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1. Introduction

In time series models, the forecast of the current value, x;, based upon the past information is simply the conditional
mean of x;, which depends upon the past values, {x;—1, ..., x1}, of a series. Traditional econometric models assume that
the conditional variance of x; stays constant at any given time point and does not depend on the past values. However, in
applied economics, there are examples where the conditional variance of x; is larger for some time points (or a range of time
points) than for others, leading to so-called heteroscedasticity. In financial applications, where the dependent variable is the
return on an asset or portfolio and the variance of the return represents the risk level of those returns, some time periods
may be riskier than others in that the magnitude of variance of the return at some times is greater than at others. There are
also instances where the risky times are not scattered randomly across data; instead, there is a degree of autocorrelation in
the riskiness of financial returns.

To handle the issue of heteroscedasticity in time series, Engle (1982) proposed a new class of models called Autore-
gressive Conditionally Heteroscedastic (ARCH) models, where the conditional variance depends upon the past values of the
series. He also illustrated the usefulness of ARCH models in economics and finance. Bollerslev (1986) generalized the purely
autoregressive ARCH model to an autoregressive-moving average model called the Generalized Autoregressive Conditional
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Heteroscedastic (GARCH) model. The ARCH and GARCH models are widely used for modeling heteroscedastic time series,
where the goal is to provide a volatility measure that can be used in financial decisions concerning risk analysis, portfolio
selection and derivative pricing; see Engle (2001).

Literature (Masry and Tjestheim, 1995) proposed a general nonlinear system of the ARCH type and considered non-
parametric estimation of the conditional mean function and the conditional variance function characterizing the system.
Following the single-indexing idea (e.g. Ichimura, 1993; Xia et al., 2002a) extended the ARCH model of Engle (1982) to
a flexible form called single-index volatility models and focused on estimating only the unknown variance function and
the associated single-index coefficient. In related literature, Fan and Yao (1998) considered efficient estimation of condi-
tional variance functions in stochastic regression and, more generally, Fan and Yao (2008) provided modern parametric and
nonparametric methods for analyzing nonlinear time series data, and Guo et al. (2017) studied dynamic structure for high
dimensional covariance matrices. Recently, in a regression set up, Ma and Zhu (2019) proposed a class of locally efficient
semiparametric estimators to simultaneously estimate the central mean subspace and central variance subspace with the
help of a parameterization strategy. Although their work and our work share some similarities, there are differences in the
two approaches. First, we study out-of-sample prediction of the conditional mean function in the presence of conditional
heteroscedasticity. Second, we adopt a fully nonparametric iterative estimation of the conditional mean and the variance
functions without any model assumption.

Motivated by the work of Li et al. (2003) and Yin and Cook (2005), during the past decade, some authors have
extended the theory of sufficient dimension reduction to time series. Without specifying a model, Park et al. (2010)
developed the notion of Time Series Central Subspace (TSCS), which represents a reduction in the dimension of X; 1 =
(Xt—1, ..., X—p)T for a pre-specified p such that the conditional distribution of x;|X;_1 is same as the conditional distribu-
tion of x[|(¢>1TXt,1, ey (DJX[,Q for some known d < p. This is equivalent to saying that x; is conditionally independent
of X;_1 given é;Xt_l, where &5 = (&1, ..., ®g). They estimated the p x d matrix $4 nonparametrically by maximizing
an estimating function based on Kullback-Leibler divergence and showed that the estimator of &4 is strongly consistent
when p and d are known. Park et al. (2009) proposed the notion of Central Mean Subspace for time series x; which rep-
resents a reduction in the dimension of X;_1, where all the information in the conditional mean E(x;|X;_1) is contained
in E(xtlsﬁgth). They estimated &4 by minimizing the residual sum of squares based on a Nadaraya-Watson smoother of
the conditional mean function. Once again, they showed that the estimator of @, is strongly consistent when p and d are
known.

Assuming that the conditional mean of x; is zero, Park and Samadi (2014) developed a notion of Central Variance Subspace
(TSCS) for the squared series, z; :xf, which represents a reduction in the dimension of Z;_1 = (z;_1, ..., Zt—p)T for a known
p, where all the information in E(z;|Z;—1) is contained in E[z[\(FlTZt,L ey FdTZt,1)]. To estimate I = (I7, ..., I4), they
used the same approach as in Park et al. (2009). For the square series, z;, Park and Sriram (2017) considered reduction
in the dimension of Z;_1 = (z;—1, ..., Z—p)T for a pre-specified p such that the conditional distribution of z;|Z;_; is same
as the conditional distribution of ztl(F]TZt_1, FdTZt_l). To estimate TI', they proposed a robust estimation methodology
based on Density Power Divergences (DPD) that is indexed by a tuning parameter « € [0, 1] which yields a continuum of
estimators, {fa; a € [0, 1]}, where « controls the trade-off between robustness and efficiency of the DPD estimators.

The aforementioned literature on sufficient dimension reduction for time series focuses either on the reduction in the
dimension of X¢_1 = (X;—1, ..., X—p)T or on the reduction in the dimension of Z;_; = (xffl, xf_p)T when the conditional
mean of x; is assumed to be zero. Incidentally, the general set up in Park et al. (2010) allowed them to consider a simulation
model (see Model 1 in Section 4 of Park et al. (2010)) where both the conditional mean and variance are (nonlinear) func-
tions depending on X;_1, and their TSCS approach was successful in estimating the unknown dimensions in the mean and
the variance. Therefore, without assuming a model, it is of interest to develop an approach to reduce the dimension in the
unknown conditional mean function as well as the conditional variance function of a time series, when x; is conditionally
heteroscedastic as in an AR-ARCH model.

Recently, Park and Samadi (2020) proposed an approach called Two-stage Central Subspace (similar to the TSCS approach
of Park et al. (2010)) which separately estimates the dimensions in the mean and the variance functions. More specifically,
their first-stage assumes that x; is conditionally independent of X;_1 given cPJXt_L and estimates &, for a fixed p and
d with d < p. In the second-stage, they construct a residual series, &; = x; — E (xt|45;Xt,1) based on the unknown @, set
e2 | =(,, ...,atz_q)T for some g > 1, assume that ¢? is conditionally independent of e? ;| given ngffl, and estimate

the q x d matrix I'y=(n, ..., Iy for a fixed q and d with d < g. They also prove the consistency of estimators of &,
and I'y. A major drawback of Park and Samadi (2020)'s work is that their residual series, &, is not observable because it
depends on the unknown parameter matrix @4, which makes the estimation of I'; questionable! In fact, Park and Samadi
(2020) recognize this drawback in their article and say that, “This procedure may not be a very efficient approach to estimate
both the mean and variance functions.” While they do mention that in applications one should use an estimated residual that
is observable, their theoretical result for the conditional variance function holds only for an unobservable residual series.
Thus, the work of Park and Samadi (2020) does not satisfactorily address the problem of estimation of the dimensions in
the conditional mean and the variance functions based on observable quantities.

In this article, we assume that the conditional mean is E (x;|X;—1) = f(digxt_]) for an unknown, possibly nonlinear, func-
tion f(-) and @, defined above. We also assume that the conditional variance is V (x¢|X;—1) = g(FaTsf_Q for an unknown,

possibly nonlinear, function g(-) and for I'j and 6571 defined above. Without assuming a parametric model for x;, we use a
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Nadaraya-Watson smoother of f(-) and find an initial estimator, @, of D by minimizing the residual sum of squares. This
step focuses only on the estimation of the mean function. We then construct the estimated residuals, & = x; — fn(t/f(T)Xt_l),
use a Nadaraya-Watson smoother of g(-) and find an estimator, T, of I'; by minimizing a sum of squared errors involving
73}2. This step focuses only on the estimation of the variance function. Finally, we use T, the Nadaraya-Watson smoother of
f() and g(-), respectively, and obtain a revised estimator @ of @, by minimizing a weighted residual sum of squares. All
these details are given in the subsequent sections of the article.

In Section 2, we introduce the notations and assumptions that are used throughout the article. In Section 3.1, we define
the Nadaraya-Watson (N-W) smoother for the mean and the variance functions, respectively, and state two lemmas con-
cerning the N-W smoother that are needed to prove our main theorems. In Section 3.2, we define an iterative estimation
procedure to estimate the parameter matrices, @4 and I'y and state the three main theorems of the article. The theorems
are proved in Appendix B. While Section 3.3 introduces a new angular representation for parameter matrices to overcome
computational challenges, Section 3.4 discusses selection of hyperparameters p,q,d, and,d. To assess the performance of
the estimators numerically, simulation studies are carried out in Section 4 and a real data analysis of the Brazilian Real
(BRL)/U.S. Dollar Exchange Rate series is carried out in Section 5. Concluding remarks are given in Section 6.

2. Notations and assumptions

As before, let {x;;t > 1} denote a univariate time series and Xy 1 = (X;_1,...,X—p)T for some p > 1. We assume that
all the information in the conditional mean E(x;|X;_1) is contained in E (x;|®] X;_1,....®] X;_1) for some d € [1, p].

Specifically, we assume that there exists a p x d matrix @43 = (®1, ..., ®4) such that

E(xe[Xt—1) = E(x|® ] X;—1) = f(®]Xc-1). (21)
where f(-) is an unknown and possibly nonlinear function. We also allow {x;} to be conditionally heteroscedastic. Let & =
X — f(®]Xc 1) and &2_; = (¢}, ....e2 ;)T for some g > 1. We assume that there exists a g x d matrix [g= (I, ..., I}
such that

V(x|Xe—1) = E(eflef_) = E(sf ITTef_) = g(T'Tef_y), (2.2)

where g(-) is an unknown, possibly nonlinear, function. Our methodological development first assumes that the hyperpa-
rameters p, q, d and d are pre-specified integers that satisfy d < p <n and d <« q < n for dimension reduction purposes.
However, in Section 3.4, we will consider the case of unknown p, ¢, d and d. In this paper, we do not pursue the research
direction to allow these hyperparameters to diverge with n.

The unknown coefficient matrices can be defined through population estimating functions as:

Iy = argmin E[(stz — g(sTeffl))z], (2.3)
S

2
X — f(rTXt_1)>
]. (2.4)

and @4 = argmin E|: (
r g(Fgetz_l)

The goal of this article is to estimate the unknown functions f(-), g(-), and the coefficient matrices ¢4 and I'y. Since
f() and g(-) are unknown, both @, and I'y are not identifiable. To illustrate the non-identifiability, let us consider the
following time series model:

X =054 (0.5%_1+0.1x_3)+0.16x* , +¢,

and e =/05+0262, +0.162 e,

where {e;} is an i.i.d. sequence with E(e;) =0 and 0 < E(etz) =02 < 00. We can set the conditional mean and the variance
functions as

f1(z1,22)=05421 +2z5 and g(z)=0.5+z

Then, the parameter matrices are

T
¢1,d:|:065 004 O(')]:| and I'z=[0.2,0.1]T.

Note that we can also set f2(z1,22) =0.5+0.5 z; +z§ and
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1.0 0 0277
‘p”:[o 0.4 o]’

such that fq (¢1T’dXt_1) = fz(q);dxm).

Note that we can always find @4 (or I'y) such that its columns are normalized. Then, although we cannot fully identify
the parameter matrix, the space spanned by its columns is identifiable. Besides, we can eliminate the ambiguity by imposing
additional identification conditions. In this paper, we set the first element of each column of @, (or I'y) to be positive. Then,
we can sort the columns of @, in descending order according to the first element of each column. If there are ties, we refer
to the second element and so on. Such identification conditions can be achieved by replacing ¢4 with @,P where P is a
signed column permutation matrix that satisfies PTP = I4. Without loss of generality, we denote the parameter matrices
@, and I'y as their identifiable versions in the rest of the paper. We refer to Luo et al. (2014) and Park and Samadi (2020)
for more discussions on similar identifiability problems.

Finally, we introduce the following notations that will be used throughout this paper. Given a vector v, we denote its
vector norm as | v||. For a matrix A, we write its spectral-norm as ||A||. If A is a square matrix, we denote its determinant
as |Al.

3. Estimation methodology
In order to estimate the parameter matrices ¢4 and I'y defined in (2.3) and (2.4), respectively, we need to first estimate
the functions f(-) and g(-) nonparametrically. Next, we define the Nadaraya-Watson smoother for the functions f(-) and

g0).

3.1. Nadaraya-Watson smoother

Suppose we have a random sample of multivariate data where y = (y1, ..., ¥»)T is an n-dimensional response vector
and Z =(z1, ..., z;)7 is a n x d matrix of explanatory variables satisfying
yi=m(z;)+e; for i=1, ..., n,

where m(-) is an unknown regression function. Then, the classical Nadaraya-Watson smoother (Nadaraya, 1964; Watson,
1964) of m(-) is defined as

S K(zk — zi, An)yi
er'lzl K (Zk —Zj, )‘n)

where K(-,A;) is a kernel function and A, is a d-dimensional bandwidth vector. Here, we follow the suggestions in Silver-
man (1986), Scott (1992) and Park et al. (2009) and assume a product kernel function defined by

m.(zy) =

)

d

d 2 — 20 4 1/(4+4d)
K@zy—zi,A)=|nl |1 G| =—) with Ayj=s;| ——— , 31
( k i An) E nj E ( )Lnj ) nj ][(d~|—2)n] ( )

where z; j is the jth component of the d-dimensional vector zi, G is a univariate kernel function (e.g. Gaussian kernel), Sj
is the sample standard deviation of the jt" column of Z.
This leads us to estimate the conditional mean function f(-) by

Sy K(rTXe1 — 17X, ap)x;
Yy K(rTXe1 — 17Xy, ap)
where K(.) is the kernel function defined in (3.1), X¢_1 = (X¢—1, ..., X—p)T with t > p, r is a p x d coefficient matrix, and

a;, = (apq, ..., Ang)T is a d-dimensional bandwidth vector.
Similarly, we propose to estimate the conditional variance function g(-) by

n 2 2 2

2 imptq+ K(sTef | —sTe ;. bn)e;
2 2 )

Yicprqi1 K(sTef | —sTes |, bn)

where K(-) is the kernel function defined in (3.1), &7_; = (¢7_, ..., 67_)T with t > p+q, s is a g x d coefficient matrix, and

by = (bn1, ..., bypTisa d-dimensional bandwidth vector.
Let fD@TX;_1) and gV (sTe? |) denote the first order derivatives of f(rTX;_1) and g(sTe? ,), respectively. We then
define the estimators of fM(rTX;_1) and gV (sTe? ), respectively, as

FarTXe1) = (3.2)

(3.3)

n ($T€t271) =

4
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Yy KD aTXe1 = 1T X1, an) X
g1 K(rTXe1 — 17X 1, ay)
n 1 2 2 2
> ieptg+1 KM (sTe2 | —sTe? | by)e;

3 (35)
Zr}:p+q+1 Kk (ST€r2—1 - sTe?—l , b")

where K (.) is the first order derivative of the kernel function K(-) defined in (3.1). It should be mentioned that Tn(l) and
g,(71> are not part of the iterative estimation procedure described in Section 3.2. However, these estimators do play a key role
in establishing the asymptotic properties of the estimators of the parameter matrices @4 and I'y defined in (2.3) and (2.4),
respectively.

In the following two lemmas, we state some large sample properties of the aforementioned Nadaraya-Watson estimator
and the first order derivative estimators. These are also of independent interest. The assumptions needed for the Lemmas

along with some justification are stated in Appendix A.

¢!
DT Xe1) =

(3.4)

and gnl)(sTet D=

Lemma 3.1. Suppose that the assumptions A1 to A5 stated in Appendix A hold. Then, the Nadaraya-Watson estimators defined in (3.2)
and (3.3) satisfy

R oy
sup |fn(rTX>—f<rTX>|=op<[h‘“l—p)] )

r7XeRd n—p
R In(m — p — q)12/@+%
and  sup [gn(sTe?) —g(sTe?)| =0, [M} ,
sTe2eRd n—=p—4q

asn— oQ.

Remark 3.1. Lemma 3.1 establishes the rate of uniform convergence in probability for the Nadaraya-Watson estimators pro-
posed in (3.2) and (3.3). When we set p and q to be fixed and choose d =d = 1, the rates in Lemma 3.1 follow (n~!Inn)%/5
which is the optimal nonparametric rate for i.i.d. univariate data proved in Stone (1982). The proof of Lemma 3.1 is similar
to the proof of Theorem 8 in Hansen (2008), and hence we omit the proof.

Lemma 3.2. Suppose that the assumptions A1 to A5 stated in Appendix A hold. Then, the first order derivative estimators defined in
(3.4) and (3.5) satisfy

sup £ @TX)— FDETX) -0,
r7XeRd

and  sup [8\(sTe?) — gV (sTe?)| — 0,
sTe2eRd

with probability 1 as n — oo.

Remark 3.2. Lemma 3.2 provides uniform consistency results for the first order derivative estimators defined in (3.4) and
(3.5). The proof of Lemma 3.2 directly follows from the proof of Theorem 2 in Mack and Miiller (1989), and hence we omit
the proof.

3.2. An iterative estimation procedure

Since the population estimating functions (2.3) and (2.4) are interdependent, we propose an iterative estimation pro-
cedure to construct an estimator ¢d n of ¢d and an estimator I"d . Of I'y. For ease of presentation, we will suppress the

subscripts and denote = d)d’n and T = I‘d - The estimation procedure contains the following three key steps.

STEP 1: INITIAL ESTIMATION.

In this step, disregard the conditional heteroscedasticity for the moment and denote @, as an approximation of @4
defined by

& = argmin E[(Xt - f(rTXr—l))z]-

reRpxd

Then, we consider a residual sum of squares which is the sample version of E|:(xt - f(rTXt_l))z} and define an initial

estimator of @, as
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@ = argmin Z (xt fn rTX— 1)) suchthat rTr=1Ig4, (3.6)
reRP _piq

where /f\n(~) is the Nadaraya-Watson estimator defined in (3.2) and r7r = I4 is an orthonormal constraint. Notice that the
solution of (3.6) is not unique as one can change the sign of each column of @y and permute the columns. Therefore,
we follow the identification conditions discussed in Section 2 to eliminate the ambiguity. We follow similar identification
conditions for the other two estimators to be defined in the subsequent steps. Empirically, the choice of identification
conditions does not affect the performance of the proposed estimation procedure. We will corroborate this statement via
our numerical results.

STEP 2: ESTIMATION OF I'y.

Next, we estimate the parameter matrix I'y. For this, we use the initial estimator @ of @, to compute the residuals

=X — (@ Xe), t=p+q+1, ..., n (3.7)

Then, we consider a residual sum of squares which is the sample version of the population estimating function in (2.3) and
define an estimator of I'y as

_argmm Z ( —gn(sT et 1)) such that sTs=1I, (3.8)
seRqu t=p-+q+1

where g, (-) is the Nadaraya-Watson estimator defined in (3.3). Denote sjj the (i, j)-th entry of s. The constraint s € R‘fd
requires all elements of s to be non-negative, i.e. s;j >0 forie[1,q] and j € [1,5].

STEP 3: ESTIMATION OF @ .

In the third step, we take the conditional heteroscedasticity into account and define a revised estimator of 4. More
specifically, we minimize a weighted residual sum of squares which is the sample version of the population estimating
function in (2.4) and define a revised estimator @ of @4 as:

~ 2
~ n (Xt —fn("Tth))
@ = argmin

-
reRrd S Ba(TTE2 )

, suchthat rTr=1I,, (3.9)

where T is the estimator of I'y as defined in (3.8).

Additionally, we can replace 30 in (3.7) with the updated estimator @ in (3.9) and obtain a new set of fitted residuals.
This then yields a revised estimate of I'y via (3.8), which in turn yields a revised estimate of @4 via (3.9). We can then
iterate steps 2 and 3 in the estimation procedure until convergence. This iterative process is summarized in Algorithm 1.

Algorithm 1 Iterative Estimation Procedure.

Input: A univariate time series {x;; ¢t > 1}, a dlssmllanty metric d(-, -), a tolerance parameter €, and a number of maximum iterations M.
Initialization: Compute the initial estimate @ according to equation (3.6). Compute the residuals & according to equation (3.7). Compute T from the
fitted residuals, according to equation (3.8). Compute ?, using T to generate weights, according to equation (3.9).
form=1, ..., M do

Let 30 D = ?.

Recalculate the residuals based on 30“3.

Compute T from the new fitted residuals, according to equation (3.8).

Re-estimate &, using the new T to generate weights, according to equation (3.9).

if d(@oLp, ®) <€ then

break

end if
end for
Output: @ and T

Theorem 3.1 (Initial estimator). Suppose that the assumptions Al to A5 stated in Appendix A hold. Then the initial estimator defined
in (3.6) satisfies

@0 — ®oll = O . asn— oo. (3.10)

In(n — p) 2/(d+4)
n—p

Theorem 3.2 (Variance estimator). Suppose that assumptions A1-A5 hold. The variance parameter vector estimator defined in (3.8)
satisfies

Inm—p — 2/(d+4)
[n(n p q)] . asn— oo (3.11)

IT - rzll=0
d P n—p—gq
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Theorem 3.3 (Final estimator). Suppose that assumptions A1-A5 hold. The final estimator defined in (3.9) satisfies

_ In(n — py12/@+4
18 — @4 =0, ([nﬁnf;)] . asn— oo (3.12)

Remark 3.3. Theorems 3.1-3.3 establish the rate of convergence in probability for the estimators proposed in Section 3.2.
When we set p and q to be fixed and choose d =d = 1, the rate in Theorems 3.1-3.3 is (n~!Inn)%/> which is the optimal
nonparametric rate for i.i.d. univariate data proved in Stone (1982). Our results are obtained for a multivariate and strong-
mixing data. The proofs of the above theorems are presented in Appendix B.

3.3. Angular representation for parameter matrices

The optimization problems in (3.6), (3.8) and (3.9) involve a matrix orthonormal constraint. Existing literature (e.g. Edel-
man et al.,, 1998; Bai et al., 2000; Wen and Yin, 2013; Sato et al., 2019) propose to solve such problems by exploiting Newton
and conjugate gradient algorithms on Stiefel and Grassmann manifolds. However, these differential geometry optimization
methods pose computational challenges to the proposed estimation procedure as the derivatives of estimating functions
may admit complicated forms. Recently, Park and Samadi (2020) suggested to tackle the matrix orthonormal constraint by
a sequential quadratic programming algorithm. Unfortunately, this algorithm is numerically unstable when the parameter
matrix of interest has more than one column.

To address the aforementioned computational challenges, we propose a novel angular representation for the parameter
matrix which converts the matrix orthonormal constraint into a sequence of linear systems. The proposed angular represen-
tation approach avoids calculating the derivatives of estimating functions and improves the numerical stability. We illustrate
this approach as follows. Let d < p and ® be a p x d orthonormal parameter matrix defined as

611 612 --- Oig

021 62 -+ O
0=(01, ..., 00 =] . _— -

Op1 Op2 - Opa

such that ®@TO® = Iy. Since © is full rank, each column of ® has at least one unique nonzero entry. In the following

discussion, we assume that 6y,; > 0 for some k; € {1, ..., p}and i=1, ..., d. We can always guarantee this assumption
by column scaling which does not affect our estimation procedure.
Then, for the (j, i)-th entry of ®, we can define an angle «j; as

0ji

tan(oji) = —

O;i

or 0jj=0itan(aji), forj=1, ..., pandi=1, ..., d. (3.13)

Since all the columns of ® are normalized, we have

p p
1= 05=00+ > {l6gitan(;)*} =62, Y tan(e;p)®, fori=1, ..., d,
j=1 j#ki j=1

1/2
where the last equation uses the fact that tan(ay,;) = 1. Denote C; = [Z;’:l {tan(aji)z}] , we can rewrite (3.13) as

0ji = — 1= (3.14)

The parameter matrix ® is column-wise orthogonal if and only if (~)iT(~),-/ =0 for 1 <i’ <i<d. This is equivalent to
require

- Zj;ékﬂ 0;i0ji

p
Z@jigﬁ/ =0 or 9;(1_,,' =
Oy i’

j=1
This together with (3.14) and tan(ay, ) =1 imply that
p
tan(o,) =— »_ tan(eji)tan(ajy) and Y tan(eji) tan(eji) = 0. (3.15)
j#ky j=1
Similar to (3.15), we can represent the orthogonal condition for the i-th column of ® as a system of (i — 1) linear
equations
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Table 1

Sample statistics of S over 100 replications.
S Mean SD Min Median Max
ORIGINAL 1103 0.036 1.015 1.099 1191
ANGULAR 0.000 0.000 0.000 0.000 0.000

Sample statistics of closeness between @7 and I over 100 repli-
cations. Mean and SD stand for sample mean and sample standard
deviation. Min, Median, and Max stand for minimum, median and
maximum values in the sample.

2 jmky. ki, AN(ei) tan(ej) == D jky.... ki, AN i) tan(aj),
: (3.16)
Zj:kL_,,,kH tan(()[]'i) tan(olj(,',n) = - Zj#k],m,k,-,] tan(oej,') tan(aj(i,n).
By sequentially solving the linear systems defined in (3.16) for i =2, ..., d, we represent the p x d orthonormal matrix @

by dp — @ angles. This angular representation approach addresses the long pending numerical stability issue in Park et
al. (2009), Park et al. (2010), Park (2011), Park and Sriram (2017) and Park and Samadi (2020). Further, the proposed angular
representation may be of independent interest as it is applicable to other optimization problems with an orthonormal matrix
constraint or can be used to sample orthonormal random matrices.

We end this section with a simulation study to demonstrate how the angular representation incorporates the or-
thonormal constraint in optimization and improves numerical stability. For this study, we consider the following nonlinear
regression model: Suppose

2
yi= ((1/«/5)()(1,1' + 2X4yi)) + (1/V13(=2X1,; +2X2,; —2X3,i +X4,) + ¢, i=1, ..., n.
We generate the errors, {¢;} from i.i.d. N(0, 1), but the covariates, {x; i, ..., X4 ;} are generated from i.i.d. Uniform(0, 1). We

define the parameter matrix associated with this model as

1 2 77
o_| 3 ° 0

=2 2z 2 1 |-

Vi3 V13 V13 V13

In this simulation study, we let the sample size n = 1000 and replicate the simulation 100 times. In each replication, we
aim to estimate @ subject to an orthonormal constraint @@ = I. First, we estimate & by a popular nonlinear optimization
algorithm named Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Byrd et al.,, 1995). Then, we es-
timate @ by L-BFGS plus the angular representation method proposed above. We denote the first method as ORIGINAL and
the second method as ANGULAR. For both methods, the columns of the estimated coefficient matrix are normalized to have

a unit length. Then, we measure the closeness between @ '@ and the identity matrix by computing

where A; ; is the (i, j)-th entry of a matrix A.

The numerical results measuring the closeness between @'® and I over 100 replications along with some summary
statistics are presented in Table 1. It is clear from the values in Table 1 that the estimators obtained by the ORIGINAL
method consistently violate the orthonormal constraint, even when d = 2. In contrast, the estimators provided by ANGULAR
perfectly satisfy the orthonormal constraint.

3.4. Selection of hyperparameters

The estimating functions (2.3) and (2.4) involve four hyperparameters, p,d, q, and d. The lag parameters p and q indicate
how far back we should look in the history of x; and &, while the dimension parameters d and d specify how many linear
combinations of the past variables we need. The selection of these hyperparameters plays an important role in modeling
the time series of interest. However, for real data, we rarely have accurate prior information to guide us on the selection of
these parameters. To this end, we introduce a data-driven method to select the hyperparameters.

Denote the objective functions in (3.6) and (3.8) as

n

S0 =Y (v~ T X)) and Guo= Y (8- EasT2 )

t=p+1 t=p+q-+1

2

8
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where ?n(~) and g, () are the Nadaraya-Watson estimators defined in (3.2) and (3.3). We follow the idea in Park et al. (2009)
and select the pair (p,d) as the minimizer of a Modified Schwarz Bayesian information Criterion (MSBC) defined by

3@ =argmin {2~ ) In[Sn0(@ )/ (1 = )]} +pIn = p). (317)
p.deZ?

where Z7 is the set of all positive integers and @ p.d is the estimator of @4 for a given p. Similarly, we select the pair (q,E)
as the minimizer of another modified MSBC defined as follows

@ d =argmin{(n— p— ) In [Gu(F /(1 — p — )]} +PqInn - p—0), (318)
q.deZ’

where T' 7 is the estimator of I'; for a given q.
. qa . . . . .
In simulation studies, however, since we will know the true values of the hyperparameters in the assumed model, while
determining an estimate of a hyperparameter, say p, we will fix the remaining hyperparameters at their true value and
determine p by minimizing the quantity in (3.17) over p for a fixed d.

4. Simulation studies

In this section, we present three simulation studies to investigate the finite sample performance of the proposed estima-
tors. The models we consider for the simulations are of the type given by

X = f(PgXt1) + &,

and & = [‘ /g(FaTe?,Q] er,

where we consider different specifications of the functions f(-) and g(-), the p x d parameter matrix @4, and the q x d
parameter matrix I'y. In the first two simulation models, the errors {e;} are assumed to be independent and normally
distributed with a constant variance. Whereas, in the third simulation model, we consider normal errors and gross-error
contaminated normal errors.

The optimizations are done based on the parametrization method proposed in Section 3.3, which overcomes some com-
putational challenges and improves the numerical stability. Besides, we apply the fmincon function in Matlab to estimate
@, and I'y. To search the parameter space thoroughly and avoid the local minimums, we initialize the procedure over 50
randomly generated initial values.

In our simulation studies, we use two measures to assess the accuracy of our estimates. The first measure is defined as
the sample mean of the Vector Correlation Coefficient (Hotelling, 1936; Ye and Weiss, 2003) over M Monte Carlo simulations:

M
_~ 1 ~1 _~
_ TE|1/2
p(@)_M E @ OOTE|/, (4.1)
m=1
where @ is a parameter matrix and © is an estimate of @. Note that 0 < p(@) <1, where the higher values of p(@)

imply that the estimated values are closer to the truth. The second measure is defined as the sample mean of the criterion
introduced in Xia et al. (2002b) over M Monte Carlo simulations:

2
, (4.2)

U _
m?(@;) = MmZ:l |a-oe0m8;

where @ is an estimate for the i" column of @ and I is an identity matrix. Here, 0 < m2(@) <1, and this measure
approaches zero when the estimated column is close to the truth. Throughout this section, we consider @ = @4 or I'j and
6=dorT.

In our simulations studies, we choose sample sizes n = 100,300 and 1000. For each sample size, we compute the
estimates using the iterative estimation procedure and evaluate the accuracy measures p(@) and mz(é\i) over M =100
Monte Carlo simulations. The hyperparameters are selected by MSBC as defined in Section 3.4. Recall that, when selecting
one hyperparameter, we fix all the others to avoid the interactive effects.

Model 1: Consider the following conditionally heteroscedastic time series model with a nonlinear mean function and a
linear variance function:

X =3 — (1/v/3)(Xe—1 + Xe—3 + Xt—6) + c0s{(7/2)(1/v/2) (Xt—2 — X¢—a)} + &,

with gt=[\/1+(.1)(83_1+e§_2)]et and e;~N(0, 1).
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Table 2

Estimation results for Model 1 over 100 replications.
n p(@) mi@)  m’@y) p(@)  m*T)
100 0.354 0.291 0.847 0.838 0.483
300 0.450 0.165 0.736 0.856 0.453
1,000 0.695 0.088 0.297 0.907 0.351

The estimation accuracy measures p(-) (the larger the better)
and m?%(-) (the smaller the better) are defined in (4.1) and (4.2),
respectively. Besides, 31 and 32 are the first and the second
columns of &.

Table 3
Hyperparameter selection for Model 1 over 100 replications.
n Count p q d d
Under 19 57 98 0
100 Correct 79 1 0] 99
Over 2 42 2 1
Under 0 48 87 0
300 Correct 90 3 0] 92
Over 10 29 13 8
Under 0 25 0 0
1,000 Correct 91 33 1 55
Over 9 42 99 45

The rows Under, Correct and Over report the number of times that
the selected hyperparameters are smaller than, equal to, or larger
than the truth over 100 Monte Carlo simulations.

Further, we set the parameter matrix and vector of interest as

|7 O B 00 FE] oy
i=l'p L o =L o o0 an _[ﬁﬁ]'

V2 V2

In Model 1, the true lag values are p =6 and q = 2, and the number of dimensions are d =2 and d=1, respectively. The
first column of @, corresponds to a linear component of the mean function, i.e. E(x;|X;_1), and the second column of @4
corresponds to a nonlinear component of the mean function.

We compute the estimators of @4 and I'y based on the iterative estimation procedure introduced in Section 3.2. Denote
@, and @, as the first and the second columns of @, respectively. The results in Table 2 report the accuracy measures p
and m? based on 100 Monte Carlo simulations. According to Table 2, the p values increase as the sample size increases.
Also, the p values are relatively higher for the estimation of I'j than those for @,4. We also observe that the m? values
are smaller for estimating the first column of @, than that for the second column of @,. This suggests that the linear
component of the mean function is better estimated than the nonlinear component, which in turn may have affected the p
values for the estimation of @. ~

In Table 3, we report the number of times the true lags p and g and the true dimensions d and d are selected by
MSBC defined in Section 3.4. As shown in Table 3, the MSBC method accurately estimates p and d in a large proportion of
replications. However, the estimation of q and d are not ideal.

In Fig. 1, we create a 3-D scatter plot with an overlay surface to visualize the conditional mean function, i.e. f(-) as
defined in (3.2). This overlay plot provides a useful tool in practice to visually identify the functional relationship between
X; and the two predlctors ¢ X;_1 and ¢ X;_1. In this example, the ﬁtted surface clearly shows a linear relationship
between X; and @ X[ 1 and a wave- shaped relationship between X; and @ th, which are in line with the model
setup.

Model 2: Consider the following conditionally heteroscedastic time series model. The mean function admits a complicated
nonlinear form but the linear variance function is set to be the same as in Model 1.

X = —1+ (4/v/5)(Xt—1 + 2x;_a) — c0s{(/2)(1/~/5) (Xt—3 + 2%_5)}+
exp{—[(1/vV/15)(=2X¢—1 + 2Xe— — 2X¢—3 + Xt—4 — Xe—5 + Xe—6) 1>} + &t

with & = [\/1 + (D, + et{z)] e and e ~N(0,1).
Further, we set the parameter matrix and vector of interest as

10
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Fig. 1. 3-D scatter plot with an overlay surface of the fitted conditional mean function for Model 1.

Table 4

Estimation results for Model 2 over 100 replications.
n p@)  mi@)  mi@y) mi@y)  p@)  mD)
100 0.725 0.353 0.199 0.401 0.804 0.534
300 0.971 0.152 0.104 0.128 0.795 0.557
1,000 0.991 0.087 0.071 0.066 0.824 0.508

The estimation accuracy measures p(-) (the larger the better) andA mZL-) (the sAmaller
the better) are defined in (4.1) and (4.2), respgctively. Besides, @1, @, and @3 are
the first, the second and the third columns of @.

1 2 T
v ° (1) s ° (2) 1 17
A5 S B T

-2 2
Vi5 V15 V15 V15 J15 V15

In Model 2, the true lag values are p =6 and g = 2, and the number of dimensions are d =3 and d=1, respectively. The
mean function and white noise term in Model 2 follow the simulation Model 3 of Park et al. (2009) and Example 3 of Xia
et al. (2002b). However, our Model 2 has an additional conditional variance function that depends on the residuals of x;.

Table 4 summarizes estimation results for Model 2. Our iterative estimation method estimates @4 well as the p values
are close to 1 and the m? values are close to 0 in all scenarios. The results are comparable to those in Park et al. (2009) (see
Table 3, pp. 723), where the error term is homoscedastic. The p values for I" also increase to 1 as the sample size increases
and the m? values for T’ are of moderate sizes. Similar to Model 1, MSBC can accurately select p and d in most replications;
see Table 5. However, the selection of q and d is still challenging.

Model 3: Consider the following conditionally heteroscedastic time series model, where the Gaussian error is mildly con-
taminated by a uniform error:

xe =y B4 (1/V3) X1 + X3+ %)) + &1,

with & = [\/(1 A/10)(3 +8t2_1 +£t272)} e; and e; ~ 0.95N(0, 1) + 0.05U (0, 5). Here, the parameter matrix and vector of
interest are:
1 1 17 1 117
¢d:[ﬁ0ﬁ00ﬁ] and TE:I:ﬁﬁ] .
In Model 3, the true lag values are p =6 and q = 2, and the number of dimensions are d =1 and d=1, respectively. The
estimation results of Model 3 are summarized in Table 6. Due to the automatic robustness introduced by the Nadaraya-

Watson estimator, the proposed estimation method maintains high p values and relatively low m? values in all scenarios.

This suggests that the proposed method can be applied to heavy-tailed time series, which are ubiquitous in economics and
finance.

11
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Table 5
Hyperparameter selection for Model 2 over 100 replications.
n Count p q d d
Under 66 95 100 0
100 Correct 32 3 0 100
Over 2 2 0 0
Under 0 92 100 0
300 Correct 100 6 0 100
Over 0 2 0 0
Under 0 89 48 0
1,000 Correct 100 7 52 100
Over 0 4 0 0

The rows Under, Correct and Over report the number of times that
the selected hyperparameters are smaller than, equal to, or larger
than the truth over 100 Monte Carlo simulations.

Table 6

Estimation results for Model 3 over 100 replications.
n (@) m’ (@) p(@) m?(T)
100 0.924 0.347 0.857 0.448
300 0.965 0.222 0.872 0.479
1,000 0.989 0.111 0.911 0.341

The estimation accuracy measures p(-) (the larger the better) and
m2(-) (the smaller the better) are defined in (4.1) and (4.2), re-
spectively.

5. Analysis of the BRL/USD exchange rate series

Central Banks around the world aim to guarantee that their national currency is reasonably stable and trustworthy.
Economic agents need to be confident that this financial asset will keep its value compared to the other products that it
can be traded for. If a currency is too volatile, any task which requires planning becomes too uncertain, affecting major
investment decisions. However, stability by itself is not enough to yield a strong currency. For instance, many countries have
adopted legal measures of broad price control without observing the desired outcome.

During the second half of the twentieth century, Brazil experienced an accelerating inflationary process. During this time,
several economic measures were attempted, including the adoption of new currencies, to control the general price increase.
An important Brazilian inflation index is the General Price Index - Overall Supply (IGP-OG) that can be accessed at the
Institute for Applied Economic Research (IPEA) databases.! From the plot of monthly IGP-OG in Fig. 2, it is clear that it was
only after adopting the Real Currency (BRL) that the inflation rate stabilized to a reasonable level.

Besides IGP-OG, it is also of interest to study the impact of adopting the new currency in terms of its relation with the
other major currencies.

For instance, the Brazilian Real/U.S. Dollar (BRL/USD) exchange rate is an important index for the Brazilian economy as it
influences key economic features, such as, competitiveness of exports, production costs and investment returns.

In this section, we implement the iterative estimation approach proposed in Section 3.2 to analyze the monthly BRL/USD
Foreign Exchange Rate series from January 1999 to December 2019; see Fig. 3 for a plot of this time series. Although
the IPEA database provides observations from this series prior to January 1999, we only analyze the time period after the
adoption of the floating exchange rate regime when the currency price fluctuated mostly according to market forces instead
of government fixation. Note that, from the adoption of the BRL as the official currency in July 1994 until early January
1999, the fixed exchange regime was in place, resulting in no variation in the series during this period. Therefore, we do
not include this period in our data analysis.

We split the time series into a training data and a test data. The training data ranges from 01/1999 to 10/2015 (202
observations) and the test data ranges from 11/2015 to 12/2019 (50 observations). For the training data, we will build an
AR-ARCH model and a semi-parametric time series model using our iterative estimation approach. Then, we will use the
test data to assess the performance of the fitted time series models based on the accuracy of out-of-sample forecasts.

5.1. AR-ARCH model

A benchmark in conditionally heteroscedastic parametric modeling is the family of AR(p)-ARCH(q) models. We use the
training data for the monthly BRL/USD Exchange Rate series (01/1999 to 10/2015) to find a suitable AR-ARCH model. Our

1 https://www.ipea.gov.br.
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Fig. 2. Monthly IGP-OG variation (%) in Brazil.
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Fig. 3. Monthly BRL/USD exchange rate between Jan 1999 and Dec 2019.

goal is to use an out-of-sample forecast measure to compare the performance of the fitted AR-ARCH model to the time
series model fitted using our iterative estimation approach.

To fit an AR-ARCH model, the first step is to find appropriate lags p and q for the mean and variance functions, respec-
tively. To this end, we fit all possible AR-ARCH models by a grid search for p and q values using the estimate function in
MATLAB and compute the Schwarz Bayesian Criterion (SBC) value for each pair of p and q. Table 7 gives the SBC values for
various choices of p and q. We observe from Table 7 that the SBC criterion is minimized when p =4 and q = 1. Then, the
fitted AR(4)-ARCH(1) model for the training data is as follows

Xt = —0.023455 + 1.6059x¢_1 — 0.90397x;_3 + 0.55746x;_3 — 0.26837X;_4 + ¢t, (5.1)

with & = \/ﬁ e, h;=0.0029+0.769582 , and e ~ N(O,1).

Besides, all the estimated coefficients are significant at the 1% level, except for the intercept in the mean function.

13
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Table 7
Lags selection for AR(p)-ARCH(q) by SBC.

SBC p=1 p=2 p=3 p=4 p=5 p=6

g=1 —371.06 —409.09 —406.32 —413.34  —408.06 —407.08
q=2 —378.97 —409.18 —408.89 —410.58 —406.68 —403.68

35Ff (| ‘ E

25|

Exchange Rate

0 50 100 150 200 250
t

Fig. 4. Time series plot for x;, 5{"Xt,1 and Zigxt,l using the training data.

5.2. Semi-parametric time series model

In this subsection, we use the iterative estimation approach proposed in Section 3.2 to build a semi-parametric time
series model for the training data. First, we use MSBC defined in Section 3.4 to select the lag parameters p and ¢, and the
number of dimensions d and_ d for the mean and variance parameter matrices. The estimated parameters and dimensions
are p=2,q=1, d=2and d= 1, respectively. Then, we follow the proposed iterative estimation approach to obtain the
following parameter estimates:

5 [ 0.9783 0.2071

~0.2071 0.9783] and I'=1.

Next, we build a time series model using the estimates above. To be specific, we denote the estimated linear combina-
tions as alTX[,] and $§X[,1, where ak denotes the k" column of @ for k = 1, 2. As discussed in Section 2, we notice that
the true parameter matrices are not identifiable. In this real-data analysis, the optimization of (3.9) will lead to non-unique
solutions such that the columns of @ cab be switched and/or re-scaled by —1. For instance, the following three estimates
of @ are equivalent to ?:

—0.9783 0.2071 09783 —0.2071 d 0.2071 —-0.9783
0.2071 0.9783 —0.2071 —-0.9783 0.9783 0.2071

Nonetheless, the identifiability issue will not cause trouble in this study as all equivalent estimates of @ will lead to the
same linear combinations up to a sign change, which will be equally good for the out-of-sample forecast. Before we move
on, we visualize e Xt, o7 1 Xe—1, and d) X;_1 using the training data in Fig. 4. This time series plot clearly shows the two linear
combinations, @DTXt 1 and <1> X¢_1, can capture the dynamlcs of the response time series x[

In the next step, we. estlmate the conditional mean function f (-) based on d> X:_1 and d) X¢_1. To this end, we create a
3-D scatter plot of x, <I> X:_1 with an overlay surface to visualize the condmonal mean functlon in Fig. 5. The surface, fitted
by the Nadaraya—Watson estimation, visually suggests a near linear relationship between x; and the two linear combinations.
This motivates us to fit the following time series model for x; using the training data:

X =0.0274+1.3569 ®] X; | —0.0473®) X, 1 +&. (5.2)

Denote & = x; — 0.0274 — 1. 35693 X:—1+0.0473 3 X¢_1 as the fitted residual at time t. We then estimate the condi-
tional variance function g(I‘T ). Here we visualize &; and I‘T’e\ﬁ1 using the training data in Fig. 6. This time series plot

14
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Fig. 6. Time series plot for 87 and I' "2 , using the training data.

shows that TT§?_1 captures the dynamics of ?f quite well. Furthermore, we draw a scatter plot between stz and fT?f_l
given in Fig. 7. The blue curve in Fig. 7 is the Nadaraya-Watson estimation for g(fTEf_l) which can be approximated well

by a linear function. Therefore, the final model we learned from the training data is as follows.
X =0.0274+ 1.35698] X,_1 — 0.0473®) X,_| + 7. (5.3)

with ’(s‘t:\//httet, ’h\t =0.0158—|—0.50565t2_1 and e~ N(0,1).

5.3. Comparison of out-of-sample forecasts

In this subsection, we compute an out-of-sample forecast measure of our semi-parametric time series model defined in
(5.3) and compare it with that of the AR(4)-ARCH(1) model defined in (5.1). The test set is the monthly BRL/USD foreign
exchange rate collected from November 2015 to December 2019. The forecast performance is assessed by the Mean Squared
Prediction Error (MSPE) over the test set, which is defined as

nr
MSPE=n;" " (x — %)%,
t=1

where nr is the sample size of the test set and X; is the predicted value of x; obtained by either our semi-parametric model
or the AR(4)-ARCH(1) model.
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Fig. 7. Scatter plot for Etz and fTEt{l with the Nadaraya-Watson estimation curve.

Table 8

Comparison of out-of-sample forecast results.

Model

MSPE

Model (5.1): AR(4)-ARCH(1)
Model (5.3): Our model

0.0157
0.0151

The forecast results are summarized in Table 8. According to Table 8, in terms of out-of-sample forecasts, our semi-
parametric time series model achieves a better forecast accuracy than the AR(4)-ARCH(1) model. This real data analysis
provides a piece of evidence that our iterative estimation method has the penitential to construct an efficient forecast
model by utilizing the fitted linear combinations as explanatory variables.

6. Concluding remarks

In this article, we have developed a non-parametric iterative estimation approach for dimension reduction in time series
where the reduction in dimension is aimed at both the conditional mean function as well as the conditional variance
function of the series. While Nadaraya-Watson kernel smoothers are used to estimate the conditional mean and variance
functions, respectively, the parameter matrices associated with reduction in the dimension are estimated iteratively by
minimizing a residual sum of squares and a weighted residual sum of squares which are sample versions of the respective
population estimating functions. The resulting estimators are shown to be consistent as the sample size tends to infinity.

The optimization problems associated with the estimation of parameter matrices involve matrix orthonormal constraints.
Existing literature tackles such problems by using either differential geometry optimization methods or sequential quadratic
programming algorithms. Unfortunately, these approaches pose computational challenges and are numerically unstable
when the parameter matrix of interest has more than one column. We have proposed a novel angular representation for the
parameter matrix which converts the matrix orthonormal constraint into a sequence of linear systems thereby overcoming
certain computational challenges and improving numerical stability. We believe that the angular representation is applicable
more generally to other optimization problems.

Overall, the theory of dimension reduction in time series in the presence of conditional heteroscedasticity poses many
challenges, but a variety of encouraging results presented through our simulation study and the analysis of the Brazilian
Real/U.S. Dollar exchange rate series suggest that our iterative estimation approach has great potential for providing a viable
and meaningful alternative to traditional AR-ARCH type time series analysis. We hope that this approach will open new
avenues in modeling financial and economic time series.
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Appendix A. Assumptions and notations

Assume that d, E p and g defined earlier are fixed and known numbers. Recall that with X; 1 = (x¢—1,...,x—p)T, we

assumed that the conditional mean function E(x;|X;_1) = f(dﬁgxt_]) and the conditional variance function V (x¢|X;_1) =
g(rgsf_l), where e | = (¢7_y, ... 6f_)T for d < q with & =x; — f(®] X¢_1). Denote & = f(®] X;_1) — fn(®] X;_1), where
fn (dﬁ;Xt,]) is defined as in (3.2) with r = @,4. Next, we state the assumptions for technical lemmas and the main theorems
stated in this section.

Assumptions:

(A1) (X¢, &), t > 0 is strictly stationary and strong mixing with mixing coefficient «(m) < Am—#, where A < oo. For some
s> 2, E|1X;|* < oo and Ele?|* <oo and B> (25— 1)/(s — 2).

(A2) The marginal densities of ¢gXt_1 and I"Ief_1 are bonded and bounded away from zero on their supports which are
closed intervals. Also, there is some t* < oo such that for all t > t*

sup E <|¢;x0¢gxt|

do,at

P Xo=ap, DX, = at> pe(ao. a) < oo,

and supE(lI‘ge(z,Fgé‘?l 3

bo, bt

FI&‘S = bo, 1%63 th> qt(bo, bt) < oo,

where p(ao, a;) denotes the joint density of {®]Xo, @] X} and q(bo.b;) denotes the joint density of {FaTsé, F%sf}.

(A3) The eigenvalues of E[XtXtT] and E[e?efT] are bounded and bounded away from zero.
(A4) The first two derivatives of f(-) and g(-) exist and are continuous on R. Further, f(-) and g(-) satisfy the following
Lipschitz continuous conditions

Ifw) = fWI=Crlu—v| and [gu)—gV)| =Cglu—v],

where Cy and Cg are two positive Lipschitz constants.
(A5) The kernel function K(u) is compactly supported with bounded second order derivative such that [uK(u)du =0,
f u?K (u)du < oo, and the Fourier transformation of K (u) is absolutely integrable.

Remark A.1. Here, we explain the assumptions made above. (A1) assumes that the serial dependence in the data is strong
mixing. The decay rate depends on the moment conditions of X; and ef. When s = o0, e.g. X; is bounded or Gaussian, the
condition on the decay parameter simplifies to 8 > 2. (A2) requires the marginal densities of dngt,] and I‘get{l to be
bounded. It also controls the tail behaviors of the joint densities and conditional expectations with lags greater than t*. (A1)
and (A2) are mild regularity assumptions to study the uniform consistency and convergence rate of the Nadaraya-Watson
estimator, see Hansen (2008) and Hong and Linton (2020) among others. (A3) is a bounded eigenvalue condition which
is imposed to avoid degenerate covariance and precision matrices. (A4) assumes f(-) and g(-) to be Lipschitz continuous
which is commonly assumed in nonparametric regression literature. (A5) contains some smoothness conditions for the
kernel function.

Appendix B. Proof of the three theorems in Section 3

B.1. Proof of Theorem 3.1

2/(d+4 . . o
) /@ and nn be a sequence that diverges with n at an arbitrarily slow rate. In order to prove the

Let 8, = (Mr=p)

convergence rate |I$o — @¢|| = 0p(8n), it suffices to show that

n n
. -~ 2 = 2
inf (%t = fa(rTX¢—1))" — E (%t — fa (@] Xt-1))" >0,
lr—®oll=nnén = -
=p+1 t=p+1

with probability approaching one if n — oo and 5, — oo arbitrarily slowly.
With some calculations, one can show

3 (= T XemD) = YD (x4 — Ta(@] Xe—1))?
t=p+1 t=p+1

= 3 B0 X - @ X = 2% [FatrT Xeo) — Fu(@] Xe-)] |
t=p+1
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n

= N [FTXeo1) — Fa(@] X—1)]

t=p+1

=2 )" [0 = Fa(@E X)) |[FaTXeo1) = Fa (@ Xe_1)]

t=p+1
=Y [@™Xee) — Fa@]Xe-D]) =2 > (et +E[Fa T Xeo1) — Fu(®F Xe—1)]
t=p+1 t=p+1

n

= [h@TXee) — @3 XD —2 > e[ fa@TXem1) — Ta(@] Xe—1)]

t=p+1 t=p+1

n
=2 3" a[faTXe 1) — fa(PF Xe1)]
t=p+1
=1 — 21, — 2I3.

With mean value theorem, we can re-write I1 by

n

2
=Y [RUCIX )@ — 80 X ]
t=p+1
n

= Y wfe— 0 RV TX 02X XL ] - @0}
t=p+1

where r, is an interior point on the line segment between r and @, and T,ﬁ“’(g is the first order derivative of f()(.)
defined in (3.4).
According to Lemma 3.2 and the optimally of @, we have
(¢!
lim fiValx)? = fOwlx)?® > f V@i x)? =0, (B1)

which holds uniformly over X € R. Follow the strong law of large numbers, we have

lim
n—oon—p

n
> XX =E[Xe X[ ] (B.2)
t=p+1

Denote Amin(A) and Amgx(A) the smallest and the largest eigenvalue of a symmetric matrix A, respectively. Given (B.1),
(B.2) and Assumption (A3), we can lower bounded I; by

n
(!
L= r=ool? > FVEIXe 1) Amin (X1 XT )
t=p+1

> Ci(n— p)lir — @ol*(1+ 0, (1)). (B3)
Next, by Cauchy-Schwartz inequality, we can upper bound I, by

n

=Y el[fa@TXe_1) — fa(®]Xi-1)]

t=p+1
n n 1/2
<A 3 2 Y [FeTXe) — fn(@] X))
t=p+1 t=p+1
" 1/2
1 ~ ~
< (= pYmaxElefl(l +o() - 3 [Fatr X ) — Fa(@3 X D]}

t=p+1

where the last line follows the strong law of large numbers and assumption (A1).
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With Lemma 3.1 and assumption (A4), we can derive
[FaTXe—1) = Fa(®] Xe—1)]
=0 X = FOTXD)] = @] Xeo1) = F@]Xe)]

2
+[FET X)) = F@]Xe-)]]
=4{[Fatr"Xee) = FET XD ) + [T (@] Xeo) - F@] Xe)]?

2
+[FETXe) — f@T X))
< G5 + IIr — ®oll*), (B4)
where C; is a large enough positive constant.
With (B.4), we have upper bound I, by
1/2
Iy < Co(n — p) (82 + Ir — @0]12) > (1 + 0, (1)). (B.5)

Similarly, we can upper bound I3 by

3= Y &[fa@TXco1) = o (@ Xi1)]
t=p+1
1/2

<A Y 2 [T X)) — @i Xe-)]
t=p+1 t=p+1
< C3(n—p)(82+ IIr — @ol2) /28, (1 + 0, (1)), (B.6)

where C3 is a large enough positive constant and the last inequality follows Lemma 3.1 and (B.4).
Since n, diverges with n at an arbitrarily slow rate, we have ||r — ®@¢|| = 1,8, > 8, as n diverges. Therefore, we complete
the proof by showing

i (I1 — 21, — 2I3) > 0,
[lr—@oll=nndn

with probability approaching one if n — oo and n, — oo arbitrarily slowly. O
B.2. Proof of Theorem 3.2

Let 8, = (“‘,(1”_7;"))2/ @+ 8 = (“’r(]’f%;q))z/ @49 and n, be a sequence that diverges with n at an arbitrarily slow rate. To
simplify the presentation, we write I'y as I' throughout this proof.

In order to prove the convergence rate Hf —I'||=0p(8y), it suffices to show that

n n
. ~) o~ ~2 2 ~) o~ ~2 2
Ilnf 5 Z (8f —8n(sTE1p)" — Z (6 —8n(I'"8;_1))" >0
Is=Ll=mon _p2g 11 t=p-+q+1

with probability approaching one if n — oo and n, — oo arbitrarily slowly.
With some calculations, one can show

n n
Y @E-sTE) - Y @ -garTel )
t=p+q+1 t=p+1

n

~ o~ —~ o~ 2
= Y [&GTE ) —&TTE )]
t=p+q+1

n
2 Y [ B(TTEE )] [Bn (TR ) — E(TTEE )]
t=p+q+1
n

n
= Y (GG )-&TTE ) -2 Y [@ - ef][E(sTE) - & TED)]
t=p+q+1 t=p+q+1
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n
-2 Y [ —s(TE )][En(sTE ) — E(TTE; )]
t=p+q+1

n
-2 ) [e(TE} ) — Ga(TT8L )][Ba(sTEL ) — Ba (T 787 )]
t=p+q+1
=h—-2]2—-2]3-2]a

Similar to the proof of (B.3), we can lower bound J; by

Ji=Can—p—q)ls—CI*A+0p(1)),

for some positive constant C4.
By Cauchy-Schwartz inequality, we can upper bound J,, J3 and J4 by

N 1/2

2= Z [@\tz—gt Z Ein(sTet 1)—gn(1"Tet 1)] ,
t=p+q+1 t=p+q+1
1,2

=l Y [-earTer ) Z [Ba(sTE2 ) —BaTTE )P
t=p+q+1 t=p+q+1
1/2

and Ja<1 Y [g(ITely) —&TTE )] Z [En(sT&% ;) — Ba(TTe2 ]

t=p+q+1 t=p+q+1

Similar to the derivation of (B.4), Lemma 3.2 and assumption (A4) yield

[8n(sT82 1) — BT T8 )]”
= 4{8u(sT8L ) — 8T8 )] + [B (T TEL) — (X TEL]

P, P 2
+[e(sTe ) — g(I"e7 )] }
<Cs@2+Is— T,

where Cs is a large enough positive constant.
Following Lemma 3.1 and Theorem 3.1, we can show

n n

o B = Y [G-ed@+en]’ <Csm—p—qsnE(e) (1 +0p(1)).

t=p+q+1 t=p+q+1
Notice the fact that E(g(I’Tst )= et, strong law of large numbers and Lemma 3.1 suggest

n

3 [e2-eTer )]’ < Cs—p—qro),
t=p+q+1

~ —~ ~ 2
and Y [g(FT&; ) — & (FT&;_ )] < Cs(n— p — @)8,(1+ 0, (1)).
t=p+q+1

The results in (B.7)-(B.10) imply

max{Jz, J3, Ja} < Cs(n—p—q)Is—T|* as n—> occ.

Therefore, we complete the proof since

inf = (J1—2J2—-2J3—-2]4) >0,
Is=Tll=mndn

with probability approaching one if n — oo and n, — oo arbitrarily slowly. O
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B.3. Proof of Theorem 3.3

Let 8, = (mrgrl_;m)2/(d+4)' 8 = (%)ZMH) and 7, be a sequence that diverges with n at an arbitrarily slow rate. To
simplify the presentation, we write @4 as @ and I'j as I' throughout this proof.

In order to prove the convergence rate H@ — @|| = 0,(8p), it suffices to show that

o~ 2 n -~ 2
Xt — fn(rTXe— Xt — fn(®T X _

inf ( tAfrZETAZt 1) B Z (%t Afn(TA2 t-1)) 0. (B11)
Ir=@l=mén, = En(T&_) mprar1  Sn(TTE )

with probability approaching one if 5, — oo arbitrarily slowly.
To keep the presentation neat, we introduce the following notations

~ ~2 -~ ~ T2 -~ -~
wr=gn(I'e;_y), We=28(I'' 67_1), Ar=w;—W;, and v=w Wy,

fort=p+q+1, ..., n.
With some calculations, one can show

(= T X)) Z (% = Fn(®TXe 1))

2782 ) (782 )

t=p+q+1 t=p+q+1
n ) n )
- P
= > W (= ful@TXe)) = Y wi (ke — fa(@T X))
t=p+q+1 t=p+q+1

= Y @ w D (x— FaT X))’

t=p+q+1

+ 3w e =T TXe) = (3 = Fa@TXe1)?
t=p+q+1
=K1 + K. (B.12)

We can show K; can be upper bounded by the sum of two terms

Ki= Y @ = wi (= faGT X))
t=p+q+1
= 3 AT (= Fa@T X)) + Fa@TXer) — T X))’
t=p+q+1

= D AN e —&)

t=p+q+1
n n
<2 Y AyTel+2 Y A&
t=p+q+1 t=p+q+1
=K11 + K12. (B.13)

Following assumption (A1), Lemma 3.1, Theorem 3.1 and Theorem 3.2, K17 and K12 can be upper bounded by

1/2
2 n n
K= o YA Y et =Cen—p—q8,(1+0,(1)), (B.14)
EYC N t=p+q+1  t=p+q+1
5 n " 1/2
and Ky = —~ ; Yooy & < Ce(n—p—q)828,(1 +0,(1)), (B.15)
EV0 e=pta+1 t=p+q+1

where Cg is a large enough positive constant.
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Next, it is easy to check that the following inequality of K, holds for some positive constant C7

Ko=) welle = TaGTXen) = (x = Fa(@TXe-)’
t=p-+q+1
n
=minwe Y (= FGTXe) = (0= T (@7 X))’
t=p+q+1
>C7(n—p—gllr — ®[*(1+0p(1)), (B.16)

where the last inequality can be proved in a similar fashion as (B.3).
By plugging (B.14), (B.15) and (B.16) back to (B.12), we complete the proof since

inf (K + K2) > 0,
IF—@[|=n6n

with probability approaching one if n — oo and 5, — oo arbitrarily slowly. O
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