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Abstract— This paper presents a distributed, physics-based
energy equation to be used with macroscopic traffic flow models.
The proposed macroscopic energy equation is derived starting
from the road load equation and it is then integrated with
the Aw-Rascle-Zhang model. Results are compared against the
energy output of microscopic car-following models, namely the
Improved Intelligent Driver Model and the Extended Intelligent
Driver Model. To enable the comparison between macroscopic
and microscopic model variables, kernel density estimation is
used. This allows individual vehicle positions, speeds, and energy
usage obtained from the ordinary differential equations to be
converted to distributed quantities. The proposed macroscopic
energy equation is evaluated on three different traffic scenarios:
free flow, congested traffic, and mixed traffic. It is shown that the
proposed energy model can calculate the energy output within
+4% in free flow traffic, £11% in congested traffic, and £8%
in mixed traffic.

Index Terms— Macroscopic traffic flow, ARZ model, energy
model, model validation.

I. INTRODUCTION

N THE United States, transportation accounts for a large
Iportion of total energy use. In fact, roughly 27% of energy
usage comes from the transportation sector [1]. Traffic con-
gestion plays a large role in this energy usage. In the United
States, up to 3.5 billion gallons of fuel are wasted yearly as
a result of congestion [2]. Because of this, much effort has
been made to assess the impact of traffic on both highways
and urban networks through modeling and simulation [3], [4],
[5], [6].

Models of traffic mainly take two forms, microscopic and
macroscopic. Microscopic models describe the individual posi-
tion and acceleration of vehicles, while macroscopic models
describe locally aggregated quantities such as vehicle density,
flow, and mean speed [7]. The mathematical equations that
govern microscopic models are ordinary differential equations
(ODEs), while the equations that govern macroscopic models
are partial differential equations (PDEs). Traffic simulations
that rely on microscopic models can become computation-
ally intensive when simulating large networks such as cities
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or highways with high vehicle flow. In these scenarios,
a macroscopic model becomes advantageous [8]. However,
unlike microscopic models, macroscopic models currently
have no physics-based description of energy usage. Hence,
while energy optimization problems that utilize microscopic
models are well studied, the use of macroscopic models for
energy optimization has not yet been explored as there is no
distributed physics-based energy equation.

One of the most common objectives in macroscopic traffic
control is to track a desired density setpoint, which in turn
determines the location of traffic jams. Boundary control
has been used to achieve a desired density profile through
regulation of on-ramp flows in [9]. Boundary control has also
been used in [10], [11], [12], and [13] to achieve a desired
density profile through backstepping control, reinforcement
learning, and PI control, respectively. In [14] and [15], a time
dependent density profile is tracked using boundary control.
In addition to boundary control, variable speed limit control,
an application of in-domain control, has been used to stabilize
a density profile [16]. Both ramp metering and variable speed
limit control were used in a model predictive control setup
in [17] to maintain queue length on on-ramps and limit
capacity drop in highway sections.

In addition to density setpoint control, a significant body of
literature focuses on reducing total travel time. For example,
in [18], a two-class traffic flow model is controlled using ramp
metering to reduce total time spent on the highway, oscillations
in the control variable, and on-ramp queue length. Similarly,
boundary control is used in [19] to maximize outflow, as well
as to reduce the time that a vehicle stays in a highway link.
Model predictive control is used in [20] in order to minimize
the total travel time of vehicles and to balance density in a
discrete, first-order macroscopic model. In-domain control is
also used to reduce travel time. A feedback-based variable
speed limit control setup is used in [21], and a moving
bottleneck approach is used in [22].

While the previous control objectives are well studied,
energy optimization has not been as thoroughly investigated.
This is due to the lack of a physics-based energy equation
for macroscopic models. Currently, any macroscopic control
problems that focus on energy reduction use emissions or fuel
consumption in the objective function [23], [24]. However,
these representations fail to capture vehicle specific character-
istics, such as aerodynamic drag, rolling resistance, or forces
due to changes in grade. For example, [18] relies on an
average-speed emissions model, which computes the average
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emissions of a given pollutant based only on the average speed
over a highway link. The main problem with average-speed
approaches is that they do not capture the variation in emis-
sions or fuel consumption due to changing of speed within
a highway link. An alternative to average-speed models is
presented in [25], where a microscopic emission and fuel con-
sumption model is integrated with a macroscopic traffic flow
model. The methodology is to transform macroscopic data
into microscopic data and then use well-known microscopic
fuel consumption models. Results show that the integrated
approach achieves the same fuel consumption, within 3-7%,
as its microscopic counterpart (microscopic traffic flow model
with microscopic fuel consumption model) while computing
faster. Other attempts include using a moving bottleneck to
reduce energy consumption [23], [24], where a polynomial
fit of fuel consumption as function of velocity averaging
the fuel consumption curves of four different vehicles is
used [26]. This method, however, is limited to providing
fuel consumption, not energy usage, and it does not account
for the physics of the vehicles or traffic flow. Energy usage
is preferred because it is powertrain agnostic, unlike fuel
consumption.

The model presented in this paper is different from previous
attempts as it is the first physics-based energy equation for
macroscopic traffic flow. Previous energy models suffer in
that they either take insufficient microscopic data or use fuel
consumption as the energy metric. By using fuel consumption
or emissions as the metric for energy, too many uncertainties
are introduced. In going from fuel to energy used, there
are many efficiencies both in the engine and drivetrain that
differ between vehicles that can cause the resulting energy
calculation to be incorrect. The presented model aims to fix
this issue by working with just energy required at the wheel
of a vehicle. This new model takes into account the physics
of the problem such as aerodynamic drag, rolling resistance,
and forces due to changes in grade.

In the following sections, a general framework to create
a distributed, physics-based energy model for macroscopic
models that mimics the energy usage of microscopic models
is presented. The developed energy model, the macroscopic
road load equation (MRLE), is used in conjunction with a
second-order macroscopic traffic flow model. Kernel density
estimation (KDE) is used so that the results of the MRLE
can be compared against its microscopic counterpart. The
main contributions of this paper are as follows. First a novel
physics-based energy equation is derived for macroscopic
model. By using a physics-based approach, the influence of
aspects such as aerodynamic drag and road grade, amongst
other factors, can be evaluated on the energy output of
traffic. Before, this kind of analysis was not possible at the
macroscopic level. In addition, a comparison is made between
macroscopic models and microscopic models. This compar-
ison shows that the newly developed model can accurately
describe the energy output of macroscopic traffic, something
that has not previously been done. The developed model is
validated against the energy output of several microscopic
models, utilizing both MATLAB and the popular traffic simula-
tion software SUMO. It is shown that the novel MRLE provides
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approximately the same energy output of its microscopic
counterpart in three different traffic scenarios. The remainder
of the paper is structured as follows. Section Il summarizes the
macroscopic and microscopic models considered in this paper,
while Section III presents the MRLE. Section IV presents the
approach for comparing microscopic and macroscopic results
via KDE. The case studies and calibration of parameters are
given in Section V. The comparison results are then shown
and discussed in Section VI.

IT. MICROSCOPIC AND MACROSCOPIC
MODEL DESCRIPTIONS

The two main forms of traffic models are microscopic
and macroscopic models. Common macroscopic models used
for traffic simulation include first-order models such as the
Lighthill-Whitham-Richards (LWR) model and second-order
models such as the Payne-Whitham (PW) and Aw-Rascle-
Zhang (ARZ) models [7], [27], [28]. The first order LWR
model consists of a conservation of mass equation to determine
density [29]. To determine the velocity of traffic, an equi-
librium velocity equation dependent on density is used. The
LWR model has several deficiencies, namely that it produces
infinite deceleration when a vehicle encounters a shock and
that it assumes that the equilibrium velocity assumption holds,
even in non-equilibrium traffic [30]. The PW model [31]
was the one of the first second-order models to replace
the equilibrium velocity equation in the LWR model with
a momentum equation [32]. The addition of a momentum
equation solved some deficiencies of the LWR model. Second-
order models are desirable as they are more realistic in
capturing traffic dynamics in congestion due to the models
possessing a family of flow rate curves which can accurately
model the different speeds of vehicles in traffic [33]. However,
the PW model is not an ideal representation of traffic flow
as it has been shown that future traffic conditions can be
affected by what is happening behind it and negative travel
speed can occur under certain cases, which is not realistic
traffic behavior [34]. In light of these problems with second-
order models, a more realistic second-order model, the ARZ
model, was developed [28], [30].

Microscopic models describe the position and acceleration
of individual vehicles and their reactions to surrounding
vehicles. Car-following models, the most common type of
microscopic model, describe driver behavior based off of
interactions with other vehicles in all traffic scenarios, such as
free traffic, stationary traffic, and car-following situations [7],
[35], [36], [37], [38], [39]. The governing equations for
car-following models are ODEs that describe the acceleration
of individual vehicles. To be considered a complete car-
following model the governing acceleration equation must be a
decreasing function of speed as well as an increasing function
of both distance to and speed of the preceding vehicle [7].
Additionally, the model must be able to keep a minimum
gap between vehicles. The Intelligent Driver Model (IDM)
is one of the simplest complete car-following models [7].
The IDM uses a desired speed and following distance to
describe the acceleration of individual vehicles [35]. This
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model gives accurate traffic behavior, except in platooning
scenarios on highways. When large strings of vehicles are
following each other, following vehicles cannot achieve their
desired speed so the gap between vehicles grows. To this end,
the Improved Intelligent Driver Model (IIDM) was developed,
which addresses the faults of the IDM [7], [37]. In the IIDM,
the desired gap between vehicles no longer continues to grow
past the equilibrium spacing value near the vehicles’ desired
speed. In [40], multiple extensions of the IDM, including
the IIDM, are combined into a generalized model called the
Extended Intelligent Driver Model (EIDM).

For the purpose of this paper, the MRLE is integrated with
one macroscopic traffic flow model, the ARZ. The selection
was made due to its ability to accurately capture traffic dynam-
ics in all traffic scenarios. And two microscopic car-following
models, namely the IIDM and EIDM, are used for comparison.
The IIDM is used instead of the IDM because of the deficiency
in the IDM where in large strings of vehicles, the desired speed
is not met. Both the ARZ model and IIDM are implemented in
MATLAB. In addition to MATLAB, the well-known microscopic
traffic simulation package, SUMO, is used for comparison [41].
SUMO includes many car-following models as well as other
simulation and modeling tools that can be used to either
build custom routes or reconstruct real world routes. SUMO
is also useful in handling large networks of roads or large
traffic simulations with many vehicles. As well, SUMO has
an integrated communication add-on called Traffic Control
Interface (TraClI) that allows information to pass from SUMO
to other programs [42]. In this work, TraCl is used to send
information between SUMO and MATLAB in order to compare
simulation results. In SUMO, the EIDM is the selected car-
following model.

A. Aw-Rascle-Zhang Model
The ARZ model [28], [43] is defined by a set of hyperbolic
PDEs that describe the flow of traffic. It includes the conser-
vation of mass, which gives the density along a length of road;
and the conservation of momentum equation, which gives the

dynamic velocity:
ap + d(w + pVeq) _

— 0
ot dz
2
dw G twVe) p "
dat * dz o 'r( i “)

where p is the traffic density, u is the velocity field, and t is
the relaxation time. The equilibrium velocity, Ve, is a function
of density given by Greenshield’s model
Veq = Vinax (1 — P

pmax
where Vpay is the maximum velocity, and pqx is the max-
imum density. The difference between the actual flow and
equilibrium flow, w, is given by

w=p(u—Veg) 3)

While the ARZ model can accurately describe the density of
vehicles on the road and the speed at which they travel, there
is no equation in the model that captures the total energy usage
along the road.

) 2

B. Improved Intelligent Driver Model

The IIDM is a car-following model consisting of a set of
nonlinear ODEs that describe the position and acceleration of
individual vehicles [7], [37]. It is an extension of the IDM
which is simply given as

5 N 2
=) ()] e
vo s

N vAv

5*(v, Av) = 59 + max (0, vT + 2@) (5)
The parameter a represents the maximum acceleration of
a vehicle. A vehicle will accelerate to its desired velocity
vp. The acceleration of the vehicle will decrease as it gets
closer to vg. This decrease in acceleration is governed by the
parameter 8. The greater the value of &, the later the decrease
in acceleration happens [7]. When following a lead vehicle,
the safety distance is sp + vT where s is the minimum safe
gap and T is the time gap. The parameter b is the maximum
deceleration a vehicle should experience when approaching
a slower, or stopped, vehicle. As mentioned, there are some
problems with this basic model such as unrealistically large
decelerations when the actual gap between vehicles is smaller
than the desired gap and vehicles not being able to reach
their desired speed. To remedy this, the IDM was expanded to
include different acceleration functions depending on a variety
of cases. This improved model is the IIDM. The improved
acceleration functions differentiate between speed above and
below vg as well as when the desired gap is greater than or
less than the actual gap. They are given by

where

s* 2 *
dv a(l = (=), sT =5
d_ = § §¥ _2a
TR @preel = ()T, st <
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dv Afree +a(l — (_)2), s* =S5 (6)
= = s
dt lv=wp Afrees s*<5§
The value of ay,,, is given by
a(l— ()%, v<u
Qfree = o (7)

—b(1— (D)%), v>up
v

The IIDM can capture the energy usage of a vehicle by first
using the road load equation to calculate the forces acting
on the vehicle, and then calculating the amount of energy
needed to overcome these forces. Because the IIDM is able to
accurately describe the energy usage of vehicles, it serves as
a good comparison for the novel MRLE.

C. Extended Intelligent Driver Model

The Extended Intelligent Driver Model (EIDM) was first
introduced in [40] as an implementation of IIDM in SUMO
with an added human driving model. In this paper, the human
driving aspect of EIDM is ignored. This is because individual
human driving behavior is not modeled in the ARZ model,
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so for an accurate comparison it is taken out of the model.
The EIDM differs from the IIDM as instead of differentiating
between the cases of v > vy and v < wvp, it linearizes
the changes in desired velocity. The equation for af,.. then
becomes

LRy
Afree = ﬂ(] - (_) ) (8)
vo
and the acceleration in the EIDM is given as

a(l — (‘;)2), s* > s o

Afree = s¥ _2a
Afree(l — (?) “reel) s¥ <5

It is noted that the acceleration equation (9) in the EIDM is
similar to (6) when v < vg, with the exception of using the
absolute value of a ¢, in (9). This is done because a negative
exponent in (9) would cause the acceleration to be unsteady
at vp [40]. The EIDM also has other equations that limit jerk
and effect drive off behavior, but those are not included in this
analysis since the purpose of using the EIDM is to replicate
the IIDM in SUMO.

II1. DISTRIBUTED ENERGY EQUATION

In microscopic models, the road load equation is often used
to calculate the power, and thus energy, required for a vehicle
to move [44]. In general, the road load of a vehicle can be
broken down into: aerodynamic drag, road grade, inertial load,
and rolling resistance from the tires. All of these quantities
are specific to the individual vehicle being modeled and are a
function of its speed and acceleration. In macroscopic traffic
flow models, individual vehicle speed is not defined, but the
flow speed is measured instead. In order to capture the energy
usage of a stretch of road using a macroscopic model, the
values in the road load equation need to be expanded to use the
distributed values obtained from a macroscopic model, namely
u(z,t) and a(z,t). The forces acting on the flow of traffic as
a whole are given as

1
Fy = = paA fCau(z, 1)

> (10
F, = MgC, cosf (11)
Fg, = Mgsinf (12)
Fn = effa(Z,t) (13)

where p, is the air density, Ay is the frontal area of the
vehicle, C; is the drag coefficient, M is the mass of the
vehicle, C, is the rolling resistance, and M.ss is the effective
mass of the vehicle. Without loss of generality, all vehicle
specific parameters are assumed to be uniform across a length
of road. When considering singular vehicles, C; is a function
of intervehicle spacing. Hence, for a real world scenario, in the
distributed case, C4 would be a function of density, which is
a function of space. By assuming uniformity in the vehicles,
in this paper Cy is constant across the entire length of road.
The energy used at time ¢ at position z can be calculated as

T
E(z,1) :/ Fau + Fru + Fgru + Fpu dr (14)
0
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Fig. 1. Example of macroscopic conversion using KDE.

and the total energy used over the entire stretch of road at
time ¢ is given as

L
Eiotal (1) :]{; E(z,t)dz (15)

where L is the length of road.

IV. KERNEL DENSITY ESTIMATION FOR
MICROSCOPIC MODELS

To compare the results of the macroscopic and microscopic
models, individual vehicle positions have to be transformed
into an estimated density. This is done via Kernel Density
Estimation [45]. To obtain vehicle density from individual
vehicle positions, KDE is applied as follows

K
pz,1) =D G — ) (16)
k=1
where p(z,t) is the estimated density from the microscopic
data at time ¢, K is the total number of vehicles, k is the
number of an individual vehicle, G is the kernel used, z is
the spatial discretization, and z(t) is the position of vehicle
k at time ¢. An example of this microscopic to macroscopic
conversion is shown in Fig. 1. Here, the integral of p(z,t) in
space is equal to the total number of vehicles K. The kernel

is chosen to be a Gaussian function
2

G e B
N \/2.‘:‘1’]’!,

where h is the is the width of the kernel, which is a parameter
that must be tuned. An example of how different values of h
affect the estimated density is shown in Fig. 2. If the value
of h is smaller than the intervehicle spacing, then there will
be unwanted peaks in the estimated density. If the value of
h is too large, the reconstructed density will be affected by
the boundary data and tend towards a bell curve. In the case
shown in Fig. 2, h = 10 gives the best result as the vehicles
are spaced in 10 m intervals. When intervehicle spacing is not
uniform across a length of road, it becomes more difficult to
tune the value of h.

Other values, such as velocity, acceleration, and energy
can be found using KDE as well (16). For these values,
interpolation can be used as follows

_ 25 G- m@)a@
I X, G —w @)

X =2z— (1) (17)

E(z.1)

(18)
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where

£=[u® a6 an] (19)

are the velocity, acceleration, and energy of vehicle & at time
t from the microscopic models and

Ez,1) = [0z 1) ézn]"

are the estimated, distributed values of velocity, acceleration,
and energy after KDE.

a(z,t) (20)

V. SIMULATION CASE STUDIES AND
MODEL CALIBRATION

A. Scenario

Three different traffic conditions are simulated to test the
accuracy of the proposed MRLE. First, a free flow traffic sce-
nario is simulated, then congested, and finally a mixed traffic
case is studied. These regimes are based on the fundamental
diagram shown in Fig. 3. For initial density conditions that
start below the critical density, shown as p.i; in Fig. 3, we say
that the traffic starts in free flow. If the traffic starts at a density
that is above the critical density for the entire stretch of road,
we say that it is congested. For any length of road that has a
density in both the free flow and congested regimes, we say
that it is a mixed traffic condition. The way traffic flow evolves
in each of these scenarios is different, so it is paramount for the
developed MRLE to be able to correctly characterize energy
usage in all cases. The congested regime and mixed regime
are the most important as that is where more energy is wasted
due to traffic jams and slow moving vehicles.

For all scenarios a 1000 m long road section is simulated.
All vehicles start from rest, and the inflow of vehicles is

constant. The road is single lane with no on/off ramps, and
there is no restriction put on the outflow of vehicles. The three
initial conditions for the ARZ model are given as

1 —x + 500
pfree(Zs 0) = (?5 + 25 - tanh (T)) (21)

5 —x + 500
pcong(zs 0)= 75 425 - tanh T (22)

—x + 500
Pmixed(z,0) =75 + 25 - tanh (T) (23)
and the boundary conditions are

Pfree (0,1) =50 (24)
pcong(oy I) = 165 {25)
Pmixed(0,1) = 100 (26)

These initial conditions are chosen such that the density for
the entire simulation falls within the region of interest. For the
free flow traffic, according to Fig. 3, traffic must stay below
the critical density, which is 82.5 cars/km. For completely
congested traffic, the density stays above the critical density.
In the mixed case, there is both free flow and congested traffic
so the initial condition must span both regions. The initial
positions of the vehicles in the two microscopic models are
set such that they match the initial density profiles in (21)-(23).
For the microscopic models, to match the boundary conditions
in (24)-(26), additional vehicles need to be simulated before
the stretch of road. This technique is similar to using ghost
cells in finite volume methods [46]. Both the ARZ model with
the MRLE and the IIDM are simulated in MATLAB while the
EIDM is simulated using SUMO.

B. Model Calibration

The parameters for the microscopic models are chosen
such that the error between the microscopic and macroscopic
models is minimized. Here, the error is calculated as the
root mean square error (RMSE) between the velocities of the
models given as

Pty (u(z 1) — i(z, 1)?

- Ry

RMSE =

27

where u(z,t) is the velocity field from the ARZ model and
¥(z,t) is the estimated velocity field of the microscopic
models obtained through KDE. The upper and lower bounds,
DPmax and ppin, for the parameters in (6)-(9) are given in
Table I. The minimization problem is solved using fmincon
in MATLAB. The ARZ model parameters are given in Table II,
while the parameters for the IIDM and EIDM are calibrated
based off of the ARZ parameters and are shown in Table III
for each scenario. The maximum speed is taken as the nominal
speed limit on a single lane road, while the maximum density
is found by allowing a minimum distance between stopped
vehicles of 2 m. The width of the kernel, A, is also determined
via the same minimization problem, with its bounds being
given in Table I. For all three case studies the width of the
kernel is 49.89.
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TABLE I
BounDs FOR MODEL PARAMETER CALIBRATION

Parameter Unit Pmin | Pmazx
Desired Velocity [m/s] 10 25
Maximum Acceleration [m/s?] | 0.01 10
Acceleration Exponent [-] 0.01 10
Minimum Following Distance | [m] 0.01 10
Desired Time Headway [s] 0.01 10
Maximum Deceleration [m/s?] | 0.01 10
Kernel Width [-] 9 50
TABLE IT

PARAMETERS FOR ARZ MODEL

Parameter | Value | Unit

Vma:t 15 [m.fs]

Prmaz 165 [cars/km]

T 10 [s]

TABLE III
PARAMETERS FOR [IDM AnD EIDM
Parameter | Free Flow | Congested | Mixed | Units
o 12.21 7.95 10.01 [m/s]
a 1.20 498 130 | [m/s?]
& 1.22 0.08 0.80 [-]
S0 5.49 0.87 3.61 [m]
T 0.93 0.51 0.23 [s]
b 5.02 5.01 501 | [m/s?]
VI. RESULTS

The 1000 m long stretch of road is simulated for 45 s
and the energy profile from each model is evaluated over the
three different case studies. The results are evaluated based on
RMSE, minimum and maximum percentage error, and mean
average error (MAE). The RMSE is calculated for density and
energy the same as it is in (27). The equation for MAE is given
as

] Ry Ry

DD et - 3@

fi=1 j=1

MAE = (28)

Hy -H

where y(z, t) represents data from the macroscopic model and
¥(z, t) represents data from the microscopic models.

A. Free Flow Traffic

The density for the free flow simulations is shown in
Fig. 4 across the entire stretch of road. The results from the
ARZ model are shown in Fig. 4(a), the results for [IDM
are shown in Fig. 4(b), and the results using SUMO are
shown in Fig. 4(c). There is good agreement between the
density from the ARZ model and the estimated density from
both microscopic models. The only difference in the density
evolution of the different models is the density gradient after
30 s. In Fig. 4(a) and Fig. 4(b) there is an even distribution as
density goes from 50 cars/km to 25 cars/km. But, in Fig. 4(c),
the high density region has a slightly different shape. The
resulting higher density region thus extends a little further in
the EIDM simulation than in the ARZ simulation. The RMSE
between the macroscopic model and microscopic models is
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0.79 cars/km for both as seen in Table IV and Table V.
This means that, on average, over the whole stretch of road
there is only a difference of less than one car between the
models. The mean average error between the models is less
than 0.5 cars/km.

The resulting energy output of each model is shown in
Fig. 5. The MRLE is able to capture the energy usage in a
free flow traffic scenario with a maximum error of less than
1% and a minimum error of around —4%. Also, the MAE
is less than 3 kJ, which shows good agreement between the
models. This is good because it shows that, in the absence
of traffic jams, the MRLE can accurately predict the energy
usage of traffic. Now it is necessary to show that the MRLE
can accurately estimate energy usage in the presence of traffic
jams.

B. Congested Traffic

Congested traffic is important to model, especially when
considering energy-based control, because this condition is a
significant source of inefficient operation and idle time. The
resulting density profiles from the congested traffic case study
are shown in Fig. 6 for the ARZ model, IIDM, and SUMO.
Because the traffic in the first half of the road starts at the
maximum density, the vehicles in the beginning of the road are
at standstill, hence zero speed. As the simulation progresses,
the location of the front of the traffic jam, originally at x =
500 m, moves backwards until no part of the road is at the
maximum density. The density gradient over the traffic jam is
much steeper in the two microscopic models compared with
the ARZ model. In the ARZ model, Fig. 6(a), no part of
the road is at maximum density at around 35 s and there
is a much smoother transition from higher density to lower
density, as seen by the wide bands of orange, yellow, and
light blue. For both the IIDM and EIDM, Fig. 6(b)-(c), the
backwards propagating wave travels slower, resulting in a
delayed response. In the SUMO simulation, Fig. 6(c), the first
100 m of road are still at maximum density at the end of the
simulation. The steepness of the density gradient at the traffic
jam location can easily be seen in Fig. 6(c), where the bands
are very thin going from red to blue.

This slight mismatch in density evolution arises from the
calibration of model parameters. The parameters were cali-
brated such that the velocity profile of the models matched,
not density, so some mismatch in density is expected. This
is because the desired distance between vehicles at a certain
speed is different in each model, so the resulting density will
be slightly different too. As well, the mismatch between the
IIDM and SUMO comes from the slight differences in the
acceleration function, as mentioned in Section II. Despite this
difference in response time, the maximum error between the
ARZ model density and IIDM density is less than 8% while
the maximum error between the EIDM and ARZ model is
around 11%. This difference in density results in an RMSE
of 3.92 cars/km and 5.76 cars/km for the comparison between
the ARZ model and IIDM and EIDM, respectively. This means
that, on average, there is only about four more cars on the road
in the IIDM and six more cars in the EIDM as compared to
the ARZ model. The MAE between the ARZ model and IIDM
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TABLE IV
ERROR BETWEEN ARZ MODEL AND IIDM FOR ALL SCENARIOS

Scenario Density [cars/km] Energy [kJ]
¢ Max Error [%] | Min Error (%] | RMSE | MAE | Max Error [%] | Min Error (%] | RMSE | MAE
Free Flow 4.76 -4.49 0.78 0.36 0.68 -4.04 4.44 2.88
Congested 7.74 -3.99 3.92 2.39 4.04 -10.70 482 3.59
Mixed 6.95 -5.54 2.29 1.33 2.23 -7.48 6.56 4.97
TABLE V
ERROR BETWEEN ARZ MoODEL AND EIDM FOR ALL SCENARIOS
Scenario Density [cars/km] Energy [kJ]
¢ Max Error [%] | Min Error (%] | RMSE | MAE | Max Error [%] | Min Error [%] | RMSE | MAE
Free Flow 7.26 -5.89 0.78 043 0.85 -3.98 37 2.49
Congested 11.09 -9.32 5.76 3.53 1.03 -10.82 543 3.99
Mixed 5.00 -1.75 1.84 1.06 6.00 -6.61 5.88 4.66
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Fig. 6. Density profiles for ARZ model (a), IIDM (b), and EIDM (c) under congested conditions.

is 2.39 cars/km and between the ARZ model and EIDM it is
3.53 cars/km.

The energy profiles for all the three models are shown in
Fig. 7. Overall, the MRLE matches well the energy outputs

of the two microscopic models in both values and shape of
the energy curves. While the shape of the curves are similar,
there some small differences in the energy output. The MRLE
results, shown in Fig. 7(a), have a larger region of higher
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energy usage, which is the red color on the plot. Compared
with the two microscopic models, the higher energy region
extends to around x = 450 m when using the MRLE and only
reaches around x = 550 m at the end of the simulation for the
two microscopic models. This is the result of the difference
in the density curves talked about previously. The gradient
between lower energy production (blue) and higher energy
(red) is the same for both the MRLE and microscopic models.
Overall, the MRLE over-predicts the energy usage and has an
RMSE of 4.82 kJ and 5.43 kJ for the comparison with the
IIDM and with the EIDM, respectively. But, this is relatively
small when compared with the maximum energy usage, which
is around 165 kJ. The absolute maximum energy error of the
MRLE is less than 11% in comparison with both microscopic
models, with most of this error coming from the difference in
density gradient over the traffic jam, as mentioned before.

C. Mixed Traffic

The mixed case is the most important comparison because
often times traffic will fall within both the free flow and
congested regimes along a stretch of road. The comparison
between density profiles for all three models is shown in Fig. 8.
Since traffic falls in both the congested and free flow regime
the traffic density waves in Fig. 8 fan out in both directions.
Qualitatively the profiles look similar, though the propagation
of the higher density front is slightly different. In both the
IIDM and EIDM, the density front remains relatively the same
for the first 10 s before starting to fan out. In the ARZ
model, on the other hand, the density front starts to fan out
immediately in an almost linear fashion. This is because the
ARZ model reacts slightly quicker to changes in density than
the two microscopic models. This same behavior was seen
in the congested case, too, where the location of the traffic
jam moved backwards along the road quicker for the ARZ
model compared to the other two models. The location of
the traffic jam front in the IIDM, Fig. 8(b), stays relatively
constant, whereas in both the macroscopic model, Fig. 8(a),
and microscopic SUMO, Fig. 8(c), simulation it starts to
propagate backwards along the road. This can be seen in the
lighter red section in Fig. 8(a), which is much wider than in
either Fig. 8(b) or Fig. 8(c).

Finally, the energy profile obtained using the MRLE
together with the ARZ model is shown in Fig. 9(a), while
Fig. 9(b)-(c) shows the energy profiles of the IIDM and EIDM.
There is good agreement between the results from the MRLE

and from the microscopic models as the shape of the energy
curves are very similar. One thing to note is that for the
ARZ model and IIDM, the area from 0 - 400 m after 30 s
has a slightly different shape than the SUMO simulation. The
results from the ARZ model using the MRLE and IIDM give
a relatively flat energy curve in this region, meaning there’s no
change in energy along that stretch. But, the SUMO simulation
using the EIDM still has a change in energy. As mentioned
before, this is because of the differences in the acceleration
function using in the SUMO model. The high energy region
in Fig. 9(a) also has a slightly different shape than that of
Fig. 9(b) and 9(c). The energy output of the MRLE is slightly
higher and this results in a steeper gradient in the section of
800 - 1000 m.

The maximum and minimum point to point error in density
and energy along with the respective RMSE between the ARZ
model and IIDM are shown in the last row of Table IV, while
the errors between the EIDM and ARZ model are shown in
the last row of Table V. The maximum and minimum errors
between the ARZ model and I[IDM in density fall below +7%
and below +8% for the comparison between the ARZ model
and the EIDM. Most of the error occurs after 15 s where
the density in the EIDM starts to fan out more than in the
ARZ model, as shown previously in Fig. 8. The RMSE in
density is 2.29 cars/km for the comparison with the [IDM
and only 1.84 cars/km for the comparison with the EIDM.
These error values fall between the values for the free flow
and congested case which is expected since the mixed case
is a combination of the two previous cases. Overall, this
shows very good agreement as, on average, there is only
a difference of around two cars over the entire simulation
domain.

In terms of energy, the MRLE is able to correctly estimate
the energy usage in the mixed scenario with an absolute value
maximum point to point error with the IIDM of only 7.5%.
The MRLE matches the EIDM, and thus SUMO, better with
an absolute maximum error of only 6.6%. Most of the error
in energy between the macroscopic model and microscopic
models is negative meaning that the MRLE overestimates the
energy usage. This is likely due to the fact that vehicles
accelerate more aggressively when starting from standstill
in the macroscopic model than in either of the microscopic
models. For the mixed case, the RMSE between the energy
calculated using the MRLE and the microspopic models is
6.56 kJ and 5.88 klJ, respectively for the IIDM and EIDM.

Authonzed licensed use limited to: The Ohio State University. Downloaded on July 05,2024 at 20:10:09 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BLOCK AND STOCKAR: PHYSICS-INSPIRED DISTRIBUTED ENERGY EQUATION

1

. [
g .
s
E =
50
o 200 400 600 800 1000

Position [m]

(a)

45

Density [car/km|

z

0

mn

I [

o w“
a 200 400 600 EOO 1000

Pasition [m]

(®)

Fig. 8. Density profiles for ARZ model (a), IIDM (b), and EIDM (c) under mixed conditions.

45
250
ann
2
é 150 @
5 100 [E
50
o
o 200 400 600 800 1000

Position [m]

(a)

45 i
40 2
£
20
an E
=
- & gy
T =0, o
BoE
g E £
5 Jﬂ'.’['5
]
L]
a 200 400 600 EOO 1000

Pasition [m]

()

10 100

8 50
g ]
o 8
d #
= =
£ z
n E w g
S &

60

50

40 600 80 1000
Pogition [m]
©
45

‘ )

200
=
A
1560 @
-]
100 H

400 600
Position [m]

(c)

B00

Fig. 9. Energy profiles for ARZ model (a), IIDM (b), and EIDM (c) under mixed conditions.

VII. CONCLUSION

This paper presented a novel physics-based, distributed
energy equation for macroscopic models. First, one macro-
scopic traffic flow model, the ARZ model, and two micro-
scopic car-following models, the IIDM and EIDM, were
presented. Then, kernel density estimation was used to con-
vert the individual vehicle trajectories to their macroscopic
counterparts so that the ARZ model with the distributed
energy equation could be compared to the microscopic results.
Then a case study was presented and the parameters of the
microscopic models were calibrated such that their velocity
profiles matched that of the ARZ model. The proposed MRLE
was then evaluated in different traffic scenarios to test its
accuracy. It was shown that, in most cases, the MRLE was
capable of producing the same results as SUMO as well as
another microscopic traffic model, within +10%. Both the
macroscopic ARZ model and microscopic IIDM and EIDM
reproduce accurate traffic results and the developed MRLE is
similar to the energy equations used for microscopic models.
Because of this, the developed model has a low error in all
scenarios when compared against microscopic models. These
results are particularly promising in light of energy minimiza-
tion problems for large scale traffic simulation. A shortcoming
of this study is that the influence of road grade and drag
coefficient were not investigated. On a real road, the change
in grade would be enough to affect the energy usage of the
vehicles traveling over it. In this study, that influence was
ignored. In future work, that will be considered to better
characterize energy usage. As well, the drag coefficient is
currently modeled as a constant, but should be modeled as
a function of density. This is left for future work.

One of the future challenges is combining this work with
current traffic control literature to setup energy minimization

problems. Currently, energy minimization problems are com-
mon in individual vehicles, but when the problem gets too
large, or there are too many vehicles to model, real time
computation of the control problem may not be possible.
So, it becomes advantageous to use a macroscopic traffic
PDE model for control. The issues lie in how to set up the
minimization problem and how to control the traffic flow.
Currently work is being done to define a control method
that is able to handle both energy minimization and other
control objectives such as maximizing traffic outflow, tracking
a desired density profile, and reducing time spent in traffic
jams.
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