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Abstract—A satellite transponder’s communication channel is 

studied in this paper. The multiple terminal users in this channel 

compete for limited radio resources to satisfy their own data rate 

needs. Because inter-user interference limits the transponder’s 

performance, it is beneficial for the transponder’s power-control 

system to coordinate all users in its channel to reduce interference 

and to improve performance. By the special properties of channel 

gain in this type of channel, a non-cooperative Differential Game 

(DG) is set up to study the competition in a transponder’s channel. 

Each user’s utility is a trade-off between transmission data rate 

and power consumption. Nash Equilibrium (NE) is defined to be 

the solution of the DG model. The optimality condition of NE is 

derived to be a system of Differential Algebraic Equations (DAE). 

An algorithm based on minimizing all users’ Hamiltonian is 

developed to solve the DAE system. The numerical solution of the 

NE provides the transponder’s power control system with each 

user’s power-control strategy at the equilibrium. 

Keywords— Spectrum and Power Allocation, Energy-Efficiency, 

Satellite Communication, Differential Game 

I. INTRODUCTION 

Many satellite communications transmissions use C-band. 
The C-band communication satellites typically have 24 radio 
transponders. Within a 36-MHz bandwidth channel, each 
transponder can handle an enormous amount of information by 
using different multiple-access schemes, so each channel 
contains many pairs of senders and receivers [1], [2]. Each pair 
is assumed to be selfish to maximize its own performance by a 
specific power-allocation scheme in the study of this paper. The 
interference from other pairs through this transponder affects the 
channel performance [3]. Furthermore, the C band’s heavier use 
leads to more interference. Shifting satellite communication to 
higher frequencies is one effective way to minimize 
interference, but crowding and interference problems still exist, 
which motivates us to develop a technique that increases 
bandwidth efficiency and signal-caring capacity, and decreases 
interference of satellite communication subsystems. 

This paper models a transponder’s communication channel 
as an interference channel with aim to optimize the trade-off 
between transmission data rate and power consumption. Section 
II reviews a transponder’s communication channel and static 
energy-efficient power control games. Section III models the 
power-allocation optimization problem for all users in a 
transponder as a Differential Gaussian Interference Channel 
Game (DGICG) based on the special properties of satellite 
wireless communications. Section IV and Section V derive and 

analyze the DGICG model’s optimality condition, and develop 
a numerical method to solve the optimality condition of NE and 
then solve the model. The numerical solution from the model 
provides the power control system of transponder with all users’ 
NE power-allocation scheme. 

II. PRELIMINARIES 

A. Satellite Communications Subsystem 

A transponder implements a wideband communication 
channel, in which there exist many simultaneous one-to-one 
communication transmissions [1], so it can be modelled as a 
multiuser interference channel [4], [5]. This interference channel  
in Fig. 1 is an M-to-M network where a one-to-one 
correspondence exists between senders and receivers such that 
each sender communicates information only to its 
corresponding receiver [4], [6]. Each pair of sender-receiver in 
a transponder channel is regarded as a user and a player in a 
game in this study. The interference limits the system’s 
performance. Interference cancellation is an option when the 
interference signal is sufficiently strong, but its implementation 
is complex, requiring prior knowledge of users’ transmission 
schemes is accessible by other users [5], [7]. This study assumes 
that each player applies power to affect the cross-coupling gain, 
and then reduce interference but all players  do not apply any 
interference cancellation techniques.  

 
Fig. 1: Multiuser Interference Channel 

B. Static Power Control Game 

A static energy-efficient power control game on a distributed 
multiple-access channel with a finite number of users is set up 
by Goodman and Mandayam [8]. The channel model is given by  

 =   + 
  (1) 
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, where  is the number of users,  is the symbol transmited 
by sender  at time ,  is a Gaussian random variable with 
zero-mean and variance . Each user in the channel chooses its 
own power control policy   to maximize its energy-efficiency  =  , where  is the information transmission rate in 

bit/s for user , and  is an efficiency function representing the 
block success rate, which is assumed to be sigmoidal and 
identical for all the users [8], [9]. This game is static because it 
assumes that the users transmit data over quasi-static or block-
fading channels at the same time and in the same frequency 
band, and assumes each channel gain  to be constant over 
each block. Furthermore, each user applies a fixed power policy, 
once per block, to maximize its utility. With assumption of 
complete information and rationality, the existence of Nash 
Equilibrium is guaranteed by Debreu-Fan-Glicksberg existence 
theorem [10]: 

• For all  ∈ , the feasible region for control [0, ] is 
convex and compact.  

• For  ∈ , and lim→  ,  = 0,   is continuous in 

control variables ̅ = , ⋯ ,   over the feasible 
control region.  

• ̅ is quasi-concavity with respect to  . There are 
two important efficiency functions:  = 1 −, which is from Goodman and Mandayam [8] and  =  , where  is the outage-probability target 
rate, which is from Belmega and Lasaulce [11].  

The Nash Equilibria are found by solving a set of equations:  

 ̅ = 0                                      (2) 

, where  ∈  . The static power game has unique pure Nash 
Equilibrium, which is studied by Yates [12], and Saraydar [13]. 

Besides the energy-efficient game for communication 
channel, there are other types of noncooperative games [14], 
[15] constructed for different utility, which are generally called 
Gaussian Interference Games (GIGs). The water-filling 
algorithm also solves for Nash Equilibrium of GIG without the 
need for centralized control [15]. Amir Leshem applied 
cooperative game theory to analyze interference channels [16]. 
Wei Wan [17] created a cooperative static game for a 
transponder’s centralized power control to maximize overall 
channel data transmission rate. 

III. DIFFERENTIAL GAME FOR A TRANSPONDER 

For long-distance wireless communication like satellite 
communication, channel gain varies with time, and its modulus 

is usually assumed to be in a compact set || ∈ [ , ]. 
Thus, a variable power policy is expected to be designed to 
control channel gain. This paper studies a transponder’s 
communication channel, which is modelled as a multiuser 
interference channel in Fig. 1. Each pair of  , ,  ∈   is 
defined to be a user, and be a player in the game. All users 
simultaneously choose their power-control policy before 
establishing communication. This implies an open-loop power 
control policy, which is only a function of time. Each user’s 
communication is through   sub-frequency channels 

simultaneously, and each user applies independent power 
control policy in each sub-frequency channel. Furthermore, each 
user divides its power consumption into two uses: the first is to 
improve its own channel gain, and the second is to decrease 
interference. The major variables are defined as follows:   : the direct channel gain from the transmitter to the 

receiver of user  over frequency  at time . 

: the cross-coupling gain from the transmitter  to the 

receiver of user  over frequency  at time . 

: the transmit power spectrum density used by user  over 

frequency  at time . 

: the fixed constant over frequency  for user , which stands 

for the proportion of user ’s , used by user  to decrease 

cross-coupling channel gain.  : the noise power spectrum density at user   over 

frequency  at time .  

Construction of objective function: Since the first and 
most interesting objective for each user in this transponder is to 
optimize the trade-off between the achievable data rate and 
energy consumption. With an assumption of no channel 
interference cancellation, the interference from other users is 
consequently noise. Then, the achievable rate for player   at 
time  over frequency ,   is as follows [5], [3]: 

 =   1 + ||
∑ | |  

≅  1 + ||
∑ | |  ∆      (3) 

, where approximation assumes the variables to be constant over 
small bands. The energy efficiency for user ,  ∈  over time [0, ] is  

  ∑  −                (4) 

, which is the log transformation of ratio of information bits that 
are transmitted without error per unit time to the transmit 
power. It is to be maximized. The second goal of transponder 
power control is for the direct channel gain to reach a certain 
channel-capacity level and also to reduce the cross-coupling 
gain to certain level. This second objective is to minimize the 
following expression: 

∑ ,|| −  + ,|| −    
(5) 

, where ,, ,
 are weights between different objectives;  , 

 are constants, and upper bounds of ||, ||; 

and  ,  are targeted channel-gain levels. 

Construction of dynamics: Generally, ||, | | 

belong to a compact set [ , ], and can be approximated 
by Kronecker’s delta function [18]. In satellite wireless 

communication, satellite transponders can apply energy   

to impact and control channel gain. The analysis in this paper 
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assumes that the growth rate is proportional to power 
consumption. Thus, logistic growth with carrying capacity is 

adopted to approximate the dynamics of ||:  

||
 = 1 −  − ||         (6) 

, where 1 −  is the fixed constant over frequency  for user , which stands for the proportion of , used by user  to 

increase channel gain. Furthermore, when user  applies  

to improve the channel gain ||, it also increases the cross-

coupling gain | | . Furthermore, user   is able to cost 

power  to decrease interference brought by . At 

last, because of threshold effects existing in channel gain, cross-
coupling gain has a lower bound. Thus, the dynamics of | | is approximated by: 

| |
 =   −   −     −   

(7) 

where  ≠ . Thus, the DGICG model , ∈ , ∈ is set 

up as follows: 

⎩⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎧ =    

 −  1 + | |
 + ∑ | |  


+  ,| | −    +  ,| | −  

 
 ⋮

 =     
 − 1 + | |

 + ∑ | |  


+  ,| | −    +  ,| | −   
 

. .

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧|| = 1 −  − ||

| |
 =   −   −     −   , ≠ 

 
 ≤ 
| 0|  ,  = 1, … , .  = 1, … , .

 

(8) 

IV. ANALYSIS OF OPTIMALITY OF EQUILIBRIUM 

The solution of above non-Cooperative DGICG among all 
users in one satellite transponder communication channel is 
defined by a Nash Equilibrium (NE). 

Definition 1 [19]: Suppose , , ⋯ ,  , ⋯ ,  are utility 
function for player , where  is control policy for player . The 
control policy ∗ , ∗ , … , ∗  is Nash Equilibrium (NE) if  ∗ , ∗ , ⋯ ,  , ⋯ , ∗  ≼ ∗, ∗ , ⋯ , ∗, ⋯ , ∗     (9) 

for all .  
The control policy at NE is optimal in the sense that if 

one of the player deviates from NE, then its utility will be 

reduced. The necessary condition for controls ,  =1, … ,  to be NE of differential game model is derived 
from Pontryagin’s Minimum Principle [20], [21], which is 
composed of following system (In the following 

expressions, we set    = | |):  

• Player ’s Hamiltonian  

 = ∑  −  1 +  ∑   +
∑ ∑  1 −  −  +∑ ∑  [   −   ⋯=1⋯   −      −   ]

           (10) 

, which is to be minimized by player ’s control .  

• A System of State equations is  

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ = 1 −  − 

 =    −   ⋯⋯   −      −   ,  ≠ ∑  ≤  0 .     ,  = 1, … , .       = 1, … , .
                  (11) 

• A System of Co-state equations is 

⎩⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎧

 = − =  ∑    +  1 − 


 = −  =  1 − ,  ≠ 


 = − =    − 2  −  −  ,  ≠ 


 = − 
=  

∑   ∑  +  − 2 −  −  

       

         (12)  
and has the following boundary condition:  

⎩⎪
⎪⎨
⎪⎪
⎧  =  = 2, − 

  =  = 0
  =  = 0
  =  = 2, −  

            (13) 
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, where ,  = 1, . . . , ;  = 1, … , . 

• The candidates for player ’s control policy at NE are 

those  that make 
 to vanish by assuming other 

players are using their NE control policies:   

⎩⎪
⎪⎪
⎨
⎪⎪⎪
⎧ = 2

−  ∑  + 1 −   − 
+   −     −  
−   −   −   = 0

          (14) 

V. NUMERICAL SOLUTION OF DGICG MODEL 

In nonlinear system (14), the optimal control policy cannot 
be solved explicitly. Thus, solving the   players’ open-loop 
DGICG is equivalent to solving  + 2 Differential-Algebraic 
Equation (DAE) system (11)-(14). The design of following 
algorithm is based on the fact that each player optimizing its own 
Hamiltonian with its own control by assuming all other players 
have adopted optimal control policy is necessary for its control 
to reach NE. This implies searching NE could be achieved by 
each player searching to optimize its own Hamiltonian 
simultaneously. The procedure of following iterative algorithm 
starts with a randomly generated discretized control for each 
player, and then solved the DAE system by these control 
policies. Next, each player updates its control in its own 
Hamiltonian’s steepest descent direction, that is each player 
optimizes its own Hamiltonian simultaneously in its own space 
of controls. Finally, the algorithm terminates when all players’ } vanish, or there is little improvement of objective utilities. 

Algorithm 1: 

Step 1: Generate randomly discrete approximations to controls  over  ∈ [0, ], which satisfy the constraint of control:  

, = ,,  ∈ [ , ,  = 1, ⋯ ,         (15) 

, where  ∈ 1, ⋯ , .    = 1, … ,  , and   stands for ℎ 
iteration, and   stands for partitioning [0, ]  into  
subintervals.  

Step 2: Use discretized controls (15) to integrate the state 
equations (11) over [0, ]  forward by Runge-Kutta (RK4) 

method with given initial condition  0.  

Step 3: Evaluate the terminal value of costate variables in (13) 

by terminal value of state variables  , and then integrate 

costate equations (12) backward by RK4. 

Step 4: Evaluate each player’s objective function  by the 
discrete values of state and costate variables from Step 2 and 
Step 3.  

Step 5: If | + 1 − | <   or   <   for all  , 

then the iterative procedure terminates and output the optimal 
controls and state equations. Otherwise, new piecewise constant 
controls are generated by following equations for each player:  

, = ,  −                (16) 

, where −  provides search direction, and step length  are 

computed independently for each player by inexact line search 
procedure to guarantee all objective values  ,  =  1, . . . ,  
decrease at each iteration. 

VI. NUMERICAL EXPERIMENTS 

A two-player DGICG over one sub-frequency channel is 
solved by Algorithm 1. The numerical experiment aims to study 
the effects of cost of power on Nash Equilibrium. The values of 
parameters are chosen as follows. Comparing the values of 
parameters in Table I and II, these two players are symmetric 
except for the cost of power, where  >  implies player 1’s 
cost of power is more expensive than player 2. 

TABLE I.  PARAMTERS OF OBJECTIVE FUNCTIONS 

Player 1 Player 2 1 6  4  0.2  0.2 
 2 

 2 
 1 

 1 
 0.9 

 0.9 
 0.3 

 0.3 

TABLE II.   PARAMTERS OF DYNAMICS 

Player 1 Player 2  6  6  3  3  0.5  0.5  1  1  0.5  0.5  0.001  0.001 0 0.1 0 0.1 0 0.02 0 0.02 

Convergence of the algorithm is shown by convergence of 
objective functions in Fig. 2, where | + 1 − | ≈ 1 ∗10, | + 1 − | ≈ 1 ∗ 10 , and the vanishing of  ,  = 1, . . . ,  }, where   ≈ 5.3 ∗ 10 ,   ≈1.1 ∗ 10. The total number of iterations is 16.  
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Fig. 2. Convergence of Player 1 and 2’s Objective Function Values  

 

 Fig. 3. Trajectories of Optimal Control  and  at NE 

 

Fig. 4. Trajectories of Direct Channel Gain | | and | | at NE 

 

Fig. 5. Trajectories of Cross-coupling Gain | | | | at NE 

 

Fig. 6. Comparison of | | and | | at NE 

Two players’ optimal controls at Nash Equilibrium are given 
in Fig. 3. The most important feature of optimal controls is that 
both players compete intensely at the beginning of the game, and 
reduce competition level gradually over time. Furthermore, 
player 1’s competition level is always lower than player 2. This 
is expected since the cost of player 1’s control is higher than 
player 2.  

Two players’ direct channel gain at Nash Equilibrium 
behave similar and approach to the channel carrying capacity 
(Fig. 4). The player 2’s direct channel gain level is slightly 
higher than Player 1’s. It is also expected that the cost of player 
2’s control is cheaper with other parameters of these two 
players being at the same level.  

In the end, it is interesting to observe the cross-coupling 
gain of these two players behave different (Fig. 5, 6). Player 1’s 

interference to player 2 ( | |  is increasing slightly, but | | is increasing sharply over time. It could be understood 

since the cost of player 2 is cheaper, and player 2 is able to apply 
more power to reduce player 1’s interfering to player 2.   
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VII. SUMMARY AND CONCLUSION 

This paper models a satellite transponder’s communication 
channel as a multiuser interference channel and focuses on its 
power allocation to improve energy efficiency. In satellite 
communication subsystems, the performance of each pair of 
transmitters and receivers depends not only on its own power 
allocation, but also on the other pairs’. Each user in the 
transponder’s channel would be competing for limited radio 
resources to meet their selfish data rates with less energy 
consumption. Another feature of satellite communication is its 
long-distance, so the channel gain is not constant. Thus, each 
user is able to apply energy to improve its own channel gain 
and reduce interference. This paper introduced a non-
cooperative DGICG model for all users in one transponder’s 
communication channel. In this game model, each user’s 
energy efficiency is redefined, and logistic growth is adopted to 
approximate the changing of channel gain under specific energy 
consumption. The objective function of each user is a weighted 
sum of energy efficiency and targeted channel gain level. The 
optimality condition for Nash Equilibrium of the game model 
is derived to be DAE system. An algorithm is developed to 
solve the DAE for Nash Equilibrium. The design of algorithm 
is based on a steep-descent method and optimizes all players’ 
Hamiltonian simultaneously. This algorithm is especially 
efficient to solve differential game model even if the optimal 
controls are not able to be solved explicitly.  

The goal of power allocation design for a transponder is to 
optimize the energy efficiency of the whole communication 
channel by coordinating all users. The numerical solution of the 
game model can be used to support designing power allocation 
scheme of transponders. In the end, one limitation of research 
work in this paper is proof of uniqueness of Nash Equilibrium. 
Generally, a game model could have multiple Nash Equilibria, 
and Nash Equilibrium may not be Pareto optimal. Mathematical 
analysis will be expected in the next step of research. 
Furthermore, the differential game model in this paper assumes 
that all users in the channel make decision at the same time, but 
in practice there exists some users who have priority to 
communicate, so multi-level game analysis is also expected in 
the near future research work.  
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