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Abstract - This paper studies a satellite transponder’s communication channel, in which there exist multiple-user terminals, who 
compete for limited radio resources to meet their own data rate needs. Because inter-user interference limits on the satellite transponder’s 
performance, the transponder’s power-control system needs to coordinate all its users to reduce interference and maximizes overall 
performance. A non-cooperative Differential Game (DG) is set up to model the users’ competition in a transponder’s communication 
channel. Each user’s utility function is a trade-off between transmission data rate and power consumption. Nash Equilibrium (NE) is 
defined to be the solution of the DG model. The optimality condition of NE is derived to be a set of Differential Algebraic Equations 
(DAE). An algorithm based on minimizing Hamiltonians is developed to solve the DAE system. The numerical solution of the DG model 
provides the transponder’s power control system with each user’s power-control strategy at the equilibrium.  
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1. Introduction  

Satellites most commonly use the C band (6/4 GHz). Each C band typically has 24 channels. Each satellite transponder 
represents an individual communication channel. Within a 36-MHz bandwidth channel, each transponder can handle an 
enormous amount of information by using different multiple-access schemes, so each channel contains many pairs of senders 
and receivers [1], [2]. This study assumes each pair is selfish to maximize its own performance by a specific power-allocation 
scheme. The interference from other pairs also affects the channel performance [3]. Furthermore, the C band’s heavier use 
leads to more interference. Shifting satellite communication to higher frequencies is one effective way to minimize 
interference, but crowding and interference problems will still exist, which motivates this study to develop a technique that 
increases bandwidth efficiency and signal-caring capacity, and decreases interference of satellite communication subsystems. 

This paper models a transponder’s communication channel as an interference channel with aim to optimize the trade-off 
between transmission data rate and power consumption. Section II reviews a transponder’s communication channel and static 
energy-efficient power control games. Section III models the power-allocation optimization problem for all users in a 
transponder as a Differential Gaussian Interference Channel Game (DGICG) based on the special properties of satellite 
wireless communications. Section IV and Section V derive and analyse the DGICG model’s optimality condition, and 
develop numerical methods to solve the optimality condition of NE and then solve the model. The numerical solution from 
the model provides all users in a transponder’s channel with the optimal power-allocation scheme at the equilibrium. 
 
2. Preliminaries 
2.1. Satellite Wireless Communications Subsystem 

A transponder is a repeater that implements a wideband communication channel that can carry many simultaneous one-
to-one communication transmissions [1], so it can be modelled as a multiuser interference channel as Fig. 1 [4], [5]. This 
interference channel is an M-to-M network where a one-to-one correspondence exists between senders and receivers such 
that each sender communicates information only to its corresponding receiver [4]. This study models each pair of sender-
receiver in a transponder channel as a user (a player). The interference limits the system’s performance. Interference 
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cancellation is an option when the interference signal is sufficiently strong, but its implementation is complex, requiring 
prior knowledge of users’ transmission schemes is accessible by other users [5], [6]. This study assumes that each user 
applies power to affect the cross-coupling gain and then reduce interference without any interference cancellations.  

 
Fig. 1: Multiuser Interference Channel 

2.2. Static Power Control Game 
Goodman and Mandayam [7] study a static energy-efficient power control game on a distributed multiple-access 

channel with a finite number of users, denoted by 𝐾. Each user chooses its own power control policy 𝑝𝑖 to maximize its 
energy-efficiency 𝑢𝑖 =

𝑅𝑖𝑓(𝑆𝐼𝑁𝑅𝑖)

𝑝𝑖
, where 𝑅𝑖 is the information transmission rate in bit/s for user 𝑖, and 𝑓 is an efficiency 

function representing the block success rate, which is assumed to be sigmoidal and identical for all the users [7], [8]. 
The channel model is given by  

𝑦(𝑛) =∑𝐻𝑖(𝑛)𝑥𝑖(𝑛) + 𝜎(𝑛)

𝐾

𝑖=1

 (1) 

where 𝑥𝑖(𝑛) is the symbol transmited by sender 𝑖 at time 𝑛, 𝜎(𝑛) is a Gaussian random variable with zero-mean and variance 
𝜎2. It is called a static game because (a) it assumes that the users transmit data over quasi-static or block-fading channels at 
the same time and in the same frequency band, assuming each channel gain 𝐻𝑖(𝑛) to be constant over each block. (b) Each 
user in the game applies a fixed power policy, once per block, to maximize its utility. However, for long-distance wireless 
communication such as satellite communication, channel gain varies with time, so its modulus is usually assumed to be in a 
compact set |𝐻𝑖|2 ∈ [𝜂𝑖𝑚𝑖𝑛, 𝜂𝑖𝑚𝑎𝑥]. A variable power policy is expected to be designed to control channel gain. Furthermore, 
with assumption of complete information and rationality, the existence of Nash Equilibrium is guaranteed by Debreu-Fan-
Glicksberg existence theorem [9]. The Nash Equilibria are found by solving equations 𝜕𝑢𝑖

𝜕𝑝𝑖
(𝑝̅) = 0, 𝑖 = 1,⋯ ,𝐾. And the 

static power game has unique pure Nash Equilibrium, which is discussed by Yates [10], and Saraydar [11].  
Besides the energy-efficient game for communication channel, there are other types of noncooperative games [12], 

[13] constructed for different utility, which are generally called Gaussian Interference Games (GIGs). The water-filling 
algorithm also solves for Nash Equilibrium of GIG without the need for centralized control [13].  Amir Leshem applied 
cooperative game theory for analysing interference channels [14]. Wei Wan [15] created a cooperative static game for 
a transponder’s centralized power control to maximize overall channel data transmission rate.  
             
3. Differential Game for a Transponder 

All users (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ 𝜅  in a transponder’s channel simultaneously choose their power-control policy before 
establishing communication. This implies an open-loop power control policy, which is a function of time. Each user’s 
communication is through 𝑁 sub-frequency channels simultaneously, and each user applies independent power control 
policy in each sub-frequency channel. Furthermore, each user has two types of power consumption policy: the first 
improves its own channel gain, and the second decreases interference. The major variables are defined as follows:  

𝐻𝑖𝑖
𝑓
(𝑡): the direct channel gain from the transmitter to the receiver of user 𝑖 over frequency 𝑓 at time 𝑡. 
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𝐻𝑗𝑖
𝑓
(𝑡): the cross-coupling gain from the transmitter 𝑗 to the receiver of user 𝑖 over frequency 𝑓 at time 𝑡. 

𝑝𝑖
𝑓(𝑡): the transmit power spectrum density used by user 𝑖 to increase direct channel gain over frequency 𝑓 at time 𝑡. 
𝑣𝑖
𝑓(𝑡): the transmit power spectrum density used by user 𝑖 to decrease cross-coupling channel gain over frequency 𝑓 at time 
𝑡. 
𝜎𝑖
𝑓
(𝑡): the noise power spectrum density at user 𝑖 over frequency 𝑓 at time 𝑡.  

Construction of objective function: Since the first and most interesting objective for each transponder user is to 
optimize the trade-off between the achievable data rate and energy consumption. With an assumption of no channel 
interference cancellation, the interference from other users is consequently noise. Then, the achievable rate for user 𝑖 at time 
𝑡 over frequency (𝑓1, 𝑓2)  is as follows [5], [3]: 

𝑅𝑖(𝑡) = ∫ 𝑙𝑜𝑔2 (1 +
𝑝𝑖
𝑓(𝑡)|𝐻𝑖𝑖

𝑓(𝑡)|2

𝜎𝑖
𝑓
(𝑡) + ∑ 𝑝𝑗

𝑓(𝑡)|𝐻𝑗𝑖
𝑓(𝑡)|2𝑗≠𝑘

)𝑑𝑓

𝑓2

𝑓1

≅ 𝑙𝑜𝑔2 (1 +
𝑝𝑖
𝑓(𝑡)|𝐻𝑖𝑖

𝑓
|2

𝜎𝑖
𝑓
(𝑡) + ∑ 𝑝𝑗

𝑓(𝑡)|𝐻𝑗𝑖
𝑓
|2𝑗≠𝑘

)∆𝑓 (2) 

, where approximation assumes the variables to be constant over small bands. The energy efficiency for user 𝑖, 𝑖 ∈ 𝜅 over 
time [0, 𝑇] is  

∫∑[𝑅𝑖(𝑡) − 𝑐𝑖
𝑓
(𝑝𝑖

𝑓
(𝑡))2 − 𝑑𝑖

𝑓
(𝑣𝑖

𝑓
(𝑡))2]

𝑁

𝑓=1

𝑑𝑡

𝑇

0

 (3) 

, where 𝑐𝑖
𝑓
, 𝑑𝑖

𝑓are weights between power spectrum density and data rate in evaluation of energy efficiency, which is the log 
transformation of ratio of information bits that are transmitted without error per unit time to the transmit power. It is to be 
maximized. The second goal of transponder power control is to control the direct channel gain to reach a certain channel-
capacity level and also to reduce the cross-coupling gain to certain level. This second objective is to minimize the following 
expression: 

∑𝑤1
(𝑓,𝑖)

(|𝐻𝑖𝑖
𝑓(𝑇)|2 − 𝑟𝑖𝑖

𝑓
𝜂𝑖𝑖
𝑓
)2 + 𝑤2

(𝑓,𝑖)
(|𝐻𝑗𝑖

𝑓
(𝑇)|2 − 𝑟𝑗𝑖

𝑓
𝜂𝑗𝑖
𝑓
)2

𝑁

𝑓=1

 (4) 

, where 𝑤1
(𝑓,𝑖)

, 𝑤2
(𝑓,𝑖)  are weights between different objectives; 𝜂𝑖𝑖

𝑓
, 𝜂𝑗𝑖
𝑓  are constants, and upper bound of 

|𝐻𝑖𝑖
𝑓(𝑇)|2, |𝐻𝑗𝑖

𝑓(𝑇)|2; and 𝑟𝑖𝑖
𝑓
, 𝑟𝑗𝑖
𝑓 are targeted channel-gain levels.  

Construction of dynamics: Generally, |𝐻𝑖𝑖
𝑓
(𝑡)|2, |𝐻𝑖𝑗

𝑓
(𝑡)|2  belong to a compact set [𝜂𝑖𝑚𝑖𝑛, 𝜂𝑖𝑚𝑎𝑥] , and can be 

approximated by Kronecker’s delta function [16]. In long-distance wireless communication, satellite transponders can apply 
energy 𝑝𝑖

𝑓(𝑡)  to impact channel gain. This analysis assumes that the growth rate is proportional to power consumption. 
Thus, logistic growth with carrying capacity is adopted to approximate the dynamics of |𝐻𝑖𝑖

𝑓
(𝑡)|2:  

𝑑|𝐻𝑖𝑖
𝑓
|2

𝑑𝑡
= 𝛼𝑖

𝑓
𝑝𝑖
𝑓
(𝑡)(𝜂𝑖𝑖

𝑓
− |𝐻𝑖𝑖

𝑓
(𝑡)|2) (5) 

, where 𝛼𝑖
𝑓 represents the growth rate. Furthermore, when user 𝑖 applies 𝑝𝑖

𝑓(𝑡) to improve the channel gain |𝐻𝑖𝑖
𝑓
(𝑡)|, it also 

increases the cross-coupling gain |𝐻𝑖𝑗
𝑓
(𝑡)|. However, user 𝑗 is able to cost power 𝑣𝑖

𝑓(𝑡) to decrease interference brought by 
𝑝𝑖
𝑓(𝑡). At last, because of threshold effects existing in channel gain, cross-coupling gain has a lower bound. Thus, the 

dynamics of |𝐻𝑖𝑗
𝑓
(𝑡)|2 is approximated by: 

𝑑|𝐻𝑖𝑗
𝑓
(𝑡)|2

𝑑𝑡
= 𝛽𝑖𝑗

𝑓
(𝑝𝑖

𝑓
(𝑡) − 𝑣𝑗

𝑓
(𝑡)) (𝜂𝑖𝑗

𝑓
− |𝐻𝑖𝑗

𝑓
(𝑡)|

2
) (|𝐻𝑖𝑗

𝑓
(𝑡)|

2
− 𝜉𝑖

𝑓
) (6) 

, where 𝑖 ≠ 𝑗, and 𝛽𝑖
𝑓 represents the growth rate. Thus, the DGICG model (𝜅, {𝑝𝑖

𝑓
, 𝑣𝑖

𝑓
}
𝑖∈𝜅
, {𝐽𝑖}𝑖∈𝜅) is set up as follows: 
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𝐽1 = 𝑚𝑖𝑛

𝑝1
𝑓
(𝑡),𝑣1

𝑓
(𝑡)

∫{∑𝑐1
𝑓
(𝑝1

𝑓
(𝑡))2 + 𝑑1

𝑓
(𝑣1

𝑓
(𝑡))2

𝑁

𝑓=1

− 𝑙𝑜𝑔2 (1 +
𝑝1
𝑓(𝑡)|𝐻11

𝑓
|2

𝜎1
𝑓
(𝑡) + ∑ 𝑝𝑗

𝑓(𝑡)|𝐻𝑗1
𝑓
|2𝑗≠1

)𝑑𝑡}

𝑇

0

+∑[𝑤1
(𝑓,1)

(|𝐻11
𝑓
(𝑇)|2 − 𝑟11

𝑓
𝜂11
𝑓
)2 +∑𝑤2

(𝑓,1)
(|𝐻𝑗1

𝑓
(𝑇)|2 − 𝑟𝑗1

𝑓
𝜂𝑗1
𝑓
)2

𝑗≠1

]

𝑁

𝑓=1

⋮

𝐽𝐾 = 𝑚𝑖𝑛
𝑝𝐾
𝑓
(𝑡),𝑣𝐾

𝑓
(𝑡)

∫{∑𝑐𝐾
𝑓
(𝑝𝐾

𝑓
(𝑡))2 + 𝑑𝐾

𝑓
(𝑣𝐾

𝑓
(𝑡))2

𝑁

𝑓=1

𝑇

0

−𝑙𝑜𝑔2 (1 +
𝑝𝐾
𝑓(𝑡)|𝐻𝐾𝐾

𝑓
|2

𝜎𝐾
𝑓
(𝑡) + ∑ 𝑝𝑗

𝑓(𝑡)|𝐻𝑗𝐾
𝑓
|2𝑗≠𝑘

)𝑑𝑡}

+∑[𝑤1
(𝑓,𝐾)

(|𝐻𝐾𝐾
𝑓
(𝑇)|2 − 𝑟𝐾𝐾

𝑓
𝜂𝐾𝐾
𝑓
)2 +∑𝑤2

(𝑓,𝐾)
(|𝐻𝑗𝐾

𝑓
(𝑇)|2 − 𝑟𝑗𝐾

𝑓
𝜂𝑗𝐾
𝑓
)2

𝑗≠𝐾

]

𝑁

𝑓=1

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 𝑑|𝐻𝑖𝑖

𝑓
|2

𝑑𝑡
= 𝛼𝑖

𝑓
𝑝𝑖
𝑓
(𝑡)(𝜂𝑖𝑖

𝑓
− |𝐻𝑖𝑖

𝑓
(𝑡)|2)

𝑑|𝐻𝑖𝑗
𝑓
(𝑡)|2

𝑑𝑡
= 𝛽𝑖𝑗

𝑓
(𝑝𝑖

𝑓
(𝑡) − 𝑣𝑗

𝑓
(𝑡)) (𝜂𝑖𝑗

𝑓
− |𝐻𝑖𝑗

𝑓
(𝑡)|

2
) (|𝐻𝑖𝑗

𝑓
(𝑡)|

2
− 𝜉𝑖

𝑓
) , 𝑗 ≠ 𝑖

∑𝑃𝑖
𝑓(𝑡)

𝑁

𝑓=1

≤ 𝑷𝑖
𝒎𝒂𝒙

|𝐻𝑖𝑗
𝑓(0)| 2𝑔𝑖𝑣𝑒𝑛, 𝑖, 𝑗 = 1,… , 𝐾, 𝑓 = 1,… , 𝑁.

 

 

(7) 

4. Analysis of Optimality of Equilibrium 
Nash Equilibrium (NE) is defined as the solution of above non-Cooperative DGICG among all users in one 

transponder’s channel. The necessary condition for controls {𝑝𝑖
𝑓(𝑡), 𝑣𝑖

𝑓(𝑡)} to be NE of non-Cooperative differential 
game models is derived from Pontryagin’s Minimum Principle [17], [18], which is composed of following system: (In 
order to save notations, we set  𝑥𝑖𝑗

𝑓
(𝑡) = |𝐻𝑖𝑗

𝑓
(𝑡)|2 in the following expressions. ) 

 Player 𝑖’s Hamiltonian 𝐻𝑖  : 

𝐻𝑖 =∑[𝑐𝑖
𝑓
(𝑝𝑖

𝑓
(𝑡))

2
+ 𝑑𝑖

𝑓
(𝑣𝑖

𝑓
(𝑡))

2
− 𝑙𝑜𝑔2 (1 +

𝑝𝑖
𝑓(𝑡)𝑥11

𝑓 (𝑡)

𝜎𝑖
𝑓(𝑡) + ∑ 𝑝𝑗

𝑓(𝑡)𝑥𝑗𝑖
𝑓

𝑗≠𝑖

)]

𝑁

𝑓=1

+

∑∑𝜆𝑖𝑖
𝑓

𝐾

𝑖=1

[𝛼𝑖
𝑓
𝑝𝑖
𝑓
(𝑡)(𝜂𝑖

𝑓
− 𝑥𝑖𝑖

𝑓
(𝑡))] +∑∑𝜆𝑖𝑗

𝑓

𝑖≠𝑗

[𝛽𝑖𝑗
𝑓
(𝑝𝑖

𝑓
(𝑡) − 𝑣𝑗

𝑓
(𝑡))(𝜂𝑖𝑗

𝑓
− 𝑥𝑖𝑗

𝑓
(𝑡))(𝑥𝑖𝑗

𝑓
(𝑡) − 𝜉𝑖𝑗

𝑓
)]

𝑁

𝑓=1

𝑁

𝑓=1

 

 

(8) 

 A System of State equations: 

{
 
 
 
 

 
 
 
 𝑑𝑥𝑖𝑖

𝑓

𝑑𝑡
= 𝛼𝑖

𝑓
𝑝𝑖
𝑓
(𝑡)(𝜂𝑖𝑖

𝑓
− 𝑥𝑖𝑖

𝑓
(𝑡))

𝑑𝑥𝑖𝑗
𝑓

𝑑𝑡
= 𝛽𝑖𝑗

𝑓
(𝑝𝑖

𝑓
(𝑡) − 𝑣𝑗

𝑓
(𝑡))(𝜂𝑖𝑗

𝑓
− 𝑥𝑖𝑗

𝑓
(𝑡))(𝑥𝑖𝑗

𝑓
(𝑡) − 𝜉𝑖𝑗

𝑓
), 𝑗 ≠ 𝑖

∑𝑃𝑖
𝑓(𝑡) ≤ 𝑷𝑖

𝒎𝒂𝒙

𝑁

𝑓=1

𝑥𝑖𝑗
𝑓
(0) 𝑔𝑖𝑣𝑒𝑛.     𝑖, 𝑗 = 1,… , 𝐾.      𝑓 = 1,… , 𝑁.

 (9) 
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 A System of Co-state equations: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑑𝜆𝑖𝑖

𝑓

𝑑𝑡
= −

𝑑𝐻𝑖

𝑑𝑥𝑖𝑖
𝑓
=

1

𝑙𝑛2

𝑝𝑖
𝑓(𝑡)

𝜎𝑖
𝑓
+ ∑ 𝑝𝑗

𝑓(𝑡)𝑥𝑗𝑖
𝑓

𝑗≠𝑖 + 𝑝𝑖
𝑓(𝑡)𝑥𝑖𝑖

𝑓
+ 𝜆𝑖𝑖

𝑓
𝛼𝑖
𝑓
𝑝𝑖
𝑓(𝑡)

𝑑𝜆𝑗𝑗
𝑓

𝑑𝑡
= −

𝑑𝐻𝑖

𝑑𝑥𝑗𝑗
𝑓
= 𝜆𝑗𝑗

𝑓 (𝑡)𝛼𝑗
𝑓
𝑝𝑗
𝑓(𝑡), 𝑗 ≠ 𝑖

𝑑𝜆𝑖𝑗
𝑓

𝑑𝑡
= −

𝑑𝐻𝑖

𝑑𝑥𝑖𝑗
𝑓
= 𝜆𝑖𝑗

𝑓 (𝑡)𝛽𝑖𝑗
𝑓
(𝑝𝑖

𝑓(𝑡) − 𝑣𝑗
𝑓(𝑡)) (2𝑥𝑖𝑗

𝑓 (𝑡) − 𝜂𝑖𝑗
𝑓
− 𝜉𝑖𝑗

𝑓
), 𝑗 ≠ 𝑖

𝑑𝜆𝑖𝑗
𝑓

𝑑𝑡
= −

𝑑𝐻𝑖

𝑑𝑥𝑗𝑖
𝑓
=
−1

𝑙𝑛2

𝑝𝑖
𝑓(𝑡)𝑥𝑗𝑖

𝑓(𝑡)𝑝𝑗
𝑓(𝑡)

(𝜎𝑖
𝑓
+∑ 𝑝𝑗

𝑓(𝑡)𝑥𝑗𝑖
𝑓(𝑡)𝑗≠𝑖 )

2

+ 𝑝𝑖
𝑓
(𝑡)𝑥𝑖𝑖

𝑓
(𝑡)(𝜎𝑖

𝑓
+ ∑ 𝑝𝑗

𝑓(𝑡)𝑥𝑗𝑖
𝑓
(𝑡))𝑗≠𝑖

+𝜆𝑗𝑖
𝑓
(𝑡)𝛽𝑗𝑖

𝑓
(𝑝𝑗

𝑓(𝑡) − 𝑣𝑖
𝑓(𝑡)) (2𝑥𝑗𝑖

𝑓(𝑡) − 𝜂𝑗𝑖
𝑓
− 𝜉𝑗𝑖

𝑓
)

 

 

(10) 

where 𝑓 = 1,… ,𝑁, and has the following boundary condition: 

{
 
 
 
 
 

 
 
 
 
 𝜆𝑖𝑖

𝑓 (𝑇) =
𝑑ℎ𝑖

𝑑𝑥𝑖𝑖
𝑓
= 2𝑤1

(𝑓,𝑖)
(𝑥𝑖𝑖

𝑓(𝑇) − 𝑟𝑖𝑖
𝑓
𝜂𝑖𝑖
𝑓
)

𝜆𝑗𝑗
𝑓 (𝑇) =

𝑑ℎ𝑖

𝑑𝑥𝑗𝑗
𝑓
= 0

𝜆𝑖𝑗
𝑓 (𝑇) =

𝑑ℎ𝑖

𝑑𝑥𝑖𝑗
𝑓
= 0

𝜆𝑗𝑖
𝑓 (𝑇) =

𝑑ℎ𝑖

𝑑𝑥𝑗𝑖
𝑓
= 2𝑤2

(𝑓,𝑖)
(𝑥𝑗𝑖

𝑓(𝑇) − 𝑟𝑗𝑖
𝑓
𝜂𝑗𝑖
𝑓
)

 (11) 

 
 The candidates for player 𝑖’s control policy at NE are those {𝑝𝑖

𝑓(𝑡), 𝑣𝑖
𝑓(𝑡)}, which make {𝑑𝐻𝑖

𝑑𝑝𝑖
𝑓 ,
𝑑𝐻𝑖

𝑑𝑣𝑖
𝑓} vanish by assuming 

other players are using their NE control policies: 

{
 
 
 

  
 𝑑𝐻𝑖

𝑑𝑝𝑖
𝑓
= 2𝑐𝑖

𝑓
𝑝𝑖
𝑓(𝑡) −

1

𝑙𝑛2

𝑥𝑖𝑖
𝑓(𝑡)

𝜎𝑖
𝑓(𝑡) + ∑ 𝑝𝑗

𝑓(𝑡)𝑥𝑗𝑖
𝑓

𝑗≠𝑖 + 𝑝𝑖
𝑓(𝑡)𝑥𝑖𝑖

𝑓

+𝜆𝑖𝑖
𝑓 (𝑡)𝛼𝑖

𝑓
(𝜂𝑖𝑖

𝑓
− 𝑥𝑖𝑖

𝑓(𝑡)) + 𝜆𝑖𝑗
𝑓 (𝑡)𝛽𝑖𝑗

𝑓
(𝜂𝑖𝑗

𝑓
− 𝑥𝑖𝑗

𝑓 (𝑡)) (𝑥𝑖𝑗
𝑓 (𝑡) − 𝜉𝑖𝑗

𝑓
) = 0

𝑑𝐻𝑖

𝑑𝑣𝑖
𝑓
= 2𝑑𝑖

𝑓
𝑣𝑖
𝑓(𝑡) −∑𝜆𝑗𝑖

𝑓 (𝑡)𝛽𝑗𝑖
𝑓
(𝜂𝑗𝑖

𝑓
− 𝑥𝑗𝑖

𝑓(𝑡)) (𝑥𝑗𝑖
𝑓(𝑡) − 𝜉𝑗𝑖

𝑓
) = 0

𝑗≠𝑖

 (12) 

 
5. Numerical Solution of DGICG Model 

In nonlinear system (12), the optimal control policy cannot be solved explicitly. Thus, solving the 𝑛 players’ open-loop 
DGICG is equivalent to solving 𝑛2 + 2𝑛 Differential-Algebraic Equation (DAE) system (9)-(12). The design of following 
algorithm is based on the fact that each player optimizing its own Hamiltonian with its own control by assuming all other 
players have adopted optimal control policy is necessary for its control to reach NE. This implies searching NE could be 
achieved by each player searching to optimize its own Hamiltonian simultaneously. The procedure of following iterative 
algorithm starts with a randomly generated discretized control for each player, and then solved the DAE system by these 
control policies.  Next, each player updates its control in its own Hamiltonian’s steepest descent direction, that is each player 
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optimizes its own Hamiltonian simultaneously in its own space of controls. Finally, the algorithm terminates when all 
players’ {𝑑𝐻𝑖

𝑑𝑝𝑖
𝑓 ,
𝑑𝐻𝑖

𝑑𝑣𝑖
𝑓} vanish, or there is little improvement of objective utilities.  

Algorithm 1: 
Step 1: Generate randomly a discrete approximation to control {𝑝𝑖

𝑓(𝑡), 𝑣𝑖
𝑓(𝑡)} over 𝑡 ∈ [0, 𝑇].  

{
𝑝𝑖
𝑓,𝑛(𝑘) = 𝑝𝑖

𝑓(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 = 1,⋯ ,𝑀

𝑣𝑖
𝑓,𝑛(𝑘) = 𝑣𝑖

𝑓(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 = 1,⋯ ,𝑀
 (17) 

, where 𝑖 ∈ 1,⋯ ,𝐾.   𝑓 = 1,… ,𝑁. And 𝑛 stands for the number of iterations, and 𝑛 = 1. 
Step 2: Use discretized control (17) to integrate the state equation (9) over [0, 𝑇] forward by Runge-Kutta (RK4) method 
with given initial condition 𝑥𝑖𝑗

𝑓
(0).  

Step 3: Evaluate the terminal value of costate variables in (11) by terminal value of state variables 𝑥𝑖𝑗
𝑓
(𝑇), and then integrate 

costate equations (10) backward by RK4. 
Step 4: Evaluate each player’s objective function 𝐽𝑖(𝑘) by the discrete values of state, costate and controls from Step 2-3.  

Step 5: If |𝐽𝑖(𝑛 + 1)-𝐽𝑖(𝑛)| < 𝜖 for all 𝑖 or ‖𝑑𝐻𝑖
𝑑𝑝𝑖

𝑓 ‖ < 𝜖 and ‖
𝑑𝐻𝑖

𝑑𝑣𝑖
𝑓 ‖ < 𝜖, then the iterative procedure terminates and output 

the optimal controls and state equations. If the stopping criterion is not satisfied, then new piecewise constant controls are 
generated by 

{
 
 

 
 𝑝𝑖

𝑓,𝑛+1(𝑘) = 𝑝𝑖
𝑓,𝑛(𝑘)  − 𝜏𝑖

𝑓 𝑑𝐻𝑖

𝑑𝑝𝑖
𝑓
(𝑘)

𝑣𝑖
𝑓,𝑛+1(𝑘) = 𝑣𝑖

𝑓,𝑛(𝑘)  − 𝛿𝑖
𝑓 𝑑𝐻𝑖

𝑑𝑣𝑖
𝑓
(𝑘)

 (18) 

, where step length 𝜏𝑖
𝑓 and 𝛿𝑖

𝑓are chosen independently for each player by line search procedure to guarantee all objective 
values decrease at each iteration, and where 𝑖 ∈ 1,⋯ ,𝐾.   𝑓 = 1,… ,𝑁. 

6. Numerical Experiments 
Above algorithm was tested on a two-player DGICG over one sub-frequency channel. These two players are 

symmetric. Convergence of the algorithm is shown by the vanishing of {𝑑𝐻𝑖
𝑑𝑝𝑖

𝑓 ,
𝑑𝐻𝑖

𝑑𝑣𝑖
𝑓} and convergence of objective 

functions (Fig.2). The numerical solution of optimal controls and the state trajectories are shown in Fig. 3 and Fig. 4. 
 Convergence of objective functions: 

 
Fig. 2: Convergent Trajectories of Player 1 and 2’s Objective Function Values  
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 Optimal controls of two players: 

 
 Fig. 3: Trajectories of Player 1 and 2’s Optimal Control 𝑝𝑖(𝑡) and 𝑣𝑖(𝑡) 

 

  
Fig. 4: Trajectories of |𝐻11

𝑓
|2𝑎𝑛𝑑 |𝐻12

𝑓
|2, |𝐻22

𝑓
|2𝑎𝑛𝑑 |𝐻21

𝑓
|2 at Nash Equilibrium 

 
5. Summary and Conclusion 

This paper models a satellite transponder’s communication channel as a multiuser interference channel and focuses on 
its power allocation to improve energy efficiency. In a transponder’s channel, the performance of each pair of transmitters 
and receivers depends not only on its own power allocation, but also on the other pairs’ and their interference. Each user in 
the channel would be competing for limited radio resources to meet their selfish data rates with less energy consumption. 
Another feature of satellite communication is its long-distance, so the channel gain is not constant. Thus, each user can use 
power to improve its own channel gain and reduce interference. This paper introduced a noncooperative DGICG model for 
all users in a transponder’s channel. In this game model, each user’s energy efficiency is redefined, and logistic growth is 
adopted to approximate the changing of channel gain under specific energy consumption. The objective function of each 
user is a weighted sum of energy efficiency and targeted channel gain. Then, the optimality condition for NE of the model 
is derived to be a DAE system. At last, an algorithm is developed solve for NE. The design of algorithm is based on a steep-
descent method and optimizes all players’ objective functions simultaneously. This algorithm is especially efficient to solve 
differential game model even if the optimal controls are not able to be solved explicitly. The numerical solution of the game 
model can be used to support designing power allocation scheme of transponders.  
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In the end, a game model could have multiple NEs, and a NE may not be Pareto optimal, so mathematical analysis 
of NE will be the next step of research. Furthermore, the differential game model in this paper assumes that all users in 
the channel are symmetrical, but in practice there exists some users who have priority to communicate, so leader-
follower game analysis is also expected in the near future research work. 
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