
Maximum Bipartite Matching in =2+> (1) Time via a Combinatorial
Algorithm

Julia Chuzhoy∗
Toyota Technological Institute at Chicago

Chicago, USA
cjulia@ttic.edu

Sanjeev Khanna†
University of Pennsylvania

Philadelphia, USA
sanjeev@cis.upnn.edu

ABSTRACT
Maximum bipartite matching (MBM) is a fundamental problem in
combinatorial optimization with a long and rich history. A classic
result of Hopcroft and Karp (1973) provides an $ (<

p
=)-time algo-

rithm for the problem, where = and< are the number of vertices
and edges in the input graph, respectively. For dense graphs, an
approach based on fast matrix multiplication achieves a running
time of $ (=2.371). For several decades, these results represented
state-of-the-art algorithms, until, in 2013, Madry introduced a pow-
erful new approach for solvingMBMusing continuous optimization
techniques. This line of research, that builds on continuous tech-
niques based on interior-point methods, led to several spectacular
results, culminating in a breakthrough<1+> (1) -time algorithm for
min-cost �ow, that implies an<1+> (1) -time algorithm for MBM as
well.

These striking advances naturally raise the question of whether
combinatorial algorithms can match the performance of the algo-
rithms that are based on continuous techniques for MBM. One
reason to explore combinatorial algorithms is that they are often
more transparent than their continuous counterparts, and that the
tools and techniques developed for such algorithms may be useful
in other settings, including, for example, developing faster algo-
rithms for maximum matching in general graphs. A recent work
of Chuzhoy and Khanna (2024) made progress on this question
by giving a combinatorial $̃ (<1/3=5/3)-time algorithm for MBM,
thus outperforming both the Hopcroft-Karp algorithm and matrix
multiplication based approaches, on su�ciently dense graphs. Still,
a large gap remains between the running time of their algorithm
and the almost linear-time achievable by algorithms based on con-
tinuous techniques. In this work, we take another step towards
narrowing this gap, and present a randomized =2+> (1) -time combi-
natorial algorithm for MBM. Thus in dense graphs, our algorithm
essentially matches the performance of algorithms that are based
on continuous methods.

∗Supported in part by NSF grant CCF-2006464 and NSF HDR TRIPODS award 2216899.
†Supported in part by NSF awards CCF-1934876 and CCF-2008305.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
STOC ’24, June 24–28, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649725

Similar to the classical algorithms for MBM and the approach
used in the work of Chuzhoy and Khanna (2024), our algorithm
is based on iterative augmentation of a current matching using
augmenting paths in the corresponding (directed) residual �ow net-
work. Our main contribution is a recursive algorithm that exploits
the special structure of the resulting �ow problem to recover an
⌦(1/log2 =)-fraction of the remaining augmentations in =2+> (1)
time.

Finally, we obtain a randomized =2+> (1) -time algorithm for max-
imum vertex-capacitated B-C �ow in directed graphs when all vertex
capacities are identical, using a standard reduction from this prob-
lem to MBM.

CCS CONCEPTS
• Theory of computation! Graph algorithms analysis; Dy-
namic graph algorithms; Network �ows.

KEYWORDS
Bipartite matching, Vertex-capacitated �ows

ACM Reference Format:
Julia Chuzhoy and Sanjeev Khanna. 2024. Maximum Bipartite Matching
in =2+> (1) Time via a Combinatorial Algorithm. In Proceedings of the 56th
Annual ACM Symposium on Theory of Computing (STOC ’24), June 24–28,
2024, Vancouver, BC, Canada. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3618260.3649725

1 INTRODUCTION
We consider the classicalMaximum Bipartite Matching problem,
where the goal is to compute a maximum-size matching in the
given input bipartite graph⌧ .Maximum Bipartite Matching is one
of the most central and extensively studied problems in computer
science and related disciplines, with connections to many other
fundamental graph optimization problems.

Throughout, we denote the number of vertices and the number of
edges in⌧ by = and<, respectively. It is well known thatMaximum
Bipartite Matching can be reduced to computing a maximum B-C
�ow in a directed �ow network with unit edge capacities. The Ford-
Fulkerson algorithm [14] for maximum B-C �ow then immediately
implies an$ (<=)-time algorithm forMaximumBipartiteMatching.
The algorithm is conceptually simple, and maintains a matching" ,
starting with" = ;. As long as" is not optimal, we can augment
it by computing an B-C path in the resulting residual �ow network.
A celebrated work of Hopcroft and Karp [21] provides a signi�-
cantly more e�cient $ (<

p
=)-time implementation of this idea by

iteratively computing a maximal collection of internally disjoint
augmenting B-C paths of shortest possible length in the residual

83

https://doi.org/10.1145/3618260.3649725
https://doi.org/10.1145/3618260.3649725
https://doi.org/10.1145/3618260.3649725
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649725&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Julia Chuzhoy and Sanjeev Khanna

�ow network. This result remained the fastest known algorithm for
several decades, except for the special case of very dense graphs,
where fast matrix multiplication techniques were shown to yield an
$ (=l)-time algorithm [22, 30]. Starting in 2008, a new paradigm
emerged, namely, the use of continuous techniques as a method for
obtaining fast algorithms for various �ow problems, that ultimately
revolutionized the �eld. As a �rst illustration of this paradigm, the
work of Daitch and Spielman [11], building on the breakthrough
result of Spielman and Teng [33] for e�ciently solving Laplacian
systems, gave an e$ (<3/2

)-time algorithm for directed maximum B-C
�ow. Later, Madry [27] used this paradigm to design an algorithm
for directed maximum B-C �ow with $̃ (<10/7

) running time, obtain-
ing the �rst substantial improvement over the algorithm of Hopcroft
and Karp for Maximum Bipartite Matching in sparse graphs. A
sequence of remarkable developments [4, 10, 24, 25, 28, 35] recently
culminated in a deterministic<1+> (1) -time algorithm for directed
maximum B-C �ow [8, 34], thereby providing an almost linear-time
algorithm for Maximum Bipartite Matching. In all these recent
algorithms, the directed �ow problem is cast as a linear program,
which is then solved via interior-point methods (IPM). In every
iteration of the IPM, one needs to either solve a Laplacian system,
or another e�ciently solvable problem on undirected graphs, such
as min-ratio cycle in [8]. This approach is further combined with
dynamic graph data structures to make it even more e�cient.

In view of this recent history, it is natural to ask whether combi-
natorial techniques can be used to design algorithms forMaximum
Bipartite Matching (and also other �ow-like problems), whose per-
formance matches that of algorithms that are based on continuous
methods. There are several reasons to focus on combinatorial tech-
niques. First, they tend to bemore transparent than their continuous
counterparts. Second, it is likely that tools and techniques that are
developed in order to design a combinatorial algorithm for as fun-
damental a problem as Maximum Bipartite Matching will prove
useful in other applications. Lastly, while continuous techniques led
to an<1+> (1) -time algorithm forMaximum Bipartite Matching, the
landscape of fast algorithms for the Maximum Matching problem
in general graphs did not bene�t from these developments. In dense
graphs, a fast-matrix multiplication based approach gives$ (=2.371)-
time algorithm for Maximum Matching in general graphs [22, 30].
More interestingly, in sparse to moderately dense graphs, the best
known runtime still stands on $̃ (<

p
=) [15, 18, 29, 36] and uti-

lizes an augmenting-paths based approach, similar to that used in
combinatorial algorithms forMaximum Bipartite Matching.

In a very recent work, Chuzhoy and Khanna [9] made progress
on narrowing the striking gap between the performance of combina-
torial and IPM-based approaches forMaximum Bipartite Matching,
by providing a combinatorial deterministic $̃ (<1/3=5/3)-time algo-
rithm, thus outperforming both the Hopcroft-Karp algorithm, and
the matrix multiplication based approaches on su�ciently dense
graphs. Still, a large gap remains between the performance of the
best combinatorial algorithms and the almost linear-time achiev-
able by algorithms based on continuous techniques. In particular,
on dense graphs, the performance gap incurred by the current best
combinatorial algorithm is ⌦(=1/3). In this work, we take another
step towards narrowing this performance gap, and essentially elim-
inate it in dense graphs. Our main result is summarized below.

T������ 1.1. There is a randomized combinatorial algorithm
for the Maximum Bipartite Matching problem, that, given an =-
vertex bipartite graph ⌧ , outputs a maximum matching" in ⌧ with
probability at least 1 � 1/poly(=). The running time of the algorithm
is $

⇣
=2 · 2$ (

p
log= ·log log=)

⌘
.

Our algorithm outperforms the Hopcroft-Karp algorithm on
graphswithl (=1.5) edges, and in dense graphs, it essentiallymatches
the performance of algorithms based on continuous techniques.
Furthermore, in almost all edge density regimes, this algorithm
outperforms the runtime achieved in [9].

Using a standard reduction from vertex-capacitated �ow in di-
rected graphs to Maximum Bipartite Matching (see Theorem 16.12
in [32], for instance), we also obtain a combinatorial algorithm with
similar running time for maximum vertex-capacitated �ow when
all vertex capacities are identical.

C�������� 1.2. There is a randomized combinatorial algorithm
for the directed maximum B-C �ow problem with uniform vertex ca-
pacities, that given an =-vertex directed graph⌧ , outputs a maximum
B-C �ow with probability at least 1 � 1/poly(=). The running time of
the algorithm is $

⇣
=2 · 2$ (

p
log= ·log log=)

⌘
.

Similarly to the classical algorithms for Maximum Bipartite
Matching, our approach for proving Theorem 1.1 is based on itera-
tively augmenting a current matching using augmenting paths in
the residual �ow network. We employ the multiplicative weights
update (MWU) framework, that e�ectively reduces the underlying
�ow problem to decremental single-source shortest paths (SSSP) in
directed graphs, a connection �rst observed by Madry [26] and also
used in [9]. As observed in [9], this reduction results in a special case
of decremental SSSP that appears signi�cantly easier than general
decremental directed SSSP. Our main contribution is a recursive
algorithm that exploits the special structure of the resulting �ow
problem to recover an ⌦(1/log2 =)-fraction of the remaining aug-
mentations in=2+> (1) time.We abstract this task as a problem called
RouteAndCut, where the input is a directed graph ⌧ , two disjoint
sets �,⌫ of its vertices with |�|  |⌫ |, and two additional parame-
ters 1  [ �. The goal is to either compute a collection P of at
least ⌦(�/poly log=) paths that connects distinct vertices of � to
distinct vertices of ⌫ with vertex-congestion at most [; or to output
a cut that approximately certi�es infeasibility of the desired rout-
ing. Our main result is a randomized algorithm for RouteAndCut,
whose running time is bounded by=1+> (1) · (=� |⌫ |). It is worth high-
lighting that when |⌫ | is su�ciently large, this running time may
be much smaller than |⇢ (⌧) |. This performance gain for large sets
⌫ serves as a crucial building block for our =2+> (1) -time algorithm.

As in the work of [9], the task of e�ciently solving RouteAndCut
in turn relies on an e�cient algorithm for maintaining an expander
in a dynamically changing graph, a problem that we refer to as
MaintainCluster. One key contribution of our work is the introduc-
tion of a parameterized version of both these problems that allows
us to use a bootstrapping approach in the design of our algorithm,
where we exploit e�cient algorithms for one problem to obtain e�-
cient algorithms for the other problem and vice versa. Another key
technical contribution is an e�cient algorithm for a new problem
that we introduce, called ConnectToCenters, whose goal is to e�-
ciently maintain short paths from all vertices of a given graph⌧ to

84

Maximum Bipartite Matching in =2+> (1) Time via a Combinatorial Algorithm STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

a pre-speci�ed collection of “center” vertices, even as ⌧ undergoes
online updates. This problem may be viewed as a representative
abstraction of a common paradigm used in many graph algorithms,
in which an expander is embedded into the input graph, and all
graph vertices are then routed to the vertices of the expander. As
such, our algorithm for this problem may prove useful in other
applications. Finally, another insight utilized by our algorithm is
an explicit recognition of the fact that each iteration of theMWU
algorithm leads to very speci�c kind of updates in the underlying
SSSP instance, namely, well-behaved increases in the lengths of
some edges. While these length increases can easily be simulated as
edge deletions, a black-box simulation as an instance of decremen-
tal SSSP gives away some of the inherent algorithmic advantages
o�ered by these special kind of updates that our algorithm exploits.
We give a detailed overview of our algorithm and its comparison
to the algorithm of [9] in the next subsection.

We conclude by noting that in addition to the conceptual sim-
plicity of a combinatorial augmenting path based approach to solve
Maximum Bipartite Matching, the techniques developed here for
speeding up augmentations may also prove useful in obtaining
faster algorithms for Maximum Matching in general graphs. We
also believe that some of the technical tools that we introduce, such
as an e�cient algorithm for the ConnectToCenters problem that
we describe in more detail below, are of independent interest.

1.1 Our Techniques
Our algorithm builds on and extends the techniques of [9], which,
in turn, build on the algorithm of [6] for the directed decremen-
tal Single-Source Shortest Path (SSSP) problem. We start with a
high-level overview of the algorithm of [9], and then provide the
description of our improved algorithm.

It is well known that theMaximum Bipartite Matching problem
in a graph ⌧ can be equivalently cast as the problem of computing
an integral maximum B-C �ow in a corresponding directed �ow net-
work⌧ 0 with unit edge capacities. We can view any given matching
" in ⌧ as de�ning an B-C �ow 5 in ⌧ 0 of value |" |. We let � = ⌧ 0

5
be the corresponding residual �ow network, that we refer to as the
residual �ow network corresponding to matching " . We note that
the residual �ow network � has a special structure: namely, each
vertex in � has in-degree 1 or out-degree 1. Therefore, if P is a
collection of paths in� causing edge-congestion at most [, then the
paths in P cause vertex-congestion at most [and vice versa. For all
problems that we de�ne below, we assume that their input graph
also has this special structure. For convenience, we will focus on
edge-congestion, and on edge-based cuts in such graphs. We also
note that any directed graph can be converted into a graph with
this special structure by replacing every vertex E with a pair E+, E�
of new vertices, such that all edges that enter E become incident to
E�, and all edges leaving E become incident to E+, and inserting the
edge (E�, E+) into the graph.

The residual network� corresponding to a matching" contains
� = OPT � |" | edge-disjoint B-C paths, where OPT is the value of
the maximum bipartite matching. Suppose now that we can design
an algorithm that computes a collection P of ⌦(�/poly log=) B-C
paths in � , that cause $ (poly log=) edge-congestion. Using stan-
dard methods, we can then e�ciently recover a collection P

0 of

⌦(�/poly log=) edge-disjoint B-C paths in � , which can in turn be
used in order to augment the current matching" , thereby obtain-
ing a new matching " 0 of cardinality |" | + ⌦(�/poly log=). In
other words, OPT� |" 0

|  (OPT� |" |) · (1� 1/poly log=), so the
gap between the optimal solution value and the size of the matching
the algorithmmaintains reduces by at least factor (1�1/poly log=).
It is then easy to verify that, after$ (poly log=) such iterations, the
algorithm obtains an optimal matching. This is precisely the high-
level approach that was used by [9], and we follow it in this work
as well. In order to obtain an algorithm for Maximum Bipartite
Matching, it is now su�cient to design a procedure that, given a
residual �ow network � corresponding to the current matching
" , e�ciently computes the set P of B-C paths in � with the above
properties.

For technical reasons that will become clear later, we de�ne a
slightly more general problem, that we call RouteAndCut. In this
problem, the input is a directed graph� , two disjoint sets�,⌫ of its
vertices with |�|  |⌫ |, and two parameters 1  �  min {|�|, |⌫ |}
and 1  [ �. The goal is to either compute a collection Q of
⌦(�/poly log=) paths, each of which connects a distinct vertex of
� to a distinct vertex of ⌫, such that the paths in Q cause congestion
$̃ ([); or to compute a cut (- ,.) in� with |⇢� (- ,.) | ⌧ �/[, with
- containing a large fraction of vertices of �, and . containing a
large fraction of the vertices of ⌫. While [9] do not explicitly de�ne
and solve this problem, their algorithm can be adapted to solve
a special case of RouteAndCut, where [ $ (poly log=). So for
brevity, we will say that the algorithm of [9] solves this special
case of RouteAndCut. Clearly, an algorithm for the RouteAndCut
problem can be used in order to compute a collection P of paths in
the residual �ow network� corresponding to the current matching
" , with the desired properties that we described above.

The RouteAndCut problem falls into the extensively studied
class of graph routing and �ow problems. One standard approach
for obtaining fast algorithms for such problems, due to [3, 13, 16],
is via the Multiplicative Weight Update (MWU) method. It was
further observed by Madry [26] that this approach can be viewed as
reducing a given �ow problem to a variant of decremental SSSP or
APSP. In our case, the reduction is to decremental SSSP in directed
graphs. While strong lower bounds are known for exact algorithms
for decremental SSSP and APSP (see, e.g. [1, 2, 12, 20, 31]), we can
exploit the special properties of the SSSP instances that arise from
the RouteAndCut problem in order to obtain faster algorithms, an
approach that was also used by [9].

We note that [7] provided a (1 + n)-approximation algorithm
for directed decremental SSSP with total update time e$ (=2/n), as-
suming all edge lengths are poly-bounded. Unfortunately, their
algorithm can only withstand an oblivious adversary whereas in-
stances of decremental SSSP arising from the MWU framework
crucially require algorithms that can withstand an adaptive adver-
sary, since the choice of the edge to be deleted in every update
may depend on the algorithm’s past behavior. A recent work of [6]
provided a (1 + n)-approximation algorithm for the directed decre-
mental SSSP problem with an adaptive adversary, that achieves
total update time $

⇣
=8/3+> (1)

n

⌘
(assuming that all edge lengths are

poly-bounded). While this total update time is too high for speeding
up algorithms for Maximum Bipartite Matching, their approach

85

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Julia Chuzhoy and Sanjeev Khanna

was adapted by [9] to handle the speci�c instances of SSSP that
they obtain, leading to faster algorithms for Maximum Bipartite
Matching. Speci�cally, one of the key observations of [9] is that the
SSSP instances that arise from applying theMWU method to the
Maximum Bipartite Matching problem have the property that all
queries are between a �xed pair (B, C) of vertices, and a rather large
approximation factor is acceptable. Moreover, by slightly modifying
the standardMWU framework, they ensure that it is su�cient that
the algorithm for the SSSP problem only responds to shortest-path
queries as long as the current graph � contains a collection of
least ⌦(�/poly log=) disjoint and short B-C paths, where � is the
target number of augmenting paths that the algorithm aims to pro-
duce. We also follow their approach, and reduce the RouteAndCut
problem, via a slightly modi�ed MWU method, to a special case of
directed decremental SSSP, that we refer to as decremental B-C-SP,
that has all of the above properties. We note that B-C-SP is somewhat
more general than the special case of the SSSP problem that was
considered in [9], since they only provide an algorithm for the spe-
cial case of RouteAndCut where [ $ (poly log=), while we need
an algorithm that works for a wider range of values of parameter
[. For now we focus on the description of their algorithm, and we
assume for simplicity that [= 1 in this discussion.

The algorithm of [9] for a special case of the decremental B-C-SP
problem follows the high-level approach of [6], that consists of
two parts. First, they maintain a partition X of graph � \ {B, C}
into a collection of expander-like graphs; we abstract the problem of
maintaining each such graph, that we callMaintainCluster problem,
below. Intuitively, theMaintainCluster subroutine is given as input
a vertex-induced subgraph � 0 of � , and a distance parameter 3 ,
with � 0 undergoing an online sequence of edge deletions. It needs
to e�ciently support short-path queries in � 0: given a pair G,~ 2

+ (� 0
) of vertices, return an G-~ path of length at most 3 in � 0.

However, it may, at any time, produce a cut (�,⌫) in � 0 of sparsity
at most $

⇣
poly log=

3

⌘
, after which the vertices on one side of the

cut are deleted from � 0, and the algorithm needs to continue with
the resulting graph. The second main ingredient in the algorithm
of [9] is the Approximate Topological Order (ATO) framework of
[7] (which is in turn based on the works of [19] and [5]), combined
with the algorithm of [7] for decremental SSSP on “almost” DAG’s.
The latter algorithm is applied to the graph �̂ , that is obtained from
� by contracting every almost-expander- 2 X into a single vertex.
We now discuss each of these components in turn, starting with
the ATO framework.

TheATO framework. TheApproximate Topological Order (ATO)
framework of [7, 19] is a central component in the algorithms of
[6, 9], as well as our algorithm. An ATO data structure in a dy-
namic graph � must maintain a partition X of the vertices of �
into subsets. We refer to the sets - 2 X as clusters, and to X as a
clustering. The only allowed changes to the clustering X are cluster
splittings: given an existing cluster - 2 X and a subset - 0

✓ -
of its vertices, delete the vertices of - 0 from - , and add - 0 as a
new cluster to X. We assume further that the input graph � con-
tains two special vertices B and C , and that clusters (= {B} and
) = {C} always lie in X. In addition to maintaining the clustering
X, the ATO must maintain an ordering f of its clusters. Assume

that X = {-1, . . . ,-A }, and that the clusters are indexed accord-
ing to the ordering f . Assume further that a cluster -8 undergoes
splitting, with the new cluster - 0

8 ✓ -8 inserted into X. Then the
ordering f must evolve in a consistent manner, that is, the new
ordering must be either (-1, . . . ,-8�1,- 0

8 ,-8 \ -
0
8 ,-8+1, . . . ,-A), or

(-1, . . . ,-8�1,-8 \ - 0
8 ,-

0
8 ,-8+1, . . . ,-A). Consider now some edge

4 = (G,~) of � , and assume that G 2 -8 and ~ 2 - 9 . If -8 appears
before - 9 in the ordering f , then we say that 4 is a left-to-right
edge; if 8 = 9 , we say that it is a neutral edge; and otherwise we
say that it is a right-to-left edge. If 4 is a right-to-left edge, then
we de�ne its span: span(4) =

Õ8
80=9 |-80 | (we assume here that the

sets in X are indexed according to the ordering f). Let �̂ be the
contracted graph corresponding to � : that is, �̂ is obtained from �
by contracting each of the clusters - 2 X into a vertex E- . For sim-
plicity, we will refer to the vertices E(and E) as B and C , respectively.
Intuitively, if we could maintain the ATO without introducing
any right-to-left edges, then the corresponding contracted graph �̂
is a DAG, and the ordering f associated with the ATO naturally
de�nes a topological ordering of the vertices of �̂ . We could then
use the algorithm of [7] for decremental SSSP in DAG’s, that builds
on the work of [5, 19], in order to support approximate shortest
path queries in �̂ between B and other vertices of �̂ , with total
update time e$ (=2). But in order to be able to support shortest B-C
path queries in the original graph � , we need to ensure that the
diameters of the subgraphs � [-] corresponding to the clusters
- 2 X are su�ciently small, and that we can support approximate
shortest-path queries between arbitrary pairs of vertices within
each such graph e�ciently.

Towards this end, it was observed by [7] that the algorithm for
decremental SSSP in DAG’s can be further extended to “almost
DAG’s”: suppose⌧ is a directed graph, and let d be a �xed ordering
of its vertices. Assume that+ (⌧) = {E1, . . . , E=}, where the vertices
are indexed according to the ordering d . If 4 = (E8 , E 9) is an edge
with 8 > 9 , then we say that 4 is a right-to-left edge of⌧ with width
(8 � 9). It was shown in [7] that the algorithm for decremental SSSP
on DAG’s can be e�ciently extended to such graphs ⌧ , provided
that the total width of all right-to-left edges is relatively small.
Speci�cally, the running time of their algorithm becomes roughly
$̃ (=2 + � · =), where � is the total width of the right-to-left edges.

Assume now that the algorithm for SSSP on the almost-DAG
graph⌧ only needs to respond to approximate shortest-path queries
between a speci�c �xed pair B, C of vertices, and moreover, that it
only needs to support such queries as long as ⌧ contains ⌦(�)
short edge-disjoint B-C paths. It was observed in [9] that, in such a
case, the running time of the algorithm of [7] improves to roughly
$̃ (=2 + � · =/�). This observation was one of the key insights that
allowed them to obtain a faster running time for the special case of
the B-C-SP problem, and forMaximum Bipartite Matching.

We now provide additional relevant details of the algorithm of
[9]. Like in [6], the MaintainCluster problem is exploited in order
to maintain an ATO of the input graph � . Initially, the clustering
X contains three clusters: (= {B},) = {C}, and * = + (�) \ {B, C}.
The algorithm for theMaintainCluster problem is then initialized
on graph � [*], with an appropriately chosen distance parameter
3* . In general, whenever a new cluster - joins X, the algorithm
for theMaintainCluster problem is initialized on � [-]. Whenever

86

Maximum Bipartite Matching in =2+> (1) Time via a Combinatorial Algorithm STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

that algorithm produces a sparse cut (�,⌫) in - , we select a subset
/ 2 {�,⌫} of vertices to be deleted from - , update - by deleting
these vertices, and add / as a new cluster to X, after which the
algorithm for theMaintainCluster problem is initialized on � [/].
The key idea is that, since the cuts produced by the algorithm for
the MaintainCluster problem are sparse, we can ensure that the
total span of all right-to-left edges is su�ciently small. If we then
consider the contracted graph �̂ , this, in turn, ensures that the total
width of all right-to-left edges in �̂ is low. We can now apply the
algorithm of [7] for decremental SSSP on almost-DAG’s to support
approximate shortest B-C path queries in �̂ , while exploiting the fact
that such queries only need to be supported as long as �̂ contains
a large number of short edge-disjoint B-C paths, in order to speed
it up. For every cluster - 2 X, we can then use the algorithm
for the MaintainCluster problem on � [-], in order to respond
to approximate shortest-path queries between pairs of vertices
in - . Combining these data structures together, we can support
approximate shortest B-C path queries in the original graph � , as
long as � contains many short edge-disjoint B-C paths. This high-
level approach allows one to obtain algorithms for decremental
B-C-SP, and for the RouteAndCut problem, from algorithms for the
MaintainCluster problem, that we now discuss in more detail.

TheMaintainCluster problem. To recap, in theMaintainCluster
problem, the input is a graph⌧ that undergoes an online sequence of
edge deletions, and a distance parameter 3 . The goal is to e�ciently
support short-path queries: given a pair G,~ of vertices of⌧ , return
a path of length at most 3 connecting them in ⌧ . The algorithm
may, however, at any time, produce a cut (�,⌫) in ⌧ of sparsity
at most $

⇣
poly log=

3

⌘
, following which, the vertices of one side

of the cut are deleted from ⌧ . The algorithm is used in order to
maintain individual clusters of the ATO. A similar problem was
considered by [6], who provide an algorithm with total update timeb$ (|⇢ (⌧) | · 32) for it, where the time to respond to each query is
roughly proportional to the number of edges on the path that the
algorithm returns. In [9] this problem was considered in a more
relaxed setting, where the number of queries that the algorithm
must support is bounded by a given parameter �, and the goal is
to minimize the total running time of the algorithm, that is, the
sum of the total update time, and the time required to respond to
all queries. The algorithm of [9] for this setting has running time
e$ (|⇢ (⌧) | · 3 + |+ (⌧) |2) · max

n
1, � ·32

|+ (⌧) |

o
, which, for the speci�c

parameters that they employ, becomes e$ (|⇢ (⌧) | · 3 + |+ (⌧) |2). In
order to obtain our improved algorithm for Maximum Bipartite
Matching, we need to generalize this result so that it works for a
wider range of parameters, achieving running time |+ (⌧) |2+> (1) .

The algorithm of [9] follows a rather standard approach. First,
they use the Cut-Matching game in order to compute a large ex-
pander graph ⌧̂ , and to embed it into ⌧ via short paths that cause
low congestion. The algorithm for the Cut Player is implemented
in a rather straightforward manner, since they can a�ord a running
time that is as high as ⇥(|+ (⌧̂) |2). The algorithm for the Matching
Player essentially needs to solve an instance of the RouteAndCut
problem. Using the MWU approach as before, it can be reduced to
solving an instance of directed decremental SSSP. The algorithm
of [9] then uses the standard Even-Shiloach tree data structure

in order to solve the latter problem. In addition to the expander
⌧̂ and its embedding into ⌧ , the algorithm of [9] maintains two
additional Even-Shiloach trees in ⌧ . Both trees are rooted in the
vertices of ⌧̂ , and have depth roughly 3 . One of the trees has all its
edges directed away from the root, and the other has all of its edges
directed towards the root. In order to respond to a query between
a pair G,~ of vertices of ⌧ , the two Even-Shiloach trees are used to
compute a short path connecting G to some vertex G 0 2 + (⌧̂), and
a short path connecting some vertex ~0 2 + (⌧̂) to ~. A simple BFS
search in the expander ⌧̂ then yields a short path connecting G 0 to
~0, which can be turned into an G 0-~0 path in ⌧ by exploiting the
embedding of ⌧̂ into ⌧ .

We now describe several sources of ine�ciency of the algorithm
of [9], and then describe our approach to overcoming them. First,
both the algorithms of [9] and [6] for theMaintainCluster problem
are only designed for graphs with unit edge-lengths. However, both
of these works solve (a variant of) the SSSP problem in graphs with
arbitrary edge lengths. To overcome this di�culty, [9] use the same
approach as [6]: namely, they choose a threshold g , and initially
delete all edges whose length is greater than g (called long edges)
from the input graph � . The lengths of the remaining edges (called
short edges) are set to 1 for the sake of maintaining the ATO and
solving the MaintainCluster problem on the resulting instances.
The long edges however are reinserted into the contracted graph �̂ ,
and the actual lengths of the short edges are used in it as well. This
approach unfortunately results in a rather large number of right-
to-left edges with a large width in �̂ , as it may potentially include
all long edges. In order to overcome this di�culty, we design an
algorithm for the MaintainCluster problem that can handle arbi-
trary edge lengths, which adds an additional dimension of technical
challenges.

The second main source of ine�ciency in the algorithm of [9] is
the use of Even-Shiloach trees in their algorithm forMaintainCluster,
both in implementing the Matching Player in the Cut-Matching
game, and in order to maintain short paths connecting all vertices
of ⌧ to the vertices of the expander ⌧̂ . It is immediate to see that
the problem that the Matching Player needs to solve is essentially
an instance of the RouteAndCut problem. We also observe that
an algorithm for a variant of the RouteAndCut problem can be
exploited in order to maintain the paths connecting all vertices of⌧
to the vertices of + (⌧̂). We abstract this as a new problem, that we
call ConnectToCenters, and discuss it below. We believe that this
problem and our algorithm for solving it are of independent interest.
We remark that this reduction from theConnectToCenters problem
to the RouteAndCut problem requires that the algorithm for the
RouteAndCut problem works for arbitrary congestion parameter
[ �, and this is the reason for our more general de�nition of the
RouteAndCut problem.

To summarize, as already shown in previous work, in order to
obtain an e�cient algorithm for the RouteAndCut problem, it is
enough to obtain an e�cient algorithm for the MaintainCluster
problem, and we observe that the opposite is also true: an e�cient
algorithm for the RouteAndCut problem implies an e�cient algo-
rithm for the MaintainCluster problem. This, however, creates a

87

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Julia Chuzhoy and Sanjeev Khanna

chicken-and-egg issue, where in order to solve one of the two prob-
lems e�ciently, we need to design an e�cient algorithm for the
other. We overcome this barrier by using a recursive approach.

A recursive approach. We parameterize both the RouteAndCut
and the MaintainCluster problem using a parameter A > 0. We say
that an instance of the MaintainCluster problem on an =-vertex
graph ⌧ with a distance parameter 3 is A -restricted, if 3  2A ·

p
log= .

Consider now an instance of the RouteAndCut problem on an =-
vertex graph � , with two subsets �,⌫ of its vertices, and param-
eters � and [. It is not hard to see that, if P is any collection of
⌦(�/poly log=) paths connecting vertices of � to vertices of ⌫,
that cause vertex-congestion at most [, then a large fraction of the
paths in P have length $̃ (=[/�). We say that an instance of the
RouteAndCut problem is A -restricted if =[

�  2A ·
p
log= . We show a

straightforward algorithm for the 1-restricted RouteAndCut prob-
lem. Then for all A � 1, we show that an e�cient algorithm for the
A -restricted RouteAndCut problem implies an e�cient algorithm
for the A -restrictedMaintainCluster problem. We also show that an
e�cient algorithm for the A -restrictedMaintainCluster problem im-
plies an e�cient algorithm for the (A + 1)-restricted RouteAndCut
problem. Using induction on A , we then simultaneously obtain ef-
�cient algorithms for the RouteAndCut and the MaintainCluster
problems for the entire range of values for the parameter A .

ConnectToCenters problem. The ConnectToCenters problem is
employed as a subroutine in the algorithm for theMaintainCluster
problem, but we feel that it is interesting in its own right, as it
seems to arise in many di�erent settings. Suppose we are given a
dynamic =-vertex graph ⌧ ; for now we will assume that ⌧ under-
goes an online sequence of edge deletions, but in fact our algorithm
considers other updates, as described later. In addition to graph ⌧ ,
assume that we are given a parameter 3 , and a subset) ✓ + (⌧) of
vertices that we call centers. The goal is to maintain, for every vertex
E 2 + (⌧), a path % (E) of length at most 3 , connecting E to some ver-
tex of) . As the time progresses, some vertices may be deleted from
) , but we are guaranteed that) always contains a large enough
fraction of the vertices of ⌧ , e.g. |) | � ⌦(|+ (⌧) |/(3 poly log=). In
order to ensure that the deletion of edges from⌧ does not impact
too many paths in P

⇤ = {% (E) | E 2 + (⌧)}, it is desirable that the
paths cause a small edge-congestion (say at most $̃ (3)), and for
similar reasons it is desirable that every vertex G 2) serves as an
endpoint of relatively few such paths (say at most $̃ (3)). At any
time, the algorithm may compute a cut (�,⌫) of sparsity at most
$
⇣
poly log=

3

⌘
, with |� \) | ⌧ |�|, after which the vertices of � are

deleted from ⌧ and the algorithm continues. We note that when-
ever the by now standard paradigm of embedding an expander into
the input graph ⌧ and then maintaining short paths connecting all
vertices of⌧ to the vertices of the expander is used, one essentially
needs to solve a variant of the ConnectToCenters problem. So far
this was typically done by using Even-Shiloach trees, but this data
structure becomes ine�cient once the depth parameter 3 is su�-
ciently large. It is for this reason that we believe that our algorithm
for the ConnectToCenters problem is of independent interest.

It is easy to see that the initial collection P
⇤ = {% (E) | E 2 + (⌧)}

of paths of length$ (3) each, connecting every vertex of⌧ to some
vertex of) , that cause edge-congestion $̃ (3), can be computed by

employing an algorithm for the RouteAndCut problem. As edges
are deleted from ⌧ , and vertices are deleted from) , some of the
paths in P

⇤ may be destroyed. Whenever a path % (E) 2 P
⇤ is

destroyed, we say that vertex E becomes disconnected. We then
need to reconnect all disconnected vertices to) . This, again, can be
done by employing an algorithm for the RouteAndCut problem, but
doing so directly may be very ine�cient. Assume, for example, that
we are given an algorithm A for the RouteAndCut problem, that,
on an =-vertex graph ⌧ , has running time $ (=2+> (1)). Every time
a subset of vertices of ⌧ becomes disconnected, we would need to
employ this algorithm in order to reconnect them to) . However, it is
possible that only a small number of vertices become disconnected
at a time, and spending⇥(=2+> (1)) time to reconnect them each time
is prohibitively expensive. A better approach seems to be to consider
the set* of vertices that are currently connected, and the set* 0 of
vertices that are currently disconnected. We could then attempt to
route the vertices of* 0 to the vertices of* by constructing a new
collection Q = {& (D) | D 2 * 0

} of paths, where each path & (D)
connects D to some vertex of* ; and then exploit the existing paths
in {% (E) | E 2 * } in order to compute paths connecting every vertex
of* 0 to the vertices of) . However, we cannot a�ord to spend⇥(=2)
time in order to compute the set Q of paths. On the other hand,
intuitively, if |* 0

| ⌧ * , then we may not need to explore the entire
graph⌧ in order to compute the setQ of paths. In order to overcome
this di�culty, we require that the algorithm for the RouteAndCut
problem has running time roughly =1+> (1) · (= � |⌫ |), instead of
=2+> (1) . In particular, if the graph ⌧ is su�ciently dense and |⌫ |
is su�ciently large, then this running time may be much smaller
than |⇢ (⌧) |. Our reduction from the (A +1)-restricted RouteAndCut
problem to the A -restricted MaintainCluster problem follows the
high-level approach of [6] and [9]. However, this additional strict
requirement on the e�ciency of the algorithm for the RouteAndCut
problem, in addition to the requirement that the algorithm should
work for arbitrary values of the congestion parameter [, make the
reduction more challenging and technical.

Assume now that we are given an algorithmA for RouteAndCut,
that, on an instance (⌧,�,⌫,�,[) has running time=1+> (1) ·(=� |⌫ |),
where = = |+ (⌧) |. As described above, in order to implement our
algorithm for the ConnectToCenters problem, whenever we are
given a collection * 0 of vertices that are currently disconnected
from) , we can now employ Algorithm A to construct a collec-
tion Q of paths connecting them to the vertices of * (the set of
currently connected vertices), and then compose Q with the col-
lection {% (E) | E 2 * } of paths to obtain the desired collection
{% (E) | E 2 * 0

} of paths that reconnects the vertices of * 0 to) .
Unfortunately, if we follow this approach, and keep appending
paths to each other iteration after iteration, we may obtain paths
whose lengths are prohibitively large. Instead, we follow a layered
approach. For a parameter _ = $ (log=), we maintain at all times a
partition (*0, . . . ,*_) of the vertices of⌧ into layers, where*0 =) ,
and*_ contains all vertices that are currently disconnected. For all
1  8 < _, we also maintain a collection Q8 = { (E) | E 2 *8 } of
paths, where each path (E) connects a vertex E 2 *8 to a vertex
in

–8�1
80=0*80 . The paths in each set Q8 have length at most 3

4_ , and
cause congestion $̃ (3) in⌧ . By composing the paths from di�erent

88

Maximum Bipartite Matching in =2+> (1) Time via a Combinatorial Algorithm STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

sets Q8 , we can obtain, for every vertex E 2 + (⌧), a path that con-
nects it to some vertex of) . At a high level, for all 1  8 < _, we
reconstruct layer*8 and the set Q8 of paths from scratch every time
that roughly 2_�8 new vertices become disconnected, and we also
ensure that |*8 |  2_�8 holds. So when we employ the algorithm
for the RouteAndCut problem in order to reconnect the vertices of
*8 , in the resulting instance of RouteAndCut, = � |⌫ |  2_�8 holds,
and the running time of the algorithm is roughly =1+> (1) · 2_�8 .
Therefore, as index 8 becomes smaller, the running time of the
RouteAndCut algorithm that is used to reconnect the vertices of
*8 increases. However, for smaller values of index 8 , we need to
reconstruct the set*8 of vertices and the set Q8 of paths less often.
This eventually leads to the desired =2+> (1) running time.

Edge-deletion versus edge-length-increase updates. We would like
to highlight here what we feel is a somewhat surprising insight
from our work, that may appear minor at �rst sight, but we believe
that it may be useful in other problems. Consider the following two
settings for dynamic graphs: the �rst one is the standard decremen-
tal setting, where edges are deleted from the input graph ⌧ as the
time progresses. The second setting is a somewhat more unusual
one, where the only updates that are allowed in the input graph
⌧ is the doubling of the lengths of its edges; we refer to this type
of updates as edge-length-increases. Generally, it is not hard to
see that both models are roughly equivalent. Indeed, in order to
simulate edge-length-increases in the standard decremental setting,
we can simply create a large number of copies of each edge 4 of
various lengths, and then, as the length of 4 increases, some of
these copies are deleted. The reduction in the other direction is also
immediate: we can simulate the deletion of an edge 4 from ⌧ by
repeatedly doubling its length, until it becomes very high.

The dynamic graphs that arise from using the MWU framework
typically only undergo edge-length-increase updates, which are
then typically implemented as edge-deletions, in order to reduce
the problem to the more standard decremental SSSP, as described
above. However, the edge-length-increases that the input graph
⌧ undergoes under this implementation of theMWU method are
rather well-behaved: speci�cally, the lengths of the edges are only
increased moderately, and all length increases occur on the edges
that participate in the paths that the algorithm returns in response
to queries. We observe that the resulting SSSP problem appears to
be easier if we work with edge-length-increase updates directly,
instead of the more traditional approach of transforming them into
edge-deletion updates.

In order to illustrate this, consider the following simple scenario:
we are given a graph ⌧ , and initially the length of every edge in
⌧ is 1. Assume also that we have computed another graph - (it
may be convenient to think of - as an expander), and embedded -
into ⌧ via paths of length at most 3 , that cause edge-congestion at
most [. If some edge 4 is deleted from⌧ , then every edge 4̂ 2 ⇢ (-),
whose embedding path& (4̂) uses 4 , must be deleted from - as well.
Therefore, the deletion of a single edge from ⌧ may lead to the
deletion of [edges from - . Assume now that, instead, the edges
of ⌧ only undergo increases in their lengths, where the length of
each edge may be iteratively doubled, but the total increase in the
lengths of all edges is moderate. If the length of an edge 4 2 ⇢ (⌧) is
doubled, then for every edge 4̂ 2 ⇢ (-) whose embedding path& (4̂)

uses 4 , the length of & (4̂) increases only slightly, and so there is no
need to delete 4̂ from ⇢ (-). We can usually wait until the length
of the path & (4̂) increases signi�cantly before edge 4̂ needs to be
deleted from - . As mentioned already, in instances arising from
the MWU framework, the total increase in the lengths of all edges
in ⌧ over the course of the entire algorithm is usually not very
large, and in particular most edges whose lengths are doubled are
short. This allows us to maintain the expander- and its embedding
into ⌧ over the course of a much longer sequence of updates to ⌧ .
This is one of the insights that allowed us to obtain a more e�cient
algorithm for theMaintainCluster problem.

To summarize, our algorithm departs from the algorithm of [9]
in the following key aspects. First, we use the MWU method to
reduce the RouteAndCut problem to B-C-SP in dynamic graphs that
undergo edge-length-increases instead of edge-deletion updates.
Second, our algorithm for the RouteAndCut problem has running
time that signi�cantly decreases when the set ⌫ of vertices contains
almost all vertices of ⌧ ; in some cases the running time may even
be lower than |⇢ (⌧) |. We extend the MaintainCluster problem
to handle arbitrary edge lengths, but unlike [9] we only allow
edge-length-increases, instead of edge-deletion updates. We design
an algorithm for the ConnectToCenters problem, that we believe
is of independent interest, and that can be viewed as reducing
the MaintainCluster problem to RouteAndCut. Lastly, we use a
recursive approach, in which algorithms for RouteAndCut rely on
algorithms for MaintainCluster and vice versa, by parametrizing
both problems with an auxiliary parameter A , and then inductively
develop algorithms for both problems for the entire range of A .

Organization. We start with preliminaries in Section 2, and then
provide a high-level overview of our algorithm in Section 3, where
we also formally de�ne the RouteAndCut problem, state our main
result for it, and describe how our algorithm for the RouteAndCut
problem implies the main result of this paper. We defer the complete
proofs to the full version of the paper.

2 PRELIMINARIES
In this paper we work with both directed and undirected graphs.
By default graphs do not contain parallel edges or self-loops.

Let ⌧ be a graph with capacities 2 (4) � 0 on edges 4 2 ⇢ (⌧),
and let P be a collection of simple paths in ⌧ . We say that the
paths in P cause edge-congestion [, or just congestion [, if every
edge 4 2 ⇢ (⌧) participates in at most [· 2 (4) paths in P. When
edge capacities are not explicitly given, we assume that they are
unit. If every edge of ⌧ belongs to at most one path in P, then we
say that the paths in P are edge-disjoint. Similarly, if we are given
a �ow value 5 (4) � 0 for every edge 4 2 ⇢ (⌧), we say that �ow
5 causes congestion [if, for every edge 4 2 ⇢ (⌧), 5 (4)  [· 2 (4)
holds. If 5 (4)  2 (4) holds for every edge 4 2 ⇢ (⌧), we may say
that 5 causes no congestion.

3 HIGH-LEVEL OVERVIEW OF THE
ALGORITHM

Throughout the paper we will work with special kinds of directed
graphs that we refer to as well-structured graphs, and de�ne below.

89

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Julia Chuzhoy and Sanjeev Khanna

D��������� 3.1 (W����S��������� G�����). Let ⌧ = (!,', ⇢)
be a bipartite directed graph. We call the edges of ⇢⌧ (!,') regular
and the edges of ⇢⌧ (', !) special. We say that⌧ is a well-structured
graph, if every vertex of ⌧ is incident to at most one special edge.

If⌧ is a well-structured graph, then we assume that the partition
(!,') of its vertices is given as part of the description of ⌧ .

In the remainder of this section, we de�ne a new problem, called
RouteAndCut, which is one of the main building blocks of our
algorithm. We then state the main theorem for this section, that
provides an e�cient algorithm for the RouteAndCut problem, and
show that our main result – the proof of Theorem 1.1 follows from
it. We also provide a high-level overview of the algorithm for the
RouteAndCut problem.

3.1 The RouteAndCut Problem
In this subsection we de�ne the RouteAndCut problem, which is
one of the main building blocks of our algorithm. Before we do so,
we need to de�ne the notion of routing.

D��������� 3.2 (R������). Let ⌧ = (+ , ⇢) be a directed graph,
and let �,⌫ be two disjoint subsets of its vertices. A routing from � to
⌫ is a collection Q of paths in ⌧ , such that every path in Q connects
a vertex of � to a vertex of ⌫, and the endpoints of the paths in Q are
all disjoint. The congestion of the routing is the edge-congestion that
the set Q of paths causes in graph⌧ . Vertices of�[⌫ may serve both
as endpoints and as inner vertices of the paths in Q simultaneously.

We are now ready to de�ne the RouteAndCut problem, and its
special case, called A -restricted RouteAndCut. Intuitively, we use
the notion of the A -restricted RouteAndCut problem in order to
discretize the problem instances: our algorithm for RouteAndCut
will consider, by induction, A -restricted instances of the problem,
from smaller to larger values of A .

D��������� 3.3. The input to RouteAndCut problem is a well-
structured =-vertex graph⌧ = (!,', ⇢), that is given in the adjacency-
list representation, parameters # � =, � � 1, and 1  [ �, and
two disjoint subsets �,⌫ of vertices of ⌧ , with |�|, |⌫ | � �.

The output of the problem is a routing Q from � to ⌫, whose
congestion is bounded by 4[log# . Additionally, if |Q| < �, the
output must contain a cut (- ,.) in ⌧ with |⇢⌧ (- ,.) |  64�

[log4 =
+

256 |Q |

[, such that, if�0
✓ �,⌫0 ✓ ⌫ denote the subsets of vertices that

do not serve as endpoints of the paths in Q, then �0
✓ - and ⌫0 ✓ .

hold. The algorithm for the RouteAndCut problem is also allowed to
return “FAIL” without producing any output, but the probability of the
algorithm doing so must be bounded by 1/2. We say that an instance
(⌧,�,⌫,�,[,#) of the RouteAndCut problem is A -restricted, for an
integer 1  A 

lp
log#

m
, i� (=� |⌫ |) ·[

�  2A ·
p
log# holds.

To get some intuition about the de�nition of A -restricted in-
stances, suppose we compute a routing from � to ⌫ in graph ⌧
of cardinality � that causes edge-congestion at most [. Assume
w.l.o.g. that, if 1 2 ⌫ is an inner vertex on some path of the routing,
then it serves as an endpoint of some other path of the routing.
Then it is not hard to show that most of the paths in the rout-
ing must have length at most 3 = $

⇣
(=� |⌫ |) ·[

�

⌘
. The de�nition

or A -restricted instances requires that this parameter 3 is roughly

bounded by 2A
p
log# . It is easy to see that our starting instance

must be A⇤-restricted, for A⇤ =
lp

log#
m
. In order to solve this

problem instance, we will need to solve the problem recursively
on smaller subgraphs ⌧ 0 of ⌧ , but it is important for us to ensure
that the resulting instances are A 0-restricted, for A 0 < A⇤. In order
to do so, we will let the parameter # in the resulting subinstances
correspond to the number of vertices in the original graph⌧ (we
may need to slightly adjust it for technical reasons but the adjust-
ments are minor). By appropriately setting the parameters � and
[for the resulting subinstances, we can then ensure that they are
indeed A 0-restricted, for some A 0 < A⇤. Overall, the parameter #
can be thought of as roughly the number of vertices in the original
instance of the RouteAndCut problem that we try to solve, and it
is used mostly to de�ne the notion of A -restricted instances. The
notion of A -restricted instances allows us to construct algorithms
for RouteAndCut inductively, from smaller to larger values of A .
The following theorem provides one of our main technical results,
namely an e�cient algorithm for the RouteAndCut problem.

T������ 3.4. There is a randomized algorithm for RouteAndCut
problem, that, on an input (⌧,�,⌫,�,[,#), has running time at most
$
⇣
= · (= � |⌫ |) · 2$ (

p
log# ·log log#)

⌘
, where = = |+ (⌧) |.

We next show that the proof of Theorem 1.1 follows from the
above theorem.

3.2 Completing the Proof of Theorem 1.1
Recall that in theMaximum Bipartite Matching problem, the input
is an undirected =-vertex bipartite graph⌧ = (!,', ⇢), and the goal
is to compute a matching of maximum cardinality in ⌧ .

We can assume w.l.o.g. that we are given a target integral value
⇠⇤ > 0. If ⇠⇤

 OPT, then our algorithm must either produce a
matching of cardinality ⇠⇤, or terminate with a “FAIL”, but we re-
quire that the latter only happenswith probability atmost 1/poly(=)
in this case. If ⇠⇤ > OPT, then our algorithm may return an arbi-
trary matching, or terminate with a “FAIL”. We can then use binary
search to compute the optimal solution with high probability. From
now on, we assume that we are given a target value ⇠⇤, and that⌧
contains a matching of cardinality ⇠⇤. Our algorithm must either
compute a matching of cardinality ⇠⇤, or to return “FAIL”, but the
probability for returning “FAIL” must be bounded by 1/poly(=).
For convenience, we denote ⇠⇤ by OPT. We can assume that = is
greater than a large enough constant, since otherwise the problem
can be solved in $ (1) time.

It is well known that theMaximum Bipartite Matching problem
can be reduced to computing maximum B-C �ow in a directed �ow
network with unit edge capacities. In order to do so, we start with
the graph ⌧ = (!,', ⇢), and direct all its edges from the vertices
of ! towards the vertices of '. We then add a source vertex B , that
connects with an edge to every vertex of !, and a destination vertex
C , to which every vertex of ' is connected. All edge capacities are
set to 1. Let ⌧ 0 denote the resulting directed �ow network. It is
easy to verify that the value of the maximum B-C �ow in⌧ 0 is equal
to the cardinality of maximum matching in ⌧ . Moreover, given an
integral �ow 5 in ⌧ 0, we can compute a matching" of cardinality
val(5) in ⌧ , in time $ (=): we simply include in " all edges of ⌧
that carry 1 �ow unit.

90

Maximum Bipartite Matching in =2+> (1) Time via a Combinatorial Algorithm STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Our algorithm consists of $ (log3 =) phases. Throughout the
algorithm, we maintain a matching " in ⌧ , starting with " =
;, and we denote �⇤ = OPT � |" |. If " is the matching at the
beginning of a phase, and" 0 is the matching obtained at the end
of the phase, then we require that |" 0

| � |" | + ⌦(�⇤
/log2 =). We

show a combinatorial algorithm, that, given an initial matching" ,
either returns “FAIL”, or computes such a matching " 0, in time
$
⇣
=2 · 2$ (

p
log= log log=)

⌘
, where the probability that the algorithm

returns “FAIL” is bounded by 1/poly(=). This will ensure that the
number of the phases is bounded by$ (log3 =), and the total running
time of the algorithm is $

⇣
=2 · 2$ (

p
log= log log=)

⌘
. From now on

we focus on the description of a single phase.

Implementation of a Single Phase. We assume that we are given
some matching" in the input graph⌧ , and we denote �⇤ = OPT�
|" |. Our goal is to compute a matching" 0 of cardinality at least
|" | + ⌦(�⇤

/log2 =). As observed already, matching " de�nes a
�ow 5 of value |" | in the directed �ow network ⌧ 0 with unit edge
capacities. We denote by � = ⌧ 0

5 the corresponding residual �ow
network, and we say that � is the residual �ow network of ⌧ with
respect to matching" . Observe that � is a directed �ow network
with unit edge capacities, and that the value of the maximum B-C
�ow in � is at least OPT � |" | = �⇤.

Next, we will de�ne an instance of the RouteAndCut problem.
Consider �rst the graph � 0 = � \ {B, C}. Notice that, for every edge
4 = (D, E) of ⌧ with D 2 ! and E 2 ', if 4 2 " , then edge (E,D) is
present in � 0, and otherwise edge (D, E) is present in � 0. Therefore,
all edges of � 0 that are directed from vertices of ' to vertices of !
correspond to the edges of the current matching" . Clearly, every
vertex of � 0 may be incident to at most one edge of ⇢� 0 (', !), and
so graph � 0 is a well-structured graph.

We let � ✓ ! be the set of vertices E , such that edge (B, E) is
present in graph � , and we let ⌫ ✓ ' be the set of vertices D, such
that edge (D, C) is present in � . We also de�ne parameters [= 1,
= =, and � = �⇤. It is easy to verify that (� 0,�,⌫,�,[,#) is
a valid input to the RouteAndCut problem, and we can compute
an adjacency-list representation of � 0 in time $ (|⇢ (⌧) |). Recall
that there is an B-C �ow 5 of value �⇤ in graph � , and, from the
integrality of maximum �ow in integer-capacity networks, we can
assume that this �ow is integral. This �ow naturally de�nes a
routing Q

⇤ from � to ⌫, that causes congestion [= 1, with |Q
⇤
| =

�⇤.
We now apply the algorithm from Theorem 3.4 to the instance

(� 0,�,⌫,�,[,#) of the RouteAndCut problem. As long as the al-
gorithm returns “FAIL”, we keep executing it, for up to d100 log=e
iterations. If the algorithm from Theorem 3.4 returned “FAIL” in all
d100 log=e consecutive iterations, we terminate our algorithm and
return “FAIL”. It is easy to verify that this may happen with proba-
bility at most 1/=100. Otherwise, the algorithm from Theorem 3.4
must return a routing Q from� to ⌫ with congestion at most 4 log=.
It is not hard to see that |Q| �

�⇤

log= must hold; a formal proof of
this fact can be found in the full version of the paper.

Notice that the paths in Q naturally de�ne a collection Q
0 of

at least �⇤

log= B-C paths in graph � (the residual �ow network with

respect to ⌧ and the current matching "), and they cause con-
gestion at most 4 log= (since the endpoints of the paths in Q are
disjoint). Next, we show an algorithm that computes a collection
Q
00 of ⌦

⇣
�⇤

log2 =

⌘
edge-disjoint B-C paths in graph � . We will then

use the paths in Q
00 in order to augment the current �ow 5 in graph

⌧ 0, which, in turn, will allow us to compute the new augmented
matching" 0.

In order to compute the collection Q
00 of paths, we construct a

directed graph � 00
✓ � , that consists of all vertices and edges that

participate in the paths of Q 0. The capacity of every edge in � 00

remains unit – the same as its capacity in� . The observation below
summarizes some useful properties of the graph � 00; its proof is
deferred to the full version.

O���������� 3.5. |⇢ (� 00
) |  $ (= log=), and there is an B-C �ow

of value at least �⇤

4 log2 =
in � 00.

Next, we compute an integral maximum B-C �ow in � 00 that
obeys the edge capacities in� 00, using the standard Ford-Fulkerson
algorithm. Each iteration of the Ford-Fulkerson algorithm takes
$ (|⇢ (� 00

) |) = e$ (=) time, and, since there can be at most = itera-
tions, in e$ (=2) timewe recover a collectionQ 00 of at least ⌦

⇣
�⇤

log2 =

⌘
edge-disjoint paths connecting B to C in� 00. Since� 00

✓ � , we have
now obtained the desired collection Q

00 of at least ⌦
⇣

�⇤

log2 =

⌘
edge-

disjoint B-C paths in � . We note that we could also directly round
the initial fractional B-C �ow in � 00, in expected time e$ (|⇢ (� 00

) |) =e$ (=), e.g. by using the algorithm from Theorem 5 in [23], that builds
on the results of [17]. But since the bottlenecks in the running time
of our algorithm lie elsewhere, we instead use the above simple
deterministic algorithm.

We can now augment the current �ow in ⌧ 0 via the collection
Q
00 of augmenting paths, obtaining a new integral �ow in graph

⌧ 0 of value |" | + |Q
00
|, which, in turn, de�nes a new matching" 0

with |" 0
| � |" | + |Q

00
| � |" | + ⌦

⇣
�⇤

log2 =

⌘
.

We now bound the running time of a single phase. Recall that we
may execute the algorithm from Theorem 3.4 at most $ (log=)
times per phase. The running time of a single such execution
is $

⇣
=2 · 2$ (

p
log# ·log log#)

⌘
 $

⇣
=2 · 2$ (

p
log= ·log log=)

⌘
. Addi-

tionally, the time required to compute the graph� 00, and to compute
the maximum �ow in it is bounded by e$ (=2). Overall, the running
time of a single phase is$

⇣
=2 · 2$ (

p
log= ·log log=)

⌘
. Since the num-

ber of phases is bounded by$ (log3 =), the total running time of the
algorithm is bounded by$

⇣
=2 · 2$ (

p
log= ·log log=)

⌘
, and the proba-

bility that the algorithm ever returns “FAIL” bounded by 1/poly(=).
In the remainder of the paper, we focus on the proof of Theorem 3.4.

3.3 Proof of Theorem 3.4 – High Level Overview
To prove Theorem 3.4, we use two large enough constants 21 � 22,
whose values we set later, and we employ the following theorem.

T������ 3.6. For all A � 1, there is a randomized algorithm for the
A -restrictedRouteAndCut problem, that, on an input (⌧,�,⌫,�,[,#)

with |+ (⌧) | = =, runs in time at most 21 · = · (= � |⌫ |) · 222
p
log#

·

(log#)
1622 (A�1)+822 .

91

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Julia Chuzhoy and Sanjeev Khanna

Note that, if (⌧,�,⌫,�,[,#) is an instance of the RouteAndCut
problem, and |+ (⌧) | = =, then, from the problem de�nition, [ �

and (=� |⌫ |) ·[
�  = holds. Therefore, any instance of the problem

is also an instance of A⇤-restricted RouteAndCut problem, for A⇤ =lp
log=

m
. By using Theorem 3.6 with parameter A⇤ =

lp
log=

m
, we

obtain an algorithm for the general RouteAndCut problem whose
running time is $

⇣
= · (= � |⌫ |) · 2$ (

p
log# ·log log#)

⌘
.

Therefore, in order to prove Theorem 3.4, it is enough to prove
Theorem 3.6. At a high level, the proof of Theorem 3.6 proceeds
by induction on A , and it relies on a slight modi�cation of the
Multiplicative Weight Update (MWU) framework of [13, 16], that
essentially reduces the A -restricted RouteAndCut problem to a spe-
cial case of the directed SSSP problem, that we call A -Restricted
B-C-SP. Before we describe this approach, we summarize a useful
transformation, that allows us to reduce the number of edges in
the input graph, in the following claim, whose proof appears in the
full version of the paper.

C���� 3.7. There is a deterministic algorithm, that, given an in-
stance (⌧,�,⌫,�,[,#) of the A -restricted RouteAndCut problem
(where graph ⌧ is given as an adjacency list), constructs another
instance (⌧ 0,�,⌫,�,[,#) of the A -restricted RouteAndCut problem
with ⌧ 0

✓ ⌧ , such that |⇢ (⌧ 0
) |  $ (= · (= � |⌫ |)), and moreover, if

(Q, (- ,.)) is a valid solution to instance (⌧ 0,�,⌫,�,[,#), then it is
also a valid solution to instance (⌧,�,⌫,�,[,#). The running time
of the algorithm is $ (= · (= � |⌫ |)).

In our algorithms for the RouteAndCut problem, we will use
Claim 3.7 in order to ensure that the number of edges in the input
graph is bounded by $ (= · (= � |⌫ |)). We now turn to describe the
MWU-based approach for solving A -restricted RouteAndCut.

3.4 Solving A -Restricted RouteAndCut
In this subsection we provide a high-level description of our al-
gorithm for the A -restricted RouteAndCut problem, including the
modi�edMWU framework that we use, and a reduction to a special
case of the SSSP problem, that we call A -restricted B-C-SP. We show
that an algorithm for the latter problem implies an algorithm for
A -restricted RouteAndCut, via the modi�edMWU framework.

Let (⌧,�,⌫,�,[,#) be the input instance to the A -restricted
RouteAndCut problem, where ⌧ = (!,', ⇢) is a well-structured
graph with |+ (⌧) | = =, that is given as an adjancency list, � and
⌫ are disjoint subsets of + (⌧), and # � =, � � 1, and 1  [ �
are parameters, with |�|, |⌫ | � �. Since the instance is A -restricted,
(=� |⌫ |) ·[

�  2A ·
p
log# holds. By using the algorithm from Claim 3.7,

we convert this instance into another instance (⌧ 0,�,⌫,�,[,#)

of A -restricted RouteAndCut with |⇢ (⌧ 0
) |  $ (= · (= � |⌫ |)), in

time $ (= · (= � |⌫ |)). From now on we focus on solving instance
(⌧ 0,�,⌫,�,[,#), and, for convenience, we denote ⌧ 0 by ⌧ .

A Preprocessing Step. We start with a simple preprocessing step.
We greedily construct a maximal collection Q0 of disjoint paths,
where every path connects a distinct vertex of� to a distinct vertex
of ⌫, and consists of a single regular edge. This can be done in time
$ (|⇢ (⌧) |)  $ (= · (= � |⌫ |)). Let �1 ✓ � and ⌫1 ✓ ⌫ be the sets of
vertices that do not serve as endpoints of any path in Q0. This step
ensures that there is no regular edge in ⌧ connecting a vertex of

�1 to a vertex of ⌫1, so every path connecting a vertex of �1 to a
vertex of ⌫1 must contain at least one special edge.

Next, we describe a modi�edMWU framework that will allow
us to compute a solution to the A -restricted RouteAndCut prob-
lem instance. The modi�edMWU framework is designed so as to
reduce the A -restricted RouteAndCut problem to a special case of
SSSP, that we call A -restricted B-C-SP, which seems more tractable
than the general decremental SSSP problem in directed graphs. We
will then design an algorithm for the A -restricted B-C-SP problem,
that will allow us to obtain the desired algorithm for A -restricted
RouteAndCut. The algorithm for A -restricted B-C-SPwill in turn rely
on an algorithm for the (A � 1)-restricted RouteAndCut problem.
The details are deferred to the full version of the paper.

3.4.1 The ModifiedMWU Framework. We now describe an algo-
rithm that is based on the modi�edMWU framework, but ignore
the issue of the e�cient implementation of the algorithm. We ad-
dress this issue later, by reducing the problem to the A -restricted
B-C-SP problem.

The algorithm uses a parameter ⇤ = (= � |⌫1 |) ·
[log5 =

� . While
the set ⌫1 of vertices may change over the course of the algorithm,
the value of the parameter ⇤ is set at the beginning of the algorithm
and remains unchanged throughout the algorithm. Our algorithm
maintains an assignment ✓ (4) � 0 of lengths to the edges of⌧ . At the
beginning of the algorithm, we assign an initial length ✓ (4) to every
edge 4 2 ⇢ (⌧), as follows. If 4 is a regular edge, we set ✓ (4) = 0, and
if it is a special edge, we set ✓ (4) = 1

⇤ . As the algorithm progresses,
the lengths of the special edges may grow, but the lengths of the
regular edges remain unchanged.Whenever we talk about distances
between vertices and lengths of paths, it is always with respect to
the current lengths ✓ (4) of edges 4 2 ⇢ (⌧).

The algorithm gradually constructs a routing Q from �1 to ⌫1
in ⌧ , starting with Q = ;. It performs at most � iterations, and in
each iteration, a single path % , connecting some vertex 0 2 �1 to
some vertex 1 2 ⌫1, is added to Q. We then delete 0 from �1 and 1
from ⌫1. Additionally, we may double the lengths of some special
edges on the path % . Speci�cally, our algorithm maintains, for every
special edge 4 of ⌧ , a counter =(4), which, intuitively, counts the
number of paths that were added to Q that contained 4 , since ✓ (4)
was last doubled (or since the beginning of the algorithm, if ✓ (4)
was never doubled yet). At the beginning, we set =(4) = 0 for every
special edge 4 . Whenever a path % is added to Q, we increase the
counter =(4) of every special edge 4 2 ⇢ (%). If, for any such edge
4 , the counter =(4) reaches [, then we double the length of edge 4 ,
and reset the counter =(4) to be 0.

The Oracle. At the heart of our algorithm is an oracle – an algorithm
that, in every iteration, either computes a path % of length at most 1
in the current graph⌧ connecting a vertex of�1 to a vertex of ⌫1, or
produces a new assignment ✓ 0(4) for edges 4 2 ⇢ (⌧), that we call a
cut-witness, and de�ne next. Intuitively, the cut-witness is designed
in such a way that it can be easily transformed into the desired cut
(- ,.) in⌧ with |⇢⌧ (- ,.) |  64�

[log4 =
+

256 |Q |

[, such that, if �0 and
⌫0 denote the current sets �1 and ⌫1 respectively, then �0

✓ - and
⌫0 ✓ . hold. Once the oracle produces a cut-witness, the algorithm
terminates.

92

Maximum Bipartite Matching in =2+> (1) Time via a Combinatorial Algorithm STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

A���MWU
• Initialize the data structures:
– Set Q = ;;
– For every edge 4 2 ⇢ (⌧), if 4 is a regular edge, set
✓ (4) = 0, otherwise set ✓ (4) = 1

⇤ .
– For every special edge 4 , set =(4) = 0.

• Perform atmost��|Q0 | iterations, where in each iteration
we apply the oracle.
– If the oracle returned “FAIL”, then return “FAIL” and
terminate the algorithm;

– If the oracle returned a cut-witness, return the cut-
witness and terminate the algorithm;

– Otherwise, the oracle must have returned an acceptable
path % connecting a vertex 0 2 �1 to a vertex 1 2 ⌫1.
⇤ remove 0 from �1 and 1 from ⌫1;
⇤ add % to Q;
⇤ for each special edge 4 2 ⇢ (%), increase =(4) by 1,
and, if =(4) reaches [, double ✓ (4) and set =(4) = 0.

Figure 1: Alg-MWU

D��������� 3.8 (C����������). A cut-witness is an assignment
of lengths ✓ 0(4) � 0 to every edge 4 2 ⇢ (⌧), such that, if we denote
by �0 and ⌫0 the current sets �1 and ⌫1 of vertices respectively, and
by ⇢⇤ the set of all special edges with both endpoints in ⌫0, then:

•
Õ
42⇢ (⌧) ✓

0
(4)  �

2[log4 =
+
Õ
42⇢ (⌧)\⇢⇤ ✓ (4); and

• the distance in graph⌧ , with respect to edge lengths ✓ 0(·), from
�0 to ⌫0 is at least 1

64 .

Next, we de�ne the notion of an acceptable path in ⌧ , and we
will require that the oracle, in every iteration, either returns an
acceptable path, or returns a cut-witness.

D��������� 3.9 (A��������� P���). A path % in the current
graph⌧ is called acceptable if % is a simple path, connecting a vertex
of�1 to a vertex of ⌫1, the length of % with respect to the current edge
lengths ✓ (·) is at most 1, and no inner vertices of % belong to ⌫1.

We are now ready to de�ne the oracle.

D��������� 3.10 (T�� O�����). An oracle for theMWU frame-
work is an algorithm that, in every iteration, either returns an accept-
able path % , or returns a cut-witness, or returns “FAIL”. The probability
that the oracle ever returns “FAIL” must be bounded by 1/2.

TheMWU-Based Algorithm. We describe the modi�edMWU-based
algorithm, denoted by ALG�MWU in Figure 1; the description ex-
cludes the implementation of the oracle.

We now show that we can use the algorithm in order to solve
the A -restricted RouteAndCut problem. Observe �rst that, if the
total running time of the oracle, over the course of all iterations,
is bounded by) , then the total running time of Algorithm ALG�
MWU is bounded by$ (|) |) +$ (|⇢ (⌧) |)  $ (|) |) +$ (= · (=� |⌫ |)).
Moreover, since the probability that the oracle ever returns “FAIL”
is at most 1/2, the probability that algorithmALG�MWU terminates
with a “FAIL” is bounded by 1/2.

Let Q be the set of paths obtained when Algorithm ALG�MWU
terminates, and let Q 0 = Q [Q0 be the �nal set of paths that we
obtain. Clearly, every path in Q

0 connects a vertex of � to a vertex

of ⌫. The following simple observation shows that the paths in
Q
0 cause congestion at most 4[log=, and that the endpoints of all

paths in Q
0 are disjoint; the proof is deferred to the full version.

O���������� 3.11. The endpoints of the paths in Q
0 are disjoint,

and the congestion caused by the paths in Q
0 in ⌧ is bounded by

4[log=.

Let �0 and ⌫0 denote the sets �1 and ⌫1, respectively, at the
end of Algorithm ALG�MWU. Notice that �0 is a set of all ver-
tices 0 2 � that do not serve as endpoints of the paths in Q

0, and
similarly, ⌫0 contains all vertices 1 2 ⌫ that do not serve as end-
points of the paths in Q

0. The claim below shows an algorithm,
that, given a cut-witness {✓ 0(4)}42⇢ (⌧) , computes a cut (- ,.) in⌧
with |⇢⌧ (- ,.) |  64�

[log4 =
+

256 |Q |

[, such that �0
✓ - and ⌫0 ✓ .

hold; we defer its proof to the full version.

C���� 3.12. There is a deterministic algorithm, that, given a cut-
witness {✓ 0(4)}42⇢ (⌧) for ⌧ , obtained at the end of Algorithm ALG�
MWU, computes a cut (- ,.) in ⌧ with |⇢⌧ (- ,.) | 

64�
[log4 =

+

256 |Q0
|

[, such that �0
✓ - and ⌫0 ✓ . hold. The running time of the

algorithm is $ (|⇢ (⌧) |)  $ (= · (= � |⌫ |)).

We now discuss an e�cient implementation of our algorithm for
the RouteAndCut problem, given an e�cient implementation of the
oracle. Recall that the time required for the preprocessing step, and
for computing the �nal cut (- ,.) by the algorithm from Claim 3.12,
is bounded by $ (= · (= � |⌫ |)). If the running time of the oracle is
bounded by) , then the running time of Algorithm ALG�MWU and
hence of the algorithm for the RouteAndCut problem, is bounded
by$ () += · (= �⌫)). In order to obtain an e�cient implementation
of the oracle, we reduce it to a special case of decremented directed
SSSP, that we call A -restricted B-C-SP problem. We then provide an
algorithm for the latter problem, that, in turn, relies on an algorithm
for (A �1)-restricted RouteAndCut. Due to lack of space, the details
are deferred to the full version of the paper.

REFERENCES
[1] Amir Abboud, Karl Bringmann, and Nick Fischer. 2023. Stronger 3-SUM Lower

Bounds for Approximate Distance Oracles via Additive Combinatorics. In Pro-
ceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
Orlando, FL, USA, June 20-23, 2023, Barna Saha and Rocco A. Servedio (Eds.).
ACM, 391–404. https://doi.org/10.1145/3564246.3585240

[2] Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. 2022. Hardness of
Approximation in P via Short Cycle Removal: Cycle Detection, Distance Oracles,
and Beyond. arXiv preprint arXiv:2204.10465 (2022).

[3] Baruch Awerbuch, Yossi Azar, and Serge A. Plotkin. 1993. Throughput-
Competitive On-Line Routing. In 34th Annual Symposium on Foundations of
Computer Science, Palo Alto, California, USA, 3-5 November 1993. 32–40.

[4] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. 2020. Circulation Control
for Faster Minimum Cost Flow in Unit-Capacity Graphs. In 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020. 93–104.

[5] Aaron Bernstein. 2017. Deterministic Partially Dynamic Single Source Shortest
Paths in Weighted Graphs. In LIPIcs-Leibniz International Proceedings in Infor-
matics, Vol. 80. Schloss Dagstuhl-Leibniz-Center for Computer Science.

[6] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak.
2020. Deterministic decremental reachability, scc, and shortest paths via directed
expanders and congestion balancing. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 1123–1134.

[7] Aaron Bernstein, Maximilian Probst Gutenberg, and ChristianWul�-Nilsen. 2020.
Near-optimal decremental sssp in dense weighted digraphs. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 1112–1122.

93

https://doi.org/10.1145/3564246.3585240

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Julia Chuzhoy and Sanjeev Khanna

[8] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. 2022. Maximum Flow and Minimum-Cost Flow in Almost-
Linear Time. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022. 612–623.

[9] Julia Chuzhoy and Sanjeev Khanna. 2024. A Faster Combinatorial Algorithm for
Maximum Bipartite Matching. In Proceedings of the Thirty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA).

[10] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. 2017.
Negative-Weight Shortest Paths and Unit Capacity Minimum Cost Flow in Õ
(m10/7 log W) Time (Extended Abstract). In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19. 752–771.

[11] Samuel I. Daitch and Daniel A. Spielman. 2008. Faster approximate lossy gener-
alized �ow via interior point algorithms. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, Cynthia Dwork (Ed.). ACM, 451–460.

[12] Dorit Dor, Shay Halperin, and Uri Zwick. 2000. All-Pairs Almost Shortest
Paths. SIAM J. Comput. 29, 5 (2000), 1740–1759. https://doi.org/10.1137/
S0097539797327908

[13] Lisa Fleischer. 2000. Approximating Fractional Multicommodity Flow Indepen-
dent of the Number of Commodities. SIAM J. Discrete Math. 13, 4 (2000), 505–520.
https://doi.org/10.1137/S0895480199355754

[14] L. R. Ford, Jr. and D. R. Fulkerson. 1956. Maximal �ow through a network.
Canadian Journal of Mathematics 8 (1956), 399–404.

[15] Harold N. Gabow. 2017. The Weighted Matching Approach to Maximum Cardi-
nality Matching. Fundam. Informaticae 154, 1-4 (2017), 109–130.

[16] Naveen Garg and Jochen Könemann. 1998. Faster and Simpler Algorithms for
Multicommodity Flow and Other Fractional Packing Problems. In 39th Annual
Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998,
Palo Alto, California, USA. 300–309. https://doi.org/10.1109/SFCS.1998.743463

[17] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2010. Perfect matchings
in o(n log n) time in regular bipartite graphs. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA,
5-8 June 2010. 39–46.

[18] Andrew V. Goldberg and Alexander V. Karzanov. 2004. Maximum skew-
symmetric �ows and matchings. Math. Program. 100, 3 (2004), 537–568.

[19] Maximilian Probst Gutenberg and Christian Wul�-Nilsen. 2020. Decremental
SSSP in weighted digraphs: Faster and against an adaptive adversary. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2542–2561.

[20] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and strengthening hardness for dynamic problems via
the online matrix-vector multiplication conjecture. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. 21–30.

[21] John E. Hopcroft and Richard M. Karp. 1973. An n5/2 Algorithm for Maximum
Matchings in Bipartite Graphs. SIAM J. Comput. 2, 4 (1973), 225–231.

[22] Oscar H. Ibarra and Shlomo Moran. 1981. Deterministic and Probabilistic Al-
gorithms for Maximum Bipartite Matching Via Fast Matrix Multiplication. Inf.
Process. Lett. 13, 1 (1981), 12–15.

[23] Yin Tat Lee, Satish Rao, andNikhil Srivastava. 2013. A new approach to computing
maximum �ows using electrical �ows. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. 755–764.

[24] Yin Tat Lee and Aaron Sidford. 2019. Solving Linear Programs with Sqrt(rank)
Linear System Solves. CoRR abs/1910.08033 (2019).

[25] Yang P. Liu and Aaron Sidford. 2020. Faster energy maximization for faster
maximum �ow. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. 803–814.

[26] Aleksander Madry. 2010. Faster approximation schemes for fractional multi-
commodity �ow problems via dynamic graph algorithms. In Proceedings of the
forty-second ACM symposium on Theory of computing. 121–130.

[27] Aleksander Madry. 2013. Navigating Central Path with Electrical Flows: From
Flows to Matchings, and Back. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. 253–262.

[28] Aleksander Madry. 2016. Computing Maximum Flow with Augmenting Electrical
Flows. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA. 593–602.

[29] Silvio Micali and Vijay V. Vazirani. 1980. An O(sqrt(|v |) |E |) Algorithm for
Finding Maximum Matching in General Graphs. In 21st Annual Symposium on
Foundations of Computer Science, Syracuse, New York, USA, 13-15 October 1980.
IEEE Computer Society, 17–27.

[30] Marcin Mucha and Piotr Sankowski. 2004. Maximum Matchings via Gaussian
Elimination. In 45th Symposium on Foundations of Computer Science (FOCS 2004),
17-19 October 2004, Rome, Italy, Proceedings. 248–255.

[31] Liam Roditty and Uri Zwick. 2011. On Dynamic Shortest Paths Problems. Algo-
rithmica 61, 2 (2011), 389–401. https://doi.org/10.1007/s00453-010-9401-5

[32] A. Schrijver. 2003. Combinatorial Optimization: Polyhedra and E�ciency. Springer.
[33] Daniel A. Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms for

graph partitioning, graph sparsi�cation, and solving linear systems. In Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004. 81–90.

[34] Jan van den Brand, Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximil-
ian Probst Gutenberg, Sushant Sachdeva, and Aaron Sidford. 2023. A Determinis-
tic Almost-Linear Time Algorithm for Minimum-Cost Flow. In 64th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), (to appear).

[35] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. 2020. Bipartite Matching in
Nearly-linear Time on Moderately Dense Graphs. In 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020. 919–930.

[36] Vijay V. Vazirani. 1994. A Theory of Alternating Paths and Blossoms for Proving
Correctness of the O(sqrt{V E}) General Graph Maximum Matching Algorithm.
Comb. 14, 1 (1994), 71–109. https://doi.org/10.1007/BF01305952

Received 12-NOV-2023; accepted 2024-02-11

94

https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1137/S0895480199355754
https://doi.org/10.1109/SFCS.1998.743463
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1007/BF01305952

	Abstract
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	3 High-Level Overview of the Algorithm
	3.1 The RouteAndCut Problem
	3.2 Completing the Proof of thm:main
	3.3 Proof of thm: main for route and cut – High Level Overview
	3.4 Solving r-Restricted RouteAndCut

	References

