, as opposed to employing “naive”
annotators recruited from the general population, such as
annotators from Amazon Turk. This gives us a better sense
on how users with more direct background with life science
interpret the XAI decisions for anxiety detection that
requires users’ perception on human psychology.
Particularly when the AI is intended for decision-making in
critical areas such as health and education, studying trust in
Al for annotators who hold some domain knowledge in life
science can be more appropriate compared to utilizing naive
annotators, since it can more closely approximate practical
settings where AI can be deployed; (3) This study examines
how AI errors affect trust in AI over time, which has been
studied before in automation (Ebert et al., 2009; Madhavan
et al, 2006; Merritt & Ilgen, 2008), but not adequately
explored before for XAI and perceptual tasks with a lot of
uncertainty. Understanding how trust evolves over time and
corresponding factors is crucial for designing systems that
can effectively support users across different phases of inter-
action; and (4) We investigated the extent to which humans
and AI systems rely on the same or different acoustic meas-
ures of speech when assessing public speech anxiety.
Gaining insight into the different expertise and performance
of both entities provides essential knowledge that guides the
assignment of tasks according to the capabilities of each,
ultimately leading to task execution that is more effective
and efficient.

3. Explainable Al system for estimating anxiety
3.1. Data description

We used the VerBIO dataset (Yadav et al., 2020), a multi-
modal bio-behavioral dataset of individuals’ anxiety
responses while performing public speaking tasks in real-life
and virual reality (VR) settings. The data includes 78 audio
recordings collected from 55 undergraduate and graduate
students (23 female, 32 male) between 18 and 30years old.
Each participant performed 10 different public speaking pre-
sentations including PRE (1 session, Day 1), TEST (8 ses-
sions, Day 2-3), and POST (1 session, Day 4) parts. During
the PRE and POST sessions, participants gave a speech in a
conference room in-front of a real-life audience that
included professors and graduate students. The TEST por-
tions took place in various VR environments (i.e., classroom,
small theater, seminar room, boardroom) and in front of
varjous types of VR audiences (e.g., positive, neutral, nega-
tive). Before each public speaking presentation, participants
were randomly assigned to a news article from a list of
topics (i.e., history, travel, business, health, nature, culture,
science) and were provided 10minutes to prepare an oral
presentation. Following that, they delivered a 5-minute
speech to the audience. We only used the PRE and POST
sessions of the dataset, since they involved a real-life audi-
ence that can better simulate real life settings. We randomly
selected four speech files out of the 78 speech files of the
VerBIO dataset, which were provided as part of the annota-
tion procedure twice in random order. Therefore, the anno-
tators were asked to rate a total of 82 files. This served as an



additional checkpoint to evaluate the attention of each anno-
tator in the decision making task. In order to obtain the
ground truth for the study, a human expert with experience
in behavioral coding listened to each audio and provided his
perceived anxiety levels of the speaker on a 5-point Likert
scale (i.e., 1: No anxiety, 5: Very high anxiety). The expert
listened to the audio files as many times as necessary in
order to make a reliable decision. We have used these scores
as the ground truth in this study.

3.2. Designing an explainable Al algorithm for
estimating anxiety from speech

The AI agent relied on an explainable AI algorithm based
on the Explainable Boosting Machine (EBM) model (Nori
et al,, 2019), a glass-box model which produces interpretable
explanations of the decision outcome. The EBM model’s
explainability is rooted in three key factors: (1) The model’s
input comprises four highly interpretable features that assess
speech’s prosodic characteristics, directly linked to anxiety;
(2) Global explanation graphs generated by the EBM model
offer an overarching understanding of the anxiety outcome’s
dependence on each feature, providing users with an overall
view on how each feature is associated with anxiety; and (3)
At the audio level, the local explanation graph further eluci-
dates the dependence of anxiety outcomes on individual fea-
tures, enabling users to better understand specific acoustic
patterns within each audio file that influenced the EBM
model’s decision.

The EBM estimates the speaker’s levels of anxiety based
on four acoustic features, including the mean pause dur-
ation, loudness (i.e., computed as the logarithm of the mean
square energy), jitter (i.e., computed as the frame-to-frame
pitch period length deviations), and shimmer (i.e., computed
as the frame-to-frame amplitude deviations between pitch
periods). The average of these measurements was calculated
for the spoken segments of each audio clip over an analysis
window of 30 miliseconds. These were selected since these
are intuitive, easily interpretable, and related to the level of
anxiety (Batrinca et al., 2013; Chollet et al., 2016). The EBM
model finds the contribution of each feature to the outcome
of the model, and has comparable performance to state-of-
the-art ML methods, such as bagging and boosting. It is a
generalized additive model that follows the following math-
ematical formulation:

gEP) = Bo+ D _fix) (1)

Where g is the identity function in our model, f3, is the
intercept, and & is the expected value. The function f; indi-
cates how each feature x; contributes to the model’s predic-
tion for estimating the level of anxiety. The pair-wise feature
interactions were not considered in our experiment, since
they would increase the complexity of the model and would
likely be less intuitive for the users (Lou et al., 2012).
Training is conducted on one feature at a time in a round-
robin fashion using very low learning rate cycling through
all features x; and learning the best feature function f; for
each feature x; and the outcome of interest y. The
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contribution of each feature to the final prediction renders
the EBM highly interpretable and a good fit for this study
given its focus on the collaboration between the AI system
and a human annotator, who will rely on this explanation to
interpret the system’s decision-making process. The contribu-
tion of each feature x; to the final prediction can be under-
stood by plotting f. We used leave-one-sample-out cross
validation for evaluation due to the small number of samples.
As hyper-parameters, we used learning rate of 0.01, early
stopping rounds of 100, and the total number of maximum
boosting rounds of 10,000. The Spearman’s correlation
between the estimated and actual levels of anxiety for this
model was 0.261 (p <0.05), a result equivalent with prior
work on the same (Yadav et al., 2020) and other (Booth
et al., 2022) datasets. We could have used more features to
improve the model performance but prior research
(Poursabzi-Sangdeh et al., 2021) shows that using fewer fea-
tures in a glassbox model results in users being able to simu-
late the model predictions more accurately. We used
Spearman’s correlation, since it captures the monotonic (ie.,
rank) relation between two variables and the focal ground
truth of anxiety is an ordinal variable (i.e., 1,...5) rather than
continuous (Hauke & Kossowski, 2011; Rebekic et al., 2015).
Using the output of the EBM model, we can visualize the
correlation between each feature and the state of anxiety
based on all the data via the global explanation graph
(Figure 1). The feature values are shown on the graph’s x-
axis, and their contributions to the anxiety outcome are
shown on the y-axis. Positive contribution values (i.e., solid
blue line; Figure 1) show a positive correlation between the
associated acoustic feature and the anxiety outcome, whilst
negative contribution values show the reverse relationship.
Additionally, the graph shows, through shaded areas, the
model’s level of confidence for each feature value. Higher lev-
els of decision uncertainty are shown by thicker shaded areas.
In Figure 1(a), we observe that anxiety related to public
speaking tends to decrease as speakers get more loud during
their speech, whereas the relationship between public speech
anxiety and speech pause duration is the opposite (SEE
Figure 1(b)). Prior studies also show that confident speakers
depict high loudness (Monarth & Kase, 2007) and take fewer
pauses (Jiang & Pell, 2017). The EBM model also has the
ability to explain the decision for each sample via the local
explanation graph, which depicts the contribution of each fea-
ture in the level of anxiety. Figure 2 presents a local explan-
ation graph for a sample audio, for which pause duration is
the most important feature that is associated with increased
anxiety level, while loudness is the least important one. As
seen in the same figure, the annotators were further provided
with a description of the local explanation graph which indi-
cated the acoustic features that influenced the most and the
least the decision outcome, as well as the features that were
positively and negatively correlated with the outcome.

3.3. User interface to enable human-Al collaboration

We created a web interface (Figure 3) through which anno-
tators interacted with the EBM model. The main elements
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Figure 1. Global explanation graphs provided by the explainable boosting machine (EBM) that capture the effect of different features in estimating the anxiety lev-
els. The feature values are shown on the graph’s x-axis, and their contributions to the anxiety outcome are shown on the y-axis.

of the interface are: (1) An audio player for listening to the
audio files; (2) The global explanation graphs (Section 3.2)
explaining the contribution of each feature to the estimated
anxiety level; (3) The local explanation graph (Section 3.2)
explaining the relative importance of each feature for each
audio file; (4) A comment box where participants can com-
ment on the reasons behind their decision for each audio file;
and (5) Help buttons so that annotators can quickly refer to
explanations about the AI model as needed. We piloted the
interface with five annotators, who tested the initial design.
Annotators were provided with a mini-tutorial that explained
the goal of the project, the role of each acoustic feature, as

well as the functionality and output of the EBM model. Based
on the comments of these five annotators, we introduced
various “help” buttons to the interface that directed the user
to a brief description of each component, such as the global
and local explanation graphs and the features.

4, User study design
4.1. Participant recruitment

The main goal of the study is to analyze how people who
possess a foundational understanding of the subject matter
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List of features having positive association with anxiety level:
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Figure 2. Example of a local explanation graph provided by the explainable boosting machine (EBM) that indicates the importance of each feature in making the
final decision for a given sample. Larger absolute values indicate higher importance of the corresponding feature in estimating anxiety levels for the corresponding
audio sample. Positive values contribute to the anxiety outcome, while the opposite holds for the negative values. A brief verbal explanation of the graph is also

provided to the annotators.

and hold domain knowledge in life science interact with an
explainable AI as part of a speech-based data analytics task,
and also examine their trust in the AI model. Therefore, eli-
gibility criteria for the human annotators were: (1) being
older than 18years; and (2) being enrolled as an under-
graduate student in the department of Psychological & Brain
Sciences at Texas A&M University (TAMU). The second cri-
terion was included so that annotators are familiar with
basic concepts related to human behavior and they can bet-
ter perceive and interpret the anxiety in speech. The fact
that annotators had not yet obtained their degree allowed us
to recruit participants from various academic levels.
Recruitment was conducted via bulk emails. Our study
includes 13 annotators (10 female, 3 male; 19.84 (M) + 1.23
(8D) years; 3 Asian, 6 White/Caucasian, 3 Hispanic/Latino,
1 Black/African American). From these annotators, two
were freshmen, three were in their sophomore year, five
were juniors, and three were seniors.

4.2. Study protocol

The overall workflow of the study protocol is summarized
in Figure 4. First, participants completed two questionnaires
that recorded individual differences. These included the Big
Five Inventory (John & Srivastava, 1999) that captures per-
sonality traits and the Propensity to Trust Machines ques-
tionnaire (Merritt et al, 2013) reflecting one’s general
tendency to trust machines. The distribution of these scores
for the annotators is shown in Table 1. Following that, the
first author then conducted a one-to-one meeting with each
participant, in which he explained the task, the EBM model,
and the web interface, and answered their questions. The
first author was also available throughout the duration of
the experiment for any additional questions. After explain-
ing the task and the interface to the annotators, the annota-
tors were provided with access to the interface and were

instructed to annotate the 82 files with the help of the Al
model.

The annotation procedure is a cognitively demanding
task, thus the annotators were told to annotate 8 batches of
files spread across different points in time. Each batch
included 10 files except from the last batch which included
12 files. Annotators were instructed to devote roughly two
hours to each batch. For each file, the annotator was asked
to listen to the corresponding audio, view the state of anx-
iety decision, local explanation graph, and global explanation
graph of the EBM model, and provide their final decision in
terms of the perceived anxiety level on a 5-point Likert scale
(i.e., same scale as the ground truth; Section 3.1). Note that
the annotators had been told that their final annotation
score does not need to be aligned with the AI decision, and
that they may agree or disagree with the Al In addition,
they were strongly advised to provide a comment for each
audio file explaining their thought process and a concise
reason on why they agree or disagree with AI decision.
After completing each batch of files, annotators were further
asked to rate the extent to which they trusted AI in making
their decision on a 5-point Likert scale (i.e., 1: Not at all; 5:
Extremely) which was used as the self-reported trust meas-
ure in our analysis. Since the self-reported trust measure
was based on each batch of files, annotators were instructed
to listen and annotate a batch of files at a time, which can
potentially mitigate recall error. Each annotator was com-
pensated with $180 at the end of the study.

5. Data analysis and results

Here, we describe the data analysis methodology and corre-
sponding results. We first provide the definitions of the
main variables considered in our analysis (Section 5.1).
Then, we examine the reliability of collected data by investi-
gating the discrepancy of each annotator in rating the
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Figure 3. Custom-made web interface used by the annotators to interact with the Al system. (a) Home page, including links to the audio samples, explanations of
the acoustic measures, and guidelines about the annotation process; (b) drop down list, containing the four features used as an input of the Al model. After select-
ing a feature, the user was able to inspect the global explanation graph for that feature; (c) Main web page through which the annotator can listen to the audio
file, provide their rating (via a separate sheet), and add a comment explaining their rating (via the white text field). The annotator can also click on the button
located at the top left of the page in order to see the anxiety score provided by the Al model and examine the local explanation graph (e.g., “importance of vocal
measures for the target participant POST_P001, as determined by the machine learning algorithm”).

duplicate samples (Section 5.2). Following that, we study the
errors performed by the human annotators and the AI sys-
tem and conduct a quantitative analysis to better understand
cases in which the human and the AI partner might depict
differences in performance (Section 5.3). Next, we examine
the association between behavioral and self-reported meas-
ures of trust (Section 5.4), as well as the association between
AT capacity and trust in Al to better understand the extent
to which human annotators properly calibrate their trust in
the capabilities of AI system (Section 5.5). We further
explore how trust in Al evolves over time and in association
to any errors conducted by the AI system (Section 5.6).
Finally, we investigate individual factors of trust pertaining
to overall trust propensity and personality characteristics
and their interaction with trust evolving over time
(Section 5.7).

5.1. Notation

In the following, we provide the definition of the basic vari-
ables that are considered in our analysis, along with the
mathematical notation (Table 2). For the sake of consist-
ency, variables referring to the sample level are denoted
with small letters, while variables referring to the batch level
(i.e., containing many samples) are denoted with capital let-
ters. We define the human error human_error; ;. of annotator
i at sample k as the absolute difference between the ground
truth and the annotation, while the AI error ai_error; at
sample k is measured via the absolute difference between
ground truth and the AI decision. The capacity ai_cap; of
the AI system at sample k is the inverse of the AI Error
ai_errory of sample k, ie., ai_capy = -1 We further

ai_errory *
define S;; as the self-reported trust of annotator i after batch
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Figure 4. Schematic workflow of the study procedure. (a) Annotators completed the Big Five Inventory, the propensity to trust machines questionnaire, and a gen-
eral survey about their prior research experience, which served as a proxy of annotator task expertise; (b) annotators were presented with a mini-tutorial about the
goal of the experiment, description of acoustic features, and overview of the explainable boosting machine (EBM) model; (c) annotators listened to an audio file; (d)
annotators viewed the explanation and decision of the EBM model for the audio file; (e) annotators rated the anxiety level of the audio file. (f) Annotators provided
their self-reported trust level after rating each batch of samples. Steps (c-e) were repeated per sample.

Table 1. Distribution of annotator characteristics.

ID Extroversion Agreeableness Conscientiousness Neuroticism Openness Propensity to trust machines General Propensity to trust
Range [8-40] [9-45] [9-45] [8-40] [10-50] [6-30] [12-60]
P1 21 35 38 34 40 25 28
P2 17 35 31 33 34 12 37
P3 18 39 36 33 36 21 37
P4 14 30 34 33 41 28 45
P5 20 42 44 14 14 30 34
P6 19 35 29 24 30 22 43
P7 22 35 35 23 28 21 36
P8 27 34 37 17 36 26 26
P9 27 32 34 31 31 29 55
P10 35 39 35 24 41 15 35
P11 33 37 36 25 27 25 38
P12 35 36 42 26 40 28 30
P13 36 38 27 38 45 22 39

23+6.38 35.72+3.22 3536+3.67 26.45+6.58 35+5.13 23.1+£54 37.63+£7.61
Table 2. Notation of variables considered in the analysis. annotation scores for the four duplicate samples that were
Variable Notation provided in the data. This score is low (i.e., 0.424 (M) *
Human error of annotator i at sample k human_error,x 0277 (SD)) for the majority of the annotators, which indi-
Al error at sample k ai-errofy cates that overall annotators were attentive to the considered
Al capacity at sample k ai_capy . . . .
Self-reported trust of annotator i at batch j S, task. However, this error is relatively large (i.e., > 0.7) for
Behavioral trust of annotator i at batch j B;; Annotator 12 and Annotator 13, suggesting reduced atten-
Behavioral distrust of annotator /i at batch j D;;

tion by these two annotators to the decision-making task.
Thus, the data from these annotators were excluded from

the following analysis. Of note, we get a lower average dif-

j has been completed? and D, as the 'behav1ora1 distrust  gorence in annotation scores for the duplicate samples after
measure of annotator i for batch j, quantified as the average excluding these annotators data (ie, 0338 (M)

absolute discrepancy between the Al decision and the anno- () ;95 (SD)). -
tator’s decision (Chu et al., 2020). Following that, the behav-

ioral trust measure B;; of annotator i for batch j is defined
as the inverse of the behavioral distrust measure, i.e., B;; = 5.3. Error analysis of human annotators and Al model

Behavioral trust of annotator i at sample k bi k

D . Finally, the behavioral measure of trust b; ; of annotator
i at sample k is defined as the inverse of the absolute dis-
crepancy between the human annotator i and ML prediction

We first obtain an overall understanding of cases in which
the human annotators and the Al system depict differences
in performance. For this purpose, we create a scatter plot in
for sample k. which the x-axis represents the human error human_error; ;
of each annotator i at sample k, while the y-axis represents
the AI error ai_errory at sample k (Figure 5). We further
identify the following four regions in this plot: (R;): AI per-
To evaluate the attention of the annotators during the deci- forms well and annotator performs well (N=527); (R,): Al
sion making task, we compute the average difference in the performs well and annotator performs poorly (N=221);

5.2. Reliability of collected data
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(Rs): AI performs poorly and annotator performs well
(N=46); (Ry): Al performs poorly and annotator performs
poorly (N=64). The boundaries of the above regions are
defined by the average of the maximum and minimum val-
ues of the human error (i.e., for the x-axis) and the AI error
(i.e., for the y-axis). It is evident that the human annotators
and the AI system depict different performance over sam-
ples that belong to regions R, and R;. Via a paired t-test, we
further observe significant differences between the error dis-
tributions of the two partners in these regions (i.e., Ry:
£(220) =29.2, p<0.000, N=221; Ry t(45) = —12.53,
p <0.000, N=46), as depicted in Figure 6.

Via qualitative analysis, we further attempt to better
understand these observed discrepancies between the human
annotators and the AI system. To accomplish this, we coded
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Figure 5. Visualizing the association between the errors conducted by the
humans and the Al model, across four different regions. (Ry): Al performs well
and annotator performs well; (R,): Al performs well and annotator performs
poorly; (Rs): Al performs poorly and annotator performs well; (R,): Al performs
poorly and annotator performs poorly.

the 204 comments provided by the annotators after review-
ing each audio sample (Section 4.2) and assigned each com-
ment to one of nine categories (Table 3). Since our objective
is to study different capabilities between human and AI
decision-making, we did not include any comments to these
categories that entirely focus on Al features. Additionally, a
comment may fall under more than one category. We com-
pute the average Al prediction score and the average human
annotation scores for the samples belonging to each category
(Table 3). Via a paired t-test, we find significant differences
between the AI prediction score and the human annotation
score for each comment category (e.g., p <0.05) except for
the categories C,, C;, and Cg. Therefore, we did not consider
these comment categories (e.g., C,, C;, and Cg) in the fol-
lowing analysis. Results indicate that human annotators tend
to make fewer errors than the AI on average in cases in
which they take into account the speech loudness (Cs).
Although speech loudness is included in the features of the
Al model, it was computed as the mean loudness over the
whole utterance. In contrast, it appears annotators consid-
ered loudness in association to certain words, which was
referred in the comments as “speech emphasis.” Besides, the
annotators perform better than Al on average when they
consider stuttering of the speaker (C,). A potential reason is
that stuttering is a reliable marker of anxiety (Blood &
Blood, 2007; Ollendick & Hirshfeld-Becker, 2002) which was
not considered by Al In addition, human annotators depict
reduced error compared to the AI system on average when
they consider the natural pauses of the speaker (Cy). Even
though the mean pause interval over the speech was
included in the AI model, the Al model did not consider
whether any pause was natural or the pause happened due
to the nervousness of the speaker. The annotators depict
these natural pauses not related to anxiety and provide
lower anxiety score than AI and perform better than AI on
average. On the contrary, the Al system makes less errors
than the human annotators, when the latter take into
account the speaker’s general impression (C;), speaking rate
(Cs), as well as accent (Cg). A potential explanation of these
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Figure 6. The distribution of human error and Al error for samples in which the human and the Al depict different performance. (a) R, : the Al performs well and
the human annotator performs poorly; and (b) R; : the Al performs poorly and the human annotator performs well. Blue plots refer to human error and orange
plots refer to Al error. The dotted vertical lines refer to the mean of these distributions.



Table 3. Coded categories of comments provided by the human annotators.
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Average Paired t-test results Average
human Average between Al score and ground

Comment type score Al score human score truth Example

C;: General impression 2.1+0.78 247 +£0.23 t(85) = —4.66, p < 0.01 232+0.75 Sounded pretty stressed. (P4)

G, : Filler words 2.63+0.79 2.55+0.22 t(47) = 0.68,p = 0.50 2.72+0.57 [...] Lack of filler words signal little to no
stress. (P5)

C; : Speech loudness 1.51+0.38 249+0.18 t(8) = —9.65,p < 0.01 1.77 £0.42 [...]1 only thing having a positive effect on
anxiety score was loudness, but changes in
loudness seemed to be to make her point/
empbhasize things rather than a sign of
nervousness. (P11)

C4 : Stuttering/ 3.04+0.54 2.52+0.25 t(43) =6.88, p < 0.01 2.86+0.46 She was very nervous and you could hear her

stumbling voice tremble. (P8)

Cs: Speaking rate 2.84+0.61 249+0.26 t(19) =2.14, p < 0.05 2.60+0.49 Subject spoke incredibly fast in some places which
is indicative of anxiety. (P9)

Ce: Accent/Way of 2.16+0.60 2.70x0.29 t(14) = -3.36, p < 001 2.80+0.54 | decided to go a little lower than the Al model

talking because it sounds like this individual is
struggling with choosing the right wording.
(sounds like English is not the first language)
so certain pauses might not be due to stress. |
do not think the Al model accounts for these
issues which is why | went a little lower when
scoring. (P1)

C7: Audio artifact/noise 2.32+0.66 245+0.31 t(9) = —0.70, p=0.50 2.50+0.50 [...11think the microphone was just terrible for
this speech. (P4)

Cg : Perceived level of 2.72+£0.97 2.81+£0.20 t(5) = —0.24,p = 0.82 2.67 £0.47 Speaker was unprepared and it showed

preparation [...]. (P15)

Gy : Natural pause 1.95+0.58 251+0.11 t(5) = —2.63,p < 0.05 217+0.37 [. .] the pause duration felt very natural

considering the speed at which they were
speaking, so | put a lower anxiety score. (P9)

For each category, the average human annotation anxiety score, average Al prediction anxiety score, average ground truth anxiety score with standard deviation
in M=SD format, the paired t-test results between Al score and human anxiety score are reported, and examples of comments are provided.

findings might be that the general impression of a speaker
can be quite subjective, therefore human annotators perform
worse than the AI system when they take this factor into
account. Also, the AI system can quantify speaking rate
more objectively compared to the human annotator, there-
fore these features tend to be erroneously perceived by the
human annotators. Human annotators depict more errors
than the AI when they consider the speaker’s accent, poten-
tially due to the fact that this affect the voice quality, but is
not necessarily associated with the state of anxiety.

5.4. Association between behavioral and self-reported
measures of trust

We use a linear-mixed effects (LME) model with random
intercept to find the association between self-reported trust
measures and behavioral trust measures. The use of the
LME model stems from its ability to handle complex and
multifaceted data structures, particularly repeated measures
and nested data (i.e., multiple trust measurements per anno-
tator in our case). The LME models are an extension of lin-
ear regression that incorporates both fixed effects,
representing population-level relationships, and random
effects, capturing variability at the individual level. The LME
model for this analysis is defined as follows:

Sij=PB+a xBj+x (2)

Where §; ; is the self-reported trust of annotator i after batch
j has been completed, and B;; is the behavioral measure of
trust of annotator i for batch j. In (2), a; serves as a fixed-
effect coefficient, which is constant for all observations, and

x; serves as a random-effect coefficient, which is different
for each participant i. The random effect coefficient x; incor-
porates the random variability in trust from person to per-
son. The coefficient a; quantifies the association between
self-reported and behavioral trust measures. The results sug-
gest significant positive association between the two (ie.,
a; = 1.56, p=0.002, N=288), a finding which is also sup-
ported by prior studies (Sharan & Romano, 2020). Thus, in
the following analysis, we will be using these two measures
interchangeably.

5.5. Association between Al capacity and trust in Al

In this section, we examine the extent to which human
annotators can calibrate their trust in Al according to the
capacity of the AI system. Drawing from Lee and See
(2004), we inspect the 2D scatter plots of Al capacity
ai_capy against the behavioral trust b;; of annotator i at
sample k for all samples k per annotator (Figure 7).
Calibration pertains to the alignment between an individu-
al’s trust in automation and the actual capabilities of the
automation. Therefore, when the annotator’s trust is fully
calibrated with the AI capacity, the points of the 2D scatter
plots should follow the identity line (i.e., y=x). Lee and See
(2004) also represented good calibration of trust by the diag-
onal line in trust vs automation capability plot, where the
level of trust matches automation capabilities. On the con-
trary, annotators over-trust the AI for the samples lying
above the identity line, and under-trust the AI for the sam-
ples lying below the identity line. The larger the distance of
a sample from the identity line, the higher is the degree of
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Figure 7. 2D Scatter plots of Al capacity against the behavioral trust for each annotator. Each point of a plot represents one audio sample. The x-axis represents
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the Al capacity calculated as the inverse of Al error and the y-axis represents the behavioral trust of the annotator for the specific samples.

over-trust or under-trust in Al, depending on whether the
point is above or below the line, respectively. We employ
the degree of under/overtrust rather than the frequency,
since the first gives emphasis to the intensity or magnitude
of the focal phenomenon and is more sensitive to changes.
Based on this rationale, we define three metrics of trust per

participant. Over-trust is quantified as the average absolute Al system.

distance of samples above the identity line. Under-trust is
measured as the average absolute distance of all points
below the identity line. Trust miscalibration is finally defined
as the average absolute distance of all the points from the
identity line, which is close to zero in the ideal case where
annotators’ trust is fully calibrated with the capacity of the
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The average of these measures across all samples is com-
puted for each annotator and their corresponding distribu-
tion is provided in Figure 8. These measures vary across
annotators with some depicting relatively appropriate trust
calibration to the capacity of the AI system (e.g., P1, P9;
Figure 7; i.e., lower trust miscalibration metric), others over-
trusting the AI system (e.g., P4, P7; Figure 7; ie., higher
over-trust metric), and others under-trusting the AI system
(e.g., P11; Figure 7; i.e., higher under-trust metric). The
average over-trust value per user (i.e., 4.12 (M) * 2.73 (SD))
is higher than the average under-trust value per user (ie.,
1.59 (M) £ 0.73 (SD)) and the paired-t test results between
average over-trust value per user and average under-trust
value per user is statistically significant (i.e., #(10) = 3.42,
p<0.01). Therefore, human annotators mostly over-trust
the AI system, which is consistent with prior findings sug-
gesting that having a favorable experience with automation
leads to confidence that extends beyond the system capabil-
ities (Ullrich et al., 2021).

5.6. Evolution of trust over time

We further explore how annotators change their trust in Al
over time, depending on the error of the AI system. We
build a LME model with random intercept that estimates
the behavioral measure of trust in Al as a function of time
and Al error, as follows:

bix = P+ ay X ai_errory + by X k+ x; 3)

Where b; x denotes the behavioral measure of trust in AI of
annotator i for sample k and ai_errory denotes the Al error
for the kth sample. In (3), a, and b, are the fixed-effect
coefficients, which are constant for all observations, and x; is
a random-effect coefficient, which is different for each par-
ticipant i. When estimating the coefficients of the LME
model in (3), we exclude the outlier samples for which the
AT system is highly accurate, but the annotators depict very
low trust in the system, and vice-versa, the samples for
which the system performs very poorly, but the annotators
depict overly increased trust. For this purpose, for each
annotator i, we exclude the outlier samples for which the
ratio of behavioral trust b;; to Al capacity ai_capy is too low
or too highi.e, ailjgpk is either lower than the 2.5% quantile
or larger than the 97.5% quantile value of all samples from
the corresponding annotator. This resulted in excluding 66
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samples out of the total 902 samples (i.e., 7.3%) from the
LME model. Results indicate that annotators increase their
trust in Al over time (i.e., b, = 6.92, p=0.009, N=_836),
but momentarily decrease their trust in AI when the AI sys-
tem makes error (ie., a, = —12.184, p=0.001, N=_836).
The observed overall increase of annotators’ trust in Al over
time is also reflected in their comments. For instance, P1
mentioned, “I was not sure how I felt about this one, so I
relied heavily on the opinion of the AI model. This is also
where I am realizing that I am trusting the opinion of the
model much much more compared to when I started.”.
Similarly, P10 commented that, “As stated before, as I con-
tinue to use the AI's observations and review them after I
have reviewed the audio files, I see that the Al is able to
make relatively accurate observations in my opinion.”. There
was no comment from the annotators which indicates a
momentary decline of trust in Al when the latter makes an
error. However, the discovered negative association between
AT error and human trust in Al is also consistent with prior
work regarding trust in automation (Hancock et al., 2011).

5.7. Effect of personality characteristics and prior
research experience on human trust in Al

Grounded in prior work that has found significant personal-
ity effects on trust in automation (Bockle et al., 2021; Miiller
et al., 2019), we investigate the extent to which trust in the
Al system depends on the characteristics of the annotator,
such as their overall propensity to trust machines, their per-
sonality, and their prior research experience. We build the
following LME model with random intercept to analyze the
effect of annotators’ characteristics on self-reported trust in
Al over time:

Sij=B+asxj+byxDjj+c3xM+ds(j x M)
+es X Ai +f3(j X Ai) + 8 x G
+hs(j x Ci) + i3 x Ei +js(j % Ei) + ks X Ri +13(j x Ri) +x;
4

In (4), S;; denotes the self reported trust of annotator i
for batch j, D;; is the average behavioral distrust of annota-
tor i for batch j, M; is annotator’s i overall propensity to
trust machines, A; is annotator’s i agreeableness, C; is anno-
tator’s i conscientiousness, E; is annotator’s i extroversion,
and R; is annotator’s i research experience encoded as a
Boolean variable (i.e., 0 or 1 for the absence or presence of
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Table 4. Linear Mixed Effect (LME) model estimates of fixed and interaction
effects of individual factors and time for estimating self-reported trust in Al.

Individual factors Fixed-effect Interaction effect
Time j as; = 0.74

Behavioral distrust D;; by = —2.04*

Propensity to trust machines M; ; ¢ =2.20" d; = —4.07*
Agreeableness A; e3 =271" f; = —4.76*
Consciousness C; gs =—-2.72" hy = 6.64*
Extroversion E; i; = —0.41 j3 =1.37"

Prior research experience R; ; ks = —-0.26 I, =0.86

T p<0.05p<0.1

prior experience with behavioral coding, respectively). In the
same equation, as, bs, ¢s, ds, €3, f3, g3, M3, i3, j3, k3, I3 are
fixed-effect coefficients which remain constant for all obser-
vations, and x; is a random-effect coefficient which is differ-
ent for each participant i. The model also considers the
interaction between each of the annotator characteristics and
time, so that we can understand whether the evolution of
trust over time varies between different people. Results are
provided in Table 4 (N =88), where it is important to note
that the threshold of p < 0.1 is not employed as a criterion
for statistical significance but is utilized as an indicator that
the corresponding coefficients may be approaching statistical
significance given the constraints of the small sample size.
As expected, similar to findings in Section 5.4, results indi-
cate a negative association between self-reported trust and
behavioral distrust (b; = —2.04%), or else, a positive associ-
ation between self-reported and behavioral trust. Agreeable
annotators depict increased trust in the Al (e3 =2.717),
although this association does not reach statistical signifi-
cance. Agreeable annotators’ trust decreases over time
(fs = —4.76"), potentially due to the fact that these annota-
tors initially start with higher levels of trust compared to
their counterparts. Similar findings hold for annotators who
have inherently high propensity to trust machines
(c3 =2.20",d; = —4.07*). On the contrary, conscientious
annotators depict overall lower trust to Al compared to their
counterparts (g3 = —2.72"), an association which is not stat-
istically significant, but their trust increases over time
(h; = 6.64"). Extroversion and prior research experience do
not appear to significantly affect trust in AL

6. Discussion

This paper examines human trust in Al in a collaborative
data analytics task, in which humans and AI worked
together to estimate a speaker’s levels of anxiety from
speech. We have explored five research questions via the
conducted analysis. This section includes a summary of the
research questions and corresponding findings, as well as a
discussion of their implications.

In response to RQI, we observe differences in perform-
ance between the human annotators and the AI system.
Human annotators achieve better performance than the Al
when they consider speech speaker stuttering and the speak-
er’s emphasis on certain words (Section 5.3), both of which
are not explicitly modeled in the AI system. In addition,
human annotators do better than the AI when they take

into account the natural pauses of the speaker, a feature
which is difficult to capture via the speech signal, since it
requires additional context information. On the contrary,
the AI performs better than the human annotators in cases
when the latter considered the speaker’s accent and speaking
rate as an indicator of anxiety. It further appears that the
annotators perform worse than the AI when they take into
account the general impression of the speaker for their deci-
sion which is quite subjective. Human annotators’ superior
performance in aspects such as recognizing speech speaker
stuttering, emphasis on certain words, and natural pauses,
reflects the unique ability of human cognition to consider
context-dependent features that are not explicitly modeled
in the AI model highlighting the potential of leveraging
human expertise in collaborative tasks where such nuanced
understanding is crucial. However, the AD’s better perform-
ance in cases where human annotators relied on indicators
like the speaker’s accent and speaking rate suggests that the
AI system might be able to grasp dimensions that can be
subjective and challenging for human annotators to assess.
This suggests the complementary nature of human and Al
capabilities, emphasizing the potential for effective collabor-
ation where each entity contributes its strengths.
Implications of these findings into future research could
encompass the development of frameworks that offer expli-
cit guidelines or training for human annotators, aiming to
address subjective elements in the decision-making process.
Additionally, future work can involve the design of systems
that facilitate effective communication and the seamless inte-
gration of human insights with machine capabilities. This
includes the creation of interfaces that enable humans to
comprehend and interpret Al decisions more easily, while
also allowing AI systems to better understand human capa-
bilities by incorporating human-like perceptual abilities in a
personalized manner.

In exploring RQ2, we found significant positive correl-
ation between self-reported and behavioral trust in Al
(Sections 5.4 and 5.7). This aligns with similar findings in
prior studies, such as the work by Sharan and Romano
(2020), which also identified a moderate positive correlation
between self-reported and behavioral measures of trust, the
latter captured via reaction time and user agreement with
the AL It further suggests that behavioral measures can
serve as a viable proxy for assessing user trust in AI, which
can have important implications in the design of adaptive
Al systems. Behavioral measures provide a continuous
stream of data, allowing AI systems to adapt in real-time.
For instance, if a sudden decrease in user trust is detected
through behavioral indicators, the AI system can adjust its
behavior or provide additional explanations to repair trust.
This can further contribute to tailoring the system’s
responses to each user. However, the fact that these results
are found in a small sample size, combined with previous
evidence that suggests an incongruence between behavioral
and self-reported trust (Kulms & Kopp, 2019), also under-
score the importance of further exploration into additional
measures of trust that potentially can be more objectively
quantified via brain activity, speech, and language (Chen



et al., 2020; de Visser et al., 2018; Dong et al., 2015; Levitan
et al., 2015).

In addressing RQ3, our results indicate that annotators
depict different levels of trust calibration with respect to the
capacity of the AI system. While some annotators demon-
strate effective trust calibration based on the AI's profi-
ciency, others exhibit trust miscalibrion (Section 5.5). The
predominant pattern in trust miscalibration involves over-
trust in the AL One possible explanation for this finding
could be that, despite possessing domain knowledge in life
science, the human annotators, being undergraduate stu-
dents with limited practical experience in the field, may lack
a high level of confidence in their abilities. Prior studies also
show that when individuals are unable to rely on their own
judgment, reliance in automation is especially evident (Fan
et al,, 2008; Sanchez et al.,, 2014). These findings underscore
the importance of addressing overtrust tendencies among
annotators, especially when considering the practical deploy-
ment of Al in collaborative decision-making tasks within
specific sensitive domains. Strategies to enhance annotators’
awareness about the limitations and capabilities of the AI
system, coupled with effective training on when to rely on
Al predictions and when to exercise human judgment, could
contribute to more balanced trust calibration (Aroyo et al.,
2021). From a system design perspective, incorporating feed-
back mechanisms that highlight uncertainties and potential
pitfalls in the ADs decision-making process can be also
beneficial (Buginca et al., 2021).

In answering RQ4, trust in AI overall increases over time,
but momentarily decreases when the AI makes more errors
(Section 5.6). Since the AI system depicts moderate perform-
ance, this increasing trend of trust in Al over time could be
explained by the fact that human annotators might project
their potentially positive initial experience with the Al to the
audio samples that are being observed at the latter batches
of the data collection. However, it appears that annotators
can also momentarily differentiate between successful situa-
tions and instances in which the AI makes an error, which
is inline with prior work on human trust in robotic errors
(Geiskkovitch et al., 2019; Ragni et al., 2016). This observed
pattern is noteworthy in the context of trust in studies that
involve human-AI collaboration. The possibility of more
uncertainty in human-AI decision-making, compared to
human-robot interaction, could have suggested that Al
errors might irreversibly impact trust. However, this study’s
results suggest otherwise. Further exploration of this finding,
especially in studies involving subject matter experts with
substantial experience in behavioral coding tasks, could offer
valuable insights into the generalizability of these
observations.

Finally, in response to RQ5, we found that overall pro-
pensity to trust machines, agreeableness, and consciousness
affect human trust in AI, while extroversion and prior
research experience did not emerge as significant factors in
this context. However, these results only approach statistical
significance in our study. The majority of these findings
coincide with prior work on human trust in general automa-
tion (e.g., robotic agents), while it’s crucial to emphasize
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that this study contributes novel insights by providing pre-
liminary evidence on how these individual factors distinctly
influence human trust in Al systems. People with high pro-
pensity to trust depict high trust, which decreases more over
time compared to their counterparts (Section 5.7). This is in
accordance to prior work that indicates that people with
high propensity to trust depict higher initial trust in auto-
mation, which decreases in the presence of an error (Ebert
et al, 2009; Madhavan et al., 2006; Merritt & Ilgen, 2008).
Our results suggest similar trends for agreeable people with
approaching statistical significance. Also prior work has
found that agreeable people hold high initial trust (Chien
et al., 2016) and high overall trust (Bawack et al, 2021;
Kraus et al., 2020) in the Al systems. On the contrary, con-
scientious annotators depicted less trust in Al than their
counterparts, although this result did not reach statistical
significance, with increasing trends over time (Section 5.7).
Previous results regarding the effect of the conscientiousness
in trust in automation are inconclusive. Some studies do not
suggest a correlation between conscientiousness and trust in
Al (Kraus et al., 2020), while others demonstrate positive
correlation between the two (Bawack et al., 2021) irrespect-
ive of time. Other studies indicate that people with high
conscientiousness have higher initial trust in AI (Chien
et al, 2016). Collecting data from annotators with more
extreme conscientiousness characteristics or explicitly
manipulating the experimental conditions in terms of the
quality and quantity of explanation provided by the AI sys-
tem might help better answering this question. Our study
does not indicate a significant association between extrover-
sion and trust in AI, which is in line with prior work that
did not find significant correlation between trust in Al and
extroversion (Chien et al., 2016). Finally, prior research
experience does not appear to be a moderating factor of
trust in our experiment. Prior work indicates that user
expertise is loosely related to dimensions of trust in automa-
tion (K. E. Schaefer et al, 2014). For example, users with
limited task expertise tend to over-trust automated systems
(Nourani et al., 2020). Despite our participants possessing
knowledge in life science, their limited prior research experi-
ence in behavioral annotation (i.e., only 3 out of 11 partici-
pants had prior experience) may explain the lack of
significance in the research experience variable. The minimal
varijability in this variable could be a potential contributing
factor to its non-significant role in influencing trust. The
implications of these findings for system design carry signifi-
cance for creating Al systems that effectively engage and
interact with human users. For example, designing interfaces
that cater to individuals with high propensity to trust and
high conscientiousness might involve incorporating elements
that foster a sense of reliability and transparency. For agree-
able individuals, interfaces can prioritize user-friendly fea-
tures and clear communication to maintain their trust.
Finally, recognizing the decreasing trend of trust over time
for individuals with high propensity to trust suggests the
need for dynamic adaptation in system behavior. This could
involve periodic reinforcement of reliability or adjusting the
level of explanation to sustain trust.
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Despite the encouraging results, our study presents the
following limitations. First, this paper relies on data from
users with direct background from life science, which is
inherently more difficult to acquire compared to crowd-
sourced data. For this reason, our analysis contains data
from a small number of participants, which raises considera-
tions about the generalizability and statistical power of the
results. With a limited number of participants, the findings
may be more susceptible to the influence of individual varia-
tions and outliers, potentially affecting the overall generaliz-
ability of the study. Furthermore, the limited diversity
within the small sample, as demonstrated via the low vari-
ation in terms of personality characteristics and prior
research experience, may impact the external validity of the
results. Collecting data from a larger participant pool might
allow us to better explain the impact of personality and
prior research experience on the user trust and trust calibra-
tion. Second, we measured self-reported trust via a one-item
measure, which may oversimplify the complexity of the focal
psychological construct raising reliability concerns. While
acknowledging this as a limitation in our study, it is impor-
tant to note that participants were asked to self-report their
trust eight times throughout the study protocol, since our
research aimed to capture the evolving nature of user trust
over time. Given the study design, employing a validated
questionnaire with multiple items might have introduced
user fatigue and potentially heightened subjectivity in the
measurement. As part of our future work, we will supple-
ment the existing self-reported and behavioral measures of
trust with neural measures that have been empirically vali-
dated in human-automation settings (de Visser et al., 2018).
Finally, as part of the study protocol, we did not explicitly
control for the performance of the AI system (e.g., via
manipulating this variable), which would have allowed us to
better understand its effect on human trust.

7. Conclusion

In conclusion, this study delved into the dynamics of human
trust in AI within a human-AI collaborative task that
focused on estimating anxiety levels from speech. An
explainable AI system, the EBM model, interacted with
human annotators with background on psychological scien-
ces and provided explanations about local and global feature
importance, along with the AI decision. Trust in AI was
captured via self-reports and behavioral measures. Human
trust in the AI system increases over time with errors con-
ducted by the Al being associated with momentary decrease
in user trust. The study revealed nuanced differences in per-
formance between human and Al partners, influenced by
the characteristics of the cases under consideration. The
findings from the study further underscore the importance
of proper trust calibration, highlighting individual variations
in overall trust in AI, where factors such as general propen-
sity to trust, agreeableness, and conscientiousness emerged
as influential determinants of trust in this collaborative
human-AI setting. Overall, this work contributes to deepen-
ing our knowledge for the development and deployment of

trustworthy AI applications in real-world collaborative scen-
arios. Moving forward, future work in this domain could
explore additional techniques for enhancing the collabor-
ation between humans and AI in tasks related to human
state detection. This may involve refining the XAI system to
further improve the interpretability and clarity of its explan-
ations. Additionally, investigating the impact of different
types of errors on user trust and developing strategies for
effective error mitigation could be a valuable avenue.
Incorporating professionals in psychology as study partici-
pants offers the opportunity to broaden the research to
diverse user populations, enhancing the practical relevance
of the findings. Further investigation into neural measures
could be pursued as a promising avenue for quantifying
human trust at a moment-to-moment level.
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