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1 | INTRODUCTION

With the advancement of modern data science, data structured as tensors or multidimensional arrays are becoming increasingly prevalent in
diverse fields. For example, images or video clips are naturally multiway tensors. Electrical health records, as another example, collect multiple fea-
tures of many patients over a period of time and can be treated as tensor time series Zhang et al. (2021). Other examples of tensor data can be
found in sensor networks He et al. (2016), magnetic resonance imaging Hasan et al. (2011), spatial-temporal analysis Ran et al. (2016), climate
research Zhang et al. (2009), microbiome studies Mor et al. (2022) and quantitative finance Huang et al. (2018). As tensor data are typically high-
dimensional and large-scale, learning its information through parsimonious yet flexible models is desirable. To that end, classical latent factor
models (Bai, 2003; Bai & Li, 2012; Fan et al., 2008, 2011; Lam & Yao, 2012) have been revitalised by the statistics and machine learning communi-
ties to understand their computational, empirical and theoretical properties for tensor data applications (Chen et al., 2019, 2022; Chen &
Fan, 2021; He et al., 2022; Wang et al., 2019; Zhang & Han, 2019).

Computer-aided diagnosis for medical images has attracted significant attention in the computer vision domain over the past decade. During
the COVID-19 pandemic, deep neural network-based image classification methods have been widely used to detect pneumonia caused by the
virus from chest X-ray images (Jain et al., 2021; Ismael & Sengtr, 2021; Li et al., 2022). Early detection of lung infection has been proven critical
for COVID-19 patients with a high risk of developing severe symptoms, as timely treatment can reduce their mortality rates (Goyal et al., 2020;
Sun et al., 2020). A well-observed challenge in medical image classification is that the images from positive and negative classes can be highly
overlapping, in the sense that only a small area of the image contains the specific information to distinguish the two classes. In comparison, the

rest of the image contains pervasive noises between the two classes, such as background, body shape, skeleton and tissues. In Figure 1, we
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FIGURE 1 Examples of overlapping issues in image classification. The red boxes indicate the key areas used to distinguish positive and
negative classes. (a) COVID-19 diagnosis via chest X-ray: normal (left) versus pneumonia (right); (b) food contamination detection: feather (left)
versus hair (right); (c) breast cancer detection via ultrasound: benign (left) versus malignant (right); (d) surface crack detection: no crack (left)
versus crack (right).

provide several examples of this overlapping phenomenon in image classification applications. As a result, even cutting-edge deep learning-based
classifiers may suffer from limited correct classification rates since the weak specific signals are obscured by large pervasive noise.

In this paper, we introduce a novel augmented tensor factor model to address the aforementioned challenge in image classification, which
may provide insight into more general heterogeneous tensor data analysis problems. Our model combines samples from multiple classes and
decomposes the tensor data into a pervasive component that shares the same pattern across classes and a specific component that varies from
class to class. The pervasive component is modelled by the production of a low-rank latent tensor factor and a few factor loading matrices. We
propose to matricise the augmented tensor factor model into a series of matrix variate factor models. Then, factor loading matrices and latent ten-
sor factors are estimated using principal component analysis (PCA), which leverages the wisdom of classical latent factor analysis. The ranks of
latent tensor factors are estimated using a modified eigen-ratio method. Additionally, we prove the theoretical properties of our estimators. Our
estimators for factor loading matrices and latent tensor factors benefit from large sample sizes and high dimensionality, leading to fast conver-
gence rates. The proposed rank estimation method can also consistently recover the ranks of latent tensor factors. Thanks to these desirable and
novel theoretical results, we developed a factor adjustment procedure for overlapping image classification. We use the training sample to estimate
ranks and factor loading matrices; then, we regress the testing set on the estimated factor loading matrices. Finally, we apply the classifier to the
regression residuals, which are consistent estimates of specific components. The factor adjustment procedure improves the signal-to-noise ratio
by removing pervasive noise. The effectiveness of this procedure is demonstrated through synthetic experiments. We also show that our method

improves the correct COVID-19 pneumonia diagnostic rate from chest X-ray images by 10.5%.

1.1 | Notations and definitions

A tensor X’ € RP1*P2%--*Po s 3 multidimensional or D-way array. The value D specifies the tensor order or the number of tensor modes. We denote
scalars by lowercase letters, for example, x, and consider them as Oth-order tensors. We denote vectors by bold lowercase letters, for example, X,
and consider them as first-order tensors. We denote matrices by bold capital letters, for example, X, and consider them as second-order tensors.
Tensors of dimension three or more are denoted by boldface Euler script letters, for example, X. For a D-way tensor, we define the following.

Fibres: Fibres are created by fixing all but one index of a tensor. For a matrix, rows and columns are mode-1 and mode-2 fibres, respectively.
Fibres are always assumed to be oriented as column vectors.

Matricisation: The mode-d matricisation (unfolding) of X’ is denoted as X@ ¢ [R”“XHm#dp'" and arranges the mode-d fibres of X into the col-
umns of XY@,

Kronecker product: For two matrices A € R™" and B € RP*9, the Kronecker product (denoted by &) is given by

od ‘€ *PT0T “€LST6V0T
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Mode-d Product: The mode-d product between a tensor X’ € RP1*~*P> and a matrix A € R"**P¢ is denoted by ) = X'x,A € RP1**Pdn-1>FaXPds1--XPp

Element-wise, this operation can be expressed as follows:

ylePaqMPdHMpD = § XP1~«PDaDaVu'
Pd

2 | AUGMENTED TENSOR FACTOR MODEL
21 | Modelsetup

Suppose we observe two D-way tensor valued random samples {X,.(” € RP1*-*Po }?:11 and {Xf’) € RP1*->Po }Zl from positive and negative classes,
respectively. We assume the two samples share a common pervasive component P but different specific components S and S). To be

specific,

XD =P 8Y fori=1,...n4,

(
1 1
X,H =P+ Si(’), fori=1,...,n;.

As the pervasive component does not contain useful information to distinguish the positive and negative classes, we aim to adjust it and
implement the binary classification on the specific components instead of the original observations.

Let {X; € RPr-xPo 0 | = {X,'H)}L U{X?’)}Zl be the augmented sample with n=n4 +ny, &; :X,‘H) if isny and X; :X;:n)l if i>n4. Without
loss of generality, we can decompose X; into two parts as follows:

Xi=Pi+S;, fori=1,...,n, (1)

where P; is a pervasive component and S; is the augmented specific component that satisfies S; :S;” ifi<ny and S;= 85:,21 if i > ny. Further, we

assume that P; admits a Tucker tensor decomposition (Tucker, 1966) as follows:

Pi=Gix1Uy x5...xpUp, fori=1,...,n, 2)

where G; € R"**'0 js a latent tensor factor with ry; < p; for d=1...,D and Uy € RP¢*" is a factor loading matrix for the d-th mode of .

The tensor factor model (2) is flexible in the sense that both the latent tensor factor G; and factor loading matrices {Uy,...,Ug} are
unobservable. Thus, like classical factor models, model (2) has identifiability issues. To be specific, let {Hg € R“’X"}f;:1 be a set of orthogonal matri-
ces. Then, model (2) also holds for the latent tensor factor g,»legl xz...degl and factor loading matrices {U1Ha, ...,UsHq}. To facilitate the dis-
cussions in estimation and theoretical analysis, we impose the identification conditions as pEleJUd:l,d for d=1,...,D. Please note that the
identification conditions will not create any problems for our estimation method as we are mainly interested in estimating the linear space
spanned by the columns of Uy, which is the same as the one spanned by U;H,. Additionally, the proposed augmented tensor factor model can

easily be generalised to multiple samples. To keep our presentation focused, we will not discuss this further in this paper.

2.2 | Matricisation and PCA estimation

Motivated by the PCA estimation of the classical factor models, we introduce a PCA type tensor factor model estimation method based on tensor

matricisation. In this subsection, we assume that the ranks ry,...,rp are known for the ease of presentation. The estimation of ranks will be
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discussed in Section 2.3. Recall that we denote the mode-d matricisation of X; as A9 e IR"“XHm#d”M. Then, we can rewrite (1) and (2) as D matrix

variate factor models (Chen et al., 2019; Chen & Fan, 2021; Wang et al., 2019), that is,

XM =ugPuT s,
XP =UGUT 18, fori=1,...,,n, 3)
xP —u6PuT, 48,

where g§”> and S,fd) are mode-d matricisations of G;and Siand U_y = & ,,, . 4Unm-
To estimate the factor loading matrix Uy, we first compute the model-d sample variance covariance matrix X4 € RP¢*Pd as follows:

1 n
Ti=—S XX ford=1,..,D,
1 1
np,

where p, = nglpd is the product of all D dimensions.
Next, we apply an eigen-decomposition to each ;. Let /1(1"') > ... zﬂf,‘? be the eigenvalues of X, sorted in the descending order and v(id), ...,v,(,’:)

be the corresponding eigenvectors. For a given rank r4, we propose to estimate U, by

Ug:= Uq(rg)
= /Pg (v(ld>, vﬁj)), ford=1,...,D.

By collecting all estimates of factor loading matrices and utilising identification conditions, we estimate the tensor latent factors by

N 1 T T X
Gi :;X;xiul x2..xpUp, fori=1,...,n.
n

Then, naturally, we estimate the pervasive and specific components by

7/5,' :G;X101 ><2...><DUd
and §, =X —73,-, fori=1,...,n.

2.3 | Estimation of ranks

Estimating the ranks of tensor factor models is a challenging problem due to the unsupervised nature of the task. The matricisation decomposes
the mode-D tensor factor model into D matrix variate factor models as in (3). This motivates us to borrow the wisdom from classical factor model
inference literature (Ahn & Horenstein, 2013; Bai & Ng, 2002; Chamberlain & Rothschild, 1982; Chang et al., 2015; Lam & Yao, 2012; Stock &
Watson, 2002).

For every mode d, we use the modified eigen-ratio method Chang et al. (2015) to estimate the fixed but unknown rank ry. Let 4 (Z,) the k-th
largest eigenvalue of the model-d sample variance-covariance matrix, Kax, be a prescribed upper bound and C be a small positive constant. We

propose to estimate ry4 by

A . Zy)+C
fq=arg_ min AlZa)+C

,ford=1,...,D. >
1sksKmaxﬂk+1(2d)+C ( )

The threshold K .« controls the computational cost. It represents the belief of the largest possible value of r,. To avoid random spikes when

M+1(Zq) is close to 0, a small positive constant C is used.
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2.4 | Theoretical results

In this subsection, we investigate the theoretical properties of the proposed estimators. Due to space limitations, we provide all assumptions,

technical lemmas and proofs in appendices found in a separate supporting information file.

Theorem 1 Convergence of factor loading matrices. Suppose Assumptions 1-3 in Appendix A in the supporting information hold.

We assume that the ranks {ry}5_, are fixed but allow sample size n and dimensions {p4}>_; to diverge. Then, we have

N 1 p2
Uys—UgHg)?=0 (—-l——"’),ford:l,...,D,
lUs — UaH4l|z = Op pa 0,

where {Hy € R"*4}D_ is a set of orthogonal matrices.

Theorem 1 shows that our model-d factor loading matrix estimator can consistently estimate the truth up to an ry by ry orthogonal matrix.
n N
Further, detailed analysis in the proof of Theorem 1 shows that Hy :n—‘}'dz Qfd) Q,.(d)TUZUdAgl with Ag =diag(41..., 4,,) being a diagonal matrix.
i=1

Theorem 2 Convergence of latent tensor factors. Suppose Assumptions 1-3 in Appendix A in the supporting information hold.
We assume that the ranks {ry}}_, are fixed but allow sample size n and dimensions {p4}5_, to diverge. With the same {H4}5_; asin
Theorem 1, we have, fori=1,...,n,

D
d=

G - - 1 1
”gi—giX1H11><2--~><DHd1H,2: =0, <n+z>'

1 Pd

Theorem 2 provides an estimation error upper bound for the latent tensor factors. The convergence rate depends on both sample size, n, and
dimension {p4,...,.pp}. This ‘blessing of dimensionality’ phenomenon is in line with classical factor model analysis, as noted in references such as
Ebai (2003) and Fan et al. (2008). Theorems 1 and 2 allow for consistent estimation of both the pervasive and specific components. When

> P§ <p,, some simple algebra shows that, fori=1,...,n, we have
i=1

Theorem 3 Convergence of ranks. Suppose Assumptions 1-3 in Appendix A in the supporting information hold. We assume that

the true ranks {rd}3:1 are fixed but allow sample size n and dimensions {Pd}5:1 to diverge. Then, we have

P(fg=r4) — 1, ford=1,...,D.

Theorem 3 demonstrates that the modified eigen-ratio method can correctly estimate all ranks with high probability. Theorem 3 offers a the-

oretical guarantee for the challenging rank estimation problem and is of independent interest.

3 | FACTORADJUSTMENT FOR IMAGE CLASSIFICATION

In this section, we focus on applying the augmented tensor factor model proposed in Section 2 to address challenges in overlapping image classifi-
cation. To illustrate our ideas, we consider a binary classification between two sets of grey-scale images. Let {X,f” € R”ix"z}zl and
{Xf_) € [R“’ix”z}z1 be two observable sets of images with positive and negative class labels, respectively. Without loss of generality, we assume
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the images have been preprocessed to have a fixed size of p; by p, pixels. Denote {X;}1; = {Xi(”};:l u {X}’)}Zl be the augmented sample with
n=n4 +ny. Our goal is to train a classifier on this sample and predict the class label of images in a testing sample {jf,- € [R‘”ix"Z},Z1

To avoid the distraction of the pervasive component and improve the classification accuracy, we propose a tensor factor adjustment image
classification procedure which can be introduced by the following two phases.

Training phase

1. We treat the training sample as a three-way tensor {&;}7_; and model it with the augmented tensor factor model

Xi=Gix1Ui1xoUp + S;, fori=1, ..., n.

2. Obtain the matricisation of the above tensor factor model by the method introduced in Section 2.2.

3. Estimate the ranks by the modified eigen-ratio method introduced in Section 2.3.

4. Estimate factor loading matrices and latent tensor factors by the method introduced in Section 2.2. Then, by (4), we estimate the specific com-
ponents as {S,-}:;l.

5. We train a classifier on {3;}?:1 with the true class labels.

Testing phase
1. We regress the testing sample {/’P,»},L onto the estimated factor loading matrices.

2. Estimate the specific components of the testing sample as the regression residuals, denoted as {3,-},11.

3. We apply the classifier trained in the training process to classify {S‘;},ti. The classification results will be used to predict the class labels of
{Xihs

The flowcharts for the training and testing phases are summarised in Figures 2 and 3, respectively.

4 | SYNTHETIC EXPERIMENTS

In this section, we carefully evaluate the performance of the proposed tensor factor adjustment image classification procedure using various syn-
thetic experiments. In Section 4.1, we present the experiment settings and implementation details. The results of the experiments are reported
and analysed in Section 4.2.

4.1 | Experiment settings

For each experiment, we generate a positive sample {X,.(”}:Zl and a negative sample {X}’)}Zl from the following tensor factor model:

Training Train CNN
& -—) Ll Classification
Validation Model
P1Xpz2Xn
Estimate
— o

P1XPz2Xn

U, G

| R ]
P1X7Trq r{XTrXn

FIGURE 2 A flowchart for the training phase of the factor adjustment method.

d ‘€ “$T0T €LST16V0T
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r{XT2Xm

P1XTq1 TiXTzXm

P1XpPzXm

Testing

CNN

Classification
Model

FIGURE 3 A flowchart for the testing phase of the factor adjustment method.

None vs. Circle Square vs. Circle Oval vs. Circle One vs. Seven

Negative
Class

Positive
Class

@

FIGURE 4 Synthetic specific component examples for each setting.

{Xi(” =pGix1U1x2U; +Si(+) +W;,
XI(_) :ﬂg,»xlul ><2U2 +S,(_) +W,’,

where f is a nonnegative scalar parameter to control the overlapping amount between the positive and negative samples and W; is a white noise

term to add some randomness to the specific components.

The data-generating process for each component in the above model is summarised as follows.

1. The elements in latent tensor factors {G;}7*;"™ are drawn from i.i.d. uniform distribution between —a and a, where a is a positive parameter to
partially control the signal to noise ratio.

2. The factor loading matrices U; and U, are designed to be orthonormal matrices to satisfy the identification conditions.

3. The elements in the white noise term W; are drawn from i.i.d. standard Gaussian distribution.

4. The specific components Si(” and S,.(’) are generated from some class-specific image patterns. To be specific, we consider the following four
pairs of image patterns: (a) none versus random filled circle; (b) random filled square versus random filled circles; (c) random filled oval versus
random filled circles and (d) random handwritten 1 versus random handwritten 7 drawn from the MNIST dataset. We illustrate these four set-
tings in Figure 4.

The ranks of the pervasive component will have an impact on the signal-to-noise ratio of the generated images. So, to keep the comparison
of all settings fair, we will adjust the parameter a as a(r1,r2) to keep all settings have approximately the same signal-to-noise ratio. The computa-
tional details are omitted here but can be recovered from the replication codes.

d ‘€ “$T0T €LST16V0T
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Further, we use the parameter f to control the overlapping ratio between the two classes. When we increase g, the pervasive components
weigh more in both classes; hence, the true signals in the specific components are harder to recognise. Figure 5 provides a list of synthetic exam-
ples with g increased from 1 to 9. When the pervasive component dominates the data-generating process, as expected, the images in positive

and negative classes are very hard to distinguish.

4.2 | Implementation and results

As outlined in Section 4.1, we generate synthetic images using the four signal settings demonstrated in Figure 4. For each setting, we set the
image sizes to be p; x p; =128 x 128 and the sample sizes ny =n, =2,400. The ranks (r1,r) are set as (8,8), (16,16) and (32,32) to cover low to
moderate rank settings. The generated samples are then divided into training, validation and testing sets as specified in Table 1. Throughout this
paper, we use a modified VGG16 model Li and Ke (2022) as our binary image classifier. We use the training set to train our classifier and the vali-
dation set to tune hyperparameters. The trained classifier will be used to predict the class labels in the test set. The prediction accuracy is mea-
sured by the correct classification rate.

For each signal setting, we consider and compare the following three scenarios.

S +W;

Negative
Class

Positive

Class

(a)
S, +W; P; S;+W;

Negative

Class
Positive

Class ;

(c)

FIGURE 5 Visualisation of synthetic examples. (a) None versus circle with ranks (8,8) and g = 1; (b) square versus circle with ranks (16,16)
and B =3; (c) oval versus circle with ranks (32,32) and = 6; (d) one versus seven with ranks (64,64) and g =9. For each panel, the three columns
from left to right represent specific components (signal with white noise), pervasive components (overlapping noise) and observed images.

TABLE 1 Synthetic and real data splitting sample sizes.

Synthetic images COVID-19 chest X-ray images

Negative class Positive class Negative class Positive class
Training 2000 2000 1223 2325
Validation 200 200 200 200
Testing 200 200 200 200

d ‘€ “$T0T €LST16V0T
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?:11 and {X,.(’)}:Zl by setting the overlapping

parameter = 0. Then, it is equivalent to directly train and test the classifier on specific components plus white noises, that is, {S,H +W;}?:11 and
— nz

{87 +wi,.

Overlapping: We set the overlapping parameter 8 to be large enough such that the modified VGG16 classifier behaves as badly as random

Nonoverlapping: We generated a pair of nonoverlapping positive and negative samples {X,f”}

guesses, that is, the correct classification rate on the testing set is about 0.5. In this scenario, we simulate the images that are highly overlapping
between two classes, and most existing classifiers are not tailored to handle such cases.

Factor adjustment: We use the same highly overlapping data as generated in the overlapping scenario but apply the factor adjustment proce-
dure as described in Section 3. Then, the classifier is trained and tested on the estimated specific components {§,~}?§n2 instead of the overlapping
raw samples.

Table 2 presents the detailed experiment results. In all scenarios, the modified VGG16 classifier can perfectly predict the true class labels in
the testing set for nonoverlapping cases but performs as poorly as random guesses for overlapping cases. This demonstrates that the presence of
pervasive components can greatly hinder even simple image classification tasks, as the two classes are highly overlapping or correlated with each
other. However, as expected, the proposed factor adjustment method effectively recovers the true signals dominated by the pervasive compo-
nent and decorrelates the two overlapping classes. As a result, the factor adjustment method achieves near-perfect correct classification rates for
all scenarios. In general, the factor adjustment method works as if we were classifying with the true signals.

The performances of these combinations over the validation set are visualised in Figure 6. Each point in the figure represents a prediction
accuracy value of a rank option. Blue indicates a higher accuracy and red indicates lower accuracy. The darker the colour, the more extreme the
accuracy value. The darkest blue specifies an accuracy of 1, and the darkest red implies an accuracy of 0.5. As observed, all the points in the R3 =
3 and Rz = 8 subfigures are red. For the rest subplots, we have blue dots, but the blue dots are only located in the top-right corner. This phenome-
non signifies only if all the dimensions of the chosen rank are equal to or larger than the corresponding true rank; the proposed procedure is likely
to have an ideal performance over the validation set. Therefore, if the grid search results provided multiple options as they achieved similar pre-
diction accuracy, we consider choosing the rank with the smallest values, that is, conducting decomposition using the smallest core shape. This

strategy also allows us to keep more information on the observed images.

5 | FRONTAL CHEST X-RAY IMAGE CLASSIFICATION FOR COVID-19 DIAGNOSTIC

The repeated waves of COVID-19 have infected over 660 million people and resulted in over 6.5 million deaths worldwide since its emergence in
early 2020. Recently, a new wave of infections hit China as it relaxed its ‘Zero-COVID’ policy. While nucleic acid amplification tests and antigen tests
are widely accepted for detecting positive cases, frontal chest X-ray (chest X-ray) image analysis remains a prominent method for diagnosing lung
infections and pneumonia, which can be critical indicators for potential severe symptoms of COVID-19 (Jain et al., 2021; Ismael & Sengir, 2021; Li
et al., 2022). However, the typical appearance of a COVID-19 lung infection can be complex for nonexperts to recognise, as the differences between
negative and positive images are subtle and largely obscured by pervasive noises such as skeletons, organs and shadows. In that sense, it is essential
to develop an accurate and efficient classification method to adjust for pervasive noises and identify positive chest X-ray images from negative ones.

In this section, we apply the proposed augmented tensor factor model and factor adjustment method to tackle this task.

TABLE 2 Correct classification rate on testing set for synthetic experiments.

Ranks (rq,rz)

Dataset (8,8) (16, 16) (32, 32)
None Nonoverlapping 0.995
versus Overlapping 0.5 0.5 0.5
circle Factor adjusted 0.995 0.995 0.9975
Square Nonoverlapping 1.0
versus Overlapping 0.5 0.5 0.5
circle Factor adjusted 0.995 0.995 0.9975
Oval Nonoverlapping 1.0
versus Overlapping 0.5 0.5 0.5
circle Factor adjusted 1.0 0.9925 0.975
One Nonoverlapping 0.9925
versus Overlapping 0.5 0.5 0.5

seven Factor adjusted 0.9875 0.9875 0.9825
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FIGURE 6 Prediction accuracy over the validation set during the grid search process.

5.1 | Datadescription

The dataset we study is collected and provided by the Society for Imaging Informatics in Medicine (SIIM). The dataset combines high-quality
chest X-ray images from the existing public BIMCV Vaya et al. (2020) and MIDRC-RICORD Tsai et al. (2021) COVID-19 datasets and annotates
these chest radiographs by 22 radiologists. Following the guidelines listed in Lakhani et al. (2021), radiologists have annotated chest X-ray images
into four mutually exclusive categories, including ‘Negative for Pneumonia’, ‘Typical Appearance’, ‘Indeterminate Appearance’ and ‘Atypical
Appearance’. Such a labelling strategy is based on the prior knowledge of radiographic manifestations of COVID-19 and can contribute to the
consistency in radiology reportingLitmanovich et al. (2020).

In this section, we consider a binary classification problem by focusing on images from the‘Negative for Pneumonia’ and ‘Typical Appearance
for COVID-19’ classes. To keep the presentation simple, we denote ‘Negative for Pneumonia’ as the negative class and ‘Typical Appearance for
COVID-19’ as the positive class. The negative and positive classes contain 1623 and 2725 images, respectively. All images have been
preprocessed to have a fixed size of 128 x 128 grey-scale pixels. Figure 7 lists several sample images from both positive and negative classes.
From a nonprofessional perspective, the images from the two classes are highly overlapping as they are dominated by skeletons and organs with
no valuable information to diagnose COVID-19. The useful information resides in the lung area, but the signals are weak and largely obscured by
pervasive noises. In our experiment, we randomly divide both positive and negative classes into training, validation and testing sets, as detailed in
Table 1.

5.2 | Analysis results

We begin by performing image classification on positive and negative classes using a modified VGG16 classifier. The classifier is trained on the
training set, and the hyperparameters are fine-tuned utilising the validation set. Subsequently, the trained classifier is employed to predict class
labels in the test set. Given that the two classes are imbalanced, we use a threshold of 0.66 instead of the standard 0.5 to account for the sample
size ratio in the training set. The resulting classification accuracy is 71%, and we treat it as the baseline.

Next, we follow the factor adjustment procedure outlined in Section 3. We estimate and adjust the pervasive components when we train and
predict class labels. The ranks are selected by the modified eigen-ratio method described in Section 2.3. To be specific, after setting the prescribed
upper bound as one-fourth of the tensor size, that is, Kmax = 32, the eigen-ratio method chooses (r1,r2) = (28,30). Similar to Figure 6, we visualise
the performance of various rank combinations over the validation set in Figure 8. Figure 9 illustrates several pairs of positive and negative chest
X-ray images in the testing set, along with their estimated pervasive and specific components. The pervasive components effectively identify the

regions of the human skeleton as expected. In comparison with the raw images, the estimated specific components are visually more focused on
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Negative Class: Negative for Pneumonia
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FIGURE 8 Real data grid search results over the validation set.

the lung area. Figure 10 visualises the classification probabilities of test images predicted by the modified VGG16 model trained on raw over-

lapping samples (left panel) and the factor adjusted samples (right panel). In the raw samples, the positive and negative classes are heavily over-

lapping with each other, making it difficult to establish a threshold that can clearly separate the two classes. In contrast, with the factor adjusted

method, the two classes are less overlapped. Additionally, the negative class prediction distribution is more skewed towards O, while that of the

positive class is skewed towards 1, indicating that the estimated specific components are more distinguishable compared with the raw images.

The resulting correct classification rate for the factor adjusted method is 81.5%, which is a 10.5% increase from the baseline.
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FIGURE 9
X-ray images.

Examples of the raw images, the estimated pervasive components, and the estimated specific components from the test chest
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FIGURE 10 Histograms and density plots of classification probabilities for test images: (a) the modified VGG16 model trained on overlapping
and (b) factor adjustment method. In both panels, the red vertical line represents the classification threshold.

6 |

CONCLUSION AND DISCUSSION

This paper is motivated by a COVID-19 chest X-ray image classification problem, where the positive and negative classes are largely overlapping

as the images are dominated by common noises such as skeletons, organs and shadows. The specific signals that can separate the two classes are
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weak and obscured by pervasive noises. We introduced a tensor factor model that decomposes the augmented samples into pervasive and spe-
cific components. The pervasive component is characterised by the production of latent tensor factors and factor loading matrices. We proposed
a matricisation plus PCA strategy to estimate this tensor factor model and investigated the theoretical properties of our estimators. Then, we
developed a factor adjustment procedure to remove the pervasive component and apply the classifier directly to the specific components. The
intuition is to adjust the noises present in the pervasive component and improve the signal-to-noise ratio in classification. The empirical perfor-
mance of this procedure is well justified by various synthetic experiments. In the application of frontal chest X-ray image-based COVID-19 diag-
nosis, our method improves the baseline by 10.5% in terms of classification accuracy.

In this discussion, we address a significant suggestion from the reviewer regarding the potential integration of the tensor factor model directly
into the deep neural network classifier's training pipeline. This would entail an end-to-end system where preprocessing, via the tensor factor
model, and classification are seamlessly connected, possibly by conceptualising the tensor factor model as an autoencoder. Such a framework
promises not only to streamline processing but also to enhance learning efficacy by jointly optimising the preprocessing and classification tasks.
While intriguing, this approach extends beyond the scope of our current research. However, it represents a compelling direction for future stud-
ies, promising to bridge the gap between preprocessing and classification in deep learning workflows.
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