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A Network-Informed Data-Driven Approach
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Abstract—A distribution system can flexibly adjust its
substation-level power output by aggregating its local distributed
energy resources (DERs). Due to DER and network constraints,
characterizing the exact feasible power output region is com-
putationally intensive. Hence, existing results usually rely on
unpractical assumptions or suffer from conservativeness issues.
Sampling-based data-driven methods can potentially address
these limitations. Still, existing works usually exhibit computa-
tional inefficiency issues as they use a random sampling approach,
which carries little information from network physics and
provides few insights into the iterative search process. This letter
proposes a novel network-informed data-driven method to close
this gap. A computationally efficient data sampling approach
is developed to obtain high-quality training data, leveraging
network information and legacy learning experience. Then, a
classifier is trained to estimate the feasible power output region
with high accuracy. Numerical studies based on a real-world
Southern California Edison network validate the performance of
the proposed work.

Index Terms—Distribution system, aggregate flexibility,
machine learning, network physics informed.

I. INTRODUCTION

P
ROPER coordination of distributed energy resources

(DERs) transforms a passive distribution system into

an active grid asset. From the grid operation standpoint, it

is critical to characterize the distribution system flexibility

region, i.e., the set of feasible substation-level power outputs

subject to network and component operational constraints.

This set is essentially a projection from the high-dimensional

DER and network operation region, and, in general, finding

its exact characterization is computationally unrealistic [1].

A variety of approximation methods to characterize the

flexibility region have been developed. For example, a

Minkowski sum-based approximation method is proposed; this

method is scalable but cannot handle network constraints [2].

References [1], [2] use robust optimization methods to find

a convex inner approximation of the flexibility set, explicitly

Manuscript received 16 February 2023; revised 31 May 2023 and
1 September 2023; accepted 6 October 2023. Date of publication
27 October 2023; date of current version 26 December 2023. Paper no. PESL-
00058-2023. (Corresponding author: Jianzhe Liu.)

Qi Li, Wenzhan Song, and Jin Ye are with the School of Electrical
and Computer Engineering, College of Engineering, University of Georgia,
Athens, GA 30602 USA.

Jianzhe Liu is with the Department of Electrical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China (e-mail: jianzhe.liu@sjtu.edu.cn).

Bai Cui is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSG.2023.3328159.

Digital Object Identifier 10.1109/TSG.2023.3328159

Fig. 1. Proposed training method to obtain the classifier.

considering network constraints and the temporal coupling of

the DER operation decisions. Nevertheless, these approxima-

tions are conservative, and the shapes of the approximated set

are fixed and presumed, which do not necessarily correspond

to the actual geometry. Data-driven methods have been inves-

tigated as well [3], [4]. They usually use a random sampling

approach and numerical approaches based on iterative algo-

rithms to find labeled data for training purposes. The sampling

and labeling operations could limit the scalability and bring

in high computational overhead.

To close this gap, we propose a network-informed

data-driven approximation approach that exhibits superior

scalability. Our main contributions are two-fold. First, unlike

existing methods that use iterative algorithms or prescribed

approximation shapes, we propose a new approach that uses a

highly scalable matrix operation-based classifier to efficiently

sketch an approximated region with limited conservativeness.

Second, the classifier is obtained by a novel training strategy

with high efficiency. As shown in Fig. 1, we develop a closed-

loop data filtering algorithm to actively select samples that

are most helpful to classifier training in a rolling horizon.

Moreover, we explicitly use the network knowledge to develop

a rigorous condition for sample labeling. This essentially trims

the sample space to improve approximation accuracy and

scalability further.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a distribution system with one substation feeder

bus and n load buses, on which there are m controllable DERs.

The time horizon is given by T = {1, . . . , T}. The power

outputs of the DERs are managed and aggregated to achieve

controllability for the substation-level power output so that the

distribution system becomes a controllable grid asset.
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A. Distribution System Operation Model

The DER aggregation considers 1) DER capacity limits

represented by interval constraints; 2) network constraints,

including linearized power flow equations and interval voltage

limits. Based on the above discussion, the system operation

constraints are modeled in the following compact form [1]:

Wp ≤ z, p0 = Dp + b, (1)

where p ∈ R
mT and p0 ∈ R

T represent the dispatchable DER

power outputs and substation-level power output, respectively;

W and D are both given constant matrices such that W

captures the DER operational constraints and the network

voltage constraints, and D models the mapping of DER power

outputs to the substation; z and b are constant coefficients,

representing given parameters such as load forecasts.

The inequality in (1) represents the DER and network

operational constraints, and the equality constraint models the

mapping of DER and load power to substation-level power

output based on the linear power flow model. The use of the

linear power flow model is justified owing to the tight voltage

limits in the distribution system. The constraint captures the

steady-state behavior of various kinds of DERs, including

HVACs, energy storage units, and photovoltaics [1], [2].

B. Flexibility Characterization Problem

Distribution system flexibility set (DSFS) refers to the

set of all the substation-level power output realizations that

are feasible to (1) with appropriate p. Obtaining its exact

characterization is generally computationally expensive. A

network-informed data-driven approach is proposed in this

letter. First, we use a novel offline training method to obtain

a classifier that determines whether a substation-level power

output sample belongs to the DSFS. Then, the samples

from the substation-level power output space are classified;

the union of the identified DSFS members forms a DSFS

estimation. Note that the second step is scalable as it only

involves a) computationally trivial sampling operations and

b) simple matrix operations associated with the classification.

Compared to an iterative algorithm-based numerical method,

our method is five orders of magnitude faster, as shown in

Section IV.

Nonetheless, the offline training step to obtain the classi-

fier is more computationally demanding. Developing a new

efficient training strategy is the focus of this letter.

III. PROPOSED TRAINING STRATEGY

Traditional data-driven classifier training strategy can be

summarized as sampling → labeling → training. It is an open-

loop process where one needs to prepare a training dataset

before training commences. Given no information about the

sample space geometry, a larger set of randomly drawn

samples is usually needed to ensure the representativeness

of the sample space at the cost of increased computational

burdens.

To circumvent this issue, an active training strategy is

proposed, as illustrated below:

We create a closed-loop training process where the clas-

sifier is trained through multiple steps, as shown in Fig. 1:

1) sampling: randomly select samples from the unlabeled pool

(colorless circles); 2) filtering: determine posterior probabil-

ities and select the most uncertain samples (yellow circles

with question marks) for labeling; 3) labeling: label selected

samples as feasible (red circle) or unfeasible (blue circle),

leveraging network knowledge; 4) training: train the model

using the enlarged training set, including newly selected

samples, in which transfer learning can be used to accelerate

training, utilizing parameters from a historical model (repre-

sented by the dotted box in the figure). Ideally, the dataset

size is relatively small at first and then grows sequentially

by incorporating selected high-value training data points iden-

tified in each epoch. Here we use the growing knowledge

about the sample space to develop a filtering algorithm for

such data selection. The filtering and labeling algorithms keep

improving to ensure accuracy and scalability throughout the

training process, as will be discussed later in detail. It is

worth noting that although the feedback-learning framework

is first proposed in the machine learning community [5], here,

it is used as a vehicle to implement the nontrivial and novel

network-informed algorithms.

A. Network-Informed Labeling

Each training data point consists of a substation-level power

output sample and a label about whether this sample is

feasible, i.e., belonging to DSFS. Let xi = [ ˆp0,i
�
, yi]

�, where

ˆp0,i is the sample, and yi is the label with 1 representing

“feasible” and 0 otherwise. In practice, this label is obtained

through numerical methods to test whether a ˆp0,i is feasible

to (1), which are computationally intensive when dealing with

a large number of samples.

To simplify the process, we leverage the network knowledge

to trim the sample space such that points from a certain region

bear no need for numerical labeling. To this end, we first find

a convex inner approximation of DSFS, whence any members

must have a “1” label, by solving:

max
p−

0 ≤p+
0

⎧

⎪

«

⎪

¬

1�
(

p+
0 − p−

0

)

+ min
p−

0 ≤p0≤p+
0

max
p0=Dp+b

Wp≤z

0�p

«

⎪

¬

⎪

­

(2)

where p+
0 , p−

0 ∈ R
T represent the upper and lower bounds

of the substation-level power output, respectively. The inner

min-max (feasibility) problem admits the optimal value of 0 if

and only if for any substation-level power output between p−
0

and p+
0 , there exists a DER output schedule that makes all the

operational constraints described by (1) satisfied. Therefore,

the hyperbox {p0 : p−
0 ≤ p0 ≤ p+

0 } must be a subset

of DSFS when the optimal value of the outer problem is

finite. Note that (2) is an adaptive robust optimization (ARO)

problem. One usually makes p a function of p0 in solving

an ARO problem of this type. This paper assumes an affine

decision rule. The problem then reformulates into a max-min

problem in the form of max min 1�(p+
0 −p−

0 ). Inserting a slack

variable s = min 1�(p+
0 − p−

0 ) yields a standard robust linear

programming problem with the objective function becoming
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max s. The problem is tractable with well-established solution

methods.

We enlarge the DSFS approximation and further trim

the sample space in each epoch. Note that (1) are convex

constraints, and DSFS is a projection of the feasibility region

of (1) onto the p0-space; hence, DSFS is a convex set, and

the convex hull of any DSFS members must be a subset of

DSFS. Recall that we train the classifier in epochs; in each

epoch, the training set is expanded by new samples. Given a

DSFS subset in an epoch, we only need to label those lying

outside of the subset numerically. Then, the convex hull of

those new samples with “1” labels and the original DSFS

subset becomes a new DSFS subset. Hence, in the next epoch,

those new samples lying in this enlarged set can be directly

labeled again, thanks to the use of network information.

B. Closed Loop Filtering

In each epoch, we seek to find the samples that are most

uncertain to the classifier, i.e., containing the most fresh

knowledge about the sample space.

An uncertainty quantification method is applied. Let

P(1|p̂0,i) be the posterior probability of a sample being

feasible, according to an estimator. The closer P(1|p̂0,i) is

to 1 (resp., 0), the more likely the sample is feasible (resp.,

infeasible); whereas the closer it is to 0.5, the more uncertain

it is. Then, by a simple mapping, we can find a monotone

uncertainty metric: If P(1|p̂0,i) > 0.5, let M(p̂0,i) = 2(1 −

P(1|p̂0,i)); otherwise, M(p̂0,i) = 2P(1|p̂0,i), where M(p̂0,i) is

the quantified uncertainty. After using this metric to evaluate

all unlabeled samples, the most uncertain samples can be

selected by ranking the quantified uncertainties. As for the

initial number of samples and the selected number of samples

in each epoch, they are open to customization, which acts as

the hyperparameters for our model.

The execution of the aforementioned process depends on

finding P(1|p̂0,i). The classifier is structured to accomplish

this task. We build the classifier using a multi-layer perceptron

(MLP) model, defined as f (p̂0,i) : R
T → [0, 1]. Its output

is P(1|p̂0,i). Meanwhile, if a classification result (0 or 1) is

needed, a simple probabilistic smoothing approximation can

be used, for example, sign f , which is 1 if f > 0.5 and 0

otherwise. It is worth mentioning that the proposed strategy is

general, and we can use models other than the MLP model.

With the above discussion, the closed-loop filtering is

conducted as follows: In each epoch, given an unlabeled

sample pool, we first find the posterior probability of each

unlabeled sample using the classifier obtained in the last epoch

(or the initial classifier); then, the most uncertain samples

with a suitable size are selected to label and then train the

classifier; the updated classifier is then similarly used in the

next epoch. The initial classifier’s parameters can either be

randomly generated or transferred from a historical model.

Numerical testing suggests that the transfer learning approach

is effective in characterizing the DSFS, for the transferred

model entails substation-level power output sample space

geometry knowledge that can warm-start the training. In

addition, the training speed per epoch is accelerated since there

are fewer trainable parameters during transfer learning.

Fig. 2. Benchmarking the proposed method using uncertainty heatmap.

IV. CASE STUDIES

In this section, we conduct numerical testing based on a

three-phase distribution feeder of Southern California Edison

(SCE) with 126 load buses and 366 DER having temporal

couplings [1], [2]. We estimate the aggregated flexibility

region of the substation-level real power output profile.

For visualization purposes, we first conduct a numerical

study regarding a two-dimensional aggregated power profile.

With a time step (TS) of one hour, the flexibility for the

time window [8, 10] is estimated. For the specific setting, we

randomly picked 100 samples as the initial training samples

and sequentially added 10 more samples with the most model

uncertainty in each epoch. As mentioned in Section III-B,

we implement our classifier using MLP model, consisting of

1 input layer, 4 hidden layers, and 1 output layer. ReLU

and Adam serve as the activation function and optimizer,

respectively. We also apply the transfer learning technique

using a model obtained for the time window [14, 16] with

historical data. In transfer learning mode, the first hidden

layer is frozen while the remaining layers are kept trainable.

We compare the performance of the proposed work with the

benchmark using a random sampling approach with the same

initial model and hyperparameters. The performance of the

proposed method without the transfer learning is shown in

Fig. 2(b). Compared to the benchmark shown in Fig. 2(a),

the proposed method shows much superior performance, as

it pinpoints the boundary of the DSFS much faster and more

accurately due to the well-positioned samples. As shown in

Fig. 2(c), with the transferred model, the classifier achieves

even better results, despite the fact the DSFS of time [14, 16]

(similar to the boundary characterized in epoch 5) is quite

visually different. In comparison, it can be observed that

existing methods [1], [2], [4] that use hyperbox or ellipsoid

for inner approximation may be more conservative than our

results, as these sets do not fully capture the geometry

of the DSFS. Note that classifying a batch of 1000 sam-

ples in GPU with the proposed work on a laptop with

Intel(R) UHD Graphics 620 and Core i5-8350U takes only

0.001s. Meanwhile, checking one sample using the traditional

simulation-based method with Mosek 9.1.9 takes about 0.2s.

The performance of our approach is credited to the simple

operations utilized in the MLP model. During prediction,

the computations primarily consist of basic matrix operations
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TABLE I
F1 SCORE OF CLASSIFIER UNDER DIFFERENT DER INJECTION

UNCERTAINTY LEVELS, RANGING FROM 3% TO 40%

Fig. 3. Rolling-horizon DSFS estimation results.

and element-wise manipulations. These can be effectively

parallelized across multiple processing units, such as GPUs.

We then show the scalability of the proposed work. We

consider such a scenario that the distribution system estimates

the flexibility four-time steps ahead in a rolling horizon, from

hour 8 to hour 14. From TS 2, we initialize the classifier model

with the one obtained from the previous TS. From Fig. 3,

the benchmark with the random sampling approach can only

achieve the same level of accuracy as ours with almost 10

times more training iterations in TS 1, and cannot keep up for

all the following TSs anymore.

To study the adaptability of our model against noise, we

consider the DER injection uncertainty. We introduce varying

levels of uncertainty into the PV system and loads on each

node, generating 1000 samples for each uncertainty level as

a new test dataset. Table I shows the F1 score performance

of our classifier across a range of DER injection uncertainty

levels, spanning from 3% to 40%. It can be observed that

even at an uncertainty level of 20%, our model consistently

achieves an F1 score exceeding 0.95, indicating its robust-

ness. Moreover, at a heightened uncertainty level of 40%,

the F1 score remains high at 0.88. The results show the

notable adaptability of our model against uncertainty. The

observation of the decreasing estimation accuracy also implies

that uncertainties indeed affect the geometry of the DSFS.

V. CONCLUSION

We propose a data-driven approach to approximate the

DSFS. It involves using a new network-informed method

to train a classifier that only needs to use scalable matrix

operations for the approximation. We propose a numerically

efficient training strategy that uses the network information

and the accumulated knowledge about the sample space to

accelerate the training. Case studies based on the SCE system

verify the validity and value of the proposed work.
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