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Abstract—A distribution system can flexibly adjust its
substation-level power output by aggregating its local distributed
energy resources (DERs). Due to DER and network constraints,
characterizing the exact feasible power output region is com-
putationally intensive. Hence, existing results usually rely on
unpractical assumptions or suffer from conservativeness issues.
Sampling-based data-driven methods can potentially address
these limitations. Still, existing works usually exhibit computa-
tional inefficiency issues as they use a random sampling approach,
which carries little information from network physics and
provides few insights into the iterative search process. This letter
proposes a novel network-informed data-driven method to close
this gap. A computationally efficient data sampling approach
is developed to obtain high-quality training data, leveraging
network information and legacy learning experience. Then, a
classifier is trained to estimate the feasible power output region
with high accuracy. Numerical studies based on a real-world
Southern California Edison network validate the performance of
the proposed work.

Index Terms—Distribution system, aggregate
machine learning, network physics informed.

flexibility,

I. INTRODUCTION

ROPER coordination of distributed energy resources
P(DERs) transforms a passive distribution system into
an active grid asset. From the grid operation standpoint, it
is critical to characterize the distribution system flexibility
region, i.e., the set of feasible substation-level power outputs
subject to network and component operational constraints.
This set is essentially a projection from the high-dimensional
DER and network operation region, and, in general, finding
its exact characterization is computationally unrealistic [1].

A variety of approximation methods to characterize the
flexibility region have been developed. For example, a
Minkowski sum-based approximation method is proposed; this
method is scalable but cannot handle network constraints [2].
References [1], [2] use robust optimization methods to find
a convex inner approximation of the flexibility set, explicitly
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Fig. 1. Proposed training method to obtain the classifier.

considering network constraints and the temporal coupling of
the DER operation decisions. Nevertheless, these approxima-
tions are conservative, and the shapes of the approximated set
are fixed and presumed, which do not necessarily correspond
to the actual geometry. Data-driven methods have been inves-
tigated as well [3], [4]. They usually use a random sampling
approach and numerical approaches based on iterative algo-
rithms to find labeled data for training purposes. The sampling
and labeling operations could limit the scalability and bring
in high computational overhead.

To close this gap, we propose a network-informed
data-driven approximation approach that exhibits superior
scalability. Our main contributions are two-fold. First, unlike
existing methods that use iterative algorithms or prescribed
approximation shapes, we propose a new approach that uses a
highly scalable matrix operation-based classifier to efficiently
sketch an approximated region with limited conservativeness.
Second, the classifier is obtained by a novel training strategy
with high efficiency. As shown in Fig. 1, we develop a closed-
loop data filtering algorithm to actively select samples that
are most helpful to classifier training in a rolling horizon.
Moreover, we explicitly use the network knowledge to develop
a rigorous condition for sample labeling. This essentially trims
the sample space to improve approximation accuracy and
scalability further.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a distribution system with one substation feeder
bus and 7 load buses, on which there are m controllable DERs.
The time horizon is given by 7 = {1,...,T}. The power
outputs of the DERs are managed and aggregated to achieve
controllability for the substation-level power output so that the
distribution system becomes a controllable grid asset.
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A. Distribution System Operation Model

The DER aggregation considers 1) DER capacity limits
represented by interval constraints; 2) network constraints,
including linearized power flow equations and interval voltage
limits. Based on the above discussion, the system operation
constraints are modeled in the following compact form [1]:

po =Dp +b, 1

where p € R and py € R represent the dispatchable DER
power outputs and substation-level power output, respectively;
W and D are both given constant matrices such that W
captures the DER operational constraints and the network
voltage constraints, and D models the mapping of DER power
outputs to the substation; z and b are constant coefficients,
representing given parameters such as load forecasts.

The inequality in (1) represents the DER and network
operational constraints, and the equality constraint models the
mapping of DER and load power to substation-level power
output based on the linear power flow model. The use of the
linear power flow model is justified owing to the tight voltage
limits in the distribution system. The constraint captures the
steady-state behavior of various kinds of DERs, including
HVACs, energy storage units, and photovoltaics [1], [2].

Wp <z,

B. Flexibility Characterization Problem

Distribution system flexibility set (DSFS) refers to the
set of all the substation-level power output realizations that
are feasible to (1) with appropriate p. Obtaining its exact
characterization is generally computationally expensive. A
network-informed data-driven approach is proposed in this
letter. First, we use a novel offline training method to obtain
a classifier that determines whether a substation-level power
output sample belongs to the DSFS. Then, the samples
from the substation-level power output space are classified;
the union of the identified DSFS members forms a DSFS
estimation. Note that the second step is scalable as it only
involves a) computationally trivial sampling operations and
b) simple matrix operations associated with the classification.
Compared to an iterative algorithm-based numerical method,
our method is five orders of magnitude faster, as shown in
Section IV.

Nonetheless, the offline training step to obtain the classi-
fier is more computationally demanding. Developing a new
efficient training strategy is the focus of this letter.

IIT. PROPOSED TRAINING STRATEGY

Traditional data-driven classifier training strategy can be
summarized as sampling — labeling — training. It is an open-
loop process where one needs to prepare a training dataset
before training commences. Given no information about the
sample space geometry, a larger set of randomly drawn
samples is usually needed to ensure the representativeness
of the sample space at the cost of increased computational
burdens.

To circumvent this issue, an active training strategy is
proposed, as illustrated below:

sampling — filtering — labeling — training
1 T
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We create a closed-loop training process where the clas-
sifier is trained through multiple steps, as shown in Fig. 1:
1) sampling: randomly select samples from the unlabeled pool
(colorless circles); 2) filtering: determine posterior probabil-
ities and select the most uncertain samples (yellow circles
with question marks) for labeling; 3) labeling: label selected
samples as feasible (red circle) or unfeasible (blue circle),
leveraging network knowledge; 4) training: train the model
using the enlarged training set, including newly selected
samples, in which transfer learning can be used to accelerate
training, utilizing parameters from a historical model (repre-
sented by the dotted box in the figure). Ideally, the dataset
size is relatively small at first and then grows sequentially
by incorporating selected high-value training data points iden-
tified in each epoch. Here we use the growing knowledge
about the sample space to develop a filtering algorithm for
such data selection. The filtering and labeling algorithms keep
improving to ensure accuracy and scalability throughout the
training process, as will be discussed later in detail. It is
worth noting that although the feedback-learning framework
is first proposed in the machine learning community [5], here,
it is used as a vehicle to implement the nontrivial and novel
network-informed algorithms.

A. Network-Informed Labeling

Each training data point consists of a substation-level power
output sample and a label about whether this sample is
feasible, i.e., belonging to DSFS. Let x; = [p6,iT, yi]", where
po.; is the sample, and y; is the label with 1 representing
“feasible” and O otherwise. In practice, this label is obtained
through numerical methods to test whether a pg; is feasible
to (1), which are computationally intensive when dealing with
a large number of samples.

To simplify the process, we leverage the network knowledge
to trim the sample space such that points from a certain region
bear no need for numerical labeling. To this end, we first find
a convex inner approximation of DSFS, whence any members
must have a “1” label, by solving:

1" (pf —py) + _min_ max 0'p 2)
Py <po<p; Po=Dp+b
Wp<z

max
Py <P

where par, p, € R” represent the upper and lower bounds
of the substation-level power output, respectively. The inner
min-max (feasibility) problem admits the optimal value of 0 if
and only if for any substation-level power output between p,,
and p(‘f , there exists a DER output schedule that makes all the
operational constraints described by (1) satisfied. Therefore,
the hyperbox {pp : p; < po =< pa’ } must be a subset
of DSFS when the optimal value of the outer problem is
finite. Note that (2) is an adaptive robust optimization (ARO)
problem. One usually makes p a function of py in solving
an ARO problem of this type. This paper assumes an affine
decision rule. The problem then reformulates into a max-min
problem in the form of max min IT(pS' —P, ). Inserting a slack
variable s = min lT(pa' — P, ) yields a standard robust linear
programming problem with the objective function becoming
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max s. The problem is tractable with well-established solution
methods.

We enlarge the DSFS approximation and further trim
the sample space in each epoch. Note that (1) are convex
constraints, and DSFS is a projection of the feasibility region
of (1) onto the po-space; hence, DSFS is a convex set, and
the convex hull of any DSFS members must be a subset of
DSFS. Recall that we train the classifier in epochs; in each
epoch, the training set is expanded by new samples. Given a
DSFS subset in an epoch, we only need to label those lying
outside of the subset numerically. Then, the convex hull of
those new samples with “1” labels and the original DSFS
subset becomes a new DSFS subset. Hence, in the next epoch,
those new samples lying in this enlarged set can be directly
labeled again, thanks to the use of network information.

B. Closed Loop Filtering

In each epoch, we seek to find the samples that are most
uncertain to the classifier, i.e., containing the most fresh
knowledge about the sample space.

An uncertainty quantification method is applied. Let
P(1|po,;) be the posterior probability of a sample being
feasible, according to an estimator. The closer P(1|po;) is
to 1 (resp., 0), the more likely the sample is feasible (resp.,
infeasible); whereas the closer it is to 0.5, the more uncertain
it is. Then, by a simple mapping, we can find a monotone
uncertainty metric: If P(1|po;) > 0.5, let M(po;) = 2(1 —
P(1]po,;)); otherwise, M(po,;) = 2P(1|po,;), where M(po,;) is
the quantified uncertainty. After using this metric to evaluate
all unlabeled samples, the most uncertain samples can be
selected by ranking the quantified uncertainties. As for the
initial number of samples and the selected number of samples
in each epoch, they are open to customization, which acts as
the hyperparameters for our model.

The execution of the aforementioned process depends on
finding P(1|pg ;). The classifier is structured to accomplish
this task. We build the classifier using a multi-layer perceptron
(MLP) model, defined as f(po;) : RT — [0, 1]. Its output
is P(1|po.;). Meanwhile, if a classification result (0 or 1) is
needed, a simple probabilistic smoothing approximation can
be used, for example, signf, which is 1 if f > 0.5 and O
otherwise. It is worth mentioning that the proposed strategy is
general, and we can use models other than the MLP model.

With the above discussion, the closed-loop filtering is
conducted as follows: In each epoch, given an unlabeled
sample pool, we first find the posterior probability of each
unlabeled sample using the classifier obtained in the last epoch
(or the initial classifier); then, the most uncertain samples
with a suitable size are selected to label and then train the
classifier; the updated classifier is then similarly used in the
next epoch. The initial classifier’s parameters can either be
randomly generated or transferred from a historical model.
Numerical testing suggests that the transfer learning approach
is effective in characterizing the DSFS, for the transferred
model entails substation-level power output sample space
geometry knowledge that can warm-start the training. In
addition, the training speed per epoch is accelerated since there
are fewer trainable parameters during transfer learning.
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Fig. 2. Benchmarking the proposed method using uncertainty heatmap.

IV. CASE STUDIES

In this section, we conduct numerical testing based on a
three-phase distribution feeder of Southern California Edison
(SCE) with 126 load buses and 366 DER having temporal
couplings [1], [2]. We estimate the aggregated flexibility
region of the substation-level real power output profile.

For visualization purposes, we first conduct a numerical
study regarding a two-dimensional aggregated power profile.
With a time step (TS) of one hour, the flexibility for the
time window [8, 10] is estimated. For the specific setting, we
randomly picked 100 samples as the initial training samples
and sequentially added 10 more samples with the most model
uncertainty in each epoch. As mentioned in Section III-B,
we implement our classifier using MLP model, consisting of
1 input layer, 4 hidden layers, and 1 output layer. ReLU
and Adam serve as the activation function and optimizer,
respectively. We also apply the transfer learning technique
using a model obtained for the time window [14, 16] with
historical data. In transfer learning mode, the first hidden
layer is frozen while the remaining layers are kept trainable.
We compare the performance of the proposed work with the
benchmark using a random sampling approach with the same
initial model and hyperparameters. The performance of the
proposed method without the transfer learning is shown in
Fig. 2(b). Compared to the benchmark shown in Fig. 2(a),
the proposed method shows much superior performance, as
it pinpoints the boundary of the DSFS much faster and more
accurately due to the well-positioned samples. As shown in
Fig. 2(c), with the transferred model, the classifier achieves
even better results, despite the fact the DSFS of time [14, 16]
(similar to the boundary characterized in epoch 5) is quite
visually different. In comparison, it can be observed that
existing methods [1], [2], [4] that use hyperbox or ellipsoid
for inner approximation may be more conservative than our
results, as these sets do not fully capture the geometry
of the DSFS. Note that classifying a batch of 1000 sam-
ples in GPU with the proposed work on a laptop with
Intel(R) UHD Graphics 620 and Core i5-8350U takes only
0.001s. Meanwhile, checking one sample using the traditional
simulation-based method with Mosek 9.1.9 takes about 0.2s.
The performance of our approach is credited to the simple
operations utilized in the MLP model. During prediction,
the computations primarily consist of basic matrix operations
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TABLE I
F1 SCORE OF CLASSIFIER UNDER DIFFERENT DER INJECTION
UNCERTAINTY LEVELS, RANGING FROM 3% TO 40%

Uncertainty Level 3% 10% 20% 30% 40%
F1 score 0.990 0.981 0.957 0.930 0.882
(TS 1) (TS 2) (TS 3) (TS 4) (TS5) (TS 6) (TS 7)
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Fig. 3. Rolling-horizon DSFS estimation results.

and element-wise manipulations. These can be effectively
parallelized across multiple processing units, such as GPUs.

We then show the scalability of the proposed work. We
consider such a scenario that the distribution system estimates
the flexibility four-time steps ahead in a rolling horizon, from
hour 8 to hour 14. From TS 2, we initialize the classifier model
with the one obtained from the previous TS. From Fig. 3,
the benchmark with the random sampling approach can only
achieve the same level of accuracy as ours with almost 10
times more training iterations in TS 1, and cannot keep up for
all the following TSs anymore.

To study the adaptability of our model against noise, we
consider the DER injection uncertainty. We introduce varying
levels of uncertainty into the PV system and loads on each
node, generating 1000 samples for each uncertainty level as
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a new test dataset. Table I shows the F1 score performance
of our classifier across a range of DER injection uncertainty
levels, spanning from 3% to 40%. It can be observed that
even at an uncertainty level of 20%, our model consistently
achieves an F1 score exceeding 0.95, indicating its robust-
ness. Moreover, at a heightened uncertainty level of 40%,
the F1 score remains high at 0.88. The results show the
notable adaptability of our model against uncertainty. The
observation of the decreasing estimation accuracy also implies
that uncertainties indeed affect the geometry of the DSFS.

V. CONCLUSION

We propose a data-driven approach to approximate the
DSFS. It involves using a new network-informed method
to train a classifier that only needs to use scalable matrix
operations for the approximation. We propose a numerically
efficient training strategy that uses the network information
and the accumulated knowledge about the sample space to
accelerate the training. Case studies based on the SCE system
verify the validity and value of the proposed work.
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