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Abstract—Visual servoing represents a control strategy
capable of driving dynamical systems from the current to the
desired pose, when the only available information is the images
generated at both poses. In this work, we analyze vulnerability
of such systems and introduce two types of attacks to deceive
visual servoing controller within a wheeled mobile robotic
system. The attack goal is to alter the visual servoing procedure
in such a way that mobile robot achieves the pose defined by an
attacker instead of the desired one. Specifically, the attacks
exploit image transformations developed using a methodology
based on simulated annealing. The main difference between the
attacks is the considered threat model — i.e., how the attacker
has infiltrated the system. The first attack assumes the real-
time camera feed has been compromised and thus, the images
from the current pose are modified (e.g., during the acquisition
or communication); for the second, only the desired destination
image is potentially altered. Finally, in 3D simulations and real-
world experiments, we show the effectiveness of cyber-attacks.

I. INTRODUCTION

Modern autonomous robotic systems, both in industrial
and non-industrial settings, rely heavily on wired or wireless
communication for a wide range of applications [1], [2].
Even though this connectivity provides substantial benefits in
terms of flexibility and adaptability, it also gives rise to the
potential of malicious cyber-attacks [3], [4], [5]. For this
reason, the cybersecurity of robotics systems become the
focus of significant research efforts [2], [6], [7], [8], [9], [10].

The cyber-attacks that can be utilized to tamper with a
robotic system can be classified into the following three
categories [11]: (i) denial-of-service (DoS) attacks, (ii) replay
attacks, and (iii) deception attacks. DoS attack intercepts
communication between sensors/actuators and control
system, and disables further data transmission using different
mechanisms such as message flooding or resource
exhaustion. The replay attack disables current data flow and
presents previously collected data patterns to the receiver.
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Finally, deception attacks include manipulating sensing or
actuation data to influence the behavior of the considered
system. DoS attacks compromise data availability and can
have significant consequences on the system real-time
performance but can be relatively easily detected. On the
other hand, the deception attacks are considered the most
malicious since they can use a plethora of data alterations to
directly control robot behavior while remaining stealthy;
therefore, this type of attack is in the focus of this paper.

Examples of the developed attacks utilized against robotic
applications include attacks on industrial robots with access
to robot’s configuration files [12], attacks on pick-and-place
manipulators [13], spoofing attacks on UAVs (Unmanned
Aerial Vehicles) [14], [15], [16], attacks on End-to-End
Autonomous Driving Models [17], [18], and DoS attacks on
rescue wheeled mobile robots [19] and on surgical robot [20].

Robotic systems rely heavily on visual information for a
wide variety of tasks such as control [21], perception [22],
decision-making, and planning [23]. A well-established
algorithm for direct control of a robotic system by utilizing
image information is Visual Servoing (VS) [24], [25], [26].
Robotic systems that most commonly utilize visual servoing
as a motion control strategy include industrial manipulators
[27], UAVs [28], or service mobile robots [29]. VS of
wheeled mobile robots represents a subdomain of VS that
requires a specific control law design, which can integrate
robot’s nonholonomic constraints [30]. Particular constraints
for differential drive robots include the restriction in lateral
movement of the robot due to the physical nature of the
wheels. Consequently, one of the most utilized visual
servoing strategies for nonholonomic mobile robots is
Position-Based Visual Servoing (PBVS) [31] since it defines
errors in 3D space that are directly used for maneuvering.
Having that in mind, we use VS strategies, and specifically
PBVS as a case study to analyze the potential security threats
for this controller type used within the mobile robot domain.

PBVS completely relies on the integrity of the images
acquired by a camera during robot motion and image that is
presented to a robot as the desired pose. Alteration of these
images represents convenient means for different adversaries
to change the behavior of the controlled system in a desired,
potentially malicious way (e.g., leading to collision with
other objects in the environment or delaying correct
execution of given tasks). Since a critical starting point in
cybersecurity mechanisms development is the analysis of
different vulnerabilities and potential attacks on the systems,
in this paper we analyze the possibilities for the design of
attacks on the current and desired images within PBVS.
Specifically, we introduce a methodology to perform
geometric transformations of the current and desired images,
leading the PBVS controlled wheeled mobile robot to the
pose defined by the adversary instead to the desired pose.
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Fig. 1. Mobile robot poses in the external coordinate system.

PBVS requires a methodology for estimation of the
difference between the current and desired mobile robot pose
in 3D. The homography estimation is one of the most
common ways to estimate the error between two poses based
on image information. Numerous homography-based PBVS
controllers utilized for wheeled mobile robots have been
developed in the last decades [27], [28], [34], [35], [36].
Some controllers directly use homography values for control
[33], whereas a much more preferred approach is
decomposing homography into 3D pose displacement and
utilizing that difference for control. Therefore, due to
overwhelming efforts devoted to the research within
homography decomposition-based PBVS controllers, in this
work we focus on vulnerability analysis of such systems.

In particular, to demonstrate their vulnerability, the main
contributions of this paper are the development of the
deception cyber-attacks on the visual servoing controller
implemented within nonholonomic wheeled mobile robotic
systems. We present two types of cyber-attacks used to
directly alter the desired position that a mobile robot will
achieve during visual servoing, which is accomplished by
manipulating the images in the current or desired pose.
Specifically, we utilize a simulated annealing metaheuristic
optimization algorithm to transform the image data and
establish pose error (defined and controlled by the attacker)
between the desired and achieved positions after the visual
servoing is completed; effectively moving the robot to a
wrong position fully specified by the attacker.

II. VISUAL SERVOING CONTROLLER

In this paper, we consider a wheeled mobile robot with a
differential drive system and the unicycle kinematical
motion model. The mobile robot pose is defined with the
vector X = (z, x, 8)T, where z and x are the mobile robot
coordinates in the horizontal plane (Fig. 1), and 0 represents
the steering angle. Moreover, the forward-facing camera is
attached to the mobile robot so that the camera coordinate
system is the same as the mobile robot’s frame, with the
offset in the Y direction. The mobile robot moves in the
horizontal plane by applying the angular velocities to the
wheels to achieve translational (v) and angular (w) velocity:
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Fig. 2. Homography between the current and desired pose. Camera
coordinate systems at the current and desired pose are defined with C and
C*, respectively.

In the wheeled mobile robotic domain, visual servoing
outputs are velocities required to achieve the desired pose.
The desired pose is unknown; the only available information
is the desired image.

A. Homography-based visual servoing

Let us consider a set of points belonging to the same
plane in the robot environment - z (as illustrated in Fig. 2).
Each point in the current image is defined with a vector of
homogeneous coordinates p = (u, v, 1)T in the image plane,
and its corresponding point in the desired image with
p* = (u*, v*, 1)T. Vector of homogeneous image plane
coordinate (p) defined in pixels can be transformed to
projective normalized coordinates m = (x;, y;, 1) defined in
the camera coordinate system by utilizing calibration matrix
K:

m=K"p, @)
where camera calibration matrix K is defined by:
a, 0 u,
K=0 «a v, |; 3)
0 0 1

here, o, and o, are the focal lengths in pixels, and uo and vo
represent coordinates of the principal point. If the set of
minimally four noncolinear points can be detected in both
the current and desired image, it is possible to estimate the
projective homography matrix G € R [37] as:

p*=Gp. (4)

Moreover, the projective homography matrix can also be

calculated by using relative translation and rotation (Fig. 2)

between the camera coordinate frames where the current and
desired images are generated:

G = yK(R+tn")K; (5)
here, R € R¥3 is the rotation matrix between the camera
frames, t = (&, f, ;)7 is a translation vector between the
camera frames, n = (1, n,, 7;)7 is a normal unit vector of the
plane =z, all three are expressed in the current camera
coordinate system (C — Fig 2), and y is a scale factor.

The estimated projective homography matrix (G) and the
calibration matrix (K) can be used to reconstruct the
difference (up to a scale) between the poses where the



current and desired images are generated; this can be
achieved by utilizing the homography decomposition
procedure from [32]. Since the considered mobile robot
moves in the plane, it is essential to emphasize that even
though homography produces a translation vector with three
components and a rotation matrix that is used to compute
three Euler angles, only two translation components (in Z
and X directions), and rotation angle around Y axis are
significantly different from zero. The rest of the parameters
exist only due to noise in the feature detection process. The
outputs of the decomposition process [32] are four solutions
for n, t, and R:
Rin, ={R_,t ,n }

={R
Rtn, = { .t }
Rm, ={R,,—t,,-n_},
={R,,—t,,—n,}.

It is important to note that there are two different solutions
(a and b) and their opposite forms. By utilizing the visibility
constraint [32], two impossible solutions can be discarded
by using (7) for all feature points in the desired image (m*):

m*'n<0. @)

Further, since the mobile robot moves in the horizontal
plane, the constraint regarding the constant value of the Y
coordinate (dt,1 and dty, represent the difference between
initial and current Y coordinate for two possible solutions)
can be used to find the index of the true solution:

idx=min([dty1, dty2]). ®)

The acquired index is utilized to determine the true
solutions for R, t, and n. The proposed controller is designed
according to the nonholonomic wheeled mobile robot
controller that utilizes three steps [33]. The three steps are:
(I) rotation to the desired pose (R;, see Fig. 1),
(IT) translation to the desired position (T, see Fig. 1), and
(ITIl) rotation to the desired pose (R, Fig. 1). The
translational and angular velocities for controller steps are:

Stepl:v=0, 0=k,

Step 2:v=—k,e,, »=0, 9
Step3:v=0, 0=k, ,e;;

(6)

Ritn,_

€,

where ko1, kv, and k.3 are control gains. The first step
includes the minimization of the angle the mobile robot
needs to rotate to achieve the desired position (see Fig. 3),
which can be computed as:

= 04, (10)

where 6; = A0 — atan2(t, t.), A0 = — atan2(—Rs,
sqrt(R11% + R21%)), Ry are elements of R, Af is the difference
in orientation between mobile robot at the current and
desired pose. Even though the translation vector is
determined up to a scale with the factor y, the ratio of the
relative distance between the current and desired pose will
still be the same. The second step includes the translation to
the desired position; the control input utilized in this step is
the projection of relative distance in the Z direction (#,) onto
the Z axis of the normal unit vector of the plane 7 (n,) —i.e.,

(11

er= dd,
where d; = t.n..
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Fig. 3. The influence of the cyber-attack parameters on the mobile robot
pose after the visual servoing is completed.

The Z axis of the plane z is utilized since a majority of
planes in the human-built environment are vertical and have
n, # 0. Finally, the third step includes the rotation until the
desired pose is achieved. The error is defined by the relative
rotation between the current and the desired pose, which can
be determined by utilizing rotation matrix R since the
rotation between coordinate frames is defined as rotation
around the Y axis:

e3=—Ab. (12)

Finally, the derived mobile robot velocity and angular
velocity can be utilized to determine the wheel velocities:

o | |1Vr b/2r |v],
o | |[1/r -b/2r||w]|’

where, w, and w; represent right and left wheel angular
velocity, whereas r is wheel radius, and b is the distance
between wheels.

(13)

III. ATTACKS MODEL AND DESIGN

To perform the vulnerability analysis of the PBVS
system, our goal is to evaluate whether it is possible to
perform specific false-data injection attacks on the images
used for control (via a geometric image transformation of the
valid images), in order to force the visual servoing controller
to converge to the position set by the attacker (i.e., this is the
attack objective). The attack parameters, defined by the
attacker, include the angle (d6) and the distance (dD) by
which the mobile robot should miss its desired position (as
illustrated in Fig. 3). New positions, defined according to the
attack parameters (marked with the blue and red circle in
Fig. 3) are calculated relative to the desired position, as
di new = dD - dy and 04 pew = dO + 04, capturing the attacker
goal to force the mobile robot to, e.g., collide with other
entities in the environment or cause a similar accident.

We identify two threat models for the considered mobile
robot visual servoing controller (Fig. 4):

e The first model assumes that the attacker has the
capability to modify real-time camera images
delivered to the controller; such situations may
occur when e.g., the camera driver or
communication links between the camera and the
controller are compromised. We refer to such attacks
as Attack #1.
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Fig. 4. Flowchart for two types of cyber-attacks.

e The second model considers a misinformation attack,
where the attacker is able to modify the desired
image provided to the control system at the
beginning of the robot move (we refer to this as
Attack #2). Such an attack does not require the
continuous injection of false camera images.

To demonstrate the system vulnerability, we design the
attacks on visual servoing by transforming the current image
I or the desired image I*, in order to manipulate the position
of image features. A cyber-attack is considered effective if
its transformation of the feature position in the image space
affects the homography estimation and, therefore, the entire
visual servoing process.

In this paper, we consider two separate geometric
transformations defined with two parameters. The first
transformation is image translation in the u direction by a
certain number of pixels defined with parameter 7y. The
second transformation utilizes a scaling parameter s; if s > 1
the image is centrally cropped and rescaled back to its
original resolution, otherwise if (s < 1), a zero padding
technique is done and the image is rescaled back to its
original resolution. The entire transformation matrix with
these two parameters is denoted with T. Transformed
position of each pixel (P ) in the image can be modeled as:

p=Tp, (14)
a] [/s 0 (T, +(s=1)u,)/ s u,
vol=| 0 /s ((s—l)vo)/s Vil j=lon H-Ws (15)
1 0 0 1 1

where H and W represent the total number of pixels in both
directions of the image. The 3D parameters the attacker
defines (df and dD) need to be correlated with the
parameters 7y and s, which is achieved from the following
optimization problem:

minimize f(X)=e, (16)
e=|0,-(6,+a0)| +|d,~(d,-dD)|,-w. (D
X=(T.s): (18)

here, 6 ), and d , are extracted from the transformed image

according to the procedure that was introduced in Section II.
Since the distance (dy) is in meters and the angle (6,) in
degrees, an additional weight w ensures that both parameters
have an equal stake in the optimization process.
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Fig. 5. Detailed flowchart of the cyber-attacks within visual servoing
framework.

The detailed algorithm for both attacks is shown in Fig. 5.
First, the features are extracted in the provided desired
image. We use the center coordinates of the spheres that are
visible in the camera’s field of view as the features. When
the current image is acquired, the features are extracted and
matched with the ones in the desired image. The positions of
the matched features represent the input into a homography
algorithm that performs the homography matrix estimation,
decomposition, and control parameters calculations.

Afterwards, the selected cyber-attack is executed if the
current image is the first one (Img == 1 in Fig. 5) utilized
within the visual servoing algorithm. The main difference
between the two proposed attacks is that for Attack #1 there
is a continuous real-time modification of the current image
acquired during the robot operation. Thus, for this attack an
additional optimization procedure is performed if the error e
(17) becomes larger than the error threshold e, The first
optimization process that is performed at the start of both
attacks utilizes the set of parameters A (see Fig. 5): bounds
are set to +50 for 7, + 0.2 for s, fast annealing function is
utilized, and the initial temperature is 100 [38]. An
additional optimization for Attack #1 is defined with the set
of optimization parameters B, where the bounds of the
optimization process are significantly lower and are set to
+2 for Ty, and = 0.01 for s. Moreover, the optimization
process starts from the previously acquired optimal
parameters for 7y and s, and the maximum time is set to
0.02s (since this optimization is performed online during
visual servoing). Both optimization processes are performed
using the Simulated Annealing (SA) algorithm [38].
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Fig. 6. Mobile robot at the starting pose in simulation environment with
camera view window.
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Fig 7. Achieved poses for both simulation experiments for different values of
dD and d0; note that the attack is not present for dD = 1 and d0 =0 — Fig. 4.

IV. EXPERIMENTAL EVALUATION

In this section, we illustrate the effectiveness of the
proposed attacks on visual servoing controller both in
simulation and on a real-world mobile robotic system.

A. Simulation

The 3D simulation is performed within CoppeliaSim (V-
REP) simulator [39] with a standard pioneer p3dx mobile
robot equipped with an additional camera sensor. Six
detectable coplanar spheres are added in the simulation (Fig.
6) whose positions are unknown to the robot.

Color thresholding is performed to extract the center
coordinates of each sphere, used as features in the visual
servoing controller. Two experiments for each attack type are
executed in simulation with nine different attack parameters;
results are summarized in Fig. 7. The mobile robot is set to a
target pose x; = (0, 0, 0)T, and the desired image is generated
and saved. Then, for the attack on the desired image
(Attack #2), the mobile robot is set to an initial pose of
x4 = (-1.5, 0.15, 10)", while the initial pose for an attack on
the current image (Attack #1) is x, = (-2, —0.1, —20)T; the
poses are expressed in meters and degrees. Camera resolution
is set to 256 x 256 px, and the overall system has a sampling
time of around 0.075s. In the simulation, the camera
calibration is assumed to be ideal, with the principle point at
the center of the image and no lens distortion. Fig. 6 shows
the mobile robot in the initial pose with a camera view and
the features.

The positions that the mobile robot achieves with
different attacks and parameters are shown in Fig. 7. As can
be seen, the attack parameters dD and d6 significantly alter
the final positions of the mobile robot.
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dD=1.1,d6=5
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Fig 8. The convergence curves of the errors for all three steps of the visual
servoing algorithm. The left and right columns of the figures represent the
attacks on current and desired images, respectively.

For the visual servoing without an attack (i.e., dD = 1 and
df = 0), the achieved pose is close to the target one
(x; = (0, 0, 0)"), whereas attacks with every other considered
combination of parameters accurately influence the mobile
robot to reach a pose different than the targeted one — e.g.,
Attack#1 with parameters dD = 1 and df = £5 results in the
robot ending in the poses that vary from x,1 = (-0.04, 0.16,
0.09) to x,2 = (-0.21, —0.18, 0.06)". Thus, the robot can be
moved into different poses along the X axis by changing the
angle df. The same holds for the Z axis (by changing dD)
and Attack #2. Note that depending on the attack type
(Attack #1 or #2), the sign of the angle parameter changes.

The error values ej-e; from (10)-(12) obtained during
both attacks for each of the three steps of mobile robot
controller — (9) are shown in Fig. 8. Out of 9 experimental
evaluations, the errors for three representative ones are
shown. The errors at each step are directly correlated to the
values of the attack parameters. Hence, the error values also
show the effect of the proposed attacks on the visual servoing
controller. Moreover, the error e3 has an initial negative value
within the attack on the current image with dD = 1.1 and df =
5. This can be attributed to the fact that the mobile robot
moves to the left for that experiment, whereas it moves right
in the other two experimental evaluations (see Fig. 7).

B. Experimental Evaluation

We demonstrate the effectiveness of the proposed cyber-
attacks in real-world settings on two experiments with the
mobile robot RAICO (Robot with Artificial Intelligence
based COgnition), equipped with Basler Dart daA1600-60uc
camera. Images with a resolution of 800 x 600 px are
acquired at a rate of 0.075s. The camera calibration matrix is

4338 0 4048
K=| 0 4349 2879
0 0 1
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Fig. 9. Target (left) and starting (right) image generated by the RAICO robot.

Fig. 10. Mobile robot RAICO at the starting pose during real-world
experimental evaluation.
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Fig. 11. Achieved positions for both real-world experiments.

The entire visual servoing controller is implemented
using the Jetson Nano development kit with Python 3.6.9 and
OpenCV 4.1.1. Examples of images generated at the starting
and the target pose by the mobile robot are shown in Fig. 9.
The initial pose for both experiments was set to be
x;= (0, 0, 0)7, and the target pose was x = (0.20, 0.04, 0)".

Fig. 10 illustrates the experimental setup. The positions
the robot achieved with different attack parameters are shown
in Fig. 11. According to Fig. 11, the final reached positions
of the mobile robot are coherent with the provided attack
parameters. As it can be seen, dashed lines in both Fig. 7 and
Fig. 11 show mobile robot paths between starting and final
poses. The achieved accuracy for the considered experiment
without an attack is within #4mm. The robot paths during
two real-world experiments for the two attacks are shown in
Fig. 12. Poses are computed according to the wheel encoder
data and dead-reckoning pose calculation method [40]. The
circle defines the mobile robot’s position, while the heading
angle is represented with a straight line.

The errors for each step in the controller with different
attack parameters are shown in Fig. 13. As shown, the error
values under Attack #2 (attack on the desired image) have
roughly the same convergence properties. However, for
Attack #1 (attack on the current image) with parameters
dD = 1.2 and df = -3 error value converges faster compared
to other two experiments. The difference in convergence is
due to an additional optimization process that is performed in
the case that error e becomes too large (see Fig. 5).

Robot trajectories -
attack on current image

Robot trajectories -
attack on desired image
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Fig. 12. Achieved positions for both real-world experiments.
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Fig. 13. Achieved errors for both real-world experiments. The left and right
columns of the figures represent the attacks on current and desired images,
respectively.

Therefore, the optimization process reduces the error e and
all three individual errors (e;, e2, and es). An additional
optimization is necessary to ensure that the mobile robot
reaches the position defined by the attack parameters.

V. CONCLUSION

In this work, we have demonstrated the vulnerability of
visual servoing control for wheeled mobile robotic systems
by introducing a methodology to design effective false-data
injection attacks on images used for control. We have
considered two threat models where the attacker is able to
modify runtime camera images or impact captured image at
the desired robot pose. The proposed cyber-attacks utilize an
image transformation procedure to alter the final pose,
allowing attackers to specify the distance and angle for which
the mobile robot will miss its target pose. We have shown
that adequate transformation parameters can be acquired via
simulated annealing optimization. In simulation and real-
world experiments, we have shown the effectiveness of
attacks for both threat models, by significantly changing the
reached (i.e., final) mobile robot pose both in the X and Z
directions. The future research directions include the
development of a deep learning-based intrusion detection
system for vision-based mobile robot controllers.



(1]

(2]

B3]

(4]
(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

REFERENCES

J. E. Rubio, C. Alcaraz, R. Roman, and J. Lopez, “Current cyber-
defense trends in industrial control systems,” Computers &
Security, vol. 87, p. 101561, 2019.

A. Khalid, P. Kirisci, Z. H. Khan, Z. Ghrairi, K.-D. Thoben, and
J. Pannek, “Security framework for industrial collaborative
robotic cyber-physical systems,” Computers in Industry, vol. 97,
pp. 132-145,2018.

A. Chowdhury, G. Karmakar, and J. Kamruzzaman, “Survey of
recent cyber security attacks on robotic systems and their
mitigation approaches,” in Detecting and Mitigating Robotic
Cyber Security Risks, 1GI global, 2017, pp. 284-299.

T. M. Chen and S. Abu-Nimeh, “Lessons from stuxnet,”
Computer, vol. 44, no. 4, pp. 91-93,2011.

A. K. Bozkurt, Y. Wang, and M. Pajic, “Secure planning against
stealthy attacks via model-free reinforcement learning,” in 2021
IEEE International Conference on Robotics and Automation
(ICRA), 2021, pp. 10656—10662.

E. Fosch-Villaronga and T. Mahler, “Cybersecurity, safety and
robots: Strengthening the link between cybersecurity and safety in
the context of care robots,” Computer Law & Security Review,
vol. 41, p. 105528, 2021.

G. W. Clark, M. V Doran, and T. R. Andel, “Cybersecurity issues
in robotics,” in 2017 IEEE conference on cognitive and
computational aspects of situation management, 2017, pp. 1-5.
J.-P. A. Yaacoub, H. N. Noura, O. Salman, and A. Chehab,
“Robotics cyber security: Vulnerabilities, attacks,
countermeasures, and recommendations,” International Journal
of Information Security, pp. 1-44, 2021.

M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and 1.
Lee, “Design and implementation of attack-resilient cyberphysical
systems: With a focus on attack-resilient state estimators,” IEEE
Control Systems Magazine, vol. 37, no. 2, pp. 66-81, 2017.

N. Bezzo, J. Weimer, M. Pajic, O. Sokolsky, G. J. Pappas, and 1.
Lee, “Attack resilient state estimation for autonomous robotic
systems,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2014, pp. 3692—-3698.

D. Ding, Q.-L. Han, Y. Xiang, X. Ge, and X.-M. Zhang, “A
survey on security control and attack detection for industrial
cyber-physical systems,” Neurocomputing, vol. 275, pp. 1674—
1683, 2018.

F. Maggi, D. Quarta, M. Pogliani, M. Polino, A. M. Zanchettin,
and S. Zanero, “Rogue robots: Testing the limits of an industrial
robot’s security,” Trend Micro, Politecnico di Milano, Tech. Rep,
pp. 1-21,2017.

Z. Jakovljevic, V. Lesi, and M. Pajic, “Attacks on distributed
sequential control in manufacturing automation,” I[EEE
Transactions on Industrial Informatics, vol. 17, no. 2, pp. 775~
786, 2020.

A. J. Kemns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via GPS spoofing,”
Journal of Field Robotics, vol. 31, no. 4, pp. 617-636, 2014.

K. Kim, S. Nalluri, A. Kashinath, Y. Wang, S. Mohan, M. Pajic,
and B. Li, “Security analysis against spoofing attacks for
distributed UAVs,” Workshop on Decentralized IoT Systems and
Security (DISS), 2020.

A. Khazraei, M. Haocheng, and M. Pajic, “Stealthy perception-
based attacks on unmanned aerial vehicles,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA),
2023.

A. Boloor, X. He, C. Gill, Y. Vorobeychik, and X. Zhang,
“Simple physical adversarial examples against end-to-end
autonomous driving models,” in 2019 [EEE Int. Conference on
Embedded Software and Systems (ICESS), 2019, pp. 1-7.

A. Khazraei, H. Pfister, and M. Pajic, “Resiliency of Perception-
Based Controllers Against Attacks,” in Learning for Dynamics
and Control Conference, 2022, pp. 713-725.

T. Vuong, A. Filippoupolitis, G. Loukas, and D. Gan, “Physical
indicators of cyber attacks against a rescue robot,” in 2014 IEEE
International ~ Conference on Pervasive Computing and
Communication Workshops, 2014, pp. 338-343.

T. Bonaci, J. Yan, J. Herron, T. Kohno, and H. J. Chizeck,
“Experimental analysis of denial-of-service attacks on

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

teleoperated robotic systems,” in Proceedings of the ACM/IEEE
6™ Int. Conference on Cyber-Physical Systems, 2015, pp. 11-20.
A. Paolillo, M. Nava, D. Piga, and A. Giusti, “Visual Servoing
with Geometrically Interpretable Neural Perception,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 5300-5306.

V. R. Kumar et al, “Omnidet: Surround view cameras based
multi-task visual perception network for autonomous driving,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2830—
2837, 2021.

A. Joki¢, M. Petrovi¢, and Z. Miljkovi¢, “Mobile robot decision-
making system based on deep machine learning,” in 9t
International ~ Conference on Electrical, Electronics and
Computing Engineering (IcETRAN 2022), 2022, pp. 653—656.

J. Huh, J. Hong, S. Garg, H. S. Park, and V. Isler, “Self-
supervised Wide Baseline Visual Servoing via 3D Equivariance,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2022, pp. 2227-2233.

Q. Bateux, E. Marchand, J. Leitner, and F. Chaumette, “Training
Deep Neural Networks for Visual Servoing,” in 2018 [EEE Int.
Conference on Robotics and Automation (ICRA), 2018, pp. 1-8.
A. Joki¢, M. Petrovi¢, and Z. Miljkovi¢, “Semantic segmentation
based stereo visual servoing of nonholonomic mobile robot in
intelligent manufacturing environment,” Expert Systems with
Applications, vol. 190, p. 116203, 2022.

Z. Miljkovi¢, M. Miti¢, M. Lazarevi¢, and B. Babi¢, “Neural
network Reinforcement Learning for visual control of robot
manipulators,” Expert Systems with Applications, vol. 40, no. 5,
pp. 1721-1736, 2013.

H. Xie, A. F. Lynch, K. H. Low, and S. Mao, “Adaptive output-
feedback image-based visual servoing for quadrotor unmanned
aerial vehicles,” [EEE Transactions on Control Systems
Technology, vol. 28, no. 3, pp. 1034-1041, 2019.

M. Petrovi¢, A. Joki¢, Z. Kulesza, and Z. Miljkovi¢, “Deep
learning of mobile service robots,” in Book Service robots —
Advances in Research and Applications, Nova Science Publishers,
New York, 2021, pp. 77-97.

X. Liang, H. Wang, and W. Chen, “Adaptive image-based visual
servoing of wheeled mobile robots with fixed camera
configuration,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), 2014, pp. 6199—-6204.

F. Chaumette and S. Hutchinson, “Visual servo control Part 1 :
Basic approaches,” IEEE Robotics & Automation Magazine, vol.
13, no. 4, pp. 82-90, 2006.

E. Malis and M. Vargas, “Deeper understanding of the
homography decomposition for vision-based control,” [Research
Report] RR-6303, INRIA, p. 90, 2007.

G. Lopez-Nicolas, N. R. Gans, S. Bhattacharya, C. Sagiiés, J. J.
Guerrero, and S. Hutchinson, “Homography-based control
scheme for mobile robots with nonholonomic and field-of-view
constraints,” /[EEE Trans. on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 40, no. 4, pp. 1115-1127, 2010.

S. Benhimane and E. Malis, “Homography-based 2D visual
servoing,” in Proceedings 2006 IEEE International Conference
on Robotics and Automation (ICRA), 2006, pp. 2397-2402.

N. Wang and H. He, “Adaptive homography-based visual servo
for micro unmanned surface vehicles,” The International Journal
of Advanced Manufacturing Technology, vol. 105, no. 12, pp.
4875-4882, 2019.

N. Wang and H. He, “Dynamics-level finite-time fuzzy
monocular visual servo of an unmanned surface vehicle,” IEEE
Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9648—
9658, 2019.

R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, Second Edi. Cambridge University Press, 2000.
Y. Xiang, S. Gubian, B. Suomela, and J. Hoeng, “Generalized
simulated annealing for global optimization: the GenSA
package.,” The R Journal, vol. 5, no. 1, p. 13, 2013.

E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile
and scalable robot simulation framework,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
2013, pp. 1321-1326.

P. Corke, Robotics, Vision and Control: Fundamental Algorithms
In MATLAB®. Springer, 2017.



