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Large health care data repositories such as electronic health records
(EHR) open new opportunities to derive individualized treatment strategies
for complicated diseases such as sepsis. In this paper, we consider the prob-
lem of estimating sequential treatment rules tailored to a patient’s individual
characteristics, often referred to as dynamic treatment regimes (DTRs). Our
main objective is to find the optimal DTR that maximizes a discontinuous
value function through direct maximization of Fisher consistent surrogate
loss functions. In this regard, we demonstrate that a large class of concave
surrogates fails to be Fisher consistent—a behavior that differs from the clas-
sical binary classification problems. We further characterize a nonconcave
family of Fisher consistent smooth surrogate functions, which is amenable to
gradient-descent type optimization algorithms. Compared to the existing di-
rect search approach under the support vector machine framework (J. Amer.
Statist. Assoc. 110 (2015) 583–598), our proposed DTR estimation via surro-
gate loss optimization (DTRESLO) method is more computationally scalable
to large sample sizes and allows for broader functional classes for treatment
policies. We establish theoretical properties for our proposed DTR estimator
and obtain a sharp upper bound on the regret corresponding to our DTRESLO
method. The finite sample performance of our proposed estimator is evalu-
ated through extensive simulations. We also illustrate the working principles
and benefits of our method for estimating an optimal DTR for treating sepsis
using EHR data from sepsis patients admitted to intensive care units.

1. Introduction. Due to the increasing adoption of electronic health records (EHR) and
the linkage of EHR with biorepositories and other research registries, integrated large data
sets have become available for real world evidence based precision medicine studies. These
rich EHR data capture heterogeneity in response to treatment over time and across patients,
thereby offering unique opportunities to optimize treatment strategies for individual patients
over time. Sequential treatment decisions tailored to patients’ individual characteristics at
given decision time points are often referred to as dynamic treatment regimes (DTRs) in the
statistical literature and reinforcement learning (RL) in the machine learning literature. An
optimal DTR can be defined as the sequential treatment assignment rule that maximizes the
expected counterfactual outcome, often referred to as the value function in the DTR literature.

To estimate the optimal DTR, the most traditional approaches rely on modeling the data-
distribution or part of the data-distribution (Xu et al. (2016), Zajonc (2012)). The most
popular among the latter class are the regression-based methods, including Q-learning, A-
learning and marginal structural mean models (Murphy (2003), Orellana, Rotnitzky and
Robins (2010), Robins (2004), Schulte et al. (2014), Watkins (1989)). The regression-based
methods, especially Q-learning, offers the flexibility necessary for extension to a variety of
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settings including, but not limited to, semisupervised setting (Sonabend-W et al. (2023)), in-
teractive model-building (Laber et al. (2014)), discrete outcomes or utilities (Moodie, Dean
and Sun (2014)), etc. However, the underlying models in the regression-based approaches are
often high-dimensional, and susceptible to mis-specification due to the sequential nature of
the problem (Murphy, van der Laan and Robins (2001)). Although A-learning and marginal
structural mean models are more robust to model misspecification, they still require the con-
trast of Q-functions to be correctly specified (cf. Schulte et al. (2014)). These limitations
of the regression-based methods led the conception of the classification-based direct search
methods, which in contrast, directly targets the counterfactual value function.

The classification-based approaches essentially rely on the representation of the coun-
terfactual value function through importance sampling (Murphy, van der Laan and Robins
(2001)), whose maximization can be framed as a classification problem with respect to the
zero-one loss function (cf. Chen, Zeng and Kosorok (2016), Chen et al. (2017), Cui and Tch-
etgen Tchetgen (2021), Song et al. (2015), Zhao et al. (2012, 2015), Zhao (2016) and the
references therein). The resulting objective function is not amenable to efficient optimization
owing to the discontinuity of the zero-one loss. Therefore, following contemporary classi-
fication literature (cf. Bartlett, Jordan and McAuliffe (2006), Lin (2004)) the direct search
methods aim to replace the zero-one loss with alternative smoother fisher consistent surrogate
loss functions to facilitate efficient classification methods. The paradigm shift of estimating
DTRs by finding classification rules is a powerful idea. Some authors indicate that existing
direct search methods outperform regression-based counterparts when the number of stages
is small (Kosorok and Laber (2019), Luedtke and van der Laan (2016)).

Although initially developed for the one-stage case, direct search method was introduced
to the multistage DTR by the novel work of Zhao et al. (2015). Currently, it has two main-
stream approaches. The first approach performs binary classification stagewise in a back-
ward fashion (cf. BOWL method o Jiang et al. (2019), Zhao et al. (2015)). However, at stage
t , this approach can only use those observations whose treatment assignment matches the
optimal treatment stage t + 1 onward. As a result, the effective sample size of the initial
stages dwindles rapidly, which can be problematic during practical implementation (Kallus
(2019), Kosorok and Laber (2019)). The other approach builds on a simultaneous optimiza-
tion method, which utilizes the whole data set for estimating each treatment assignment (si-
multaneous outcome weighted learning (SOWL), Zhao et al. (2015)). While it does not share
the limitation of the BOWL-type approaches, this approach hinges on a sequential weighted
classification problem, which is complicated by the dependent nature of the DTR setting.
Zhao et al. (2015) solves this classification using a bivariate hinge-loss type surrogate. Al-
though the idea behind simultaneous optimization is powerful, the implementation via non-
smooth hinge-loss surrogate leads to a number of issues, scalability being one of them; see
Section C in the Supplementary Material (Laha et al. (2024)) for more details. It is natural to
ask whether the hinge loss can be replaced by other surrogates. However, the answer is not
immediate because unlike BOWL, the simultaneous classification does not yield to the binary
classification theory on surrogate losses (Bartlett, Jordan and McAuliffe (2006)). Although
multicategory and multilabel classifications have apparent resemblance with this classifica-
tion problem, as we will see, they have fundamental differences. This gives rise to the need
for a unified study of fisher consistent surrogate losses under the DTR setting. Our paper is
the first step toward that end.

For the ease of presentation, we focus on k = 2 stage DTRs associated with two time points
in this paper. However, the main methodology easily extends to general k-stage settings when
k > 2. Similar to most current works in direct search methods, we consider only a binary
treatment indicator, which is an important practical case (Laber and Davidian (2017)). Direct
search with multilevel treatments would require substantially different techniques, and is out
of the scope of the present paper.
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1.1. Main contributions. In the sequel, we will refer to the classification problem result-
ing from the simultaneous optimization approach as “the DTR classification problem” for
brevity. We will refer to our approach of achieving optimal DTR estimation via surrogate
loss optimization as DTRESLO.

1.1.0.1. Concave losses. In Theorem 1, we establish that the above-bounded smooth con-
cave surrogates fail to be Fisher consistent in the DTR context. The failure is not restricted
to only smooth concave surrogates since our Theorem 2 also shows that nonsmooth hinge
loss also fails to be Fisher consistent. Furthermore, we have not encountered any concave
loss function that is Fisher consistent in the DTR context. Consequently, our findings nat-
urally prompt the question of whether any concave loss function can indeed achieve Fisher
consistency for this problem.

1.1.0.2. A class of Fisher consistent surrogates for DTR estimation. Given the limited
promise of concave surrogate losses for this problem, we directed our attention toward the
realm of nonconcave surrogates. We introduce a class of nonconcave Fisher consistent surro-
gate losses (see Theorem 3), which are amenable to efficient gradient-based algorithms, such
as stochastic gradient descent. This facilitates the utilization of fast and scalable optimization
methods. Since the resulting optimizing problem is nonconcave, convergence to the global
maximum is not automatically guaranteed. However, the class of surrogate losses we consider
do exhibit reliable empirical performance across all our simulation settings. Our approach of-
fers flexibility for learning the DTRs so that practitioners can tailor the method to the data and
problem at hand. In particular, the smoothness of our surrogate losses makes the optimization
problem suitable to a broad range of standard machine learning algorithms including, but not
limited to neural networks, wavelet series and basis expansion. Interpretable treatment rules
are also achievable by coupling our DTRESLO method with interpretable classifiers, such
as linear or tree-based classifiers. Finally, since we optimize the primal objective function,
variable selection in our case is straightforward via addition of an l1 penalty.

1.1.0.3. Theoretical guarantee for a class of DTR estimators. We provide sharp upper
bound on the regret—the difference between the optimal value function and the value at-
tained by the estimated treatment regime, with detailed analyses focused on searching for
DTR within the neural network classifiers. We perform a sharp analysis of our approxi-
mation error (see Theorem 4) and estimation error under Tsybakov’s small noise condition
(Tsybakov (2004)). Corollary 1 shows that the regret of our DTRESLO method with neural
network classifiers decays at a fast rate, provided the optimization error is small. Here by fast,
we mean decay rate faster than n−1/2 is achievable. It turns out that this rate also matches the
minimax rate of risk decay (up to a polylogarithmic factor) of binary classification under as-
sumptions similar to ours (Audibert and Tsybakov (2007)). Since two-stage DTR is unlikely
to be simpler than one-stage DTR, we conjecture that that our rate is minimax-optimal (up to
a polylogarithmic factor) in two-stage DTR under our assumptions. In the special case when
treatment effects are bounded away from zero, we show that our regret decays at the rate of
O(1/n) up to a polylogarithmic order.

The rest of the article is organized as follows. In Section 2, we outline the problem and
discuss the mathematical formulation. In Section 3, we discuss Fisher consistency in the DTR
setting, show that a large class of concave surrogates fail to be Fisher consistent and establish
the Fisher consistency of a family of nonconcave surrogates. In Section 4, we construct a
method for estimating the optimal DTRs using the Fisher consistent surrogates, and discuss
the potential sources of error that contribute to the regret. Section 5 and Section 6 are devoted
toward obtaining theoretical upper bounds of the regret of our DTRESLO method. Section 5
focuses on approximation error, which is combined with the estimation error in Section 6 to
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yield the final regret bound. Then, in Section 7, we illustrate our DTRESLO method’s em-
pirical performance with extensive simulations. We continue with a discussion in Section 8.
The application of DTRESLO to a sepsis cohort and the proofs of our theoretical results have
been deferred to the Supplementary Material (Laha et al. (2024)) due to space constraints.

1.2. Notation. We let R denote the extended real line R ∪ {±∞} and write R+ for the
positive half line {x ∈ R : x > 0}. Denote by N = {1,2, . . .} the set of all natural numbers
and for any integer t , we let [t] = {1,2, . . . , t}. We also let Z denote the set of all integers.
For m ∈ N, we let ‖ · ‖m denote the lm norm, that is, for v ∈ R

m, ‖v‖m = (
∑m

i=1 |vi |m)1/m.
If v ∈N

m, we denote by |v|1 the quantity
∑m

i=1 vi . We let Bm(0,K) denote the l2-ball in R
m

centered at the origin with radius K > 0.
For any probability measure P and measurable function f , we denote by ‖f ‖P,k the norm

(
∫ |f (x)|k dP (x))1/k . We will also denote this norm by Lk(P ). Also, Pf will denote the

integral
∫

f dP . For a concave function f : Rk �→ R, the domain dom(f ) will be defined as
in (Hiriart-Urruty and Lemaréchal ((2001), p. 74)), that is, dom(f ) = {x ∈R

k : f (x) > −∞}.
For f :R2 �→R, we denote by f12 the partial derivative

f12(x, y) = ∂2f (x, y)

∂x∂y
.

For any differentiable function f : Rk �→R, ∇f will denote the gradient of f , and the super-
level set of f at level c will be defined by {x ∈ R

k : f (x) ≥ c}. For any x ∈ R, we denote by
σ(x) the ReLU activation function x+ = max(x,0). For any set A, use the notation 1[x ∈ A]
to denote the event {x ∈ A}. Also, we denote by int(A) the interior of the set A. The cardinal-
ity of A will be denoted by |A|. Throughout this paper, we use the convention ±∞ × 0 = 0.
In this paper, we will use C and c to denote generic constants, which may vary from line to
line.

Many results in this paper are asymptotic (in n) in nature, and thus require some stan-
dard asymptotic notations. If an and bn are two sequences of real numbers, then an 
 bn

(and an � bn) implies that an/bn → ∞ (and an/bn → 0) as n → ∞, respectively. Simi-
larly, an � bn (and an � bn) implies that lim infn→∞ an/bn = C for some C ∈ (0,∞] (and
lim supn→∞ an/bn = C for some C ∈ [0,∞)). Alternatively, an = o(bn) will also imply
an � bn and an = O(bn) will imply that lim supn→∞ an/bn = C for some C ∈ [0,∞)).

2. Mathematical formalism. We focus on the DTR estimation under a longitudinal set-
ting where data are collected over time periods indexed by t ∈ {1,2}. Let Ot ∈ Ot ⊂ R

pt

denote the pt dimensional vector of patient clinical variables collected at time t and p =
max(p1,p2). At a given time t , a binary treatment decision At ∈ {±1} is made for the pa-
tient and a response to such treatment Yt ∈ R is observed. Without loss of generality, we
assume higher values of response Yt are desirable. Let us denote the distribution underlying
the observed random vector D = (O1,A1, Y1,O2,A2, Y2) by P. Suppose we sample n i.i.d.
observations from P. The corresponding empirical distribution function will be denoted by
Pn. Since treatment decisions are often made based on all previous states including prior
treatments and responses, we define the patient history by

H1 = O1, and H2 = (O1, Y1,O2,A1),

where H1 and H2 take values in sets H1 and H2, respectively. We denote by π1(a1|H1) and
π2(a2|H2) the propensity scores P(A1 = a1|H1) and P(A2 = a2|H2), respectively.

Our goal is to find the treatment regime d = (d1, d2) : H1 × H2 �→ {±1} × {±1} that
maximizes the expected sum of rewards Y1(d) + Y2(d),

V (d1, d2) = Ed

[
Y1(d) + Y2(d)

]
,



SMOOTH SURROGATES 683

where Yt (d) is the potential outcome associated with time t ∈ {1,2}, and Ed is the expec-
tation with respect to the data distribution under regime d . To this end, first we make some
assumptions on the observed data distribution P so that V (d1, d2) becomes identifiable under
P.

Assumptions for identifiability

I. Positivity: There exists a constant Cπ ∈ (0,1) so that πt(At |Ht) > Cπ for all Ht ,
t = 1,2.

II. Consistency: The observed outcomes Yt and covariates Ot agree with the potential
outcomes and covariates under the treatments actually received; see Robins (1994), Schulte
et al. (2014) for more details.

III. Sequential ignorability: For each t = 1,2, the treatment assignment At is condition-
ally independent of the future potential outcomes Yt and future potential clinical profile Ot+1
given Ht . Here, we take O3 to be the empty set.

Our version of sequential ignorability follows from Murphy, van der Laan and Robins (2001),
Robins (1997). Assumptions I–III are standard in DTR literature (e.g. Murphy, van der Laan
and Robins (2001), Schulte et al. (2014), Sonabend-W et al. (2023), Zhao et al. (2015)).

Under Assumptions I–III, Ed(Y1 + Y2) can be identified under P as (Zhao et al. (2015))

Ed

[
Y1(d) + Y2(d)

] = P

[
(Y1 + Y2)1[A1 = d1(H1)]1[A2 = d2(H2)]

π1(A1|H1)π2(A2|H2)

]
.

The treatment effect contrasts are defined as follows:

T1(H1) = E
[
Y1 + U∗

2 (H2)|A1 = 1,H1
] −E

[
Y1 + U∗

2 (H2)|A1 = −1,H1
]
,(1)

T2(H2) = E[Y1 + Y2|A2 = 1,H2] −E[Y1 + Y2|A2 = −1,H2],(2)

where U∗
2 (H2) = max

a2∈{±1}E[Y2|H2,A2 = a2].(3)

The above quantities are also called the optimal blip-to-zero function, or sometimes simply
the blip function in the literature (Luedtke and van der Laan (2016), Robins (2004), Schulte
et al. (2014)). We will also refer to them as the first-stage and the second-stage conditional
treatment effects. For the blip functions or the conditional treatment effects to be well defined,
we need the conditional expectations in (1) and (2) to be finite, which is not automatically
guaranteed by Assumptions I–III. Therefore, we introduce another assumption to ensure that
the treatment effects are well defined.

Assumption IV. For any h2 ∈ H2 and a2 ∈ {−1,1}, the conditional expectation E[|Y1| +
|Y2||H2 = h2,A2 = a2] < ∞. For any h1 ∈ H1 and a1 ∈ {−1,1}, the conditional expecta-
tion E[Y1 + U∗

2 (H2)|H1 = h1,A1 = a1] < ∞. Furthermore, E[|Y1 + Y2|] < ∞.

In addition to ensuring the well-definedness of treatment effects, Assumption IV also serves
as a technical requirement in our proofs and enhances the interpretability of our theoretical
findings. While we expect that many of our theoretical results would hold even without this
assumption, the proofs would become more intricate and cumbersome. It is important to
note that Assumption IV is not overly stringent, since in most of our applications, Y1 and Y2
represent measurements and are automatically bounded.

We define the optimal DTR d∗ to be the maximizer of Ed [Y1(d)+Y2(d)] over all possible
regimes d = (d1, d2) such that d1 : H1 �→ {±1} and d2 : H2 �→ {±1}. Under Assumptions
I–III, the optimal policy d∗ can be identified as follows (Chakraborty and Moodie (2013),
Zhao et al. (2015)):

d∗
2 (H2) = arg max

a2∈{±1}
E[Y2|H2,A2 = a2],

d∗
1 (H1) = arg max

a1∈{±1}
E

[
Y1 + U∗

2 (H2)|H1,A1 = a1
]
,

(4)
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where U∗
2 is as defined in (3). Since the optimal decision rules remain unchanged if a constant

C is added to both Y1 and Y2, in what follows, unless otherwise mentioned, we assume that
Y1, Y2 > C for some C > 0. This trick was also used in Zhao et al. (2015).

REMARK 1 (Uniqueness of d∗
1 and d∗

2 ). It is worth noting that d∗
1 and d∗

2 defined in (4)
may not be unique because they are allowed to take any value in {±1} at the boundary. To
elaborate on this further, suppose some H2 satisfies E[Y2|H2,A2 = 1] = E[Y2|H2,A2 = −1].
Such values of H2 constitute the decision boundary for the second stage. Then both versions
d2(H2) = 1 and d ′

2(H2) = −1 qualify as optimal rule for at H2. Similarly, for d∗
1 , we can

show that if H1 belongs to the first-stage decision boundary{
h1 ∈H1 : E[

Y1 + U∗
2 (H2)|A1 = 1, h1

] = E
[
Y1 + U∗

2 (H2)|A1 = −1, h1
]}

,

then d∗
1 (H1) can take either value +1 or −1. Thus, d∗

1 is not unique either. Consequently, to
avoid confusion, we let d∗

1 = 1 and d∗
2 = 1 at both first- and second-stage decision boundaries.

Note that under this convention, d∗
1 (H1) = 1[T1(H1) ≥ 0] and d∗

2 (H2) = 1[T2(H2) ≥ 0]. In
what follows, we shall also refer to this optimal rule as “the optimal rule.” �

There is an alternative way of formulating d∗. If (f ∗
1 , f ∗

2 ) is a maximizer of

(5) V (f1, f2) = P

[
(Y1 + Y2)1[A1f1(H1) > 0]1[A2f2(H2) > 0]

π1(A1|H1)π2(A2|H2)

]

over the class

(6) F = {
(f1, f2)|f1 : H1 �→R, f2 : H2 �→R are measurable

}
,

then sign(f ∗
1 ) and sign(f ∗

2 ) yield the optimal rules d∗
1 and d∗

2 , respectively (Zhao et al.
(2015)). If f ∗

1 and f ∗
2 take the value zero, then d∗

1 and d∗
2 can be either +1 or −1. Finally,

even if d∗
1 and d∗

2 are unique, f ∗
1 and f ∗

2 need not be unique.
At this stage, although it is intuitive to consider maximization of the sample analogue of

V (f1, f2) to estimate the optimal decision rule, the nonconcavity and discontinuity of the
zero-one loss function render the maximization of V (f1, f2) computationally hard. To deal
with issues of similar flavor, the classification literature (cf. Bartlett, Jordan and McAuliffe
(2006)) suggests using a suitable surrogate to the zero-one loss function. We appeal to this
very intuition and consider

(7) Vψ(f1, f2) = P

[
(Y1 + Y2)ψ(A1f1(H1),A2f2(H2))

π1(A1|H1)π2(A2|H2)

]
,

where ψ is some bivariate function. For example, Zhao et al. (2015) takes ψ(x, y) = min(x −
1, y − 1,0), the bivariate concave version of the popular hinge loss φ(x) = max(1 − x,0).

Suppose there exist functions f1 : H1 �→ [−∞,∞] and f2 : H2 �→ [−∞,∞] so that

(8) Vψ(f̃1, f̃2) = sup
(f1,f2)∈F

Vψ(f1, f2),

where F is as defined in (6). Note that f̃1 and f̃2 may not be unique. Each (f̃1, f̃2) lead to
the decision rules d̃1(H1) = sign(f̃1(H1)) and d̃2(H2) = sign(f̃2(H2)). If f̃ (Ht ) = 0, then
d̃t (Ht ) can be either +1 or −1. We let f̃1 and f̃2 to be extended-valued functions because
the supremum on the right-hand side of (8) may not be attained in F for some surrogates. It
may happen that the supremum of Vψ over F is attained at some f1 and f2, which satisfies
f1(H1) = ∞ or −∞ (alternatively, f2(H2) = ∞ or −∞). Although f̃t can be extended
valued, it does not create much technical issues because (a) d̃t is always 1 or −1 for t = 1,2,
and d̃t is the object of interest here.
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Finally, we define excess risk in line with the excess risk in context of classification. Letting
V ∗ = V (f ∗

1 , f ∗
2 ) and V ∗

ψ = Vψ(f̃1, f̃2), we define the respective regret and ψ-regret of using
(f1, f2) by V ∗ − V (f1, f2) and V ∗

ψ − Vψ(f1, f2), respectively. Note that regret and the ψ-
regret are always nonnegative.

Throughout our paper, we will compare our DTR classification with binary classification.
Therefore, we will fix the notation for binary classification. In the setting of binary classi-
fication, we have observations X taking value in an Euclidean space X . Each X is associ-
ated with a label A, which plays the same role as our treatment assignments. The optimal
rule or the Bayes rule assigns label +1 if η(X) = P(A = 1|X) > 1/2 and label −1 other-
wise (cf. Bartlett, Jordan and McAuliffe (2006)). If η(X) = 1/2, both labels are optimal.
The Bayes rule minimizes the classification risk R(f ) = P(Af (X) < 0) over all measurable
functions f : X →R. Also, we denote R∗ = inff R(f ), where the infimum is taken over all
measurable functions. Replacing the zero-one loss with the surrogate φ results in the φ-risk
Rφ(f ) = E[ψ(Af (X))]. We let R∗

φ denote the optimized φ-risk.
Some parallels with the DTR classification setting are immediate. For example, V (f1, f2),

V ∗, Vψ(f1, f2) and V ∗
ψ correspond to R(f ), R∗, Rφ(f ) and R∗

φ , respectively. Next, defining
the maps η1 : H1 �→R and η2 : H2 �→R by

η1(H1) = E[Y1 + U∗
2 (H2)|A1 = 1,H1]

E[Y1 + U∗
2 (H2)|A1 = 1,H1] +E[Y1 + U∗

2 (H2)|A1 = −1,H1] ,(9)

η2(H2) = E[Y1 + Y2|A2 = 1,H2]
E[Y1 + Y2|A2 = 1,H2] +E[Y1 + Y2|A2 = −1,H2] ,(10)

we observe that η1 and η2 play the same role in DTR setting as the conditional probability
η in context of binary classification. To elaborate, from the definitions of d∗

1 and d∗
2 in (4), it

follows that d∗
t (Ht ) = +1 if ηt (Ht) > 1/2, and −1 otherwise. Note also that the first-stage

and second-stage decision boundaries can be represented by the sets {h1 : η1(h1) = 1/2} and
{h2 : η2(h2) = 1/2}.

Throughout this paper, we occasionally make statements such as η1(H1) ≥ 1/2, T (H2,

A2) ≥ 0, d∗
1 (H1) �= d̃1(H1), etc. Since H1, H2, A1, A2, etc. are random variables, quantities

like η1(H1), η2(H2), T (H2,A2), d∗
2 (H1), d∗

1 (H1) are also random. To avoid any confusion,
we wish to clarify that when such statements are made, it implies that the stated conditions
hold for all realizations of H1, H2, A1, A2, etc.

3. Fisher consistency. A desirable ψ should ensure that d̃ is consistent with d∗. To
concertize the idea, we need the concept of Fisher consistency.

DEFINITION 1. The surrogate ψ is called Fisher consistent if for all P satisfying As-
sumption I–IV, any {f1n, f2n}n≥1 ⊂F that satisfies

Vψ(f1n, f2n) → V ∗
ψ, also satisfies V (f1n, f2n) → V ∗.

Our definition of Fisher consistency is in line with classification literature (Bartlett, Jordan
and McAuliffe (2006)). Note that Definition 1 does not require f̃1 and f̃2 to exist or be mea-
surable. However, if f̃1 and f̃2 do exist, and they are in F , then Fisher consistency implies
V (d̃) = V ∗, indicating d̃ is a candidate for d∗. In context of binary classification, the surro-
gate φ is Fisher consistent if and only if Rφ(fn) → R∗

φ implies R(fn) → R∗, where fn’s
are measurable functions mapping X to R.

REMARK 2 (Characterization of Fisher consistency). In many classification problems,
for example, binary, multicategory or multilabel classification, Fisher consistency can be di-
rectly characterized by convex hulls of points in the image space of ψ , and the related no-
tion is known as calibration (Bartlett, Jordan and McAuliffe (2006), Gao and Zhou (2011),
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Tewari and Bartlett (2007), Zhang (2010)). For example, Theorem 1 of Bartlett, Jordan and
McAuliffe (2006) shows that a surrogate φ is Fisher consistent for binary classification if and
only if the following condition holds.

CONDITION 1. φ : R �→R satisfies

sup
x:x(2η−1)≤0

(
ηφ(x) + (1 − η)φ(−x)

)
< sup

x∈R
(
ηφ(x) + (1 − η)φ(−x)

)
for all η ∈ [0,1] such that η �= 1/2.

However, due to the sequential nature of the DTR set-up, it is not easy to represent Fisher
consistency in terms of analytical properties of ψ . This complicates the analysis of Fisher
consistency in the DTR set-up. �

Traditionally, the first preference of surrogate losses have been the concave (convex in con-
text of minimization) surrogates because they ensure unique optimum (Chen et al. (2017)).
In the binary setting, a univariate concave surrogate φ is Fisher consistent if and only if
it is differentiable at 0 with positive derivative (see Bartlett, Jordan and McAuliffe (2006),
Theorem 6)). Many commonly used univariate concave losses satisfy these conditions. We
display some of these in Figure G.2 in Section G in the Supplementary Material (Laha et al.
(2024)). An important geometric property of these functions is that they mimic the graph
of the zero-one loss function. After proper shifting and scaling, their image lies below that
of the zero-one loss function (see Figure G.2 in Section G of the Supplementary Material
(Laha et al. (2024))). Of course, concavity is not necessary for classification calibration, and
this geometric property is shared by nonconcave, classification calibrated losses as well (see
Lemma 9 of Bartlett, Jordan and McAuliffe (2006)).

There are also classes of concave surrogates, which are Fisher consistent for multicategory
classification with respect to the zero-one loss (Duchi, Khosravi and Ruan (2018), Neykov,
Liu and Cai (2016), Tewari and Bartlett (2007)) or for multilabel classification with respect
to Hamming loss (Gao and Zhou (2011)). In that light, it is not unnatural to expect concave
surrogates will succeed in the DTR classification setting as well. Unfortunately, as we will
see in the next section, this simple-minded extension of binary classification may not hold.

DTR classification bears resemblance with multilabel classification (Dembczyński et al.
(2012)) but additional complication arises since H2 contains H1. Also, the Fisher consistency
literature on multilabel classification (Gao and Zhou (2011)) is based on Hamming loss and
partial ranking loss, which are substantially different from the zero-one loss. Our problem
also exhibits similarity with multiclass classification (Duchi, Khosravi and Ruan (2018)).
However, a big difference arises because of the sequential structure. Had d1 been a map from
H2 to {±1} similar to d2, existing theory on multiclass classification (Duchi, Khosravi and
Ruan (2018)) could be readily used to provide conditions for a general function ψ to be Fisher
consistent. However, during the treatment assignment d1, one has no knowledge of A1, Y1
and O2. Tewari and Bartlett (2007) and Zhang (2010) develop tools for general classification
set-ups, but these tools are too generalized for explosion of the specific sequential structure
of DTR classification. In fact, it is the binary classification, which seems to have the most
parallels with DTR classification.

3.1. Concave surrogates. In this section, we will establish that a large class of con-
cave surrogates fail to be Fisher consistent for DTR estimation. We first consider the case
of smooth concave losses because they amend to gradient based optimization methods with
good scalability properties. We will start our discussion with an example. The smooth con-
cave function φ(x) = − exp(−x) is Fisher consistent in the binary classification setting. Let
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us consider its bivariate extension ψ(x, y) = − exp(−x − y). It turns out that d̃1(H1) takes
the form

arg max
a1∈{±1}

E[h(
Y1 +E[Y2|H2,A2 = 1], Y1 +E[Y2|H2,A2 = −1

)|H1,A1 = a1],(11)

where h(x, y) = √
xy. However, d∗

1 (H1) takes the same form but with h(x, y) = max(x, y).
In general, therefore, d̃1(H1) and d∗

1 (H1) do not agree. To see this, consider the toy example
when Y1 = 1 and

Y2 = 4 · 1[A1,A2 = 1] + 3 · 1[A1 = 1,A2 = −1] + 5

· 1[A1 = −1,A2 = 1] + 1[A1,A2 = −1].(12)

In this case, d∗
1 (H1) = −1 but d̃1(H1) = 1 for all H1, and clearly, ψ is not Fisher consistent.

If we consider other examples of smooth concave ψ , for example, logistic or quadratic loss,
we obtain different h, but for these examples as well, h is quite different from the nonsmooth
h(x, y) = max(x, y).

The above heuristics indicate that the criteria of DTR Fisher consistency may be incom-
patible with smooth concave losses. Theorem 1 below concretize the above heuristics for an
important class of concave smooth losses. Theorem 1 assumes that ψ is closed and strictly
concave. We say a function is closed if it is upper semicontinuous everywhere, or equiva-
lently, if its superlevel sets are closed (Hiriart-Urruty and Lemaréchal ((2001), p. 78)). The
function h is strictly concave if for any λ ∈ (0,1), and x, y ∈ dom(h),

h
(
λx + (1 − λ)y

)
> λh(x) + (1 − λ)h(y).

THEOREM 1. Suppose ψ is closed, strictly concave and bounded above. In addition, ψ

has continuous second-order partial derivatives and ψ12 has continuous partial derivatives
on int(dom(ψ)). Then ψ cannot be Fisher consistent for two-stage DTR.

Following are some examples of ψ , also shown in Figure G.3 in Section G of the Sup-
plementary Material (Laha et al. (2024)), which satisfy the assumptions of Theorem 1. (a)
Exponential: ψ(x, y) = − exp(−x − y), (b) Logistic: ψ(x, y) = − log(1 + e−x + e−y) (c)
Quadratic: ψ(x, y) = zT Qz+ bT z+ c where z = (x, y)T , Q is negative definite, b ∈ R

2 and
c ∈ R.

The proof of Theorem 1 is given in Section I of the Supplementary Material (Laha et al.
(2024)). Our counterexample for Theorem 1 is based on a pathological case where O2 and Y1
are deterministic functions of H1. We chose this case because it grants technical simplifica-
tion. The realistic cases are no more likely to yield under concave surrogates than this simple
pathological case. The calculations underlying the proof of Theorem 1 become severely tech-
nically challenging when the second-stage covariates are potentially random given H1.

A main difficulty in proving Theorem 1 is that even under our pathological case, f̃1(H1)

and f̃2(H2) do not have closed-form expressions. They are implicitly defined as maximizers
of complex functionals of ψ . Therefore, if we consider a very large class of ψ’s, charac-
terization of f̃1(H1) and f̃2(H2) becomes difficult. The assumptions on ψ ensure that the
class of ψ’s under consideration is manageable, mitigating some technical difficulties in the
characterization of f̃1(H1) and f̃2(H2). The latter is essential for learning the behavior of the
signs of f̃1(H1) and f̃2(H2). Thus the assumptions on ψ are required for technical reasons
in the proof. That is to say that our conditions on ψ are probably not necessary, and the as-
sertions of Theorem 1 may hold even without these assumptions. In fact, we are not aware of
any concave surrogates that are Fisher consistent in this context. We defer further discussion
on the assumptions in Theorem 1 to Section A.1 of the Supplementary Material (Laha et al.
(2024)).
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The smoothness assumption in Theorem 1 is a technical assumption. Specifically, the ex-
istence of a gradient of ψ makes the proof simpler. However, we believe that the result may
continue to hold without this condition, albeit with a more technically involved proof. In
particular, the negative result in Theorem 1 is unlikely to be an artifact of the smoothness
of ψ in Theorem 1, and may hold for broader classes of concave functions. In support of
this claim, in Section 3.2, we demonstrate that a concave variant of the bivariate hinge loss
min(x − 1, y − 1,0), a commonly used nonsmooth concave loss, is not Fisher consistent.
In fact, to our knowledge, there exists no concave surrogate, whether smooth or not, that is
Fisher consistent for the DTR classification problem. These observations lead us to suspect
that no concave loss is Fisher consistent for the DTR problem.

While we do not have an intuitive explanation for the apparent failure of concave func-
tions, we attempt at making one heuristic reasoning. Even in the one-stage case of binary
classification, it was observed that Fisher consistency requires the surrogates to mimic the
shape of the zero-one loss to some extent. It appears to us that for Fisher consistency in two-
stage DTR, the function ψ has to mimic the shape of the bivariate zero-one loss function (see
Figure G.3a in Section G of the Supplementary Material, Laha et al. (2024)) more closely
than that was necessary in binary classification (see Figure G.2 in Section G of the Supple-
mentary Material, Laha et al. (2024)). In other words, the nonconcavity of the zero-one loss
function at the origin pushes the concave losses to failure, thereby necessitating search for ψ

among nonconcave losses, which we will study in Section 3.3.
Smooth concave or convex surrogates fail to be Fisher consistent in many other com-

plex machine-learning problems. For example, Gao and Zhou (2011) shows known convex
surrogates are not Fisher consistent for multilabel classification with ranking loss. Ranking
is another notable example, where convex losses fail for a number of losses including the
pairwise disjoint loss (Calauzenes, Usunier and Gallinari (2012)). In fact, in the latter case,
the existence of a Fisher consistent concave surrogate would imply that the feedback arc-set
problem is polynomial-time solvable (Duchi, Mackey and Jordan (2010)), which is conjec-
tured to be NP complete (Karp (1972)). The DTR classification problem shares one com-
mon feature with the above-stated machine-learning problems where these surrogate losses
fail. It does not organically reduce to a sequence of weighted binary classification problems,
which appears to be a common element of all classification problems that are solvable via
convex surrogates, for example, multicategory loss with zero-one loss function (Tewari and
Bartlett (2007)), multilabel classification with partial ranking and hamming loss (Gao and
Zhou (2011)), ranking with Hamming loss (Calauzenes, Usunier and Gallinari (2012)), or-
dinal regression with absolute error loss (Pedregosa, Bach and Gramfort (2017)), etc. Here,
we emphasize the word “organic” because DTR classification does reduce to sequences of
binary classification if it is framed as a sequential classification via exclusion of data points
at each stage; cf. BOWL (Zhao et al. (2015)).

3.2. Hinge loss. In this section, we demonstrate the Fisher inconsistency of the nons-
mooth loss function ψ(x, y) = min(x, y,1), which is a bivariate version of the univariate
hinge loss min(x,1). The Fisher inconsistency of the hinge loss provides support to the con-
jecture that the Fisher inconsistency of concave surrogates extends beyond the class of smooth
losses. The specific form of the hinge loss we examine has also been explored by Zhao et al.
(2015) as well. See Figure G.3b in Section G of the Supplementary Material (Laha et al.
(2024)) for a pictorial representation of this loss. If desired, readers may choose to bypass
this section and proceed directly to Section 3.3, which focuses on the study of Fisher consis-
tent losses.

Zhao et al. (2015) suggested a location transformation of the outcomes Y1 and Y2 so that
they become positive, which is in alignment with our discussion in Section 2. Since we mainly
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focus on their implementation of the hinge loss, we will take Y1 and Y2 to be positive for the
time being. For our hinge loss, it turns out that we can especially characterize the solution d̃ .
The following inequality will be crucial for understanding the form of d̃ in this case:∣∣E[

T
(
H2, d

∗
2 (H2)

)|H1 = h1,A1 = 1
] −E

[
T

(
H2, d

∗
2 (H2)

)|H1 = h1,A1 = −1
]∣∣

> E
[
T

(
H2,−d∗

2 (H2)
)|H1 = h1,A1 = 1

]
+E

[
T

(
H2,−d∗

2 (H2)
)|H1 = h1,A1 = −1

]
,

(13)

where we remind the readers that T (H2, a2) = Y1 + E[Y2|H2,A2 = a2]. Note that the left-
hand side of (13) is the absolute value of the first-stage blip function or conditional treatment
effect defined in (1). Thus (13) can be interpreted as a lower bound condition, indicating the
minimum strength required for the first-stage conditional treatment effect. Further implica-
tions of (13) will be discussed after introducing Theorem 2, which demonstrates the necessity
of (13) for the uniqueness of d̃1(H1).

THEOREM 2 (d̃1 and d̃2 for hinge loss). Suppose ψ(x, y) = min(x, y,1). Further, sup-
pose Assumptions I–IV hold and Y1 and Y2 are bounded below by some positive constant.

1. First stage: If (13) holds for some h1 ∈ H1, then d̃1(h1) = d∗
1 (h1). If (13) does not hold,

then d̃1(H1) = {1,−1}.
2. Second stage: If h2 ≡ (h1, a1, y1, o2) ∈ H2 is such that a1 and h1 satisfy a1 = d̃1(h1), then

d̃2(h2) = d∗
2 (h2). For all other h2, d̃2(h2) = {−1,1}.

Theorem 2 follows from Theorem A.1 in Section A.2.1 of the Supplementary Mate-
rial (Laha et al. (2024)), which is proved using straightforward algebra and elementary
convex analysis results. The first observation from Theorem 2 is that the condition for
d∗

2 (h2) = d̃2(h2) is actually not restrictive. If the first-stage treatment allocation follows d̃1,
then A1 = d̃1(H1), and hence d̃2(H2) matches with d∗

2 (H2). However, the first stage appears
to be more challenging for the hinge loss because when (13) fails to hold, this loss is unable to
discriminate between the two treatment strategies in the first stage. If d∗

1 (H1) is unique, then
d∗

1 and d̃1 will disagree in such situations. As a trivial example of such a scenario, consider
the illustration in (12). In this case, the absolute value of the first-stage conditional treatment
effect is five but the threshold in the right-hand side of (13) is eight for all H1. Thus d∗

1 (H1)

is unique, and it is always −1 but (13) does not hold in this example, thereby confirming
Fisher inconsistency. We provide more examples of the failure of (13) in Section A.2.2 of the
Supplementary Material (Laha et al. (2024)). Given that (13) represents a minimal strength
condition for the first-stage conditional treatment effect, the above discussion indicates that
the hinge loss requires a sufficiently strong first-stage conditional treatment effect to accu-
rately identify the first-stage optimal treatment.

Similar to many other concave losses, the univariate version of hinge loss is Fisher consis-
tent for the single-stage problem (Zhao et al. (2012)). However, Fisher inconsistency of Hinge
loss has been observed in some classification problems involving more than two classes (see
Liu (2007) for a detailed account). Hinge loss is also not Fisher consistent for maximum
score estimation problem in linear binary response model (Feng, Ning and Zhao (2022)).
In our case, the inconsistency stems from the first-stage treatment assignment, which aligns
with the previous examples of concave losses in Section 3.1. This happens because the final-
stage (in our case the second-stage) treatment assignment in DTR resembles a single-stage
weighted classification problem, where concave surrogates work. The inherent difficulty of
DTR manifests in the treatment assignments of the early stages. This is unsurprising because
the early-stage treatment assignments need to take into account the potential outcomes of all
future stages.
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Some additional remarks are pertinent concerning the location transformation employed to
ensure the positivity of outcomes because the location transformation makes it more challeng-
ing to satisfy (13). To see this, consider a hypothetical situation where (13) holds at H1 = h1
for some data distribution. If we perform a location shift by transforming Y1 to Y1 + C and
Y2 to Y2 + C, the left-hand side of (13) increases by C, while the right-hand side grows by
3C. Therefore, if C is large enough, (13) will no longer hold for the location transformed
data. Given the positivity of Y1 and Y2 does not ensure Fisher consistency anyway, one may
question the form of d̃ when Y1 and Y2 are allowed to take nonpositive values. We delve
deeper into this topic in Section A.2.1 of the Supplementary Material (Laha et al. (2024)).

REMARK 3. As previously mentioned, the SOWL method proposed by Zhao et al. (2015)
is based on the bivariate hinge loss described in Theorem 2. With the hinge loss, the agree-
ment between d̃ and d∗ relies on the fulfillment of (13) when d∗

1 (H1) is unique. From a high
level, this condition requires the first-stage conditional treatment effect to be larger than some
threshold. There are both distributions satisfying (13) for all h1 ∈ H1, resulting in d̃ = d∗; and
distributions that violate (13) for some h1 ∈ H1, resulting in d̃ �= d∗. For specific examples
and further elaboration, refer to Section A.2.2 of the Supplementary Material (Laha et al.
(2024)).

3.3. Construction of Fisher consistent surrogates. In this section, we construct Fisher
consistent loss functions for two-stage DTR classification. Noting the connection between
binary classification and DTR classification, we consider bivariate loss functions of form
ψ(x, y) = φ1(x)φ2(y) where φ1 and φ2 themselves are univariate loss functions. The most
intuitive choice of φi ’s would be the Fisher consistent losses for one-stage DTR. However,
φi(x) = − exp(−x) is Fisher consistent in one stage (Bartlett, Jordan and McAuliffe (2006),
Chen et al. (2017)) although the product φ1(x)φ2(y) is inconsistent for the two-stage setting
(see Section 3). The above indicates that φi ’s Fisher consistency is insufficient for ψ to mimic
the bivariate zero-one loss function effectively.

In fact, our calculations hint that φ2 needs to share a particular property of the zero-one
loss function, that is, for some constant C > 0,

sup
x∈R

(
ηφ2(x) + (1 − η)φ2(−x)

) = C max(η,1 − η).(14)

The above property is satisfied by the sigmoid function, which is nonconcave, and Fisher
consistent for binary classification (Bartlett, Jordan and McAuliffe (2006)). Interestingly,
(14) alone does not guarantee the fisher consistency of ψ = φ1φ2. For instance, the loss
φ(x) = min(x + 1,1) satisfies (14) with C = 2 (cf. Bartlett, Jordan and McAuliffe (2006))
but ψ(x, y) = φ(x)φ(y) is not Fisher consistent for DTR when the number of stages is more
than two. Therefore, (14) is not a sufficient for Fisher consistency. Now we introduce a suffi-
cient condition for Fisher consistency.

CONDITION 2. φ is a strictly increasing function such that:

1. φ(x) > 0 for all x ∈ R.
2. For all x ∈ R, φ(x) satisfies φ(x) + φ(−x) = Cφ where Cφ > 0 is a constant.
3. limx→∞ φ(x) = Cφ and limx→−∞ φ(x) = 0.

We will show in the upcoming Theorem 3 that Condition 2 is sufficient for Fisher consis-
tency in the sense that if φ satisfies Condition 2, then ψ(x, y) = φ(x)φ(y) is Fisher consis-
tent. A φ satisfying Condition 2 is Fisher consistent for binary classification, and it also sat-
isfies (14) (see Lemma J.2 in Section J.1 of the Supplementary Material, Laha et al. (2024)).
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Notably, this φ possesses another important property. When Cφ = 1 and φ is continuous, φ

becomes the distribution function of an unbounded symmetric random variable. In contrast,
the previously mentioned univariate hinge loss φ(x) = min(x + 1,1) lacks this property.
Specifically, when smooth, φ can be perceived as a smooth version of the 0–1 loss, smoothed
via a symmetric distributional kernel. Consequently, it can be inferred that surrogates satis-
fying Condition 2 closely approximate the 0–1 loss. That being said, we do not yet know if
Condition 2 is necessary for Fisher consistency in the DTR problem.

We provide some examples of functions satisfying Condition 2 below.

EXAMPLE 1. The following odd functions are nondecreasing with range [−1,1]: (1)
fa(x) = x

1+|x| , (2) fb(x) = 2
π

arctan(πx
2 ), (3) fc(x) = x√

1+x2
, (4) fd(x) = tanh(x), where

tanh(x) = ex−e−x

ex+e−x . Then φj (x) = 1 + fj (x) satisfies Condition 2 with Cφ = 2, for j =
a, b, c, d . See Figures G.4a and G.4b in Section G of the Supplementary Material (Laha
et al. (2024)) for the pictorial representation of these functions and the corresponding ψ’s.

Our approach involving nonconcave surrogates leads to nonconvex optimization problems,
prompting the question of how it differs from directly optimizing the original value function.
While both approaches lead to nonconvex optimization, our method results in a smooth op-
timization problem. In contrast, direct maximization of the value function would lead to a
discontinuous optimization problem with jump discontinuities. Moreover, the objective func-
tion resulting from the latter optimization problem is flat at the regions of continuity.

Our heuristic analysis on optimization error in Section D of the Supplementary Mate-
rial (Laha et al. (2024)) suggests that the surface of DTRESLO optimization problem may
possess favorable properties for certain policy classes. In such cases, we find that the opti-
mization error incurred for DTRESLO with gradient descent-type algorithms may be small
under specific conditions. In contrast, gradient descent-type methods would likely fail for the
discontinuous problem resulting from direct value function maximization, and no known con-
dition or method guarantees small optimization error for these methods in such problems (Xu,
Wang and Fang (2014)). This makes direct optimization of the value function considerably
more challenging than our method. Objectives with 0–1 loss appear naturally in various ma-
chine learning problems. As far as we know, In current statistical machine learning literature,
direct optimization of such objectives is avoided, and instead, the original 0–1 loss is replaced
with a more well-behaved surrogate loss, whether convex or not, whenever such a surrogate
is available (Calauzenes, Usunier and Gallinari (2012), Feng, Ning and Zhao (2022), Gao
and Zhou (2011), Horowitz (1992), Mukherjee, Banerjee and Ritov (2021), Pedregosa, Bach
and Gramfort (2017), Xu, Wang and Fang (2014)).

The class specified by Condition 2 has been mentioned in various machine learning prob-
lems, often presented in forms appropriate for a minimization problem. In certain instances, it
is referred to as the smoothed 0–1 loss. In some of these machine learning problems, this class
has been proposed in situations where convex surrogates have demonstrated inconsistency.
For example, Gao and Zhou (2011) has shown that this class of surrogates is Fisher consis-
tent for multilabel classification with ranking loss, where convex surrogates are inconsistent.
Feng, Ning and Zhao (2022) established Fisher consistency related guarantees for such surro-
gates in a diverse range of problems including Covariate-adjusted Youden index estimation,
one-bit compress sensing and maximum score estimation in binary response model; see also
Mukherjee, Banerjee and Ritov (2021), Xu, Wang and Fang (2014). Especially for maximum
score estimation, Feng, Ning and Zhao (2022) showed that common convex surrogates such
as exponential and hinge loss are inconsistent (Feng, Ning and Zhao (2022)). Finally, the
surrogate loss used for multivariate ψ-learning in the context of multicategory classification
is a nonsmooth member of our class (Liu and Shen (2006)). The authors of that work claim
that this nonconcave surrogate outperforms SVM, which relies on hinge loss.
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3.3.1. Fisher consistency of ψ . Instead of directly proving Fisher consistency, we will
bound the true regret V ∗ − V (f1, f2) in terms of the ψ-regret V ∗

ψ − Vψ(f1, f2). The benefit
of such a bound is that the rate of convergence of the true regret will be readily given by that
of the ψ-regret, which we actually minimize.

As mentioned earlier, the true regret and the ψ-regret parallel the excess risk R(f ) −R∗
and the φ-excess risk Rφ(f ) − R∗

φ in binary classification. The relationship between the
latter has been well studied. For Fisher consistent φ, Bartlett, Jordan and McAuliffe (2006)
show that

hφ

(
R(f ) −R∗) ≤Rφ(f ) −R∗

φ,

where hφ is a convex function satisfying hφ(0) = 0. In view of the fact that the univariate
sigmoid loss leads to a linear hφ (Bartlett, Jordan and McAuliffe ((2006), Example 4)), it is
reasonable to expect that a similar inequality holds when ψ(x, y) = φ(x)φ(y) with φ as in
Condition 2, as confirmed in following theorem.

THEOREM 3. Suppose Y1, Y2 > 0 and Assumptions I–IV hold. Let ψ(x, y) = φ(x)φ(y)

with φ satisfying Condition 2 with some Cφ > 0. Then

(15) V ∗ − V (f1, f2) ≤ (V ∗
ψ − Vψ(f1, f2))

(Cφ/2)2 .

Theorem 3 immediately implies Fisher consistency because if Vψ(f1n, f2n) converges to
V ∗

ψ for some (f1n, f2n) ∈ F , then V (f1n, f2n) → V ∗ as well. Theorem 3 is proved in Section
J.2 of the Supplementary Material (Laha et al. (2024)).

As mentioned earlier, a necessary requirement for Fisher consistency is an agreement be-
tween d̃ and d∗. Proving the latter is also a key step in the proof of Theorem 3. Let us provide
some intuition as to why the d̃ corresponding to our ψ may agree with d∗.

We mentioned earlier that any φ satisfying Condition 2 is Fisher consistent for binary
classification. It can be shown that Fisher consistency for binary classification translates to
Fisher consistency for the single-stage case under Assumptions I–IV (Chen et al. (2017)).
Using this insight, we can show that the second-stage treatment allocation d̃2(H2) matches
with d∗

2 (H2) for our ψ . Regarding the first stage, after some algebraic manipulation, we can
demonstrate that d̃1(H1) takes the form in (11) analogous to the exponential loss, but with
h(x, y) = max(x, y). This particular form of h is primarily driven by (14) and the positivity
of φ. Since d∗

1 satisfies (11) with h(x, y) = max(x, y), the above leads to d̃1 = d∗
1 .

We want to remind the readers that the assumption Y1, Y2 > 0 is not restrictive. As men-
tioned earlier, in cases where the observed outcomes are not positive, a location transforma-
tion can be applied to ensure positivity without altering the optimal treatment policy d∗ and,
consequently, d̃ . We also want to emphasize that Theorem 3, as well as all our upcoming the-
orems, do not distinguish between continuous and discrete outcomes. Therefore, our method
and theory apply to discrete and binary outcomes, which are of interest in many applications.

REMARK 4 (Scaling of the φ’s). The scaling factor Cφ/2 appears in the regret of (15)
because φ differ from the zero-one function in scale by a factor of Cφ/2. To understand
the impact of the scaling factor in the regret bound, suppose φ2 = aφ1 for some a > 0, and
ψt(x, y) = φt (x)φt (y) for t = 1,2. Then

(V ∗
ψ1

− Vψ1(f1, f2))

C2
φ1

/4
= (V ∗

ψ2
− Vψ2(f1, f2))

C2
φ2

/4
.

Thus, the regret bound in (15) does not depend on the scale of φ. Nevertheless, during our
implementation, we take the scaling factor Cφ/2 to be one so that the surrogate loss is at the
same scale as the original zero-one loss.
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We would like to emphasize a crucial point. While our algorithm is capable of handling
large sample sizes, it is important to note, as we will discuss in Section D of the Supple-
mentary Material (Laha et al. (2024)), that guarantees regarding its convergence to the global
maximum are scarce. This limitation is a common challenge encountered in nonconcave op-
timization problems. However, it is important to recognize that we employ nonconcave losses
due to the apparent absence of Fisher consistent concave losses. In other words, nonconcave
optimisation may be the only viable choice if one aims to solve the DTR problem through
simultaneous optimization. This highlights the inherent difficulty of the DTR problem.

To circumvent nonconcave optimization while retaining theoretical guarantees, one has
two options: employing a stagewise, Fisher consistent optimization method like BOWL or
opting for a regression-based approach such as Q-learning. However, it is important to note
that BOWL achieves Fisher consistency at the expense of reduced sample size in the first
stage Zhao et al. (2015). Our simulations in Section 7 indicate that BOWL does not outper-
form our proposed method. Additionally, our simulations demonstrate that BOWL exhibits
significantly longer runtimes compared to our method for large sample sizes.

4. Main methodology. In this section, we describe how we use the Fisher consistent
surrogate derived in Section 3.3 to estimate the optimal treatment regimes. For the remainder
of this paper except Section A.2 of the Supplementary Material (Laha et al. (2024)), unless
otherwise mentioned, φ will denote a univariate surrogate satisfying Condition 2, and ψ will
denote the bivariate surrogate ψ(x, y) = φ(x)φ(y) where φ satisfies Condition 2. Define the
empirical ψ-value function

(16) V̂ψ(f1, f2) = Pn

[
(Y1 + Y2)ψ(A1f1(H1),A2f2(H2))

π1(A1|H1)π2(A2|H2)

]
.

Because P is unknown, we maximize V̂ψ(f1, f2) instead of Vψ(f1, f2). Ideally, one should
maximize V̂ψ(f1, f2) over F but brute force search over F is impossible unless H1 and
H2 are discrete spaces with finite cardinality. Therefore, in practice, one may optimize
V̂ψ(f1, f2) over a nested class U1 ⊂ · · · ⊂ Un ⊂ F , where Un is some rich class of classi-
fiers, preferably a universal class (see Zhang, Liu and Tao (2022)). We will discuss them in
more detail later in Section 5. Whatever is the choice of Un, maximization of V̂ψ(f1, f2) over
(f1, f2) ∈ Un generally leads to a nonconvex optimization problem.

The surrogate loss based DTR optimization allows flexibility in the choice of Un and the
modification of the empirical loss V̂ψ(f1, f2) to accommodate high-dimensional covariates,
nonlinear effects and variable selection. One can maximize V̂ψ(f1, f2) + P(f1, f2) instead
of V̂ψ(f1, f2) to enable variable selection and attain stable estimation, where P(f1, f2) is a
penalty term. One can include complex basis functions in Un to incorporate nonlinear effects.
For example, tree and list based methods (Laber and Zhao (2015), Sun and Wang (2021),
Zhang et al. (2018)) as well as neural networks (see Section 6.1.2 for details) can be poten-
tially adapted to construct Un. Moreover, our method can be extended to K stages by taking
ψ(x1, . . . , xk) = ∏k

i=1 φ(xi).

4.1. Decomposition of errors. In this section, we will discuss the decomposition of ψ-
regret of DTRESLO into three sources of errors. To that end, let us denote our classifiers
by (f̂n,1, f̂n,2). We will provide upper bounds for the ψ-regret Vψ(f̂n,1, f̂n,2), which readily
produces an upper bound for the true regret V (f̂n,1, f̂n,2) by Theorem 3. Before going into
further detail, we point out that

V (f̂n,1, f̂n,2) = P

[
(Y1 + Y2)

1[A1φ(f̂n,1(H1)) > 0]1[A2φ(f̂n,2(H2)) > 0]
π1(A1|H1)π2(A2|H2)

]
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is a random quantity because here we assume that Ht , At , Yt (t = 1,2) are drawn from
P independent of (f̂n,1, f̂n,2). The same holds regarding the ψ-regret Vψ(f̂n,1, f̂n,2). We
decompose the ψ-regret according to three sources of errors: (i) approximation error due to
the approximation of F by Un; (ii) estimation error due to the use of finite sample and (iii)
optimization error due to the possibility of not achieving global maximization for V̂ψ(f1, f2)

since ψ is nonconcave. We define the optimization error as

Optn = sup
(f1,f2)∈Un

V̂ψ(f1, f2) − V̂ψ(f̂n,1, f̂n,2).

We first provide some heuristics and intuitions for the error decomposition. For the time
being, let us assume that arg max(f1,f2)∈Un

V ∗
ψ(f1, f2) is attained at some (f̃n,1, f̃n,2) ∈ Un.

The existence of (f̃n,1, f̃n,2) is not guaranteed in general, and even if they exist, (f̃n,1, f̃n,2)

will be hard to characterize for an arbitrary Un. We thus do not assume the existence of
(f̃n,1, f̃n,2) in our proof. We define the map ξf1,f2,g1,g2 : H1 ×O2 ×R

2 × {±1}2 �→R by

ξf1,f2,g1,g2(D)

= (Y1 + Y2){ψ(A1g1(H1),A2g2(H2)) − ψ(A1f1(H1),A2f2(H2))}
π1(A1|H1)π2(A2|H2)

.
(17)

Elementary algebra shows that the ψ regret can be decomposed as follows:

V ∗
ψ − Vψ(f̂n,1, f̂n,2)

= V ∗
ψ − Vψ(f̃n,1, f̃n,2)︸ ︷︷ ︸
Approximation error

+(Vψ − V̂ψ)(f̃n,1, f̃n,2) − (Vψ − V̂ψ)(f̂n,1, f̂n,2)

+ V̂ψ(f̃n,1, f̃n,2) − sup
(f1,f2)∈Un

V̂ψ(f1, f2) + sup
(f1,f2)∈Un

V̂ψ(f1, f2) − V̂ψ(f̂n,1, f̂n,2)︸ ︷︷ ︸
Optimization error: Optn

≤ Approximation error + ∣∣(Pn − P)[ξ
f1,f2,f̃n,1,f̃n,2

]∣∣︸ ︷︷ ︸
Estimation error

+Optn.

(18)

Clearly, Optn depends on the optimization method used to maximize V̂ψ(f1, f2) over Un. We
study the optimization error for linear DTR classes. For the sake of brevity, we have moved
the discussion on the optimization error to Section D of the Supplementary Material (Laha
et al. (2024)). The primary emphasis of this paper revolves around the estimation error and the
approximation error. In our sharp analysis of the ψ-regret, the estimation error bound depends
on the approximation error in an intricate manner; see Section B.1 of the Supplementary
Material (Laha et al. (2024)) for more details. To keep our presentation short and focused, we
present the main results on the approximation error in Section 5, and present the final regret
bound in Section 6. Additional discussion on the regret decay is moved to Section B of the
Supplementary Material (Laha et al. (2024)). Owing to the potential nonconcavity, the sharp
analysis of the ψ-regret is significantly more subtle than existing results and approaches in
the literature. We elaborate on this more in a detailed discussion presented in Section B.1 of
the Supplementary Material (Laha et al. (2024)).

In what follows, similar to Zhao et al. (2015), we assume that the propensity scores, that is,
π1 and π2 are known. This will hold in particular under a clinical trial like SMART (Kosorok
and Laber (2019)), but not for observational data. When π1 and π2 are unknown, they can be
estimated using a logistic regression model. This additional estimation step will not change
the approximation error but the estimation error will likely change.
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5. Approximation error. To establish the convergence rate of the approximation error,
we require two assumptions. First, we require the standard assumption that the outcomes are
bounded.

ASSUMPTION A. Outcomes Y1, Y2 satisfy max(Y1, Y2) ≤ Cy .

The second assumption is the DTR version of Tsybakov’s small noise assumption
(Audibert and Tsybakov (2007), Tsybakov (2004)). Recall the blip functions/conditional
treatment effects T1 and T2 defined in (1) and (2), respectively. Because we assume Y1 and Y2
are bounded away from zero, ηt (Ht) = 1/2 if and only if Tt (Ht ) = 0 for t = 1,2. Therefore,
the treatment boundary {ht : ηt (ht ) = 1/2} can also be formulated as {ht : Tt (ht ) = 0}.

In classification literature, it is well noted that obtaining a fast rate of convergence (faster
than n−1/2) requires control on the distribution of the random variable η(X) − 1/2 near the
decision boundary {x : η(x) = 1/2} to some degree, which gives rise to the so-called margin
conditions (Audibert and Tsybakov (2007), Tsybakov (2004)). Similarly, in the DTR context,
even with regression-based methods, regulation near the conditional treatment effect bound-
ary {Ht : Tt (Ht ) = 0} are generally required; see Appendix B.2 for a detailed discussion. Thus
it is expected that we too would require control on the rate of decay of η1 − 1/2 and η2 − 1/2
near the treatment boundary {h1 : η1(h1) = 1/2} and {h2 : η2(h2) = 1/2}, respectively, to ob-
tain sharp bound on the ψ-regret. Among many variants of margin condition, we consider the
Tsybakov small noise condition (Assumption MA of Audibert and Tsybakov (2007); see also
Proposition 1 of Tsybakov (2004)), which has seen wide use in the literature (Audibert and
Tsybakov (2007), Blanchard, Bousquet and Massart (2008), Steinwart and Scovel (2007)).
The DTR formulation of Tsybakov’s small noise condition takes the following form.

ASSUMPTION B (Tsybakov’s small noise assumption). There exist a constant C > 0, a
small number t0 ∈ (0,1) and positive reals α1, α2 such that for all t < t0,

P
(
0 <

∣∣η1(H1) − 1/2
∣∣ ≤ t

) ≤ Ctα1, P
(
0 <

∣∣η2(H2) − 1/2
∣∣ ≤ t

) ≤ Ctα2 .

The parameters α1 and α2 are the Tsybakov noise exponents. We already noted that the
Yi ’s are bounded below. Since the outcomes are also bounded above by Assumption A, As-
sumption B is equivalent to saying

(19) P
(
0 < T1(H1) < t

) + P
(
0 < T2(H2) < t

) ≤ Ctα for all t ≤ t0.

This alternative version is more common in precision medicine literature (Luedtke and van
der Laan (2016), Qian and Murphy (2011)). See Section B.2 of the Supplementary Material
(Laha et al. (2024)) for more details on the small noise assumption or similar assumptions
in precision medicine literature. Finally, observe that if a stage has Tsybakov noise exponent
α, then it also has noise exponent α′ for all α′ < α. Thus, to keep our calculations short, we
assume that both stages have noise exponent α where α = min(α1, α2). See Section B.2 of
the Supplementary Material (Laha et al. (2024)) for further discussions on Assumption B.

Under Assumption B, it turns out that, our surrogates satisfying Condition 2 do not exhibit
identical approximation error. The difference in the rate stems from the difference in their
respective derivatives. Thus it will be convenient to split the above-mentioned surrogates into
two types.

DEFINITION 2. We say a surrogate φ satisfying Condition 2 is of type A if there exists
a constant Bφ > 0 and κ ≥ 2 such that |φ′(x)| < Bφ(1 + |x|)−κ for all x �= 0. We say a
surrogate φ satisfying Condition 2 is of type B if there exists a constant Bφ > 0 and κ > 0
such that |φ′(x)| < Bφ exp(−κ|x|) for all x �= 0.
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TABLE 1
The type of the φ’s in Example 1

φ(x) Type Bφ κ

(a) x/(1 + |x|) + 1 A 1 2
(b) 2

π arctan(πx/2) + 1 A 2 2
(c) x/

√
1 + x2 + 1 A 23/2 3

(d) 1 + tanh(x) B 4 2

First, Definition 2 assumes φ to be smooth everywhere except perhaps at the origin. This
restriction rules out nonsmooth φ’s, but they are uninteresting from our implementation per-
spective anyways. All the φ’s we have considered in Example 1 are differentiable at R/{0}
(see Table 1; more details can be found in Section R of the Supplementary Material, Laha
et al. (2024)). Second, type A merely means φ′ decays polynomially in |x|−κ , where type B
φ’s enjoy exponential decay of the derivative.

5.1. Approximation error rate. Theorem 4 summarizes the approximation error rate.

THEOREM 4. Suppose P satisfies Assumptions I–IV, Assumption A and Assumption B
with small noise coefficient α. Let 0 < an → ∞ be any sequence of positive reals. Further
suppose there exist a small number δn ∈ (0,1) and maps h̃n,1 : H1 �→ R and h̃n,2 : H2 ×
{0,1} �→R so that ∥∥h̃n,1 − (η1 − 1/2)

∥∥∞ + ∥∥h̃n,2 − (η2 − 1/2)
∥∥∞ ≤ δn,

where η1 and η2 are defined in (9) and (10), respectively. Then for any φ of type A, the
following holds for any α′ ∈ (0, α) satisfying α − α′ < 1:

V ∗
ψ − Vψ(anh̃n,1, anh̃n,2)

�

⎧⎪⎪⎨
⎪⎪⎩

a1−κ
n + min

(
δ2+α
n an, δ

1+α
n

)
if κ < 2 + α,

a
− 1+α

1+(α−α′)/(κ−1)
n

α − α′ + min
(
δ2+α
n an, δ

1+α
n

) + δα′+2−κ
n

(α − α′)aκ−1
n

if κ ≥ 2 + α.

Suppose φ is of type B. Then

V ∗
ψ − Vψ(anh̃n,1, anh̃n,2)�

(logan)
1+α

a1+α
n

+ min
(
anδ

2+α
n , δ1+α

n

) + anδn exp(−κanδn/2).

Theorem 4 entails that if {h̃n,1, h̃n,2} approximates {η1 − 1/2, η2 − 1/2} well in the sup-
norm, then their scaled versions f̃n,1 = anh̃n,1 and f̃n,2 = anh̃n,2 incur small regret. It may
appear a bit unusual in that we require f̃n,i ’s to be close to the functions ηi −1/2’s, where Vψ

is actually maximized at (f̃1, f̃2) (see Lemma J.1 in Section J of the Supplementary Material
(Laha et al. (2024))). To that end, note that the extended real valued functions f̃i’s cannot
be approximated by any real valued fi’s because ‖fi − f̃i‖∞ is infinity for all such fi ’s.
However, the proof of Theorem 4 ensures that an(ηi − 1/2)’s are good proxy for the f̃i ’s be-
cause Vψ(f̃1, f̃2)−Vψ(an(η1 −1/2), an(η2 −1/2)) is small. The bounds in Theorem 4 holds
for any small δn, whose optimal rate will be found during the estimation error calculation.
Theorem 4 bounds the approximation error because if Un = U1n × U2n is such that

inf
ft∈Utn

∥∥ft − (ηt − 1/2)
∥∥∞ < δn, t = 1,2,(20)

then Theorem 4 upper bound V ∗
ψ − sup(f1,f2)∈Un

Vψ(f1, f2).
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A special scenario occurs when α = ∞ in Assumption B. In this case, η1 and η2 are
bounded away from zero on their respective domains. Under this condition, DTRESLO can
obtain a regret decay rate up to Op(1/n), modulo a logarithmic term, in this situation when
the optimization error is negligible. See Section B.3 of the Supplementary Material (Laha
et al. (2024)) for a detailed discussion on this case.

6. Estimation error. In this section, we focus on the estimation error in (18), and pro-
vide sharp regret-bound for a selected set of classifiers by combining all sources of error.
We assume that (f̂n,1, f̂n,2) ∈ Un = U1n × U2n, where U1n, U2n are classes of functions. Our
analysis in this section is fully nonparametric because our Un is agnostic of the underlying
data-generating mechanism. We first present a theorem on the regret decay rate of DTRESLO
with general Un’s under Assumption B. Then we will proceed to study the specific example of
neural networks. We also analyzed the regret decay rate of DTRESLO when Un is the wavelet
class, but this example has been deferred to Section B.4 of the Supplementary Material (Laha
et al. (2024)) due to space constraints.

6.0.1. Estimation error when Un is a general function-class. For general function-
classes, we need some assumptions to control the complexity of Un. Such assumptions
are widely used for bounding the expectation of the estimation error (Bartlett, Jordan and
McAuliffe (2006), Bartlett and Mendelson (2002), Koltchinskii (2011)). To define complex-
ity in the context of function-classes, we need to introduce the concept of the bracketing
entropy. Given two functions fl and fu, the bracket [fl, fu] is the set of all function f sat-
isfying fl ≤ f ≤ fu. Suppose ‖ · ‖ is a norm on the function space and ε > 0. Then [fl, fu]
is called an ε-bracket if ‖fu − fl‖ < ε. For a function-class G, we define the bracketing en-
tropy N[ ](ε,G,‖ · ‖) to be the minimum number of ε-brackets needed to cover G. This is a
measure of the complexity of G. We will see that the estimation error directly depends on the
bracketing entropy of Un.

We will derive the estimation error of DTRESLO under the small noise assumption (As-
sumption B) when

(21) N[ ]
(
ε,Utn,‖ · ‖∞

)
�

(
An

ε

)ρn

, t = 1,2,

where An,ρn > 0. This leads to the regret bound of Theorem 5 that depends on An and ρn.
The Un’s that satisfy (21) are called VC-type classes (p. 41 Koltchinskii (2011)). In all our
examples, Un will satisfy (21) for appropriate An and ρn.

THEOREM 5. Suppose Un is such that there exists An > 0 and ρn ∈ R so that (21) holds
with lim infn ρn > 0, ρn logAn = o(n), and lim infn ρn logAn > 0. Further suppose there ex-
ist (f̃n,1, f̃n,2) ∈ Un so that

(22)
∥∥f̃n,1/an − (η1 − 1/2)

∥∥∞ + ∥∥f̃n,2/an − (η2 − 1/2)
∥∥∞ ≤

(
ρn logAn

n

)1/(2+α)

for some an = na where a > 1. We also assume that P satisfies Assumptions I–IV, Assump-
tion A and Assumption B with coefficient α > 0. Then there exist C > 0 and N0 ≥ 1 such that
for all n ≥ N0 and all x > 0, the following holds with probability at least 1 − exp(−x):

V ∗
ψ − Vψ(f̂n,1, f̂n,2) ≤ C max

{
(1 + x)2(logn)2

(
ρn logAn

n

) 1+α
2+α

,Optn

}
.

Theorem 5 is proved in Section L of the Supplementary Material (Laha et al. (2024)). In
the specific examples of neural networks and wavelets (see Section B.4 of the Supplementary
Material (Laha et al. (2024)) for the latter), the regret bound in Theorem 5 leads to sharp rates
provided η1 and η2 satisfy some smoothness conditions.
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6.1. Examples of regret bounds when Un is the neural network class. We will first state
some assumptions on η1 and η2. Next, we will elaborate on the special cases when Un corre-
sponds to neural network classes.

6.1.1. Smoothness assumption. First, we explain why smoothness conditions on η1 and
η2 are required. When we search for the DTRs among a class Un, for example, a class os neu-
ral networks or wavelets, instead of F , we are basically restricting the search space. Although
a class Un with lower complexity helps lowering the estimation error, we require structural
assumptions on η1 and η2 to ensure that η1 and η2 are well approximable by such Un’s—
giving rise to the so-called complexity assumptions. Thus the complexity assumption enables
the attainment of a small estimation error without necessarily blowing up the approximation
error. See Audibert and Tsybakov (2007), Koltchinskii (2011) and Tsybakov (2004), among
others, for a more detailed account of the necessity of complexity assumptions. If η1 and η2
are smooth, then they are well approximated by neural networks and basis expansion-type
classes such as wavelets (Schmidt-Hieber (2020)). Therefore, we will assume our η1 and η2
to be smooth. To fix the idea, we define the Hölder classes with smoothness index θ > 0
below.

Let p ∈ N. A function f : X ⊂ R
p �→ R is said to have Hölder smoothness index θ > 0

if for all u = (u1, . . . , up) ∈ N
p satisfying |u|1 < θ , ∂uf = ∂u1∂u2 . . . ∂upf exists and there

exists a constant C > 0 so that

|∂uf (x) − ∂uf (y)|
|x − y|θ−�θ� < C for all x, y ∈ X .

For some Y > 0, we denote by Cθ
d (X ,Y) the Hölder class of functions given by{

f : X ⊂ R
d �→R

∣∣∣ ∑
u:|u|1<θ

∥∥∂uf
∥∥∞ + ∑

u:|u|1=�θ�
sup

x,y∈X
x �=y

|∂uf (x) − ∂uf (y)|
|x − y|θ−�θ� ≤ Y

}
.(23)

Since Ht may include categorical variables such as smoking status, we separate the con-
tinuous and categorical parts of Ht as Ht = (Hts,Htc) ∈ Ht = Hts ⊗ Htc, where Hts ∈
Hts ⊂ R

pts and Htc ∈ Htc ⊂ R
ptc correspond to the continuous and categorical part of Ht ,

for t = 1,2.

ASSUMPTION C (Smoothness assumption). H1 and H2 are compact and H1c and H2c

are finite sets. Also, there exist θ > 0 and Y > 0 so that the following hold:

1. Let X = H1s . For each h ∈ H1c, the map η1(·, h) : X �→R is in Cθ
p1s

(X ,Y).
2. Let X = H2s . For each (h, a) ∈ H2c × {±1}, the function η2(·, h, a) : X �→ R is in

Cθ
p2s

(X ,Y).

We formulated the smoothness assumption in terms of η1 and η2 so that our results are
consistent with contemporary classification literature. However, our proofs show that one
could formulate the assumptions in terms of the smoothness of the blip functions in (1) and
(2) as well. The compact support assumption for Ht , which is typically satisfied in real appli-
cations, is also commonly required in the DTR literature (Sonabend-W et al. (2023), Zhang
et al. (2018), Zhao et al. (2012, 2015)). Under the compactness assumption, H1c and H2c

are finite sets. Smoothness conditions as Assumption C have appeared in DTR literature in
the context of nonparametric estimation (Sun and Wang (2021)). Compared to the parametric
assumptions often imposed on the blip functions in Q-learning or A-learning (Schulte et al.
(2014)), our smoothness assumptions are much weaker. Our smoothness assumption includes
nondifferentiable functions as well.
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6.1.2. Neural network class. We consider the neural network space in line with Schmidt-
Hieber (2020)’s construction. Let F(L,W, s,Y) be the class of ReLU networks uniformly
bounded by Y > 0, with depth L ∈ N, width vector W , sparsity s ∈ N and weights bounded
by one. The output layer of the networks in F(L,W, s,Y) uses a linear gate. In this example,
we consider that for t = 1,2, the class Utn corresponds to F(Ln,Wn, sn,Yn) where Ln, Wn,
sn and Yn may depend on n. To avoid cumbersome notation, we drop n from Ln, Wn, sn and
Yn, and simply denote them by L, p, s and Y , respectively. One can control the complexity
of this class via prespecifying upper bounds on the depth, width and sparsity of the network.
Corollary 1 establishes the regret bound of DTRESLO with neural network classifier under
Assumption B.

COROLLARY 1. Suppose P satisfies Assumptions I–IV, Assumption A, Assumption B
with parameter α > 0 and Assumption C with parameter θ > 0. Let Un,1 and Un,2 be of
the form F(L,W, s,∞) with appropriate W1, where F(L,W, s,∞) is as defined in Sec-
tion 6.1.2. Suppose L = c1 logn, s = c2n

p/((2+α)θ+p), and the maximal width maxW ≤
c3s/L where c1, c2, c3 > 0. Then there exist N0 > 0 and C > 0 depending on P and ψ such
that if c1, c2, c3 > C, then for n ≥ N0 and any x > 0, the following holds with probability at
least 1 − exp(−x):

V ∗
ψ − Vψ(f̂n,1, f̂n,2) ≤ C max

{
(1 + x)2(logn)

6+4α
2+α n

− 1+α
2+α+p/θ ,Optn

}
.

The proof of Corollary 1 can be found in Section M.1 of the Supplementary Material (Laha
et al. (2024)). The proof of Corollary 1 assumes that p is fixed, that is, it does not grow with n.
The generic constant C in Corollary 1 may depend on p as well. Under Assumptions similar

to A, B and C, the rate n
− 1+α

2+α+p/θ is minimax in context of binary classification (Audibert and
Tsybakov (2007)). Since two-stage weighted classification problem is not easier than binary
classification, this rate is expected to be the minimax rate under our set-up as well. To the best
of our knowledge, no other nonparametric DTR method has better guarantees for the regret
under set-up similar to ours. See Section C of the Supplementary Material (Laha et al. (2024))
for a detailed comparison of the regret bound of DTRESLO with other nonparametric DTR
methods such as BOWL/SOWL (Zhao et al. (2015)), nonparametric Q-learning, the list-based
method of Zhang et al. (2018) and the stochastic tree-based reinforcement learning (ST-RL)
method of Sun and Wang (2021).

7. Empirical analysis. We compare the performance of our DTRESLO method with the
regression-based method Q-learning and the direct search methods BOWL and SOWL (Zhao
et al. (2015)). For our DTRESLO method, we take φ(x) = 1 + 2/π · arctan(πx/2) because
simulation shows that it has slightly better performance than the other smooth surrogates
considered in Example 1. The code for implementing DTRESLO is provided at the second
author’s github page at Sonabend-W (2022). We consider several choices for the class of
classifiers U1n and U2n. When we consider the linear treatment policies, U1n and U2n are the
class of all linear functions on H1 and H2, respectively. We consider cubic spline, wavelets
and neural network (NN) as the nonlinear treatment policies, with U1n and U2n being the
respective function-classes in these cases. For the comparators, that is, Q-learning, BOWL
and SOWL, we consider both linear and nonlinear policies as well. Following Zhao et al.
(2015), we incorporate nonlinear policies for BOWL and SOWL using a reproducing kernel
Hilbert space (RKHS) with RBF kernel; see Zhao et al. (2015) for more details. The nonlinear
treatment policy for Q-learning is achieved by letting the Q-functions be in neural network
classes. See Section E of the Supplementary Material (Laha et al. (2024)) for more details on
the implementation of these methods.

We considered five broad simulation settings as detailed in Section E of the Supplementary
Material (Laha et al. (2024)):
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1. All covariates are discrete. Hence, an exhaustive search over F is possible using satu-
rated models.

2. This is a setting with nonlinear decision boundaries in both stages. However, Y2 does
not depend on A1.

3. This setting is inspired by Setting 2 of Zhao et al. (2015), where the outcome models,
that is, E[Yt |Ht ]’s are linear function of Ht for t = 1,2. We will call this setting the linear
setting.

4. This has highly nonlinear and even nonsmooth decision boundaries.
5. This setting has a higher number of covariates. In this case, the first-stage outcome

model is linear, but the second-stage outcome model is nonlinear.

Setting 1 is a simple toy setting. The motivation behind including this setting is to verify
the consistency of DTRESLO. We will use the linear setting 3 to check if linear treatment
policies perform well when the outcome models are linear. On the other hand, we include
settings 2 and 4 to examine if the methods with nonlinear treatment policies have an edge
over those with linear treatment policies when the decision boundaries are nonlinear. Finally,
setting 5 is included to compare the performance of different methods when the dimension
of O1 ∪O2 is comparatively larger.

Under each listed setting, we estimate the DTRs based on samples of size n = 250,2500,

5000. For each estimated DTR d̂ , we estimate the value function V (d̂1, d̂2) by the empirical
value function based on an independent sample of size 10,000. We estimate the expectation
and the standard deviation of these value function estimates using 500 Monte Carlo replica-
tions. We also estimate the optimal value function V ∗ = V (d∗

1 (H1), d
∗
2 (H2)) for each setting

using these 500 Monte Carlo replications. Figures 1 and 2 compare the estimated expected
value functions of the different methods under consideration. In these figures, we use the
neural network DTRESLO as the nonlinear DTRESLO because this method is comparable
to neural network Q-learning. The average value functions corresponding to the other nonlin-
ear DTRESLO methods can be found in Table E.2 in Section E of the Supplementary Material
(Laha et al. (2024)). The overall performance of all the nonlinear DTRESLO methods is quite
similar, although NN DTRESLO is slightly better than the rest.

First of all, Figures 1 and 2 entail that DTRESLO consistently performs better or at least
as good as the other methods under all our settings and all sample sizes. No other method
has reliable performance across all settings. First, we will investigate the five settings in more
detail. Then we will look more closely into the comparison between DTRESLO and the other
methods. Finally, we will compare the run-time of different methods.

Figure 1a underscores that in the simple setting 1, DTRESLO outperforms all other meth-
ods under both linear and nonlinear treatment policies. Figures 1b and 1c show that in the
nonlinear settings 2 and 4, as expected, the nonlinear versions of DTRESLO, BOWL and Q-
learning perform better than the linear counterparts. The only exception is the case of SOWL,
which we will discuss later in more detail. We also observe that setting 4 is quite hard in that
the expected value function of all methods is noticeably lower than the optimal value func-
tion. In settings 2 and 4, nonlinear DTRESLO performs noticeably better than nonlinear Q-
learning in a small sample (n = 250). As the sample size increases, the difference decreases.
SOWL has poor performance under both settings. Although BOWL has better performance
than SOWL, its performance improves rather slowly with n when compared to DTRESLO.
This difference is most noticeable for the nonlinear treatment policies under large samples.

Figure 2a implies that under the linear setting 3, value function estimates of the linear
treatment policies are as large as the nonlinear policies for all methods except SOWL. Setting
5, which has a larger number of variables, is a relatively more complicated setting. Although
the second-stage outcome models are nonlinear in this setting, Figure 2b underscores that
linear DTRESLO performs quite comparably to nonlinear DTRESLO in large samples under
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FIG. 1. Plot of the estimated average value functions for the settings 1, 2 and 4. Here, the black horizontal line
corresponds to the true value function. The left and right panels correspond to the linear and nonlinear treatment
policies, respectively. Here, the nonlinear DTRESLO corresponds to the neural network classifier. The error bars
are given by ±2 SD.

this setting. Table E.2 in the Supplementary Material (Laha et al. (2024)) implies that the
situation with the other nonlinear DTRESLO methods is similar. Similar to settings 2, in this
case, nonlinear DTRESLO has a noticeable edge over all other methods when the sample size
is 250.

Under all settings, nonlinear DTRESLO and Q-learning exhibit one particular pattern,
which merits some discussion. Nonlinear DTRESLO performs better than nonlinear Q learn-
ing in small samples, but their performance becomes almost similar when the sample size
increases to 5000. The relative underperformance of nonparametric Q-learning in small sam-
ples may be due to its heavy reliance on the correct estimation of Q-functions. Nonparamet-
ric estimation of functions is harder unless the sample size is sufficiently large. In contrast,
DTRESLO only needs to estimate the sign of the blip functions, which is easier than the es-
timation of the whole function. Finally, this difference may be the manifestation of the spec-
ulated faster regret decay of neural network DTRESLO (see Section C of the Supplement,
Laha et al. (2024)). Thus our simulation study complements the theoretical comparison of
the regrets between nonparametric Q-learning and DTRESLO.
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FIG. 2. Plot of the estimated average value functions for the settings 3 and 5. Here, the black horizontal line
corresponds to the true value function. The left and right panels correspond to the linear and nonlinear treatment
policies, respectively. Here, the nonlinear DTRESLO corresponds to the neural network classifier. The error bars
are given by ±2 SD.

DTRESLO outperforms the other direct search methods, BOWL and SOWL, under all
settings except the linear setting, that is, setting 3, where BOWL and DTRESLO have com-
parable performance. The difference is most pronounced for nonlinear treatment policies in
large samples. DTRESLO’s advantage over BOWL may be attributed to DTRESLO’s simul-
taneous optimization approach as opposed to BOWL’s stagewise approach. The latter reduces
the effective sample size in the first stage. In general, SOWL’s average value function stays
quite below the optimal value function. Its performance is comparable to other methods only
in setting 3, where classification is comparatively easy.

Figures 1 and 2 entail that the estimated value function of nonlinear SOWL, a nonpara-
metric method by design, either does not improve with the sample size or exhibits a much
slower increase compared to the other competing methods we consider. The last observation
raises the question of whether the approximation error of SOWL at all decays to zero as the
sample size increases. Indeed, this observation does not refute our Theorem 2, which estab-
lishes that the hinge loss, the surrogate employed in SOWL, requires the fulfilment of (13)
for d̃1(H1) to align with d∗

1 (H1). Moreover, in Section A.2.2 of the Supplementary Material
(Laha et al. (2024)), we demonstrate that (13) is not a pathological condition, as it fails in nu-
merous nontrivial scenarios. To elaborate further, we focus on Setting 3 as an illustrative case.
In this case, the nonparametric version of SOWL exhibits a decaying value with respect to n.
For this setting, the outcome models are linear, and H1 ∈ R

3 follows a centered multivariate
Gaussian distribution with an identity covariance matrix. Consequently, H1 lies inside a ball
of radius 5 centered at the origin with a high probability (specifically, greater than 0.999).
However, we empirically evaluated that (13) holds nowhere inside this ball. Moreover, if a
location transformation is required to ensure the positivity of outcomes for certain samples,
as discussed in Section 3.2, (13) becomes more difficult to satisfy. Therefore, the suboptimal
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TABLE 2
Run-time for estimating DTR for our smooth surrogates (DTRESLO), Zhao et al. (2015)’s BOWL and SOWL,

and Q-learning under settings 1–5

DTRESLO BOWL SOWL Q-learning

Setting n Linear Wavelet Spline NeuNet Linear RBF Linear RBF Linear NeuNet

1 250 0.04 0.05 0.04 0.1 1.24 21.01 0.1 0.16 0.07 0.18
2500 0.42 0.49 0.43 0.94 13.11 655.43 54.19 80.82 0.69 2.12
5000 0.89 1.02 0.8 2.15 77.45 3913.85 400.32 534.36 1.4 3.94

2 250 0.04 0.06 0.04 0.16 1.36 3.48 1.3 1.33 0.09 0.19
2500 0.54 0.6 0.42 1.01 27.75 271.08 773.79 822.42 0.73 1.83
5000 0.88 1.25 0.91 3.7 136.88 5139.53 5901.54 5755.75 1.49 4.15

3 250 0.05 0.05 0.04 0.15 12.59 24.39 0.08 0.13 0.08 0.2
2500 0.41 0.71 0.42 1.03 25.75 704.16 46.55 106.67 0.73 2.04
5000 1.22 1.04 0.84 2.19 107.99 4063.34 345.83 859.37 1.46 5.36

4 250 0.04 0.06 0.04 0.1 1.66 3.21 1.28 1.33 0.09 0.19
2500 0.59 0.49 0.42 1.04 20.12 424.81 806.54 833.64 0.73 1.88
5000 0.86 1.32 0.91 1.5 70.86 3317.64 5674.96 5778.79 1.47 3.61

5 250 0.04 0.05 0.04 0.09 10.97 18.05 1.26 1.32 0.07 0.18
2500 0.6 0.48 0.42 1.53 33.46 222.42 810.59 833.1 0.72 1.92
5000 1.19 1.26 1.21 2.1 169.31 1012.86 5645.25 6010.88 1.38 3.79

performance of nonlinear SOWL may be attributable to the potential failure of (13) in this
case.

Table 2 tabulates the run-time of the DTR estimation methods. Run times for DTRESLO
with linear, wavelets, and spline-based treatment policies are relatively similar. The run-
time doubles for neural network treatment policies. Nonetheless, they are all less than three
seconds. Both linear and neural network Q-learning methods are slightly slower than their
DTRESLO counterparts, but the difference in run-time is negligible. This is not surprising be-
cause DTRESLO and Q-learning methods are trained in a similar way. They all use stochastic
gradient descent with RMSprop for optimization of the respective loss functions. All these
methods are trained for 20 epochs and use a batch size of 128. As expected, BOWL and
SOWL have a much larger run-time, which also increases sharply with n. This larger run-
time is expected because SVMs utilize the dual space for optimization. The time cost is
especially high in settings 2 and 4, which have highly nonlinear decision boundaries, and
setting 5, which has over 32 features.

To summarize, DTRESLO improves the scalability of existing direct search methods,
achieving run-time as small as Q-learning. We also observe that within the same class of
treatment regimes, that is, linear or neural network, DTRESLO outperforms regression-based
Q-learning in small samples. This observation aligns with the existing claim in the literature
that classification is easier than regression in the context of DTR especially in small samples
(Kosorok and Laber (2019), Zhao et al. (2015)). This may happen because regression-based
methods focus on minimizing the squared error loss, where the estimation of optimal rules
only requires minimization of the zero-one loss. This mismatch of loss has previously been
discussed in literature (Murphy (2005), Qian and Murphy (2011)). Our observation thus hints
that bypassing regression may result in better-quality treatment regimes, at least in small sam-
ples.

8. Discussion. Our work is the first step toward a unified understanding of general surro-
gate losses in the simultaneous optimization context. Our work leaves ample room for mod-
ification and generalization to complex real-world scenarios. We list below some important
open questions.
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Regarding the optimization error, we have analyzed linear-type treatment policies under
conditions with a primary focus on landscape analysis. However, our simulations in Section 7
indicates that DTRESLO performs competitively to popular DTR methods, regardless of
whether the policies are linear or nonlinear. Therefore, a more comprehensive analysis of the
optimization error is required to gain deeper insight into the performance of DTRESLO.

The theoretical results in this paper consider the propensity scores to be known. They may
be available in SMART studies, but they need to be estimated for observational studies. At
best, we may be able to estimate the propensity scores at n−1/2-rate. Therefore, it is possible
that in this situation, our regret-decay rate will slow down. We also do not know if it is at
all possible to push the regret decay to O(1/n) in this situation because we do not know the
minimax rate of regret-decay in this context. However, there is a more pressing issue with
the use of inverse propensity score weighting. The weight will grow smaller as the number of
stages increases, leading to a highly volatile method (Kosorok and Laber (2019)). However,
there are strategies (Kallus (2018)) that can be incorporated to ensure robustness. Research
in this direction is needed to increase the stability of our DTRESLO method.

Also, there are many choices of φ’s that satisfy Condition 2, and hence can be used for
DTRESLO. In this paper, we have not considered the problem of selecting a φ. We fixed a
particular φ in our empirical study but the performance may be improved by a more careful
tuning of φ.

The DTRESLO method easily extends to K > 2 by using a surrogate ψ(x1, . . . , xK) =
φ(x1) . . . φ(xK). Although we do not yet know whether Fisher consistency still holds, our
proof techniques are readily extendable to the higher stages via mathematical induction. If
our DTRESLO method is Fisher consistent for general K stages, the pattern of error accu-
mulation over stages will be an immediate interest. For Q-learning, the regret grows expo-
nentially with the number of stages (Murphy (2005)). In view of Wang, Foster and Kakade
(2020), exponential error accumulation may sometimes be inevitable under very general con-
ditions. However, we wonder whether our simultaneous maximization procedure escapes the
exponential error accumulation in the presence of noise conditions.

Despite being of immense practical interest, this area greatly lacks direct search method
with rigorous guarantees in multistage settings. Direct search method with more than two lev-
els of treatment requires integration of multicategory classification with the sequential setting
of DTR, and hence is conceptually more challenging than the regression-based counterparts.
However, we expect that DTRESLO can be extended to identify optimal DTRs under this
more complex setting. Detailed strategies for identifying the surrogate loss and implement-
ing algorithms to estimate DTRs in practice warrant future research.
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terial contains discussions on optimization error, an application of DTRESLO to Electronic
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Health Record (EHR) data, additional details on concave surrogates (particularly hinge loss),
further elaboration on the regret decay of DRESLO, a comparison of DTRESLO with related
literature, additional details regarding the simulation settings in Section 7, and the proofs of
the theorems and lemmas.
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