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A B S T R A C T

In this paper we investigate the local limit theorem for partial sums of linear sequences of the
form 𝑋𝑗 =

∑

𝑖∈Z 𝑎𝑖𝜉𝑗−𝑖. Here (𝑎𝑖)𝑖∈Z is a sequence of constants satisfying
∑

𝑖∈Z𝑎2𝑖 <∞ and (𝜉𝑖)𝑖∈Z
are functions of a stationary Markov chain with mean zero and finite second moment. The
Markov chain is assumed to satisfy one-sided lower psi-mixing condition.

1. Introduction and preliminaries

In this paper we obtain a local limit theorem for partial sums (𝑆𝑛)𝑛≥1 of a stationary sequence of random variables, which
are linear combinations of dependent innovations. This is a result about the rate of convergence of the probabilities of the type
P(𝑎 ≤ 𝑆𝑛 ≤ 𝑏).

We shall consider the case of non-lattice random variables. The lattice case means that there exists 𝑣 > 0 and 𝑎 ∈ R such that
he values of all the variables in the sum 𝑆𝑛 are concentrated on the lattice {𝑎 + 𝑘𝑣 ∶ 𝑘 ∈ Z}, whereas the non-lattice case means
hat no such 𝑎 and 𝑣 exist.
In the non-lattice case, the local limit theorem has been well-studied for independent observations. We refer the books

y Ibragimov and Linnik (1971), Petrov (1975), and Gnedenko (1962). See also the recent papers Dolgopyat (2016), Fortune et al.
(2021), and the references therein. When the innovations are independent and have finite second moment the local limit theorem
for linear random fields was studied in a paper by Fortune et al. (2021). In the case that the innovations are independent and have
nfinite second moment, we refer to the papers by Shukri (1976), Peligrad et al. (2022) and the references therein for the local limit
heorems on linear processes or in general on linear random fields.
When the innovations are dependent, a first attempt to study the local limit theorem for linear processes can be found

n Merlevède et al. (2021). In that paper, among other results, it was considered the problem of local limit theorem for linear
processes with short memory (i.e. absolutely summable coefficients) and the innovations functions of 𝜓-mixing Markov chains.
We are not aware of other results in this direction. We obtain here the local limit theorem for partial sums of linear processes
with innovations functions of a lower-elliptic Markov chain, centered at expectations and with finite second moment. The general
coefficients allow for both short and long memory.
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We assume now that (𝑣𝑘)𝑘∈Z is a strictly stationary Markov chain defined on (𝛺,,P) with values in a Polish space ( ,()),
where () is a Borel 𝜎-field on  , with regular transition probabilities: for 𝑘 ∈ Z and 𝐴 ∈ ()

𝑄(𝑥,𝐴) = P(𝑣𝑘 ∈ 𝐴|𝑣𝑘−1 = 𝑥) (1)

and marginal distributions denoted by

𝑚(𝐴) = P(𝑣0 ∈ 𝐴). (2)

Throughout the paper we shall assume that a lower-elliptic condition holds, namely that there is a constant 𝑎 > 0 and a  ′ ∈ ()
with P( ′) = 1 such that for all 𝐴 ∈ () and 𝑥 ∈  ′ we have

𝑄(𝑥,𝐴) ≥ 𝑎 ⋅ 𝑚(𝐴). (3)

Let ℎ be a real-valued measurable function and define for all 𝑗 ∈ Z

𝜉𝑗 = ℎ(𝑣𝑗 ). (4)

Assume that E 𝜉0 = 0, E 𝜉20 < ∞, and 𝜉0 has a non-lattice distribution.
In this paper, we consider linear sequences of random variables of the form

𝑋𝑗 =
∑

𝑖∈Z
𝑎𝑖𝜉𝑗−𝑖 (5)

defined on Z, where the collection (𝑎𝑖)𝑖∈Z of real coefficients satisfies
∑

𝑖∈Z
𝑎2𝑖 <∞. (6)

As a matter of fact, the sequence (𝑋𝑗 )𝑗∈Z given in (5) is centered at expectation, stationary and exists in 𝐿2(R) if and only if (6)
is satisfied. To see this, by relation (3.4) in Merlevède et al. (2021) or (21) in Merlevède et al. (2022), our condition (6) implies
that, there exist 𝑐1, 𝑐2 > 0 such that

𝑐1
∑

|𝑖|≤𝑛
𝑎2𝑖 E(𝜉

2
0 ) ≤ E(

∑

|𝑖|≤𝑛
𝑎𝑖𝜉𝑗−𝑖)2 ≤ 𝑐2

∑

|𝑖|≤𝑛
𝑎2𝑖 E(𝜉

2
0 ), (7)

which further implies that for any integers 𝑚 > 𝑛, there is some constant 𝐶 > 0

E

(

∑

|𝑖|≤𝑚
𝑎𝑖𝜉𝑗−𝑖 −

∑

|𝑖|≤𝑛
𝑎𝑖𝜉𝑗−𝑖

)2

≤ 𝐶
∑

𝑛<|𝑖|≤𝑚
𝑎2𝑖 E(𝜉

2
0 ).

Taking condition (6) into account, ∑𝑛<|𝑖|≤𝑚 𝑎
2
𝑖 → 0 as 𝑛, 𝑚→ ∞. Therefore (

∑

|𝑖|≤𝑛 𝑎𝑖𝜉𝑗−𝑖) is Cauchy in 𝐿2. Therefore, ∑
|𝑖|≤𝑛 𝑎𝑖𝜉𝑗−𝑖 has

unique limit, which we denote by
∑

𝑖∈Z
𝑎𝑖𝜉𝑗−𝑖 = lim

𝑛→∞

∑

|𝑖|≤𝑛
𝑎𝑖𝜉𝑗−𝑖 in 𝐿2.

e say that the process has long memory (long range dependence) if ∑𝑖∈Z |𝑎𝑖| = ∞.
Now define the partial sums of the stationary sequence (𝑋𝑗 ) as

𝑆𝑛 =
𝑛
∑

𝑗=1
𝑋𝑗 (8)

ith variance

𝐵2
𝑛 = Var(𝑆𝑛). (9)

ince 𝑋𝑗 defined in (5) can be written as 𝑋𝑗 =
∑

𝑖∈Z 𝑎𝑗−𝑖𝜉𝑖, the sum 𝑆𝑛 =
∑𝑛
𝑗=1𝑋𝑗 can be expressed as an infinite linear combination

f the innovations (𝜉𝑖)𝑖∈Z, namely

𝑆𝑛 =
∑

𝑖∈Z
𝑏𝑛,𝑖 𝜉𝑖, where 𝑏𝑛,𝑖 =

𝑛
∑

𝑗=1
𝑎𝑗−𝑖. (10)

e also denote

𝛾𝑛 = sup
𝑖∈Z

|𝑏𝑛,𝑖|.

We shall establish the following uniform local limit theorem:
Let (𝑆𝑛) be a sequence of random variables, (𝐵𝑛) be a sequence of positive numbers. We say that (𝑆𝑛, 𝐵𝑛) satisfies the local limit

heorem if for all continuous complex-valued functions 𝑔(𝑥) with |𝑔| ∈ 𝐿1(R) and with Fourier transform 𝑔̂ real and with compact
upport,

lim sup
[

√

2𝜋𝐵𝑛E𝑔(𝑆𝑛 − 𝑢) − [exp(−𝑢2∕2𝐵2
𝑛 )] 𝑔(𝑥)𝜆(𝑑𝑥)

]

= 0, (11)
2

𝑛→∞ 𝑢∈R ∫
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where 𝜆 is the Lebesgue measure. By arguments in Section 4 of Hafouta and Kifer (2016) this result implies that (11) also holds for
he class of real continuous functions with compact support and by Theorem 10.7 in Breiman (1992) it follows that

lim
𝑛→∞

sup
𝑢∈R

|

|

|

|

√

2𝜋𝐵𝑛P(𝑎 + 𝑢 ≤ 𝑆𝑛 ≤ 𝑏 + 𝑢) − [exp(−𝑢2∕2𝐵2
𝑛 )](𝑏 − 𝑎)

|

|

|

|

= 0,

or any 𝑎 < 𝑏. In particular, since 𝐵𝑛 → ∞ as 𝑛 → ∞, then for fixed 𝐴 > 0,

lim
𝑛→∞

sup
|𝑢|≤𝐴

|

|

|

|

√

2𝜋𝐵𝑛P(𝑎 + 𝑢 ≤ 𝑆𝑛 ≤ 𝑏 + 𝑢) − (𝑏 − 𝑎)
|

|

|

|

= 0.

If we further take 𝑢 = 0, then,

lim
𝑛→∞

√

2𝜋𝐵𝑛P(𝑆𝑛 ∈ [𝑎, 𝑏]) = 𝑏 − 𝑎. (12)

In other words, the sequence of measures
√

2𝜋𝐵𝑛P(𝑆𝑛 ∈ [𝑎, 𝑏]) of the interval [𝑎, 𝑏] converges to Lebesgue measure.
It should be noted that the local limit theorem, as formulated in (11) is useful to the study of recurrence conditions for 𝑆𝑛, as

xplained in Orey (1966) and Mineka and Silverman (1970).
A few remarks about notation and terms used in the paper follow. To indicate relative growth rates at infinity, we use 𝑎𝑛 ∝ 𝑏𝑛 to

indicate that 𝑎𝑛∕𝑏𝑛 → 𝐶 ∈ R+, and the particular case when 𝐶 = 1 is denoted 𝑎𝑛 ∼ 𝑏𝑛. By 𝑎𝑛 = 𝑜(𝑏𝑛) we understand that 𝑎𝑛∕𝑏𝑛 → 0
and 𝑎𝑛 = 𝑂(𝑏𝑛) means that lim sup |𝑎𝑛∕𝑏𝑛| < 𝐶 for some positive number 𝐶. Throughout the paper, an indicator function will be
enoted as . A function 𝑙 ∶ [0,∞) → R is referred to as slowly varying (at ∞) if it is positive and measurable on [𝐴,∞) for some
∈ R+ such that lim𝑥→∞ 𝑙(𝜆𝑥)∕𝑙(𝑥) = 1 holds for each 𝜆 ∈ R+. The integer part of a real number 𝑥 will be denoted by ⌊𝑥⌋.

. Main results

In this work, we investigate the conditions under which the local limit theorem holds for the partial sums of the linear random
equences given by (5).
Denote the characteristic function of 𝜉0 by 𝜑𝜉0 (𝑡) ∶= E exp(𝑖𝑡𝜉0). It is well known that 𝜉0 not having a lattice distribution is

quivalent to |𝜑𝜉0 (𝑡)| < 1 for all 𝑡 ≠ 0. On the other hand, the Cramér condition means that lim sup
|𝑡|→∞ |𝜑𝜉0 (𝑡)| < 1. Thanks to the

iemann–Lebesgue lemma, the Cramér condition is automatically satisfied if the distribution function of 𝜉0 is absolutely continuous
ith respect to the Lebesgue measure. It should be mentioned that 𝜉0 has a non-lattice distribution whenever 𝜑𝜉0 (𝑡) satisfies the
ramér condition. See Theorem 1 on page 10 in Petrov (1975) or Lemma 5.1 in Fortune et al. (2021).
Here is the local limit theorem, the main result.

heorem 1. Assume that the innovations (𝜉𝑖) of the linear process are defined by (4), have non-lattice distribution, mean 0, finite second
oment, and satisfy (3). The coefficients satisfy ∑

𝑖∈Z 𝑎
2
𝑖 < ∞. Let 𝑆𝑛 and 𝐵𝑛 be defined as in (8) and (9). Assume 𝐵𝑛 → ∞. In the case

he process has long range dependence, we assume that the innovations satisfy the Cramér condition. Under these conditions the local limit
heorem in (11) holds.

Note that the conditions imposed on the coefficients
(

𝑎𝑘
)

are minimal in the following sense. As we have seen in (7) and the
omments following this relation, ∑𝑖∈Z 𝑎

2
𝑖 < ∞ is necessary and sufficient for the existence of the linear process in 𝐿2(R). On the

ther hand condition 𝐵𝑛 → ∞ cannot be removed. To see this, we take 𝑎0 = 1, 𝑎1 = −1, and 𝑎𝑖 = 0 for 𝑖 ≠ 0, 1 and (𝜉𝑘) i.i.d. with
ean zero and finite second moment. Then, 𝑆𝑛 = 𝜉1 − 𝜉𝑛+1, 𝐵𝑛 <∞, the distribution of 𝑆𝑛 is not invariant, and (12) cannot hold.
In the short memory case for a smaller class of Markov chain, using an elliptic condition that implies 𝜓-mixing, Merlevède et al.

(2021) in Corollary 2.6 obtained a local limit theorem under the additional assumption inf 𝑗 |𝑎1 +⋯ + 𝑎𝑗 | > 0.

3. Examples

First we mention the example of a strictly stationary Markov chain satisfying (3), which is provided in Bradley (1997), Remark
1.5.

Example 1. Assume that in the Markov chain (𝑣𝑘)𝑘∈Z the marginal distribution of 𝑣0 is uniformly distributed on [0, 1] and the one
step transition probabilities are as follows:

For each 𝑥 ∈ [0, 1], let

P(𝑣1 = 𝑥|𝑣0 = 𝑥) = 1∕2

and for any Borel set 𝐵 ⊂ [0, 1] − 𝑥,

P(𝑣1 ∈ 𝐵|𝑣0 = 𝑥) = (1∕2)𝜆(𝐵),

where 𝜆 is the Lebesgue measure on [0, 1]. Then (3) holds with 𝑎 = 1∕2.

Next we give some particular examples of classes of coefficients for which the conclusion of Theorem 1 is satisfied, namely
satisfying ∑

𝑎2 < ∞ and 𝐵2 → ∞.
3

𝑖∈Z 𝑖 𝑛
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Example 2. Assume that 𝑎𝑖 = 𝑙(|𝑖|)|𝑖|−𝛼 with 𝛼 ∈ (1∕2, 1), where 𝑙(𝑥) is a slowly varying function at ∞. In this case 𝐵2
𝑛 ∝ 𝑛3−2𝛼 𝑙2(𝑛)

since 𝐵2
𝑛 ∝ 𝜏2𝑛 =

∑

𝑖∈Z 𝑏
2
𝑛,𝑖 ∝ 𝑛3−2𝛼 𝑙2(𝑛) (see, Peligrad and Utev (2006) or Theorem 2 later for the first part and Surgailis (1982),

heorem 2, or Wang et al. (2001) for the second part).
In particular, we mention the fractionally integrated processes defined by

𝑋𝑘 = (1 − 𝐵)−𝑑𝜉𝑘 =
∑

𝑖≥0
𝑎𝑖𝜉𝑘−𝑖 with 𝑎𝑖 =

𝛤 (𝑖 + 𝑑)
𝛤 (𝑑)𝛤 (𝑖 + 1)

,

where 0 < 𝑑 < 1∕2, 𝐵 is the backward shift operator, 𝐵𝜉𝑘 = 𝜉𝑘−1. For this example, by the well-known fact that for any real 𝑥,
lim𝑛→∞ 𝛤 (𝑛 + 𝑥)∕𝑛𝑥𝛤 (𝑛) = 1, we have lim𝑛→∞ 𝑎𝑛∕𝑛𝑑−1 = 1∕𝛤 (𝑑).

Example 3. Define 𝑎0 = 1, 𝑎𝑖 = 0 for 𝑖 < 0 and 𝑎𝑖 = (𝑖+1)−𝛼 − 𝑖−𝛼 for 𝑖 ≥ 1 with 𝛼 ∈ [0, 1∕2). By Example 2 of Dedecker et al. (2011),
𝐵2
𝑛 ∝ 𝜏2𝑛 =

∑

𝑖∈Z 𝑏
2
𝑛,𝑖 ∝ 𝑛1−2𝛼 → ∞.

Example 4. Define 𝑎0 = 1, 𝑎𝑖 = 0 for 𝑖 < 0 and 𝑎𝑖 = 𝑖−1∕2(log 𝑖)−𝛼 for 𝑖 ≥ 1 with 𝛼 > 1∕2. Then 𝐵2
𝑛 ∝ 𝜏2𝑛 =

∑

𝑖∈Z 𝑏
2
𝑛,𝑖 ∝ 𝑛2(log 𝑛)1−2𝛼 .

4. Proof

4.1. Facts about the lower-elliptic condition

Relation to lower 𝜓-mixing coefficient.
We introduce now a mixing condition which is comparable to condition (3).
Following Bradley (2007), for any two 𝜎-algebras  and  define the lower 𝜓-mixing coefficient by

𝜓 ′(,) = inf
P(𝐴 ∩ 𝐵)
P(𝐴)P(𝐵)

; 𝐴 ∈  and 𝐵 ∈ , P(𝐴)P(𝐵) > 0.

Obviously 0 ≤ 𝜓 ′(,) ≤ 1.
Notice that, in terms of conditional probabilities defined by (1), we also have the following equivalent definition:

𝜓 ′
1 = ess inf

𝑥
inf

𝐴∈()
𝑄(𝑥,𝐴)∕P(𝑣0 ∈ 𝐴).

Note that if (3) holds, then 𝜓 ′
1 ≥ 𝑎 > 0 and if 𝜓 ′

1 > 0 then (3) holds with 𝑎 = 𝜓 ′
1.

An important step in the proof of Theorem 1 is the following reformulation of Theorem 1 in Peligrad and Utev (2006):

Theorem 2 (Peligrad and Utev, 2006). Assume that the innovations (𝜉𝑖) of the linear process are defined by (4), have mean 0, finite second
oment, and satisfy (3). The coefficients satisfy ∑

𝑖∈Z 𝑎
2
𝑖 <∞. Let 𝑆𝑛 and 𝐵𝑛 be defined as in (8) and (9) and assume 𝐵𝑛 → ∞. Define

𝜏2𝑛 =
∑

𝑖∈Z
𝑏2𝑛,𝑖.

hen there is 𝜎 > 0, such that

lim
𝑛→∞

𝐵2
𝑛

𝜏2𝑛
= 𝜎2, (13)

and
𝑆𝑛
𝐵𝑛

⇒ 𝑁(0, 1).

he constant 𝜎2 = 2𝜋𝑓 (0), where 𝑓 (𝑥) is the spectral density of (𝜉𝑖)𝑖∈Z.

Let us explain how to get this reformulation. By Theorem 7.4 (d) in Bradley (2007) and by condition (3), we have 1 − 𝜓 ′
𝑛 ≤

(1 − 𝑎)𝑛 → 0 (i.e. (𝑣𝑘)𝑘≥0 is lower 𝜓-mixing).
Furthermore, if for ℎ ∈ 𝐿2( ,()) we denote by

𝑄ℎ(𝑥) = ∫ ℎ(𝑦)𝑄(𝑥, 𝑑𝑦)

and if ℎ is centered at expectation then, by Lemma 10 in Merlevède et al. (2021) (which is actually due to R. Bradley), we know
that

‖𝑄ℎ(𝑥)‖2 ≤ (1 − 𝜓 ′)‖ℎ‖2. (14)

By stationarity and because 𝜎(𝜉𝑛, 𝑛 ≤ −𝑗) ⊂ −𝑗 = 𝜎(𝑣𝑛, 𝑛 ≤ −𝑗), and the sequence is Markov, we obtain

|E(𝜉𝑘E(𝜉0|𝜎(𝜉𝑛, 𝑛 ≤ −𝑗)))| ≤ ‖𝜉𝑘‖2 ⋅ ‖E(𝜉0|−𝑗 )‖2
= ‖𝜉0‖2 ⋅ ‖𝑄

𝑗 (𝜉0)‖2 ≤ (1 − 𝑎)𝑗E(𝜉20 ).
4
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By this latter inequality we can see that condition (2) in Peligrad and Utev (2006) is satisfied and the conclusion of Theorem 1
there holds. Since a lower 𝜓-mixing sequence is ergodic, the invariant sigma field is trivial. Furthermore, we have that the spectral
density 𝑓 (𝑥) of (𝜉𝑖)𝑖∈Z exits, is continuous and 𝑓 (0) = lim𝑛→∞ E(

∑𝑛
𝑖=1𝜉𝑖)

2∕𝑛. Furthermore 𝑓 (0) > 0 because, as explained in Merlevède
et al. (2022)

𝑎
2 − 𝑎

E𝜉20 ≤
E(
∑𝑛
𝑖=1𝜉𝑖)

2

𝑛
≤ 2 − 𝑎

𝑎
E𝜉20 . (15)

By the Slutsky’s theorem, an equivalent formulation of this result is
𝑆𝑛
𝜏𝑛

⇒ 𝑁(0, 𝜎2).

This theorem also follows from Theorem 12.8 in the book (Merlevède et al., 2019) and its proof.
In order to obtain our results we shall need a suitable bound on the characteristic function. For this purpose, we mention

Proposition 10 in Merlevède et al. (2022):

Proposition 3 (Merlevède et al., 2022).Let 𝑆𝑛 =
∑𝑛
𝑗=1 𝑌𝑗,𝑛. Then, for all 𝑛, 𝑌𝑗,𝑛 = 𝑔𝑛,𝑗 (𝑣𝑗 ) and (3) is satisfied. Then

|E(exp(𝑖𝑢𝑆𝑛))| ≤ exp
[

−𝐶
𝑛
∑

𝑗=1
(1 − |E(exp(𝑖𝑢𝑌𝑗,𝑛))|2)

]

for all 𝑢 and for some constant 𝐶 > 0, which does not depend on 𝑢, 𝑛.

4.2. A sufficient condition for the local limit theorem

As a matter of fact, (11) is a special case (in which the following random variable 𝐿 is the standard normal random variable) of
the following local limit theorem. Let (𝑆𝑛) be a sequence of random variables, (𝐵𝑛) be a sequence of positive numbers and 𝐿 be a
random variable with characteristic function 𝑓𝐿. We assume the underlying convergence in distribution:

𝑆𝑛
𝐵𝑛

⇒ 𝐿, where 𝑓𝐿 is integrable and 𝐵𝑛 → ∞. (16)

n the case when the variables (𝑆𝑛) do not have values in a fixed minimal lattice, the sequence is said to satisfy a local limit theorem
f for any continuous function 𝑔 on R with compact support,

lim
𝑛→∞

sup
𝑢∈R

|

|

|

|

𝐵𝑛E𝑔(𝑆𝑛 + 𝑢) − ℎ𝐿
(

− 𝑢
𝐵𝑛

)

∫ 𝑔(𝑡)𝜆(𝑑𝑡)
|

|

|

|

= 0, (17)

where 𝜆 is the Lebesgue measure.
Note that the integrability of 𝑓𝐿 implies that 𝐿 has a continuous density function which we denote by ℎ𝐿 (see pages 370–371

in Billingsley, 1995).
Here is a theorem in Peligrad et al. (2022) (Theorem 4.1), which is an important tool in the proof of Theorem 1.

Theorem 4 (Peligrad et al. 2022).Assume that the convergence in distribution in (16) holds. In addition, suppose that for each 𝐷 > 0

lim
𝑇→∞

lim sup
𝑛→∞ ∫𝑇<|𝑡|≤𝐷𝐵𝑛

|

|

|

|

|

E exp
(

𝑖𝑡
𝑆𝑛
𝐵𝑛

)

|

|

|

|

|

𝑑𝑡 = 0. (18)

Then (17) holds.

4.3. Proof of Theorem 1

To prove Theorem 1, we will first show that 𝑆𝑛 defined by (10) can be reduced to a finite sum from −𝑁𝑛 to 𝑁𝑛 for 𝑁𝑛 sufficiently
large. Then we prove the local limit theorem for this finite sum by using an analytical and combinatorial approach.

Under the conditions of Theorem 1 we know that the CLT in Theorem 2 holds. Hence, to prove Theorem 1, we only need to
erify (18) of Theorem 4.

tep 1. In this step, we show that we can reduce the problem to considering a finite sum. Let 𝑁𝑛 be a positive integer such that
∑

𝑖>𝑁𝑛 or 𝑖<𝑛−𝑁𝑛
𝑎2𝑖 ≤ 𝑒−𝑛.

e use the decomposition

𝑆𝑛 ∶= 𝑆′
𝑛 + 𝑆

′′
𝑛 where

𝑆′
𝑛 =

∑

|𝑖|≤𝑁𝑛

𝑏𝑛,𝑖𝜉𝑖, 𝑆
′′
𝑛 =

∑

|𝑖|>𝑁𝑛

𝑏𝑛,𝑖𝜉𝑖.
5
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(

But

∑

|𝑖|>𝑁𝑛

𝑏2𝑛,𝑖 =
∑

|𝑖|>𝑁𝑛

( 𝑛
∑

𝑘=1
𝑎𝑘−𝑖

)2

≤ 𝑛
∑

|𝑖|>𝑁𝑛

𝑛
∑

𝑘=1
𝑎2𝑘−𝑖 ≤ 𝑛2

∑

𝑖>𝑁𝑛 or 𝑖<𝑛−𝑁𝑛
𝑎2𝑖 ≤ 𝑛2𝑒−𝑛,

and so

lim
𝑛→∞

∑

|𝑖|>𝑁𝑛

𝑏2𝑛,𝑖 = 0.

Then, by relation (3.4) in Merlevède et al. (2021) or (21) in Merlevède et al. (2022)

E(𝑆′′
𝑛 )

2 = E(𝑆𝑛 − 𝑆′
𝑛)

2 ≤ 𝑐2E(𝜉20 )
∑

|𝑖|>𝑁𝑛

𝑏2𝑛,𝑖 ≤ 𝑐2E(𝜉20 )𝑛
2𝑒−𝑛, (19)

and so

lim
𝑛→∞

E(𝑆′′
𝑛 )

2 = 0.

We can see that, with the notation

(𝜏′𝑛)
2 =

∑

|𝑖|≤𝑁𝑛

𝑏2𝑛,𝑖 (20)

we easily obtain by the above arguments that

lim
𝑛→∞

(𝜏′𝑛)
2

𝜏2𝑛
= lim
𝑛→∞

E(𝑆′
𝑛)

2

E𝑆2
𝑛

= 1. (21)

Now, by the mean value theorem and (19), for any 𝑡 ∈ R,
|

|

|

|

|

E exp
(

𝑖𝑡
𝑆𝑛
𝐵𝑛

)

− E exp
(

𝑖𝑡
𝑆′
𝑛

𝐵𝑛

)

|

|

|

|

|

≤ 2|𝑡|E
|

|

|

|

|

𝑆𝑛 − 𝑆′
𝑛

𝐵𝑛

|

|

|

|

|

≤ 2|𝑡|
𝐵𝑛

√

E(𝑆′′
𝑛 )2 =

2|𝑡|
𝐵𝑛

√

𝑐2E(𝜉20 )𝑛
2𝑒−𝑛.

Hence, for any 𝐷 > 0,
|

|

|

|

|

∫𝑇≤|𝑡|≤𝐷𝐵𝑛
E exp

(

𝑖𝑡
𝑆𝑛
𝐵𝑛

)

𝑑𝑡 − ∫𝑇≤|𝑡|≤𝐷𝐵𝑛
E exp

(

𝑖𝑡
𝑆′
𝑛

𝐵𝑛

)

𝑑𝑡
|

|

|

|

|

≤ 2𝑛
𝐵𝑛

√

𝑐2E(𝜉20 )𝑒
−𝑛

∫𝑇≤|𝑡|≤𝐷𝐵𝑛
|𝑡|𝑑𝑡 ≤ 2𝑛𝐷2𝐵𝑛

√

𝑐2E(𝜉20 )𝑒
−𝑛.

ince 𝑋𝑛 is stationary, Var(𝑆𝑛) = 𝐵2
𝑛 ≤ 𝑛2Var(𝑋), we have

𝑛𝐵𝑛
√

𝑒−𝑛 ≤ 𝑛2
√

𝑒−𝑛 → 0 as 𝑛→ ∞,

nd we obtain

lim
𝑇→∞

lim sup
𝑛→∞ ∫𝑇≤|𝑡|≤𝐷𝐵𝑛

|

|

|

E exp
(

𝑖𝑡
𝑆𝑛
𝐵𝑛

)

|

|

|

𝑑𝑡

= lim
𝑇→∞

lim sup
𝑛→∞ ∫𝑇≤|𝑡|≤𝐷𝐵𝑛

|

|

|

E exp
(

𝑖𝑡
𝑆′
𝑛

𝐵𝑛

)

|

|

|

𝑑𝑡 .

tep 2. By the arguments in Step 1, we reduced the proof to showing that

lim
𝑇→∞

lim sup
𝑛 ∫𝑇<|𝑡|≤𝐷𝐵𝑛

|E exp
(

𝑖𝑡
𝑆′
𝑛

𝐵𝑛

)

|𝑑𝑡 = 0.

y Proposition 3, there is 𝑐 > 0 such that for any 𝑡 ∈ R
|

|

|

|

|

E exp
(

𝑖𝑡
𝑆′
𝑛

𝐵𝑛

)

|

|

|

|

|

≤ exp

(

−𝑐
∑

|𝑗|≤𝑁𝑛

(1 − |E exp(𝑖𝑡
𝑏𝑛,𝑗
𝐵𝑛

𝜉0)|
2

)

)

.

Therefore the theorem is established if we are able to prove

lim
𝑇→∞

lim sup
𝑛→∞ ∫𝑇≤|𝑡|≤𝐷𝐵𝑛

exp

(

−𝑐
∑

|𝑗|≤𝑁𝑛

(1 − |E exp(𝑖𝑡
𝑏𝑛,𝑗
𝐵𝑛

𝜉0)|
2

)

)

𝑑𝑡 = 0. (22)

We order now the numbers (|𝑏𝑛,𝑖|)−𝑁𝑛≤𝑖≤𝑁𝑛 in a decreasing order and denote them as (|𝑏̃𝑛,𝑗 |)1≤𝑗≤2𝑁𝑛+1. Recall
(

𝜏′𝑛
)2 is defined by

20), i.e.
(

𝜏′𝑛
)2 =

∑

𝑏̃2𝑛,𝑘.
6

1≤𝑘≤2𝑁𝑛+1
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We shall construct a sequence (𝑘𝑛)𝑛, with the property that for fixed 𝑛, 𝑘𝑛 partitions
(

𝜏′𝑛
)2 into two approximately equal parts, one

containing the sum up to 𝑘𝑛, and the other from 𝑘𝑛 + 1 to 2𝑁𝑛 + 1. More exactly, 𝑘𝑛 is defined in the following way:

𝑘𝑛 = inf

{

𝓁; 1 ≤ 𝓁 ≤ 2𝑁𝑛 + 1 and
∑

1≤|𝑘|≤𝓁
𝑏̃2𝑛,𝑘 ≥ 2−1

(

𝜏′𝑛
)2
}

.

Then

1
2
≤ 1

(

𝜏′𝑛
)2

∑

1≤𝑘≤𝑘𝑛

𝑏̃2𝑛,𝑘 ≤
1
2
+ (

𝛾 ′𝑛
𝜏𝑛

)2, (23)

where

𝛾 ′𝑛 ∶= 𝑏̃𝑛,1 = max
1≤𝑖≤2𝑁𝑛+1

𝑏̃𝑛,𝑖.

ince 𝛾𝑛∕𝐵𝑛 → 0 as 𝑛 → ∞, by Lemma 8 in Appendix and the fact that 𝐵𝑛 → ∞, we also have 𝛾 ′𝑛∕𝜏𝑛 → 0, and therefore there exists
a constant 𝐶 > 0, such that for sufficiently large 𝑛,

1
2
≤ 1

(

𝜏′𝑛
)2

∑

1≤𝑘≤𝑘𝑛

𝑏̃2𝑛,𝑘 ≤
3
4
. (24)

nd also

1
2
≤ 1

(

𝜏′𝑛
)2

∑

1≤𝑘≤𝑘𝑛

𝑏̃2𝑛,𝑘 ≤ 𝑘𝑛

( 𝛾 ′𝑛
𝜏′𝑛

)2

.

Hence,

𝑘𝑛 ≥
1
2

( 𝜏′𝑛
𝛾 ′𝑛

)2

. (25)

It is convenient to denote
∑

|𝑗|≤𝑁𝑛

(1 − |E exp(𝑖𝑡
𝑏𝑛,𝑗
𝐵𝑛

𝜉0)|
2

)

=
∑

1≤𝑗≤2𝑁𝑛+1
(1 − |E exp(𝑖𝑡

𝑏̃𝑛,𝑗
𝐵𝑛

𝜉0)|
2

) = 𝐻𝑛(𝑡).

or a 𝑑 > 0 fixed, to be selected later, we write

∫𝑇<|𝑡|≤𝐷𝐵𝑛
exp(−𝑐𝐻𝑛(𝑡))𝑑𝑡 ≤

= ∫𝑇<|𝑡|≤𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 |
exp(−𝑐𝐻𝑛(𝑡))𝑑𝑡 + ∫𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 |<|𝑡|≤𝐷𝐵𝑛

exp(−𝑐𝐻𝑛(𝑡))𝑑𝑡

= 𝐼𝑛(𝑇 ) + 𝐼𝐼𝑛(𝑇 ).

or the first part 𝐼𝑛(𝑇 ), we use the fact that if |𝑡| ≤ 𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 |, then |𝑡| ≤ 𝑑𝐵𝑛∕|𝑏̃𝑛,𝑗 | for all 𝑘𝑛 < 𝑗 ≤ 2𝑁𝑛 + 1. Using Lemma 8 in
Appendix we easily get,

sup
1≤𝑗≤2𝑁𝑛+1

|𝑏̃𝑛,𝑗 |
𝐵𝑛

≤
𝛾𝑛
𝐵𝑛

→ 0 as 𝑛→ ∞,

y Corollary 7 in the Appendix, there exists 𝑁(𝑑) such that for 𝑛 > 𝑁(𝑑) then

|E exp(𝑖𝑡
𝑏̃𝑛,𝑗
𝐵𝑛

𝜉0)|
2

≤ 1 − 2
3
𝑡2
𝑏̃2𝑛,𝑗
𝐵2
𝑛
E𝜉20 .

So for all 𝑗 ≥ 𝑘𝑛 and |𝑡| ≤ 𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 |

1 − |E exp(𝑖𝑡
𝑏̃𝑛,𝑗
𝐵𝑛

𝜉0)|
2

≥ 2
3
𝑡2
𝑏̃2𝑛,𝑗
𝐵2
𝑛
E𝜉20 .

Therefore

𝐻𝑛(𝑡) ≥
∑

𝑘𝑛<𝑗≤𝑁𝑛

(1 − |E exp(𝑖𝑡
𝑏̃𝑛,𝑗
𝐵𝑛

𝜉0)|
2

)

≥ 2
3𝐵2

𝑛
𝑡2

∑

𝑘𝑛<𝑗≤𝑁𝑛

𝑏̃2𝑛,𝑗E𝜉
2
0 ,
7
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and by (13), (21), (24) we can find a constant 𝑏 > 0 such that for 𝑛 sufficiently large

𝐻𝑛(𝑡) ≥ 𝑏𝑡2.

It follows that for 𝑛 sufficiently large,

∫𝑇<|𝑡|≤𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 |
exp(−𝑐𝐻𝑛(𝑡)) ≤ ∫𝑇<|𝑡|≤𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 |

exp
(

−𝑏𝑡2
)

𝑑𝑡

≤ ∫ 𝑇<|𝑡|
exp

(

−𝑏𝑡2
)

𝑑𝑡.

We immediately obtain

lim
𝑇→∞

lim sup
𝑛

𝐼𝑛(𝑇 ) = 0.

Now we analyze the part 𝐼𝐼𝑛(𝑇 ). We shall use separate arguments for the cases when the linear process has short memory or long
memory. If the sequence (𝑋𝑘) has short memory, i.e. 𝑏0 =

∑

𝑗∈Z |𝑎𝑗 | < ∞, then the sequence
(

|𝑏𝑛,𝑖|
)

is uniformly bounded by 𝑏0 for
𝑖 ∈ Z and 𝑛 ∈ N. Notice that 𝑑 ≤ 𝑑|𝑏̃𝑛,𝑗 |∕|𝑏̃𝑛,𝑘𝑛 | ≤ 𝑡|𝑏̃𝑛,𝑗 |∕𝐵𝑛 ≤ 𝐷𝑏0 for 𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 | < |𝑡| ≤ 𝐷𝐵𝑛 and 1 ≤ 𝑗 ≤ 𝑘𝑛. Since the innovations
have a non-lattice distribution and 𝜑𝜉0 is continuous, there exist 0 < 𝑟1 < 1 and 𝑑 > 0 such that

|E exp(𝑖𝑡
𝑏̃𝑛,𝑗
𝐵𝑛

𝜉0)| = |𝜑𝜉0 (𝑡𝑏̃𝑛,𝑗∕𝐵𝑛)| ≤ 𝑟1

or all 𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 | < |𝑡| ≤ 𝐷𝐵𝑛 and 1 ≤ 𝑗 ≤ 𝑘𝑛.
In the long memory case, by the Cramér condition we know that

lim
𝑢→∞

|E(𝑒𝑖𝑢𝜉0 )|2 < 𝑟′ < 1.

For 𝜀 > 0 small enough, we can find 𝑑 = 𝑑𝜀 > 0 and have

|E(𝑒𝑖𝑢𝜉0 )|2 < 𝑟′ + 𝜀 = 𝑟2 < 1 for |𝑢| > 𝑑.

If |𝑡| > 𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 | we have |𝑡𝑏̃𝑛,𝑗∕𝐵𝑛| > 𝑑 for 1 ≤ 𝑗 ≤ 𝑘𝑛 and then

|E exp(𝑖𝑡
𝑏̃𝑛,𝑗
𝐵𝑛

𝜉0)|
2

< 𝑟2 < 1.

We take 𝑟 = max{𝑟1, 𝑟2}. Therefore, for |𝑡| > 𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 | and 1 ≤ 𝑗 ≤ 𝑘𝑛 we have

1 − |E exp(𝑖𝑡
𝑏̃𝑛,𝑗
𝐵𝑛

𝜉0)|
2

≥ 1 − 𝑟,

nd then,

𝐻𝑛(𝑡) ≥
∑

1≤𝑗≤𝑘𝑛

(1 − |E exp(𝑖𝑡
𝑏̃𝑛,𝑗
𝐵𝑛

𝜉0)|
2

) ≥ 𝑘𝑛(1 − 𝑟).

o we can find 𝑐′ > 0 such that

∫𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 |<|𝑡|≤𝐷𝐵𝑛
exp(−𝑐𝐻𝑛(𝑡))𝑑𝑡

≤ exp(−𝑐𝑘𝑛(1 − 𝑟))∫𝑑𝐵𝑛∕|𝑏̃𝑛,𝑘𝑛 |<|𝑡|≤𝐷𝐵𝑛
𝑑𝑡 ≤ exp(−𝑐𝑘𝑛(1 − 𝑟))𝐷𝐵𝑛

≤ 𝐷𝐵𝑛 exp(−𝑐′𝑘𝑛).

ince by bound (25), (13) and (21) we can find 𝐶 > 0 such that

𝑘𝑛 ≥
1
2

( 𝜏′𝑛
𝛾 ′𝑛

)2

≥ 𝐶
(

𝐵𝑛
𝛾𝑛

)2
.

we have

𝐵𝑛 exp(−𝑐′𝑘𝑛) ≤ 𝐵𝑛 exp(−𝑐′𝐶
(

𝐵𝑛
𝛾𝑛

)2
),

hich converges to 0 as 𝑛→ ∞ by Lemma 8 in the Appendix and the fact that 𝐵𝑛 → ∞ as 𝑛→ ∞. □
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ppendix

We gather here some preliminary results on the characteristic function of a random variable.

emma 5. Let 𝑋 be a random variable with real characteristic function. Then, for any 𝑡 ≠ 0

E(𝑒𝑖𝑡𝑋 ) ≤ 1 − 𝑡2

3
E(𝑋2𝐼(|𝑋| ≤ |𝑡|−1)).

roof. Clearly

E(𝑒𝑖𝑡𝑋 ) = E(cos 𝑡𝑋) = E((cos 𝑡𝑋)𝐼(|𝑋| > |𝑡|−1)) + E((cos 𝑡𝑋)𝐼(|𝑋| ≤ |𝑡|−1)).

y Taylor expansion, for a certain 𝜉 such that for 𝑦 > 0, 0 < 𝜉 < 𝑦 and for 𝑦 < 0, 𝑦 < 𝜉 < 0

cos 𝑦 = 1 − 1
2
𝑦2 + 1

6
𝑦3 sin(𝜉) ≤ 1 − 1

2
𝑦2 + 1

6
|𝑦|3.

eplacing 𝑦 by 𝑡𝑋,

E(𝑒𝑖𝑡𝑋 ) = E(cos(𝑡𝑋)𝐼(|𝑋| > |𝑡|−1)) + E(cos(𝑡𝑋)𝐼(|𝑋| ≤ |𝑡|−1))

≤ P(|𝑋| > |𝑡|−1) + E
((

1 − 1
2
𝑡2𝑋2 + 1

6
|𝑡𝑋|

3
)

𝐼(|𝑋| ≤ |𝑡|−1)
)

.

o

E(𝑒𝑖𝑡𝑋 ) ≤P(|𝑋| > |𝑡|−1) + P(|𝑋| ≤ |𝑡|−1) − 1
2
𝑡2E(𝑋2𝐼(|𝑋| ≤ |𝑡|−1))

+ 1
6
E(|𝑡𝑋|

3)𝐼(|𝑋| ≤ |𝑡|−1)

≤1 − 1
2
𝑡2E

(

𝑋2𝐼(|𝑋| ≤ |𝑡|−1)
)

+ 1
6
𝑡2E(𝑋2𝐼(|𝑋| ≤ |𝑡|−1))

=1 − 1
3
𝑡2E(𝑋2𝐼(|𝑋| ≤ |𝑡|−1)). □

emma 6. Let 𝑋 be a random variable with real characteristic function and let (𝑑𝑛) be a sequence of constants with 𝑑𝑛 → 0 as 𝑛 → ∞.
Then for any 𝐴 > 0, there is 𝑁(𝐴) such that if |𝑡𝑑𝑛| < 𝐴 and 𝑛 > 𝑁(𝐴) then

E(𝑒𝑖𝑡𝑑𝑛𝑋 ) ≤ 1 − 1
3
𝑡2𝑑2𝑛E𝑋

2.

roof. Note first that, if |𝑡| < 𝐴,

E𝑋2𝐼(|𝑋| ≤ |𝐴|−1) ≤ E𝑋2𝐼(|𝑋| ≤ |𝑡|−1).

So, by Lemma 5

E(𝑒𝑖𝑡𝑋 ) ≤ 1 − 1
3
𝑡2E𝑋2𝐼(|𝑋| ≤ |𝑡|−1) ≤ 1 − 1

3
𝑡2E𝑋2𝐼(|𝑋| ≤ |𝐴|−1). (26)

Because 𝑑𝑛 tends to 0,

lim
𝑛→∞

E𝑋2𝐼(|𝑋| ≤ 1
𝐴𝑑𝑛

) = E𝑋2.

o for any 𝐴 > 0 there is 𝑁(𝐴) such that for 𝑛 > 𝑁(𝐴),

E𝑋2𝐼(|𝑋| ≤ 1
𝐴𝑑𝑛

) ≥ 1
2
E𝑋2.

Then, clearly for any 𝑛 > 𝑁(𝐴),

E𝑋2𝐼(|𝑋| ≤ 1
𝐴𝑑𝑛

)| ≥ 1
2
E𝑋2.

ombining this with (26), for any 𝐴 and 𝑛 large enough, such that |𝑡𝑑𝑛| < 𝐴,

E(𝑒𝑖𝑡𝑑𝑛𝑋 ) ≤ 1 − 1
3
𝑡2𝑑2𝑛E𝑋

2𝐼(|𝑑𝑛𝑋| ≤ |𝐴|−1)

≤ 1 − 1 𝑡2𝑑2E𝑋2. □
9
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d

L

P
c

L

T
d

F

R

B
B
B
B
D
D
F
G
H
I
M
M

M

M
M

O
P

Now let 𝑋′ be an independent copy of 𝑋 (this means that the sequences are independent of another and have the same
istribution), and denote their difference by 𝑋̃ = 𝑋 −𝑋′. Then

|E exp(𝑖𝑡𝑋)|2 = E(exp 𝑖𝑡
(

𝑋 −𝑋′)) = E(exp 𝑖𝑡𝑋̃).

Also E𝑋̃2 = 2E𝑋2, and we immediately obtain by Lemma 6 the following corollary:

Corollary 7. For any random variable 𝑋 and any 𝐴 > 0, there is 𝑁(𝐴) such that if |𝑡𝑑𝑛| < 𝐴 and 𝑛 > 𝑁(𝐴) then

|E(𝑒𝑖𝑡𝑑𝑛𝑋 )|2 ≤ 1 − 2
3
𝑡2𝑑2𝑛E𝑋

2. (27)

Next, we give a Lemma concerning the behavior of 𝛾𝑛∕𝐵𝑛.

emma 8. Under the conditions of Theorem 1

𝛾𝑛
𝐵𝑛

= 𝑂

(

1
𝐵1∕2
𝑛

)

.

roof. The main part of the proof is similar to that of Proposition 2 in Mallik and Woodroofe (2011), and we give it here for
ompleteness. Let 𝛾𝑛 = |𝑏𝑛,𝑟0 |. By the triangle inequality, for any integer 𝑟

|𝑏𝑛,𝑟0 | ≤ |𝑏𝑛,𝑟0+𝑟| + |𝑏𝑛,𝑟0+𝑟 − 𝑏𝑛,𝑟0 |.

et us add these relations for 𝑟 between 1 and 𝑚. We obtain

𝑚|𝑏𝑛,𝑟0 | ≤
𝑚
∑

𝑟=1
|𝑏𝑛,𝑟0+𝑟| +

𝑚
∑

𝑟=1
|𝑏𝑛,𝑟0+𝑟 − 𝑏𝑛,𝑟0 |.

o estimate the first term in the right hand side, we apply first the Cauchy-Schwartz inequality. Then, by taking into account the
efinition of 𝐵𝑛 and (13), we obtain

𝑚
∑

𝑟=1
|𝑏𝑛,𝑟0+𝑟| ≤

√

𝑚

(

∑

𝑘∈𝑍
𝑏2𝑛,𝑘

)1∕2

= 𝑂(
√

𝑚𝐵𝑛).

or the second term, by the definition of 𝑏𝑛,𝑘, by the Cauchy-Schwartz inequality and (6), we have

|𝑏𝑛,𝑟0+𝑟 − 𝑏𝑛,𝑟0 | ≤

(

2𝑟
∑

𝑖∈𝑍
𝑎2𝑖

)1∕2

= 𝑂(𝑟1∕2).

Overall,

𝑚|𝑏𝑛,𝑟0 | = 𝑂(
√

𝑚𝐵𝑛 + 𝑚3∕2).

Taking 𝑚 = 𝐵𝑛, then

𝛾𝑛
𝐵𝑛

=
|𝑏𝑛,𝑟0 |

𝐵𝑛
= 𝑂( 1

𝐵1∕2
𝑛

). □
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