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1. Introduction

Let (Xj)j>1 be a sequence random variables defined on a probability space (§2, 7, P) with values in a separable Banach
space, adapted to (F);>1, a decreasing sequence of sub-sigma algebras of F. We are going to study the convergence of
series S, = Z]'?:] X;. For integrable X, define the conditional expectation E'X = E(X|F). Special attention will be given
to the situation when X; = @;E(X|F) for (a]-)j>1 a sequence of real constants. Given a stationary and reversible Markov
chain (&;);cz with values in a measurable space (S, S), for an integrable function f defined on S with values in a separable
Banach space, let X; = f(&;). We denote Q*f(&) = E(Xxl&) = Eo(Xk), and also derive similar results for Z]k:1 a;Q'f. 1t
should be noted that Cohen et al. (2017) studied the almost sure convergence of L, contractions for the series in the form
Zzzl aQ*f where ay is a Kaluza sequence with divergent sum, Q a power bounded operator and Y et Bz converges
in the open unit disk. We consider a general sequence of constants and impose our conditions on the moments of |EXX]|.

The motivation for this study comes from a remarkable result, Theorem 3.11 in Derriennic and Lin (2001). In the
context of additive functionals of stationary reversible Markov chains, for f centered at expectation and square integrable,
if E(S2)/n — o then we have that Y _,_, k~/2Q¥f converges a.s. Theorem 3.9 in the same paper has a similar result for
Harris recurrent Markov operators and some special functions f.

As in Dedecker and Merlevede (2008) or Cuny (2015), whenever possible, we shall work with variables in a separable
Banach space B. For x € B, for simplicity, we shall denote the norm by |x| = |x|;.

We denote by L, the set of measurable functions X defined on a probability space, with values in a separable Banach
space such that || X ||§ = E|X|P < occ. For random variables X in L,, the notation ||X|, <« b means that there is a constant
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Cp, such that || X[, < C,b. For two sequences of positive constants (an)n, (bn)n , @n < b, means that there is a constant C
such that a, < Cb,,.

For integrable X, recall the notation E'’X = E(X|F), j > 1. For these definitions we direct the reader to the book of
Ledoux and Talagrand (1991). Now denote the reverse martingale difference adapted to (7)1 by

Pi(X) = E'X — E™X. (1)
Sometimes we shall assume in addition that the Banach space is separable and r-smooth for an r such that 1 < r < 2.
We shall use this property or rather its consequence, for any sequence of B-valued martingale differences (X;)i>1, if B is

separable and r-smooth then for some D > 0,
EIXi +Xo + -+ Xal" < DEXi|" + EIXo|" + - + E[Xal"). (2)

(see Assouad, 1975).

We should mention that, according to our knowledge, our results are also new for real-valued random variables.

The paper is divided into three parts. In Section 2, we obtain new maximal inequalities. Then, in Section 3, we apply
these maximal inequalities to obtain convergence of series. Finally, in Section 4, we apply the results to reversible Markov
chains.

2. Maximal inequalities

Proposition 1. Let p > 1 and let (X;);j~1 be a sequence of Banach space valued random variables in Ly, adapted to a sequence
of decreasing sub-sigma fields of F, (F*)=1. Then

E max |SyP < E max IE¥Si|” + E S, lP .

1<k<n

Fori1<p<2andifBis separable and p-smooth, we also have

E max |S? < E max |E*S,|” + ZElPi(S,) b
1<k<n 1<k<n .

Proof. Assume Sy, = 0. It is easy to see that
Sy = E"S, + Z — E1S;) (3)

By taking the maximum

k—1

| PS|. (4)
- li=1

max |S;| < max |Ek5k| + max
1<k=<n 1<k<n 2<k<

whence, by Minkowski’s type inequality for norms in L, we obtain

p
ZP S)

E max |S;|P < E max |E"Sk| + E max

1<k<n 2<k<n

By writing
k—1
> Pi(s)
i=1
we deduce that

k—1 4
> Pis)
i=1

p p

<

n—1
> Pis)
i=1

n—1
D Pi(s)
- n—1 )

> Pis)

i=k

E max
2<k<n

< E

p

+ E max
1<k<n-—1

Since P¥(Sy) = EXS, — E¥t1S, is a reverse martingale difference adapted to the decreasing sequence of sigma algebras
(F*)=1, by Doob’s maximal inequality for submartingales, for p > 1

n—1
ZP 5, > Pis)
i=1

p

E max < E

1<k<n-1

(6)
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By relation (3),

n—1 4

> OPis)

i=1

E K EIE"S, P +E|SI”,

and the first inequality in this proposition follows.
The second inequality follows from (4) and (6) combined with (2). O

Remark 2. Note that if p = 2 and if the variables have values in a separable Hilbert space, then, for all n > 1,

> Pi(s)
i=1

We treat next linear combinations Z]’f:]ajEfX with g; a sequence of constants. We take g; real, but complex valued
constants can be treated in the same way. We shall assume that Y :°,|a;| = oo since otherwise, by Doob’s maximal
inequality, we immediately get for p > 1

2 n

= (E|EiSi|2 - E|E"“s,-|2) .

i=1

E

E max |YF aEX]” < E max IEXX|” < EIXPP,
=<Kk=n

1<k<n

which is finite as soon as X € L,.
We shall also use the following notations

J J
5= Zal, so=0, s = ]n;,aﬁlzall,
i=1 i=1
and
b = max (k™" (s3)" 5t = 52 ) - 7)
The next corollary follows from Proposition 1 applied to X; = g;E'X.

Corollary 3. Let X be a random variable with values in a separable Banach space and, for any p > 1, E|X|? < oc. Then
p p

k n
i ky (P i
E max ;a]Ex < E max [sE'X[" + ;ajsx . (8)

For 1 < p < 2 and if B is p-smooth, we also have

b n—1

k
Emax | > gEX| <E max Ik EX P+ Y ElsPiX)I” (9)
j=1 o

1<k<n |4 ‘
i=1

Remark 4. For p > 1, an estimate of E max;<x<n |skE"X|p is

n
ky (P —1 (% \P ky (P
Elrg{af); ISkE*X|” < k§1k (six)” EIE*XI".

Proof of Remark 4. By Doob’s maximal inequality

E max |EXPP < E|E2X[ .

Zifkszl
Note that
r—1
E max [sE*X|” <) E max [siE*x|”
1<k<2r o 2i<k<2i+1
1= -

r—1 r—1

<2 (s5en) Emax X < 30 (s ) EIEPX
i=0 - i=0
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Using the fact that (s}),>1 is increasing and (ElE”Xl")n>1 is decreasing, we easily obtain
r—1 b
k p 2!
E 121kix ’SkE X’ < Z (S;iJrl) EIE“X|
i=0

2r—1
< Y i (s3) EIEXP.
i=1

Now if 271 < n < 27, clearly

n
E max |skE"X| < E max |sk "X| < X:k_1 (sjk)pE|E"X|p,

1<k<n 1<k<2
k=1
and the result follows. 0O

For p = 2 we also have the following result:

Corollary 5. Assume that X has values in a separable Hilbert space and E|X|*> < oo. Then
2

k n
Emax |y aBX| <« > bEEX.

1<k<n |4

Remark 6. In particular, under the conditions of Corollary 5, if g; =j 12 forallj>1,

2
k n
Emax |y j2EX| < Y EEX],

1<k<n |4

and if a; = 1 for all j > 1, then

1<k<n |4

n
Emax Y FX| <« > JEIEX].

Proof of Corollary 5. In a Hilbert space Pi(X) and P/(X) are orthogonal for i # j. By the properties of the conditional
expectations and Remark 2, (s = 0, n > 2)

n—1 2
E|> siPi(X)
i=1

n—1 ;
=) SPEIP'(X)|
i=1
n—1 n—1
=8 (E|E'X|2 —E|E’+1X|2) > (s — ) EIEXT.
i=1 j=1

Combining the latter inequality with Proposition 1 and Remark 4, we get
2

E max Za]EJX < Zk (s30)” EIE*X?

1<k<n

+ Z 2 — s EIEX[”

< ZbkEw"Xﬁ

k=1
where by is given in (7). O

3. Convergence of series

We give some straightforward applications of the maximal inequalities established before.

4
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Proposition 7. Let p > 1 and let (X;)j=1 be a sequence of Banach space valued random variables. Assume that (Sp)n>1 is
bounded in L, and (E"S;),>, converges in L,. Then (S,),~, converges in L,. If in addition (E"X;),> converges a.s. then (Sp),=1
converges a.s.

Proof of Proposition 7. We start from the representation given in (3).
Now note that 37—/ (E'Si — E™1S;) is a reverse martingale, which converges a.s. and in L, provided

n—1 p

> (E'si— ETs)

i=1

supE < 00.
n

By (3) and the triangle inequality this condition is satisfied under the conditions of this proposition, and the result foll-
ows. O

If we apply the previous proposition to X; = ;X we obtain the following corollary. We denote as before s, = ZL] a;.

Corollary 8. Let p > 1. Assume that (3" ,a;E'X )=+ is bounded in L, and (s,E"X),- converges in L. Then (}__ a;E'X)

. n>1
converges in Ly. If in addition (s,E"X),~ converges a.s. then (Z?:laiE’X)nZl converges a.s.

Corollary 9. Assume that X has values in a separable Hilbert space. Define (by) by (7), and assume that

> bEIEXT < .
k>1

Then (Zf=1aiEiX)n>] converges in L, and a.s.

Proof of Corollary 9. We start from the representation (3), namely
k k=1
> aFX = sEX + ) s (EX — EFIX).
j=1 i=1

The reverse martingale Zi.:]] S (E’X - Ei+1X) converges a.s. and in L, provided it is bounded in L,. Because the variables

have values in a Hilbert space, by Remark 2

2

1 1

E[Y s (EX —E*X)| =Y s? (E|E’X|2 — E|E"“X|2) ,
i=1 i

i=1

which is bounded because Y j_ (s2 — s2_,) EIE¥X|” is positive and we assumed it is bounded.
By a similar proof as of Corollary 5, because (s; )¢ is increasing and (E*X)y is decreasing, we obtain

b—1
E( max [sE*X|") < D E( max_|seE*X[")
2“§k52b —a 2i5k52i+1
b—1 . o, 2b . ,
* )] — * j
<Y (sym) EIEPX] < Y i (s3) EIEX)
Jj=a j=20-1

Now if 2¢ < m < 2%*! and 2°~! < n < 2°, with q, b integers a < b, then

2b

kv 2 1 ()2 i 2

E(mnglfgn IskE*X|") <« Ez] (s3)  EIEX|".
j=22

This implies relation (22.11) in Billingsley (1999) and the proof continues as there. O
4. Reversible Markov chains

All the results presented so far, are useful to treat power series of operators associated to stationary reversible Markov
chains. Let (&;)icz be defined on (£2, 7, P) with values in a general measurable space (S, S, ) with stationary transition
probabilities Q(x, A). Reversible, means that the distribution of (&;, &) is the same as the distribution of (&4, &). For f
defined on S with values in a separable Banach space B, and any n € N denote Q"f(&,) = E(f(&n)|&0)-

5
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We also denote by Q the operator on an integrable function f defined by
Q0 = [ . dy
S

We denote the invariant distribution by 7, which is a measure on S. The integral with respect to 7 is denoted by E.
We shall use below notations similar to those in previous sections,

Sk =0y 4 -+ ay, sy = max |s]|
1<j<k

b = max (lf1 (Sf;i)z ; (Si)z - (52—1)2)

0
Sp =01+ -+ a1, 5p° = max |s7|
1<j<k

b} = max (k_1 (SZDZ, (SZ)Z - (SZ—I)Z)
by = max (b, b) .

Theorem 10. For f with values in a separable Hilbert space with E|f|* < oo, we have
2

k n
E, max Zanjf ¢ Zb}"Elejflz.
j=1 j=1

1<k<2n

Corollary 11. In particular

1<k<n

k n

. . 2

E, max E Qf| « E JE=1Q'f|
j=1 j=1

and
2

k n
E. max | > j2Q| « S E.lQfT.

1<k<n

j=1 j=1
To relate our result with Theorem 3.11 in Derriennic and Lin (2001), we give the following result similar to their
theorem.

Corollary 12. If f is real valued with mean 0 and has finite second moment, then
2

k
E, sup Zjl/szf < 00
=1

k>1

provided one of the following equivalent conditions hold

n
(@) Y E«(fQ"f) is bounded in L,. (10)
k=1
(b) supES2/n < C.
n
(c) lim ES?/n = o
n—oo
T
d —d .
(d) /_ T <o

(e) fey/1-qQll.

Above, ps denotes the spectral measure of f associated with the self-adjoint operator Q and function f on Ly(S, m). Also Lg is
the set of functions which are square integrable and have mean 0.

The proofs of the results in this section are based on the following identity, relating Qf to Ef.

6
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Lemma 13. Forn > 1

2n n n—1
Z ajQ’f (%) = Eo Z ayE'f (£0) + Z Az 1 BT (&)
= = =0

Proof of Lemma 13. We estimate E(Xyj|Fo) = Q¥f(&y). By the Markov property and reversibility
12iQ%f (&) = ayEoE(f(&2)I£))
= ayEoE(f(§0)|1F) = asEoE'f (&)
By the above identity

> " a55Q%f(0) = Eo Y _ ayE'f (£0). (11)
j=1 Jj=1
Similarly

ai1(Q¥ ) (E0) = a1 E(f(E2i41)lE0) =
Qo1 EoE(f (E2j41)IEj41) = a1 EoE(f(£1)I&j11) = agjs1EoE T If (&1),
and so

n—1 n—1
D a31Q " f(§0) = Eo ) ayi1 (). (12)
j=0 Jj=0

Overall, by (11) and (12), we have the result of this lemma. 0O

Remark 14. A similar result as in Lemma 13 holds for odd sums. We easily deduce

k

k
No)) E
max ;anf(so) < Eo max ;%Ef(éo)

k
+ ok |3y B (6]
=
whence, for every p > 1,
k ¢ X P
.0J =
E max ; 4Qf (&) < E max ; asE'f (&)

P
k
+ E@g ;azj'ﬂEjf(é&o)
]:

It is straightforward now to combine Remark 14 with the results in the previous sections. It can be easily combined
with Corollary 3.
In particular, for p = 2 we combine Remark 14 with Corollary 5 and we get the result in Theorem 10.

Proof of Corollary 12. First we find a more flexible maximal inequality, which has interest in itself. From Theorem 10
with f replaced by f + Qf, we get

2
k

n
j j+1 ; j +1p)?
Er max. Z;(Qf +oMN | « ;JEH (Qf +Q*'f)".
= Jj=
But, by the fact that on L, the operator Q is self-adjoint, with the notation (f, g) = E.fg,
Ex (QUf +Q1f)" = (£, Q%) +2 < £, Q¥ > +(f, Q¥*%).

So, after some algebraic computation, using that (f, Q¥f) = [|Qif||*> > 0 we obtain

k 2k
S B (QF + Q) < | D EL (RRIF)| + (F. Q).
j=1 j=1
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and therefore

2
k 2n
j j+1 P J 2
Ex max j:Z](Qf +QN | < ];JEJ, (FQIf)| + (f. Q). (13)
On the other hand, because
k k
D@+ Q) =2 Qf —of + QS
j=1 j=1
we obtain
k k
j Jj j+1 k+1
max 2 Qf| < max. ;(Qf + Q)|+ max QI+ 1.

To estimate the second moment of maxj<x<n+1 |Q¥f| we use the Stein Theorem (see page 106 in Stein (1970) or Krengel
(1985), page 190).

E, max |Q“f® < E-(Qf ) = E-(fQf).

1<k<2n

By combining these results with the estimate in (13) we get

2
k 2n
. , . 5
E; max. jE:] Qf| « ;21 JEx (Ff)| + E=(fQ%f),

and the result follows.
The equivalences (a)-(e) are well-known results in the literature (see for instance pages 3 and 4 in Kipnis and Varadhan
(1986) and Cuny (2009)). O

Data availability
No data was used for the research described in the article.
Acknowledgments

This paper was partially supported by the National Science Foundation grant DMS-2054598. The authors would like
to thank Christophe Cuny for pointing out a gap in a former version of the paper and to the referees for many valuable
suggestions that improve the presentation of this paper.

References

Assouad, P., 1975. Espaces p-lisses et g-convexes, inégalités de Burkholder. In: Séminaire Maurey-Schwartz 1974-1975: Espaces [P, applications
radonifiantes et géométrie des espaces de Banach, Exp. No. XV. Centre Math. Ecole Polytech., Paris, p. 8.

Billingsley, P., 1999. Probability and Measure, aniversary ed. Wiley.

Cohen, G., Cuny, C, Lin, M., 2017. On Convergence of Power Series on L, Contractions, Vol. 112. Banach Center Publications, pp. 53-86.

Cuny, C., 2009. On the a.s. convergence of the one-sided ergodic Hilbert transform. Ergodic Theory Dynam. Systems 29 (06).

Cuny, C., 2015. A compact LIL for martingales in 2-smooth Banach spaces with applications. Bernoulli 21, 374-400.

Dedecker, J., Merlevéde, F., 2008. Convergence rates in the law of large numbers for Banach valued dependent variables. Theory Probab. Appl. 52
(3).

Derriennic, Y., Lin, M., 2001. Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math. 123, 93-130.

Kipnis, C., Varadhan, S.R.S., 1986. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions.
Comm. Math. Phys. 104, 1-19.

Krengel, U., 1985. Ergodic Theorems. de Gruyter, Berlin.

Ledoux, M., Talagrand, M., 1991. Probability in Banach spaces: Isoperimetry and processes. In: Ergebnisse der Mathematik und Ihrer Grenzgebiete
(3) [Results in Mathematics and Related Areas (3)], Vol. 23. Springer, Berlin.

Stein, E., 1970. Topics in harmonic analysis related to the Littlewood-Paley theory. Ann. of Math. Stud. 63.



