
  

  

Abstract—Visual servoing represents a control strategy 
capable of driving dynamical systems from the current to the 
desired pose, when the only available information is the images 
generated at both poses. In this work, we analyze vulnerability 
of such systems and introduce two types of attacks to deceive 
visual servoing controller within a wheeled mobile robotic 
system. The attack goal is to alter the visual servoing procedure 
in such a way that mobile robot achieves the pose defined by an 
attacker instead of the desired one. Specifically, the attacks 
exploit image transformations developed using a methodology 
based on simulated annealing. The main difference between the 
attacks is the considered threat model – i.e., how the attacker 
has infiltrated the system. The first attack assumes the real-
time camera feed has been compromised and thus, the images 
from the current pose are modified (e.g., during the acquisition 
or communication); for the second, only the desired destination 
image is potentially altered. Finally, in 3D simulations and real-
world experiments, we show the effectiveness of cyber-attacks. 

I. INTRODUCTION 

Modern autonomous robotic systems, both in industrial 
and non-industrial settings, rely heavily on wired or wireless 
communication for a wide range of applications [1], [2]. 
Even though this connectivity provides substantial benefits in 
terms of flexibility and adaptability, it also gives rise to the 
potential of malicious cyber-attacks [3], [4], [5]. For this 
reason, the cybersecurity of robotics systems become the 
focus of significant research efforts [2], [6], [7], [8], [9], [10]. 

The cyber-attacks that can be utilized to tamper with a 
robotic system can be classified into the following three 
categories [11]: (i) denial-of-service (DoS) attacks, (ii) replay 
attacks, and (iii) deception attacks. DoS attack intercepts 
communication between sensors/actuators and control 
system, and disables further data transmission using different 
mechanisms such as message flooding or resource 
exhaustion. The replay attack disables current data flow and 
presents previously collected data patterns to the receiver. 
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Finally, deception attacks include manipulating sensing or 
actuation data to influence the behavior of the considered 
system. DoS attacks compromise data availability and can 
have significant consequences on the system real-time 
performance but can be relatively easily detected. On the 
other hand, the deception attacks are considered the most 
malicious since they can use a plethora of data alterations to 
directly control robot behavior while remaining stealthy; 
therefore, this type of attack is in the focus of this paper.  

Examples of the developed attacks utilized against robotic 
applications include attacks on industrial robots with access 
to robot’s configuration files [12], attacks on pick-and-place 
manipulators [13], spoofing attacks on UAVs (Unmanned 
Aerial Vehicles) [14], [15], [16], attacks on End-to-End 
Autonomous Driving Models [17], [18], and DoS attacks on 
rescue wheeled mobile robots [19] and on surgical robot [20]. 

Robotic systems rely heavily on visual information for a 
wide variety of tasks such as control [21], perception [22], 
decision-making, and planning [23]. A well-established 
algorithm for direct control of a robotic system by utilizing 
image information is Visual Servoing (VS) [24], [25], [26]. 
Robotic systems that most commonly utilize visual servoing 
as a motion control strategy include industrial manipulators 
[27], UAVs [28], or service mobile robots [29]. VS of 
wheeled mobile robots represents a subdomain of VS that 
requires a specific control law design, which can integrate 
robot’s nonholonomic constraints [30]. Particular constraints 
for differential drive robots include the restriction in lateral 
movement of the robot due to the physical nature of the 
wheels. Consequently, one of the most utilized visual 
servoing strategies for nonholonomic mobile robots is 
Position-Based Visual Servoing (PBVS) [31] since it defines 
errors in 3D space that are directly used for maneuvering. 
Having that in mind, we use VS strategies, and specifically 
PBVS as a case study to analyze the potential security threats 
for this controller type used within the mobile robot domain. 

PBVS completely relies on the integrity of the images 
acquired by a camera during robot motion and image that is 
presented to a robot as the desired pose. Alteration of these 
images represents convenient means for different adversaries 
to change the behavior of the controlled system in a desired, 
potentially malicious way (e.g., leading to collision with 
other objects in the environment or delaying correct 
execution of given tasks). Since a critical starting point in 
cybersecurity mechanisms development is the analysis of 
different vulnerabilities and potential attacks on the systems, 
in this paper we analyze the possibilities for the design of 
attacks on the current and desired images within PBVS. 
Specifically, we introduce a methodology to perform 
geometric transformations of the current and desired images, 
leading the PBVS controlled wheeled mobile robot to the 
pose defined by the adversary instead to the desired pose. 
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Fig. 1. Mobile robot poses in the external coordinate system. 

PBVS requires a methodology for estimation of the 
difference between the current and desired mobile robot pose 
in 3D. The homography estimation is one of the most 
common ways to estimate the error between two poses based 
on image information. Numerous homography-based PBVS 
controllers utilized for wheeled mobile robots have been 
developed in the last decades [27], [28], [34], [35], [36]. 
Some controllers directly use homography values for control 
[33], whereas a much more preferred approach is 
decomposing homography into 3D pose displacement and 
utilizing that difference for control. Therefore, due to 
overwhelming efforts devoted to the research within 
homography decomposition-based PBVS controllers, in this 
work we focus on vulnerability analysis of such systems. 

In particular, to demonstrate their vulnerability, the main 
contributions of this paper are the development of the 
deception cyber-attacks on the visual servoing controller 
implemented within nonholonomic wheeled mobile robotic 
systems. We present two types of cyber-attacks used to 
directly alter the desired position that a mobile robot will 
achieve during visual servoing, which is accomplished by 
manipulating the images in the current or desired pose. 
Specifically, we utilize a simulated annealing metaheuristic 
optimization algorithm to transform the image data and 
establish pose error (defined and controlled by the attacker) 
between the desired and achieved positions after the visual 
servoing is completed; effectively moving the robot to a 
wrong position fully specified by the attacker. 

II. VISUAL SERVOING CONTROLLER  

In this paper, we consider a wheeled mobile robot with a 
differential drive system and the unicycle kinematical 
motion model. The mobile robot pose is defined with the 
vector x = (z, x, θ)T, where z and x are the mobile robot 
coordinates in the horizontal plane (Fig. 1), and θ represents 
the steering angle. Moreover, the forward-facing camera is 
attached to the mobile robot so that the camera coordinate 
system is the same as the mobile robot’s frame, with the 
offset in the Y direction. The mobile robot moves in the 
horizontal plane by applying the angular velocities to the 
wheels to achieve translational (v) and angular (ω) velocity: 
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Fig. 2. Homography between the current and desired pose. Camera 
coordinate systems at the current and desired pose are defined with C and 
C*, respectively. 

In the wheeled mobile robotic domain, visual servoing 
outputs are velocities required to achieve the desired pose. 
The desired pose is unknown; the only available information 
is the desired image.  

A. Homography-based visual servoing 
Let us consider a set of points belonging to the same 

plane in the robot environment - π (as illustrated in Fig. 2). 
Each point in the current image is defined with a vector of 
homogeneous coordinates p = (u, v, 1)T in the image plane, 
and its corresponding point in the desired image with  
p* = (u*, v*, 1)T. Vector of homogeneous image plane 
coordinate (p) defined in pixels can be transformed to 
projective normalized coordinates m = (xi, yi, 1) defined in 
the camera coordinate system by utilizing calibration matrix 
K: 
 m = K–1 p, (2) 
where camera calibration matrix K is defined by: 
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here, αu and αv are the focal lengths in pixels, and u0 and v0 
represent coordinates of the principal point. If the set of 
minimally four noncolinear points can be detected in both 
the current and desired image, it is possible to estimate the 
projective homography matrix G ∈ ℝ3×3 [37] as: 
 p* = G p. (4) 

Moreover, the projective homography matrix can also be 
calculated by using relative translation and rotation (Fig. 2) 
between the camera coordinate frames where the current and 
desired images are generated: 
 G = γK(R+tnT)K–1 (5) 
here, R ∈ ℝ3×3 is the rotation matrix between the camera 
frames, t = (tx, ty, tz)T is a translation vector between the 
camera frames, n = (nx, ny, nz)T is a normal unit vector of the 
plane π, all three are expressed in the current camera 
coordinate system (C – Fig 2), and γ is a scale factor. 

The estimated projective homography matrix (G) and the 
calibration matrix (K) can be used to reconstruct the 
difference (up to a scale) between the poses where the 



  

current and desired images are generated; this can be 
achieved by utilizing the homography decomposition 
procedure from [32]. Since the considered mobile robot 
moves in the plane, it is essential to emphasize that even 
though homography produces a translation vector with three 
components and a rotation matrix that is used to compute 
three Euler angles, only two translation components (in Z 
and X directions), and rotation angle around Y axis are 
significantly different from zero. The rest of the parameters 
exist only due to noise in the feature detection process. The 
outputs of the decomposition process [32] are four solutions 
for n, t, and R: 
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It is important to note that there are two different solutions 
(a and b) and their opposite forms. By utilizing the visibility 
constraint [32], two impossible solutions can be discarded 
by using (7) for all feature points in the desired image (m*): 
 m*Tn<0. (7) 

Further, since the mobile robot moves in the horizontal 
plane, the constraint regarding the constant value of the Y 
coordinate (dty1 and dty2 represent the difference between 
initial and current Y coordinate for two possible solutions) 
can be used to find the index of the true solution: 
 idx=min([dty1, dty2]). (8) 

The acquired index is utilized to determine the true 
solutions for R, t, and n. The proposed controller is designed 
according to the nonholonomic wheeled mobile robot 
controller that utilizes three steps [33]. The three steps are: 
(I) rotation to the desired pose (R1, see Fig. 1),  
(II) translation to the desired position (T1, see Fig. 1), and 
(III) rotation to the desired pose (R2, Fig. 1). The  
translational and angular velocities for controller steps are:  
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where kω1, kv, and kω3 are control gains. The first step 
includes the minimization of the angle the mobile robot 
needs to rotate to achieve the desired position (see Fig. 3), 
which can be computed as: 
 e1 = θd (10) 
where θd = Δθ – atan2(tx, tz), Δθ = – atan2(–R31,  
sqrt(R11

2 + R21
2)), Rij are elements of R, Δθ is the difference 

in orientation between mobile robot at the current and 
desired pose. Even though the translation vector is 
determined up to a scale with the factor γ, the ratio of the 
relative distance between the current and desired pose will 
still be the same. The second step includes the translation to 
the desired position; the control input utilized in this step is 
the projection of relative distance in the Z direction (tz) onto 
the Z axis of the normal unit vector of the plane π (nz) – i.e., 
 e2 = dd (11) 
where dd = tznz. 

 
Fig. 3. The influence of the cyber-attack parameters on the mobile robot 
pose after the visual servoing is completed. 

The Z axis of the plane π is utilized since a majority of 
planes in the human-built environment are vertical and have 
nz ≠ 0. Finally, the third step includes the rotation until the 
desired pose is achieved. The error is defined by the relative 
rotation between the current and the desired pose, which can 
be determined by utilizing rotation matrix R since the 
rotation between coordinate frames is defined as rotation 
around the Y axis: 

 e3 = –Δθ. (12) 
Finally, the derived mobile robot velocity and angular 

velocity can be utilized to determine the wheel velocities: 
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where, ωr and ωl represent right and left wheel angular 
velocity, whereas r is wheel radius, and b is the distance 
between wheels. 

III. ATTACKS MODEL AND DESIGN 

To perform the vulnerability analysis of the PBVS 
system, our goal is to evaluate whether it is possible to 
perform specific false-data injection attacks on the images 
used for control (via a geometric image transformation of the 
valid images), in order to force the visual servoing controller 
to converge to the position set by the attacker (i.e., this is the 
attack objective). The attack parameters, defined by the 
attacker, include the angle (dθ) and the distance (dD) by 
which the mobile robot should miss its desired position (as 
illustrated in Fig. 3). New positions, defined according to the 
attack parameters (marked with the blue and red circle in 
Fig. 3) are calculated relative to the desired position, as 
dd_new = dD ∙ dd and θd_new = dθ + θd, capturing the attacker 
goal to force the mobile robot to, e.g., collide with other 
entities in the environment or cause a similar accident. 

We identify two threat models for the considered mobile 
robot visual servoing controller (Fig. 4): 

• The first model assumes that the attacker has the 
capability to modify real-time camera images 
delivered to the controller; such situations may 
occur when e.g., the camera driver or 
communication links between the camera and the 
controller are compromised. We refer to such attacks 
as Attack #1. 
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Fig. 4. Flowchart for two types of cyber-attacks. 

• The second model considers a misinformation attack, 
where the attacker is able to modify the desired 
image provided to the control system at the 
beginning of the robot move (we refer to this as 
Attack #2). Such an attack does not require the 
continuous injection of false camera images.  

To demonstrate the system vulnerability, we design the 
attacks on visual servoing by transforming the current image 
I or the desired image I*, in order to manipulate the position 
of image features. A cyber-attack is considered effective if 
its transformation of the feature position in the image space 
affects the homography estimation and, therefore, the entire 
visual servoing process.  

In this paper, we consider two separate geometric 
transformations defined with two parameters. The first 
transformation is image translation in the u direction by a 
certain number of pixels defined with parameter Tx. The 
second transformation utilizes a scaling parameter s; if s > 1 
the image is centrally cropped and rescaled back to its 
original resolution, otherwise if (s < 1), a zero padding 
technique is done and the image is rescaled back to its 
original resolution. The entire transformation matrix with 
these two parameters is denoted with T. Transformed 
position of each pixel ( p̂ ) in the image can be modeled as: 
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where H and W represent the total number of pixels in both 
directions of the image. The 3D parameters the attacker 
defines (dθ and dD) need to be correlated with the 
parameters Tx and s, which is achieved from the following 
optimization problem: 
 ( )minimize =ef X , (16) 

 ( ) ( )
2 2

ˆ
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here, d̂  and ˆ
dd  are extracted from the transformed image 

according to the procedure that was introduced in Section II. 
Since the distance (dd) is in meters and the angle (θd) in 
degrees, an additional weight w ensures that both parameters 
have an equal stake in the optimization process. 

*ˆ,I I *ˆ,I I

 
Fig. 5. Detailed flowchart of the cyber-attacks within visual servoing 
framework. 

The detailed algorithm for both attacks is shown in Fig. 5. 
First, the features are extracted in the provided desired 
image. We use the center coordinates of the spheres that are 
visible in the camera’s field of view as the features. When 
the current image is acquired, the features are extracted and 
matched with the ones in the desired image. The positions of 
the matched features represent the input into a homography 
algorithm that performs the homography matrix estimation, 
decomposition, and control parameters calculations. 

Afterwards, the selected cyber-attack is executed if the 
current image is the first one (Img == 1 in Fig. 5) utilized 
within the visual servoing algorithm. The main difference 
between the two proposed attacks is that for Attack #1 there 
is a continuous real-time modification of the current image 
acquired during the robot operation. Thus, for this attack an 
additional optimization procedure is performed if the error e 
(17) becomes larger than the error threshold et. The first 
optimization process that is performed at the start of both 
attacks utilizes the set of parameters A (see Fig. 5): bounds 
are set to ±50 for Tx, ± 0.2 for s, fast annealing function is 
utilized, and the initial temperature is 100 [38]. An 
additional optimization for Attack #1 is defined with the set 
of optimization parameters B, where the bounds of the 
optimization process are significantly lower and are set to  
±2 for Tx, and ± 0.01 for s. Moreover, the optimization 
process starts from the previously acquired optimal 
parameters for Tx and s, and the maximum time is set to 
0.02s (since this optimization is performed online during 
visual servoing). Both optimization processes are performed 
using the Simulated Annealing (SA) algorithm [38]. 



  

 
Fig. 6. Mobile robot at the starting pose in simulation environment with 

camera view window. 

 

Fig 7. Achieved poses for both simulation experiments for different values of 
dD and dθ; note that the attack is not present for dD = 1 and dθ = 0 – Fig. 4. 

IV. EXPERIMENTAL EVALUATION 

In this section, we illustrate the effectiveness of the 
proposed attacks on visual servoing controller both in 
simulation and on a real-world mobile robotic system.  

A. Simulation 
The 3D simulation is performed within CoppeliaSim (V-

REP) simulator [39] with a standard pioneer p3dx mobile 
robot equipped with an additional camera sensor. Six 
detectable coplanar spheres are added in the simulation (Fig. 
6) whose positions are unknown to the robot. 

Color thresholding is performed to extract the center 
coordinates of each sphere, used as features in the visual 
servoing controller. Two experiments for each attack type are 
executed in simulation with nine different attack parameters; 
results are summarized in Fig. 7. The mobile robot is set to a 
target pose xt = (0, 0, 0)T, and the desired image is generated 
and saved. Then, for the attack on the desired image  
(Attack #2), the mobile robot is set to an initial pose of  
xd = (–1.5, 0.15, 10)T, while the initial pose for an attack on 
the current image (Attack #1) is xc = (–2, –0.1, –20)T; the 
poses are expressed in meters and degrees. Camera resolution 
is set to 256 × 256 px, and the overall system has a sampling 
time of around 0.075s. In the simulation, the camera 
calibration is assumed to be ideal, with the principle point at 
the center of the image and no lens distortion. Fig. 6 shows 
the mobile robot in the initial pose with a camera view and 
the features. 

The positions that the mobile robot achieves with 
different attacks and parameters are shown in Fig. 7. As can 
be seen, the attack parameters dD and dθ significantly alter 
the final positions of the mobile robot.  

 
Fig 8. The convergence curves of the errors for all three steps of the visual 
servoing algorithm. The left and right columns of the figures represent the 
attacks on current and desired images, respectively. 

For the visual servoing without an attack (i.e., dD = 1 and  
dθ = 0), the achieved pose is close to the target one  
(xt = (0, 0, 0)T), whereas attacks with every other considered 
combination of parameters accurately influence the mobile 
robot to reach a pose different than the targeted one – e.g., 
Attack#1 with parameters dD = 1 and dθ = ±5 results in the 
robot ending in the poses that vary from xa1 = (–0.04, 0.16, 
0.09)T to xa2 = (–0.21, –0.18, 0.06)T. Thus, the robot can be 
moved into different poses along the X axis by changing the 
angle dθ. The same holds for the Z axis (by changing dD) 
and Attack #2. Note that depending on the attack type 
(Attack #1 or #2), the sign of the angle parameter changes.  

The error values e1-e3 from (10)-(12) obtained during 
both attacks for each of the three steps of mobile robot 
controller – (9) are shown in Fig. 8. Out of 9 experimental 
evaluations, the errors for three representative ones are 
shown. The errors at each step are directly correlated to the 
values of the attack parameters. Hence, the error values also 
show the effect of the proposed attacks on the visual servoing 
controller. Moreover, the error e3 has an initial negative value 
within the attack on the current image with dD = 1.1 and dθ = 
5. This can be attributed to the fact that the mobile robot 
moves to the left for that experiment, whereas it moves right 
in the other two experimental evaluations (see Fig. 7). 

B. Experimental Evaluation 
We demonstrate the effectiveness of the proposed cyber-

attacks in real-world settings on two experiments with the 
mobile robot RAICO (Robot with Artificial Intelligence 
based COgnition), equipped with Basler Dart daA1600-60uc 
camera. Images with a resolution of 800 × 600 px are 
acquired at a rate of 0.075s. The camera calibration matrix is 
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Fig. 9. Target (left) and starting (right) image generated by the RAICO robot. 

 
Fig. 10. Mobile robot RAICO at the starting pose during real-world 
experimental evaluation. 

 
Fig. 11. Achieved positions for both real-world experiments. 

The entire visual servoing controller is implemented 
using the Jetson Nano development kit with Python 3.6.9 and 
OpenCV 4.1.1. Examples of images generated at the starting 
and the target pose by the mobile robot are shown in Fig. 9. 
The initial pose for both experiments was set to be  
xi = (0, 0, 0)T, and the target pose was x = (0.20, 0.04, 0)T. 

Fig. 10 illustrates the experimental setup. The positions 
the robot achieved with different attack parameters are shown 
in Fig. 11. According to Fig. 11, the final reached positions 
of the mobile robot are coherent with the provided attack 
parameters. As it can be seen, dashed lines in both Fig. 7 and 
Fig. 11 show mobile robot paths between starting and final 
poses. The achieved accuracy for the considered experiment 
without an attack is within ±4mm. The robot paths during 
two real-world experiments for the two attacks are shown in 
Fig. 12. Poses are computed according to the wheel encoder 
data and dead-reckoning pose calculation method [40]. The 
circle defines the mobile robot’s position, while the heading 
angle is represented with a straight line.  

The errors for each step in the controller with different 
attack parameters are shown in Fig. 13. As shown, the error 
values under Attack #2 (attack on the desired image) have 
roughly the same convergence properties. However, for 
Attack #1 (attack on the current image) with parameters  
dD = 1.2 and dθ = –3 error value converges faster compared 
to other two experiments. The difference in convergence is 
due to an additional optimization process that is performed in 
the case that error e becomes too large (see Fig. 5). 

 
Fig. 12. Achieved positions for both real-world experiments. 

 
Fig. 13. Achieved errors for both real-world experiments. The left and right 
columns of the figures represent the attacks on current and desired images, 
respectively. 

Therefore, the optimization process reduces the error e and 
all three individual errors (e1, e2, and e3). An additional 
optimization is necessary to ensure that the mobile robot 
reaches the position defined by the attack parameters. 

V. CONCLUSION 

In this work, we have demonstrated the vulnerability of 
visual servoing control for wheeled mobile robotic systems 
by introducing a methodology to design effective false-data 
injection attacks on images used for control. We have 
considered two threat models where the attacker is able to 
modify runtime camera images or impact captured image at 
the desired robot pose. The proposed cyber-attacks utilize an 
image transformation procedure to alter the final pose, 
allowing attackers to specify the distance and angle for which 
the mobile robot will miss its target pose. We have shown 
that adequate transformation parameters can be acquired via 
simulated annealing optimization. In simulation and real-
world experiments, we have shown the effectiveness of 
attacks for both threat models, by significantly changing the 
reached (i.e., final) mobile robot pose both in the X and Z 
directions. The future research directions include the 
development of a deep learning-based intrusion detection 
system for vision-based mobile robot controllers. 
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