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1. Introduction and preliminaries

In this paper we obtain a local limit theorem for partial sums (S,),,; of a stationary sequence of random variables, which
are linear combinations of dependent innovations. This is a result about the rate of convergence of the probabilities of the type
Pla< S, <b).

We shall consider the case of non-lattice random variables. The lattice case means that there exists v > 0 and a € R such that
the values of all the variables in the sum S, are concentrated on the lattice {a + kv : k € Z}, whereas the non-lattice case means
that no such a and v exist.

In the non-lattice case, the local limit theorem has been well-studied for independent observations. We refer the books
by Ibragimov and Linnik (1971), Petrov (1975), and Gnedenko (1962). See also the recent papers Dolgopyat (2016), Fortune et al.
(2021), and the references therein. When the innovations are independent and have finite second moment the local limit theorem
for linear random fields was studied in a paper by Fortune et al. (2021). In the case that the innovations are independent and have
infinite second moment, we refer to the papers by Shukri (1976), Peligrad et al. (2022) and the references therein for the local limit
theorems on linear processes or in general on linear random fields.

When the innovations are dependent, a first attempt to study the local limit theorem for linear processes can be found
in Merlevede et al. (2021). In that paper, among other results, it was considered the problem of local limit theorem for linear
processes with short memory (i.e. absolutely summable coefficients) and the innovations functions of y-mixing Markov chains.
We are not aware of other results in this direction. We obtain here the local limit theorem for partial sums of linear processes
with innovations functions of a lower-elliptic Markov chain, centered at expectations and with finite second moment. The general
coefficients allow for both short and long memory.

* Corresponding author.
E-mail addresses: peligrm@ucmail.uc.edu (M. Peligrad), sang@olemiss.edu (H. Sang), nzhang@towson.edu (N. Zhang).

https://doi.org/10.1016/j.spl.2024.110108
Received 14 June 2023; Received in revised form 5 March 2024; Accepted 9 March 2024

Available online 13 March 2024
0167-7152/© 2024 Published by Elsevier B.V.


https://www.elsevier.com/locate/stapro
https://www.elsevier.com/locate/stapro
mailto:peligrm@ucmail.uc.edu
mailto:sang@olemiss.edu
mailto:nzhang@towson.edu
https://doi.org/10.1016/j.spl.2024.110108
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2024.110108&domain=pdf
https://doi.org/10.1016/j.spl.2024.110108

M. Peligrad et al. Statistics and Probability Letters 210 (2024) 110108

We assume now that (vy),¢z is a strictly stationary Markov chain defined on (£2, K,P) with values in a Polish space (X, B(X)),
where B(X) is a Borel o-field on X, with regular transition probabilities: for k € Z and A € B(X)

O(x,A) =P(v, € Alvy_; = x) (D)
and marginal distributions denoted by
m(A) = Py, € A). )

Throughout the paper we shall assume that a lower-elliptic condition holds, namely that there is a constant a > 0 and a X’ € B(X)
with P(X’) = 1 such that for all A € B(X) and x € X’ we have
O(x, A) > a-m(A). 3
Let h be a real-valued measurable function and define for all j € Z
¢ = h(v j)' ()]
Assume that E&, =0, IEIC(Z) < o0, and &, has a non-lattice distribution.
In this paper, we consider linear sequences of random variables of the form
X; =Y aid ®)
i€’
defined on Z, where the collection (g;);c; of real coefficients satisfies
z ai2 < 0. (6)
i€Z
As a matter of fact, the sequence (X;);; given in (5) is centered at expectation, stationary and exists in L*(R) if and only if (6)

is satisfied. To see this, by relation (3.4) in Merlevede et al. (2021) or (21) in Merlevede et al. (2022), our condition (6) implies
that, there exist ¢, ¢, > 0 such that

o X @EE) SE(Y afi)’ <S¢ Y, alBE), 7

li|<n li|<n lil<n

which further implies that for any integers m > n, there is some constant C > 0
2
1E< Y oag- Y, a,..»:,_,.) <Cc Y ZEE).
li|<m lil<n n<|i|<m

Taking condition (6) into account, ¥, _j;<x a[2 — 0 as n,m — co. Therefore (};, a;¢;_;) is Cauchy in L2. Therefore, Ylil<n @i&j—i has
a unique limit, which we denote by

Z a5 = lim Z @&, in L.

i€z lil<n

We say that the process has long memory (long range dependence) if Y, la;| = .
Now define the partial sums of the stationary sequence (X ) as

S, =Y X, ®
j=1

with variance
B2 = Var(S,,). 9

Since X; defined in (5) can be written as X; = ¥, _; a;_;&;, the sum S, = Z;’zl X; can be expressed as an infinite linear combination
of the innovations (¢;);c7, namely

n
S, = Z b,; &, where b, ; = Z a;_;. 10
i€z Jj=1
We also denote
Yn = sup |b,;|.
i€’

We shall establish the following uniform local limit theorem:

Let (S,) be a sequence of random variables, (B,) be a sequence of positive numbers. We say that (S,, B,) satisfies the local limit
theorem if for all continuous complex-valued functions g(x) with |g| € L'(R) and with Fourier transform g real and with compact
support,

lim sup |27 B,Eg(S, —u) — [exp(—u* /2B2)] / g(x)/l(dx)] =0, (11)

n—0 ,cm

2
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where 1 is the Lebesgue measure. By arguments in Section 4 of Hafouta and Kifer (2016) this result implies that (11) also holds for
the class of real continuous functions with compact support and by Theorem 10.7 in Breiman (1992) it follows that

lim sup (V2zB,P(a+u<S, <b+u)— [exp(—uz/ZBf)](b —a)

n—=0 ,cp

=0,

for any a < b. In particular, since B, — o0 as n —» o, then for fixed A > 0,

lim sup (V2zB,Pla+u<S,<b+u)—(b—a)|=0.
n—oo Jul<A
If we further take u = 0, then,
lim V2zB,P(S, € [a,b]) =b—a. (12)
n—o0

In other words, the sequence of measures \/EB,,]P’(S,, € [a, b]) of the interval [a, b] converges to Lebesgue measure.

It should be noted that the local limit theorem, as formulated in (11) is useful to the study of recurrence conditions for S,, as
explained in Orey (1966) and Mineka and Silverman (1970).

A few remarks about notation and terms used in the paper follow. To indicate relative growth rates at infinity, we use a, x b, to
indicate that a,/b, — C € R*, and the particular case when C =1 is denoted a, ~ b,. By a, = o(b,) we understand that a, /b, — 0
and a, = O(b,) means that limsup |a,/b,| < C for some positive number C. Throughout the paper, an indicator function will be
denoted as Z. A function / : [0,00) — R is referred to as slowly varying (at o) if it is positive and measurable on [A, o) for some
A € R* such that lim_,  /(Ax)/I(x) = 1 holds for each 4 € R*. The integer part of a real number x will be denoted by |x].

2. Main results

In this work, we investigate the conditions under which the local limit theorem holds for the partial sums of the linear random
sequences given by (5).

Denote the characteristic function of &, by @, () 1= Eexp(itd). It is well known that &, not having a lattice distribution is
equivalent to log, (D] < 1 for all 7 # 0. On the other hand, the Cramér condition means that limsup,_,, log, O] < 1. Thanks to the
Riemann-Lebesgue lemma, the Cramér condition is automatically satisfied if the distribution function of & is absolutely continuous
with respect to the Lebesgue measure. It should be mentioned that &, has a non-lattice distribution whenever @e, () satisfies the
Cramér condition. See Theorem 1 on page 10 in Petrov (1975) or Lemma 5.1 in Fortune et al. (2021).

Here is the local limit theorem, the main result.

Theorem 1. Assume that the innovations (&;) of the linear process are defined by (4), have non-lattice distribution, mean 0, finite second
moment, and satisfy (3). The coefficients satisfy Y, a[Z < oo. Let S, and B, be defined as in (8) and (9). Assume B, — oo. In the case
the process has long range dependence, we assume that the innovations satisfy the Cramér condition. Under these conditions the local limit
theorem in (11) holds.

Note that the conditions imposed on the coefficients (ak) are minimal in the following sense. As we have seen in (7) and the
comments following this relation, Y., a? < co is necessary and sufficient for the existence of the linear process in L2(R). On the
other hand condition B, - o cannot be removed. To see this, we take qy = 1,a; = —1, and a; = 0 for i # 0,1 and (&) i.i.d. with
mean zero and finite second moment. Then, S, = & —¢,,, B, < o, the distribution of .S, is not invariant, and (12) cannot hold.

In the short memory case for a smaller class of Markov chain, using an elliptic condition that implies y-mixing, Merlevede et al.
(2021) in Corollary 2.6 obtained a local limit theorem under the additional assumption inf; |a; + -+ +a;| > 0.

3. Examples

First we mention the example of a strictly stationary Markov chain satisfying (3), which is provided in Bradley (1997), Remark
1.5.

Example 1. Assume that in the Markov chain (v;),c; the marginal distribution of v is uniformly distributed on [0, 1] and the one
step transition probabilities are as follows:
For each x € [0, 1], let

P(v; = x|lvg =x)=1/2
and for any Borel set B C [0, 1] — x,
P(v; € Blyy = x) = (1/2)A(B),
where 4 is the Lebesgue measure on [0, 1]. Then (3) holds with a = 1/2.

Next we give some particular examples of classes of coefficients for which the conclusion of Theorem 1 is satisfied, namely
satisfying Y,.;a* < o0 and B? — co.
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Example 2. Assume that a; = I(|i])|i|™ with a € (1/2,1), where I(x) is a slowly varying function at co. In this case B2 « n*~2¢ I2(n)
since B? o« 2 = ¥, b2, o n72* [%(n) (see, Peligrad and Utev (2006) or Theorem 2 later for the first part and Surgailis (1982),
Theorem 2, or Wang et al. (2001) for the second part).

In particular, we mention the fractionally integrated processes defined by
TG +d)

= — —d = . . i = —
Xe= (=BG = Y g, witha = 7omrs

i>0
where 0 < d < 1/2, B is the backward shift operator, B¢, = &,_,. For this example, by the well-known fact that for any real x,
lim,,_,o, I'(n + x)/n*'(n) = 1, we have lim,_, ., a,/n*"! = 1/T(d).

Example 3. Define qy =1, a; =0 fori <0 and a; = (i+ 1)"* —i~® for i > 1 with a € [0, 1/2). By Example 2 of Dedecker et al. (2011),

2 2 _ 2 1-2a
Bixt;=3Y, b, xn - 0.

Example 4. Define a; = 1, a; = 0 for i <0 and a; = i~"/%(logi)™ for i > 1 with @ > 1/2. Then B « 72 = 3, ., b . o n’(logn)'~27.
4. Proof

4.1. Facts about the lower-elliptic condition

Relation to lower y-mixing coefficient.

We introduce now a mixing condition which is comparable to condition (3).

Following Bradley (2007), for any two c-algebras .A and B define the lower y-mixing coefficient by
P(ANB)
P(A)P(B)’
Obviously 0 < y/(A,B) < 1.

Notice that, in terms of conditional probabilities defined by (1), we also have the following equivalent definition:

v'(A, B) = inf A€ A and B € B, P(A)P(B) > 0.

o .
y) =ess 11)1Cf Aengfx) O(x, A)/P(vy € A).

Note that if (3) holds, then q/f >a >0 and if 1//[ > 0 then (3) holds with a = 1//1’.
An important step in the proof of Theorem 1 is the following reformulation of Theorem 1 in Peligrad and Utev (2006):

Theorem 2 (Peligrad and Utev, 2006). Assume that the innovations (&;) of the linear process are defined by (4), have mean 0, finite second
moment, and satisfy (3). The coefficients satisfy Y.,c, a,.2 < oo. Let S, and B, be defined as in (8) and (9) and assume B, — 0. Define

2 _ 2
T = Z bn’,..
i€z
Then there is ¢ > 0, such that
B2

lim —2 =¢2, (13)
n—oo T
n
and
S = N, 1)
B o

n

The constant o> = 2z f(0), where f(x) is the spectral density of (&Diez-

Let us explain how to get this reformulation. By Theorem 7.4 (d) in Bradley (2007) and by condition (3), we have 1 — y/r’, <
(1 =a)" = 0 (i.e. (v;)rx0 is lower y-mixing).
Furthermore, if for h € L?(X, B(X)) we denote by

Oh(x) = [h(»)O(x,dy)

and if 4 is centered at expectation then, by Lemma 10 in Merlevede et al. (2021) (which is actually due to R. Bradley), we know
that

IQAM)Il, < (1 —y")llAll,. (14)
By stationarity and because o(¢,,n < —j) C F_; = o(v,,n < —j), and the sequence is Markov, we obtain

[EEEE|0,.n < =) < & - 1EEIF_ )l
=&y - 197Gy < (1 — aYE(ED).
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By this latter inequality we can see that condition (2) in Peligrad and Utev (2006) is satisfied and the conclusion of Theorem 1
there holds. Since a lower y-mixing sequence is ergodic, the invariant sigma field is trivial. Furthermore, we have that the spectral
density f(x) of (§,),z, exits, is continuous and f(0) = lim,,_, o, E(ZLIQ)Z /n. Furthermore f(0) > 0 because, as explained in Merlevede
et al. (2022)

E&Z. (15)

EQQ_ &P  o-
Zia]EégS ’nll = aa

By the Slutsky’s theorem, an equivalent formulation of this result is

S
= N(O,62).

n
This theorem also follows from Theorem 12.8 in the book (Merlevede et al., 2019) and its proof.
In order to obtain our results we shall need a suitable bound on the characteristic function. For this purpose, we mention
Proposition 10 in Merlevede et al. (2022):

Proposition 3 (Merlevede et al., 2022).Let S, = Z;;l Y, Then, for dll n,Y; , = g, ;(v;) and (3) is satisfied. Then

[E(exp(ius, )| < exp[-C (1 = [Eexp(iu;,)I)
j=1

for all u and for some constant C > 0, which does not depend on u, n.
4.2. A sufficient condition for the local limit theorem

As a matter of fact, (11) is a special case (in which the following random variable L is the standard normal random variable) of
the following local limit theorem. Let (S,) be a sequence of random variables, (B,) be a sequence of positive numbers and L be a
random variable with characteristic function f;. We assume the underlying convergence in distribution:

S,
B—" = L, where f; is integrable and B, — oo. (16)

n
In the case when the variables (5,) do not have values in a fixed minimal lattice, the sequence is said to satisfy a local limit theorem
if for any continuous function g on R with compact support,

lim sup | B,Eg(S, +u)— h, (—l) / g(z)/l(dz)' =0, a7
€R Bn

n—co

where 4 is the Lebesgue measure.

Note that the integrability of f; implies that L has a continuous density function which we denote by %, (see pages 370-371
in Billingsley, 1995).

Here is a theorem in Peligrad et al. (2022) (Theorem 4.1), which is an important tool in the proof of Theorem 1.

Theorem 4 (Peligrad et al. 2022).Assume that the convergence in distribution in (16) holds. In addition, suppose that for each D > 0

. . . Sn
lim lim sup Eexp ( it—
T—e  pooo JT<|t|<DB, B,

Then (17) holds.

dt =0. (18)

4.3. Proof of Theorem 1

To prove Theorem 1, we will first show that .S, defined by (10) can be reduced to a finite sum from —N, to N,, for N, sufficiently
large. Then we prove the local limit theorem for this finite sum by using an analytical and combinatorial approach.

Under the conditions of Theorem 1 we know that the CLT in Theorem 2 holds. Hence, to prove Theorem 1, we only need to
verify (18) of Theorem 4.

Step 1. In this step, we show that we can reduce the problem to considering a finite sum. Let N, be a positive integer such that

a[2 <e™.

i>N, or i<n—N,
We use the decomposition
i "
S, =S8, + 8, where

S,’,= Z by i&is S,l,,= Z by i&;.

lil<N, |i[>N,
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But
n 2 n
b = a_; | <n @ <n? a* < ne
n,i k—i k—i i ’
|i|>N, li|>N, \k=1 |i|>N,, k=1 i>N, or i<n—N,
and so
lim ' b2, =0.
n—co nit
[i[>N,

Then, by relation (3.4) in Merlevede et al. (2021) or (21) in Merlevede et al. (2022)
E(S)Y? = E(S, = S)? S EE) D b2, < eEE)ne™,
li|>N,
and so
lim E(S”)* = 0.
n—oo
We can see that, with the notation
@P= > b
[i|<N,
we easily obtain by the above arguments that

(Tl )2 IE(S/ )2
lim —— = lim =1
n—oo 1-3 n—oo ES%

Now, by the mean value theorem and (19), for any 7 € R,

S, s’ -s'
Eexp (it—") —Eexp <it—") u—
Bn Bn

<2UE|—2
21 oo 2l N2
<, VESI? = oy el@me.

n
Hence, for any D > 0,

Sy S,
/ Eexp | it— dt—/ Eexp | it— ) dt
T<[t|<DB, B, T<[t|<DB, B,
< 2—"\/(:21@(55)(3*" / |t|dt < 2nD B,/ e, B(E2)e".
n T

Since X, is stationary, Var(S,) = B2 < n?Var(X), we have

<|t|<DB,

2

nB,ye™ <n“ye" —0asn— co,

and we obtain
. . . Sn
lim limsup ‘Eexp(zt—)|d!
T=o n-oeo JT<|1|<DB, B,
S/
= lim limsup/ ‘Eexp(it—")|dt.
T— pseo JT<|1|<DB, B,
Step 2. By the arguments in Step 1, we reduced the proof to showing that

S/
lim lim sup/ |E exp (it—") |dt = 0.
T n = Jr<i<DB, B,

By Proposition 3, there is ¢ > 0 such that for any t € R

s’ b, Z
Eexp <itF:> <exp| —c Z (l—|]Eexp(itB—’n§0)| ) ).

/1SN,
Therefore the theorem is established if we are able to prove

b,; 2
lim limsup / exp( —c (1 - |Eexp(it—L&)] ) | dr =o0.
T po00 T<|t|<DB, Z Bn 0

[/ISN,

- . . 2
We order now the numbers (|b,;])_y, <<y, in a decreasing order and denote them as (|5, ;1);<;j<on,+1- Recall (=)

(20), i.e.

A 72
(Tn) - z bn,k'
1<k<2N,+1

Statistics and Probability Letters 210 (2024) 110108

(19)

(20)

21D

(22)

is defined by
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We shall construct a sequence (k,),, with the property that for fixed n, k, partitions (1-,’1)2 into two approximately equal parts, one
containing the sum up to k,, and the other from k, + 1 to 2N,, + 1. More exactly, k, is defined in the following way:

knzinf{f;ISszZNﬂ+land > B2 (T,’l)z}.

I<|k|<Z
Then
!
1 1 P 1 Yn\2
3 < 2 bn,k < ) +(7:_) s (23)
(Tﬂ) 1<k<k), n
where
!’ _§ _ 7o
Yo 1= buy = 1sirsnza}\)f(n+1 bui-

Since y,/B, — 0 as n — 0, by Lemma 8 in Appendix and the fact that B, — oo, we also have y/ /7, — 0, and therefore there exists
a constant C > 0, such that for sufficiently large n,

lS 1 z I;Z’ <3 24

!
k, > % C-Z) . (25)
It is convenient to denote
bn
B

. 2
> (= [Eexplit—2&)| )
IjISN, "

by
= Y (-[EexplirZ=&)l )= H,@.

1<j<2N,+1

For a d > 0 fixed, to be selected later, we write

/ exp(—cH,(1))dt <
T<|t|<DB,

:/ exp(—cH,,(t))dt+/ exp(—cH,(1))dt
T<|t|<dB,/|by,| dB,/|by, |<I1|I<DB,

= I(T)+ I1,(T).

For the first part I,(T), we use the fact that if |¢| < dB,/|b, |, then |¢| < dB,/|b,;| for all k, <j < 2N, + 1. Using Lemma 8 in
Appendix we easily get,

15 Yu
sup <—->0asn— oo,
1<j<2N,+1 By 0

n,jl

by Corollary 7 in the Appendix, there exists N(d) such that for n > N(d) then

b . 2 2 52 .
E exp(it —2 <1-=PHEg2
|E exp(i B, o)l < s &
So for all j > k, and |t| < dB,,/lB,,‘knl
= 2 72
bn j 2 bn j
1 — |Eexp(it—2 > 2P Eg,
|E exp(i B, o)l > ED &5

Therefore
= 2

b .

H _ .ony
n(0) 2 Z (1 = [Eexp(it—2=&o)l )

ky<j<N, n

2 o 72 g2
25 Z B2 EE,

n o ky<j<N,
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and by (13), (21), (24) we can find a constant b > 0 such that for » sufficiently large
H, (1) > b?.

It follows that for » sufficiently large,

/ exp(—cH, (1)) < / exp (—bt*) dt
T<l1<dB,/Ibyy, | T<l11<dB, /by, |

< / exp (—bt2) dt.
T<|t|

We immediately obtain
lim limsup I,(T") = 0.
T—o p

Now we analyze the part I7,(T). We shall use separate arguments for the cases when the linear process has short memory or long
memory. If the sequence (X)) has short memory, i.e. by = ¥, la;| < oo, then the sequence (16,1) is uniformly bounded by b, for
i € Z and n € N. Notice that d < d|b,;|/1b, | < tlb,;|/B, < Db for dB,/|b,; | <|t| < DB, and 1 <j < k,. Since the innovations
have a non-lattice distribution and @, is continuous, there exist 0 < r; <1 and d > 0 such that

b, : N
IE explit 5= &0)| = g, (1B, / B)| < 74
n

for all dB, /b, | <|t| < DB, and 1 <j <k,
In the long memory case, by the Cramér condition we know that
lim |E(e™0)* < /' < 1.
U—0o0
For ¢ > 0 small enough, we can find d = d, > 0 and have
|IE((?"“50)|2 <r' +e=r,<1for |ul>d.
If |t| > dB,/|b,, | we have |th,;/B,| > d for 1 < j <k, and then

INJ ) 2
|Eexp(it%§o)| <r, <l
n

We take r = max{r,,r,}. Therefore, for |¢| > dBn/lﬁn,knl and 1 < j <k, we have
7 2
bnj
1 —|Eexp(it—=¢)| >1-r,
BV!

and then,
b,; z
L)1) 2 k(1= ).

H,) > Z (1 - |Eexp(it

1<k,

So we can find ¢’ > 0 such that

/ exp(—cH ,(1))dt
dB, /by, |<I1I<DB,

< exp(—ck,(1—r)) dt < exp(—ck,(1 — r))DB,
dB, /by, |<|{|I<DB,

< DB, exp(—c'k,).

Since by bound (25), (13) and (21) we can find C > 0 such that
2

T/ B 2
k,,zl<—"> zc(—”) )
2\7), n
we have
B 2
B, exp(—c’'k,) < B, exp(-c'C <—”> ),
Vn

which converges to 0 as n - oo by Lemma 8 in the Appendix and the fact that B, > w0 asn —» . []
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Appendix

We gather here some preliminary results on the characteristic function of a random variable.

Lemma 5. Let X be a random variable with real characteristic function. Then, for any t # 0

) 2
]E(eltX) <1- %E(X2](|X| < |f|_])).

Proof. Clearly

E(e"™X) = E(cos tX) = E((cos tX)I(|X| > [t|™1) + E((cos tX)I(|X ] < |1]71)).

By Taylor expansion, for a certain & such that for y>0,0< é < yand for y<0, y<é&é<0

1 1 . 1 1
cosy=1- §y2+ gy3 sin(é) <1 — 5y2+ g|y|3.

Replacing y by tX,

E(e"X) = E(costX)I(|1X| > |1]™) + E(costX)I(|X| < [¢]71)
1

_ 1 _
<P(X| > |f] 1)+1E((1 - 37X+ E|IX|3) 14X < |1l ‘)).

So
E("X) <P(X| > (7Y +P(X| < 117 - %r2E<x21(|X| )]

1 _
+ ZBAXHIAX] <117
<1- %tzE (X21(X| < 1117H) + %tZ]E(XZI(le )

=1 - 2PEOCIX| <107, O

Lemma 6. Let X be a random variable with real characteristic function and let (d,) be a sequence of constants with d,, - 0 as n — .

Then for any A > 0, there is N(A) such that if |td,| < A and n > N(A) then

E("X) <1 - %tzdeXz.
Proof. Note first that, if |¢| < A,
EX2I(X| < |AI™) <EX?I(1X] < [fI™D).
So, by Lemma 5
E) < 1= $PEXCI(X] < ™) < 1= SPEXAI(X] < 1417,

Because d,, tends to 0,

1
Ad,

So for any A > 0 there is N(A) such that for n > N(A),

y=EX2.

lim EX2I(|X]| <
n—oo

EX%I(|X]| < L) > Lpx2,
Ad,” =2
Then, clearly for any n > N(A),

EX%I(|X]| < L)| > Lpx2.
Ad, 2

Combining this with (26), for any A and n large enough, such that |1d,| < A,

E(enXy < 1 — %tzdeXZI(Ian| <|AI™H

12 2my2
S]—gldnEX. O

(26)
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Now let X’ be an independent copy of X (this means that the sequences are independent of another and have the same
distribution), and denote their difference by X = X — X’. Then

|E exp(itX)l2 = E(expit (X - X’)) = E(exp itX).

Also EX? = 2EX?, and we immediately obtain by Lemma 6 the following corollary:

Corollary 7. For any random variable X and any A > 0, there is N(A) such that if |td,| < A and n > N(A) then
[E@ X)) <1 — %tzdeExz. (27)

Next, we give a Lemma concerning the behavior of y,/B,,.

Lemma 8. Under the conditions of Theorem 1

Tu _ 1
1/2
B Bn/

n

Proof. The main part of the proof is similar to that of Proposition 2 in Mallik and Woodroofe (2011), and we give it here for

completeness. Let y, = |b,, |. By the triangle inequality, for any integer r

1B,y < 1D

nrol = n,r0+r| + |b b |

nro+r — Ynrg

Let us add these relations for r between 1 and m. We obtain

m m
mlbn,rol < Z |bn,r0+r| + z |bn,ro+r - bn,ro |
r=1 r=1

To estimate the first term in the right hand side, we apply first the Cauchy-Schwartz inequality. Then, by taking into account the
definition of B, and (13), we obtain

m 1/2

2 |bn,r0+r| < \/; 2 bi,k = O(\/;Bn)-

r=1 keZ

For the second term, by the definition of b, , by the Cauchy-Schwartz inequality and (6), we have

1/2
|bn,r0+r - bn,rol <|\2r Z al2 = O(r1/2)~
i€z
Overall,
m|b,, | = O(\/mB, +m*/?).
Taking m = B,, then
Yn |bn,r0| 1
= = =0(—). O
B, B, B!/
References

Billingsley, P., 1995. Probability and Measure, Anniversary ed. Wiley, New York.

Bradley, R.C., 1997. Every lower psi-mixing Markov chain is interlaced rho mixing. Stoch. Proc. Appl. 72 (2), 221-239.

Bradley, R., 2007. Introduction to Strong Mixing Conditions, vol. 1-3, Kendrick Press.

Breiman, L., 1992. Probability. Society for Industrial and Applied Mathematics, Philadelphia.

Dedecker, J., Merlevéde, F., Peligrad, M., 2011. Invariance principles for linear processes with application to isotonic regression. Bernoulli 17 (1), 88-113.

Dolgopyat, D., 2016. A local limit theorem for sums of independent random vectors. Electron. J. Probab. 21, 1-15.

Fortune, T., Peligrad, M., Sang, H., 2021. A local limit theorem for linear random fields. J. Time Series Anal. 42, 696-710.

Gnedenko, B.V., 1962. The Theory of Probability. Chelsea Publishing Company, New York.

Hafouta, Y., Kifer, Y., 2016. A nonconventional local limit theorem. J. Theor. Probab. 29 (4), 1524-1553.

Ibragimov, L.A., Linnik, Y.V., 1971. Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen.

Mallik, A., Woodroofe, M., 2011. A central limit theorem for linear random fields. Statist. Probab. Lett 81, 1623-1626.

Merlevéde, F., Peligrad, M., Peligrad, C., 2021. On the local limit theorems for psi-mixing Markov chains. ALEA, Lat. Am. J. Probab. Math. Stat. 18 (2),
1221-1239.

Merlevéde, F., Peligrad, M., Peligrad, C., 2022. On the local limit theorems for lower psi-mixing Markov chains. ALEA, Lat. Am. J. Probab. Math. Stat. 19 (1),
1103-1121.

Merlevede, F., Peligrad, M., Utev, S., 2019. Functional Gaussian Approximation for Dependent Structures. Oxford University Press.

Mineka, J., Silverman, S., 1970. A local limit theorem and recurrence conditions for sums of independent non-lattice random variables. Ann. Math. Stat. 41,
592-600.

Orey, S., 1966. Tail events for sums of independent random variables. J. Math. Mech. 15, 937-951.

Peligrad, M., Sang, H., Xiao, Y., Yang, G., 2022. Limit theorems for linear random fields in the domain of attraction of a stable law. Stoch. Process. Their Appl.
150, 596-621.

10


http://refhub.elsevier.com/S0167-7152(24)00077-4/sb1
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb2
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb3
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb4
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb5
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb6
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb7
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb8
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb9
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb10
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb11
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb12
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb12
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb12
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb13
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb13
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb13
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb14
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb15
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb15
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb15
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb16
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb17
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb17
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb17

M. Peligrad et al. Statistics and Probability Letters 210 (2024) 110108

Peligrad, M., Utev, S., 2006. Central limit theorem for stationary linear processes. Ann. Probab. 34 (4), 1608-1622.

Petrov, V.V., 1975. Sums of Independent Random Variables. Springer-Verlag.

Shukri, E.MM., 1976. Local limit theorems for sums of weighted independent random variables. Theory Probab. Appl. 21, 137-144.

Surgailis, D., 1982. Domains of attraction of self-similar multiple integrals. Lith. Math. J. 22 (3), 185-201.

Wang, Q., Lin, X.-Y., Gulati, C.M., 2001. Asymptotics for moving average processes with dependent innovations. Statist. Probab. Lett. 54, 347-356.

11


http://refhub.elsevier.com/S0167-7152(24)00077-4/sb18
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb19
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb20
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb21
http://refhub.elsevier.com/S0167-7152(24)00077-4/sb22

	On the local limit theorems for linear sequences of lower psi-mixing Markov chains
	Introduction and preliminaries
	Main Results
	Examples
	Proof
	Facts about the lower-elliptic condition
	A sufficient condition for the local limit theorem
	 Proof of Theorem 1 

	Data availability
	Acknowledgments
	Appendix
	References


