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Abstract—This paper investigates human trust in artificial
intelligence (AI) during human-AI collaboration on a speech-
based data analytics task. Human users worked together with
an explainable AI algorithm that took as an input acoustic and
linguistic measures for the detection of deceptive speech. The
working performance of the AI was manipulated resulting in
a high performing (HP) AI and a low performing (LP) AI.
Trust was measured via self-reported and behavioral measures,
which were associated with each other. Various personality char-
acteristics, including openness, neuroticism, and extroversion,
moderated one’s trust in the AI, but results were mixed in terms
of the considered self-reported and behavioral trust metrics.

Index Terms—Human-AI collaboration, trust, deceptive speech
I. INTRODUCTION

The detection of deception is a notably challenging task,
yet holds sigificant importance across various domains like
law enforcement, national security, and medical encounter
and diagnostics. Human performance in deception detection
is not far above chance [1]. Machine Learning (ML) models
can model facial expressions, body gestures, and speech that
are indicative of deception with performance ranging between
60-70% [2]. When jointly working together, humans and
ML algorithms can potentially leverage their complementary
skills for achieving better accuracy on this task. Here, we
investigate human trust in a collaborative decision-making
task between humans and an explainable artificial intelligence
(XAI) algorithm for detecting deception from speech. Via
a between-subject study, users were randomly assigned to
a high-performing (HP) AI or a low-performing (LP) AI
condition. We aim to answer the following research questions:
RQ1: Does human trust vary across the different AI condi-
tions? RQ2: What is the association between self-reported
and behavioral measures of trust? and RQ3: Do individual
factors of personality and trust propensity impact user trust
in AI? Results do not indicate significant differences between
conditions. Self-reported trust is associated with one’s level
of agreement with the AI. Findings in terms of personality
were not consistent between self-reported and behavioral trust;
overall, open users agreed more with the AI, extrovert users
agreed less, and neurotic users reported higher trust in the AI.

II. PRIOR WORK
Explainable AI has been used in decision-making to aug-

ment human performance in tasks related deception detection
for online reviews [3] and spoken dialog [4]. Deception
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detection is a challenging task for both humans and AI. ML
models with lexicon-based features can differentiate between
deceptive and truthful views about abortion with 67% accu-
racy, where the human judges obtain 52% accuracy [5]. In
addition, preliminary evidence suggests human performance
on this task does not benefit from the AI decision when using
linguistic features only [4]. Previous studies found that linguis-
tic features, such as the amount of negative emotion words,
language pleasantness, activation, and depicted imagery, can
be indicative of deception [5]. However, beyond the speech
content, acoustic measures such as pitch, pause behavior, and
loudness have been widely studied as acoustic indicators of
deception [6], [7] with prior work demonstrating that people
rely more on non-verbal cues for this task [8]. Previous
research further demonstrated individual differences in human
trust in automation. Prior work has found the dependence of
human trust on personality characteristics, such as openness
and extroversion [9], [10]. One’s overall propensity to trust has
been examined as a factor of trust with conflicting results [11].

The contributions of this study are: (1) In contrast to the
majority of studies that rely on image or text [3], this study
examines speech as an alternative, but important modality that
can be used in data analytics tasks. XAI systems relying on
speech need to capture the unique perceptual characteristics of
this modality, which can be less intuitive to the human users
compared to images; and (2) To the best of our knowledge,
this study is the first to investigate a human-AI collaborative
system for identifying speech deception using XAI based on
both linguistic and acoustic data; other studies examined the
human-AI collaboration for deception detection without using
XAI and using linguistic data only [4].

III. EXPLAINABLE AI FOR DECEPTIVE SPEECH DETECTION

A. Dataset Description
We used the Columbia X-Cultural Deception (CXD) Cor-

pus, that contains dialogues between 340 participants. Each
participant answered 24 biographical questions, and they pro-
vided the true answer to half of the questions and a false
answer to the rest. These responses were used as ground truth.
We used only the responses from native speakers of Standard
American English to mitigate any bias in the perception
experiments due to the nationality [12]. This produced 4373
question-answer pairs (i.e., 2493 and 1880 responses from
female and male speakers, respectively).
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We extracted linguistic and acoustic features that were
deemed as important indicators of deception by prior stud-
ies. The linguistic features included the percentage of nega-
tions [13] and total number of function words [14] extracted by
the Linguistic Inquiry and Word Count (LIWC) toolbox [15],
mean pleasantness in the response extracted by the Dictionary
of Affect in Language (DAL) [16], creativity (i.e., the degree
of similarity of a response to other responses of the same
topic, where similarity was measured based on the frequency-
inverse document frequency (TF-IDF) vectors on unigrams and
bigrams between question/response pairs) [17], and number of
filled pauses as defined in [17]. Acoustic features included the
maximum speech amplitude and maximum pitch [18] within
the response extracted using Praat [19].
B. Explainable AI (XAI) system for detecting deceptive speech

We used the explainable boosting machine (EBM) [20] to
classify deceptive speech. The EBM estimates the deception
outcome y based on a set of features {xj} as follows:

E [y] = β0 +
∑
j

fj(xj) (1)

where E is the expected value of the outcome, β0 is the inter-
cept, and fj is a feature function that shows the contribution of
each feature xj to the model’s output. We did not include any
pairwise feature interactions in our model so that it is more
intuitive to the users. EBM was trained on 75% of the CXD
data using acoustic and linguistic features (Section III-A). The
remaining 25% data was employed as the test set. We used
stratified sampling based on biological sex and deception out-
come for the train-test split. Via varying the hyper-parameters
of the EBM, we built the HP AI and LP AI. The HP AI
depicted high sensitivity (i.e., true positive rate of deception
detection), F1-score, and accuracy in deception detection, and
higher accuracy compared to the human baseline accuracy
(i.e., 56.75%), while the LP AI showed low sensitivity and
lower accuracy compared to the human baseline (Table I).
Given that deception is the focal outcome and bears a higher
miss cost compared to non deception, we anticipate the user
perception about the AI performance will be associated with
the sensitivity metric. We randomly selected 25 deceptive and
15 non-deceptive samples, balanced by gender, from the test
set for our user study. Out of the total 25 deceptive samples,
the HP AI can correctly detect 16 samples, while the LP AI
can correctly detect the 9 samples. The performance of HP and
LP AI on non-deceptive samples is same with both systems
that are able to correctly detect 9 non-deceptive samples out
of 15 total non-deceptive samples. The EBM model provides a
global explanation graph, which shows the correlation between
each feature and output label based on all the data, and a
local explanation graph which explains the contribution of
each feature in estimating the deception for each audio sample
(see Supplementary Material).

IV. USER STUDY DESIGN
A. Participant Recruitment

Eligibility criteria for participants were being: (1) older than
18 years; (2) fluent in English; and (3) a current student or
holding a diploma from a field in social sciences. These criteria

TABLE I
PERFORMANCE OF HIGH-PERFORMING (HP) AND LOW-PERFORMING (LP)

MODELS IN AUTOMATICALLY DETECTING DECEPTION FROM SPEECH.
Model Sensitivity Specificity F1-Score Accuracy

HP 0.61 0.55 0.59 0.58
LP 0.28 0.73 0.36 0.49

rendered participants likely to be familiar with basic concepts
related to human behavior. Participants were recruited online
via mailing lists at the university of the research team. We
recruited 37 participants (23.4 ± 7.67 years; 28 female, 8 male,
1 other; 75.6% undergraduate, 24.4% graduate students).
B. Study Protocol

Initially, each participant completed a set of question-
naires that included the Big Five Inventory [21] (i.e., extro-
version, agreeableness, conscientiousness, openness, neuroti-
cism), Propensity to Trust Machines questionnaire [22], and
Trusting Scenarios with AI [23] (see Supplementary Material
for the distribution and range of the above). After that, each
participant viewed a mini tutorial which explained the goal
of the task, the basic intuition of the linguistic and acoustic
features, and the EBM model. Half of the participants (i.e.,
19) were randomly assigned to HP AI condition and the rest
(i.e., 18) were assigned to LP AI condition. The participants
interacted with the assigned AI via a user interface (see
Supplementary Material for snapshots), listened to the audio
samples in the same order, and were told that their own
decision does not necessarily need to be aligned with the AI
decision. First, they reviewed the global explanation graphs
to understand the association between each feature and the
probability of perception provided by the EBM model. Then,
they read each interview question and listened to the audio
response. Following that, the participants viewed the local
explanation graph and the AI decision for that sample. Finally,
they provided their decision about whether the audio sample
response was deceptive or not. This was repeated 40 times
(i.e., for each audio sample; Section III-B). After providing
decisions on 8 consecutive audio samples (i.e., one batch),
participants were asked to rate their perceived trust in AI
on a 1-5 Likert scale (1: Low Trust, 5: High Trust), which
served as a measure of self-reported trust. Each participant
was compensated with a $50 Amazon gift card. The study
was approved by the Institutional Review Board (IRB).

V. METHODS & RESULTS

A. Measures of trust
Self-reported trust measures include the 1-item trust rating

obtained after performing decisions for 8 consecutive audio
files. Behavioral measure of trust is encoded as 1/0 depending
on whether the annotator decision matches with the AI deci-
sion or not for each sample. In order to obtain similar time
resolution between the two measures, the behavioral trust was
averaged per batch.

B. Comparing HP AI and LP AI conditions
We conducted independent t-test to investigate significant

differences between the HP and LP AI conditions in terms
of self-reported and behavioral trust. We did not find any
significant difference for any of these metrics between the AI
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conditions. This potentially indicates a weak manipulation of
the AI performance. So, for the remaining of the analysis we
will be examining data from the two AI conditions altogether.

C. Self-reported and behavioral measures of trust
Here, we examine the association between self-reported and

behavioral measures of trust via the following linear mixed-
effects (LME) model with random intercept:

Si,j = β + a1 ×AGi,j + xi (2)

where Si,j is the self-reported trust of annotator i after batch
j has been completed and AGi,j is the average agreement
between AI and annotator i for batch j. In (2), a1 serves as a
fixed-effect coefficient, which is constant for all observations,
and xi serves as a random-effect coefficient, which is different
for each participant i. The coefficient a1 quantifies the associ-
ation between self-reported trust and agreement with AI. The
results suggest significant positive association between the two
(i.e., a1 = 0.107, p = 0.058, N = 184), a finding which is
also supported by prior studies [24].
D. Effect of user characteristics on human trust in AI

We investigate individual factors of trust that are related
to the user’s personality and overall trust propensity and
perceptions. In terms of individual factors, we focused on
the five personality traits, one’s overall propensity to trust
the automation, and one’s willingness to trust the AI (Sec-
tion IV-B). In addition, we explored how individual factors
moderate the evolution of human trust in AI. In (3)-(4), we
employed the LME models with random intercept to analyze
the effect of annotators’ characteristics on self-reported trust
in AI and agreement with the AI over time.
Si,j = β + a2 × j + b2 ×Ai + c2(j ×Ai) + d2 × Ci

+ e2(j × Ci) + f2 × Ei + g2(j × Ei) + h2 ×Oi

+ k2(j ×Oi) + l2 ×Ni +m2(j ×Ni) + n2 ×Mi

+ o2(j ×Mi) + p2 × TSi + q2(j × TSi) + xi

(3)

AGi,j = β + a3 × j + b3 ×Ai + c3(j ×Ai)

+ d3 × Ci + e3(j × Ci) + f3 × Ei

+ g3(j × Ei) + h3 ×Oi + k3(j ×Oi)

+ l3 ×Ni +m3(j ×Ni) + n3 ×Mi

+ o3(j ×Mi) + p3 × TSi + q3(j × TSi) + xi

(4)

In (3)-(4), Si,j and AGi,j denote the self-reported trust and
agreement with AI of participant i at batch j, Ai, Ci, Ei, Oi,
and Ni are the agreeableness, conscientiousness, extroversion,
openness, and neuroticism characteristics of participant i, Mi

is the overall propensity to trust machines of participant i,
and TSi reflects participant’s i overall willingness to trust
the AI captured via the Trust in AI Scenarios. In (3)-(4),
{a2, a3} are the fixed-effect coefficients which measure the
evolution of trust measures over time, {b2, b3}, {d2, d3},
{f2, f3}, {h2, h3}, and {l2, l3} are the fixed-effect coefficients
that capture association between trust measures and personal-
ity traits, {n2, n3} and {p2, p3} are the fixed-effect coeffi-
cients that represent the association between trust measures
and participant’s overall trust propensity and perceived AI

functionality, {c2, c3}, {e2, e3}, {g2, g3}, {k2, k3}, {m2,m3},
{o2, o3}, and {q2, q3} are the fixed-effect coefficients that
capture the interaction between time and participants’ traits
allowing us to examine whether the evolution of trust over
time varies between people with different traits, and xi is
a random-effect coefficient. The results of the LME models
defined in (3)-(4) are reported in Table II (N = 184).
Results indicate that agreeableness and conscientiousness did
not significantly moderate trust in AI. Extrovert participants
agreed less with the AI compared to their counterparts (f3 =
−0.042, p = 0.010, N = 184). Participants who scored
high in openness agreed more with the AI compared to their
counterparts (h3 = 0.031, p = 0.048, N = 184). Participants
high in neuroticism depicted higher self-reported trust in AI
(l2 = 0.33, p = 0.027, N = 184), which decreased less with
time (m2 = 0.12, p = 0.023, N = 184), compared to their
counterparts. Participants who perceived high functionality
of the AI had higher self-reported trust compared to their
counterparts (p2 = 0.37, p = 0.007, N = 184).

VI. DISCUSSION
In response to RQ1, self-reported trust and user agreement

with AI do not vary across HP AI and LP AI conditions. A
potential reason might be that the manipulation of AI perfor-
mance was not strong enough. Due to the inherently complex
nature of the data, the accuracy of the HP AI is around 60%,
which perceptually might elicit low reliability. We anticipated
that participants would perceive the large difference in decep-
tion sensitivity between the LP and HP conditions (i.e., 28%
compared to 61%), but this did not appear to be an important
deciding factor. In response to RQ2, self-reported trust and
agreement with AI were correlated, similar to prior work [24].
In response to RQ3, our findings agree with prior work that
indicates that one’s overall predisposition to trust is associ-
ated with their momentary trust in and agreement with the
automation. Similar to previous studies [11], agreeableness did
not serve as a moderating factor of trust, potentially because
this personality trait is related to participants’ emotional and
social functioning, which are not directly associated with the
focal cognitive task. Openness was positively associated with
trust; participants who score high in openness are open to new
experiences, thus they are more likely to agree with the AI
decision compared to their counterparts [9]. Our study depicted
negative association between extroversion and agreement with
the AI. Prior work stipulates a complex association between
the two, since extrovert individuals might depict high levels
of initial trust, which can decrease dramatically when the
AI does not perform well [25]. Finally, prior work provides
conflicting findings about conscientiousness [10], which was
not a significant moderator of trust in our case.

This study presented the following limitations. The EBM
model did not consider spectrotemporal speech variations that
could be indicative of deception. Design factors pertaining to
cognitive, emotional, and anthropometric characteristics of the
AI have not been examined. Finally, the participants did not
receive any feedback on their own performance which might
have contributed to performance improvement over time.
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TABLE II
LINEAR MIXED EFFECT (LME) MODEL ESTIMATES OF FIXED EFFECTS OF PERSONALITY AND TRUST TRAITS, AND THEIR INTERACTION WITH TIME, FOR

ESTIMATING SELF-REPORTED AND BEHAVIORAL MEASURES OF TRUST IN AI.
Personality & Self-reported trust Agreement with AI
trust traits Fixed Interaction Fixed Interaction

effect effect effect effect
Time j a2 = −0.27∗∗ a3 = −0.03∗∗

Agreeableness Ai b2 = 0.13 c2 = 0.07 b3 = 0.01 c3 = 0.01
Conscientiousness Ci d2 = 0.18 e2 = 0.05 d3 = 0 e3 = −0.01
Extroversion Ei f2 = 0.03 g2 = 0.07 f3 = −0.04∗∗ g3 = −0.01
Openness Oi h2 = −0.06 k2 = −0.01 h3 = 0.03∗ k3 = 0.01
Neuroticism Ni l2 = 0.33∗ m2 = 0.12∗ l3 = 0 m3 = −0.02
Propensity to Trust Machines Mi n2 = 0.06 o2 = 0 n3 = −0.02 o3 = 0
Trust Scenarios TSi p2 = 0.37∗∗ q2 = 0.04 p3 = 0.01 q3 = −0.01

∗∗, ∗: p <= 0.01, p <= 0.05
VII. CONCLUSION

We examined a human-AI collaboration task for deception
detection. Our results suggest a weak manipulation of the
performance of the AI system. Self-reported and behavioral
measures of trust were associated. A user’s overall predispo-
sition to trust the AI served as a significant factor of trust, but
findings were conflicting in terms of personality. Openness
and extroversion moderated one’s trust, but did not depict
consistent results across self-reported and behavioral metrics.

ETHICAL IMPACT STATEMENT

There are moral, legal, and social issues arising from the
deception detection task, given its dependency on context
and culture. Beyond questions pertaining to acceptable per-
formance thresholds of deception detection technologies, it
is important to define the framework within which these
technologies operate ensuring that they abide with a society’s
ethical principles. With the transition of such technologies
from the lab to real-life, it is imperative to think of how to
balance the cost to the individual against the collective soci-
etal benefits (e.g., reduced crime/terrorism, improved health
diagnostics). Societal beliefs pertaining to the right of non-
self-incrimination, human free-will, and individual privacy
and freedom will further shape the use of these technologies
moving forward. The generalizability of results might be
hindered by the small sample size, the relatively unbalanced
female to male participant ratio, and the fact that audio from
only Native English speakers was considered.
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