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Abstract—With the advancement of deep learning (DL) tech-
nologies, applying DL methods to processing surface electromyo-
graphic (sEMG) signals for movement intent recognition has
gained increasing interest in the research community. Compared
to conventional non-DL methods commonly used for EMG
pattern recognition (PR), DL algorithms have the advantage of
automatically extracting sEMG features without the cumbersome
manual feature engineering step and are especially effective in
processing sEMG signals collected from 1-dimentional (1D) or
2D sensor arrays. However, a key challenge to the deployment
of DL methods in sEMG-controlled neural-machine interface
(NMI) applications (e.g., myoelectric controlled prostheses) is
the high computational cost associated with DL algorithms
(e.g., convolutional neural network (CNN)) since most NMI
applications need to be implemented on resource-constrained
embedded computer systems and have real-time requirements.
In this paper, we designed and implemented EffiE – an efficient
CNN for real-time EMG PR system on edge devices. The
development of the EffiE system integrated several strategies
including a deep transfer learning strategy to adaptively and
quickly update the pre-trained CNN model based on the user’s
newly collected data on the edge device, and a deep learning
quantization method that can dramatically reduce the memory
consumption and computational load of the CNN model without
sacrificing the model accuracy. The proposed EffiE system has
been implemented on a Sony Spresense 6-core microcontroller
board as a working prototype for real-time NMIs. The embedded
NMI prototype has integrated input/output interfaces as well as
efficient memory management and precise timing control schemes
to achieve real-time DL-based myoelectric control of a bionic
arm using hand gestures. We released all the source code at:
https://github.com/MIC-Laboratory/EffiE

I. INTRODUCTION

Surface electromyography (sEMG)-based neural-machine
interfaces (NMIs) measure myoelectric signals from the sur-
face of human skin, interpret the signals to identify human
movement intentions, and then make decisions to control
external applications such as neural prostheses which restore
function for patients with limb loss or impairment [1]. Re-
cently, with the advancement of deep learning (DL) tech-
nologies, applying DL methods to sEMG-based movement
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intent recognition has gained increasing interest in the research
community. However, utilizing DL often comes at a cost
of high computational burdens, which typically relies on
high-performance hardware, such as GPU to run DL model
inference in real-time. Various deep learning methods such
as Convolutional Neural Networks (CNNs), Recurrent Neu-
ral Networks (RNNs), and hybrid CNN-RNN methods have
been exploited for sEMG-based gesture recognition and have
shown promising results [2]–[4]. Compared to typical machine
learning-based methods for EMG pattern recognition (PR),
DL algorithms have the advantage of automatically extracting
HD EMG features without the cumbersome manual feature
engineering step and are especially effective in processing
sEMG signals collected from 1-dimensional (1D) or 2D sensor
arrays. However, a key challenge to the deployment of DL
methods in sEMG-controlled NMI applications (e.g., myo-
electric controlled prostheses) is the high computational cost
associated with DL algorithms (e.g., CNN) since most NMI
applications need to be implemented on resource-constrained
embedded computer systems and have real-time requirements.
Shen et al. designed an sEMG gesture recognition system
using deep learning based on wearable device [5]. Despite
having a portable sEMG acquisition system, the deep learning
model inference is still computed on the desktop computer,
which might not be applicable in real-world use cases for
portable settings. Recently, Nguyen et al. designed a system
of neuroprosthetic hand leveraging the capabilities of both
CNN and RNN computed via the Nvidia Jetson computer with
embedded GPU [6]. This system provides both accurate and
portable prosthesis control in medical settings by using an
implanted EMG sensor. However, the power consumption of
the onboard GPU may quickly drain the battery.

To solve the conflict between the heavy computation cost of
the DL model and limited on-device hardware resources, many
previous works have been proposed to compress and accelerate
CNNs for edge devices [7]–[9], and DL quantization is con-
sidered as one of the most hardware-friendly approaches [10].
DL quantization methods convert the DL model parameters
and inputs from float point into integer data types, which
can significantly reduce the computation load and memory
occupation while retaining comparable prediction accuracy.
Efficient and effective as they are, DL quantization is barely
explored in the NMI applications.
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Fig. 1. EffiE System: (a) Deep transfer Learning, (b) CNN Quantization, (c)
System Optimization.

In this paper, we proposed EffiE – an Efficient CNN for a
real-time EMG pattern recognition system on an edge device
by integrating deep transfer learning and quantization. For
the sEMG pattern recognition, we utilized a 2-dimensional
CNN to extract spatial domain features from real-time sEMG
signals. To adaptively and quickly update the pre-trained CNN
model based on the user’s newly collected data on the edge
device, we applied deep transfer learning on our CNN model,
which generalizes sEMG feature learning from a larger sEMG
dataset and adapts to real-time collected user data. To further
boost the system performance, we introduced CNN model
quantization that can dramatically reduce memory occupation
and computational load without sacrificing the model’s accu-
racy. The proposed EffiE system has been implemented on a
Sony Spresense 6-core microcontroller as a working proto-
type for real-time NMIs. The embedded NMI prototype has
integrated input/output interfaces as well as efficient memory
management and precise timing control schemes to achieve
real-time DL-based myoelectric control of a bionic arm using
hand gestures. The experiments show that our proposed NMI
system can meet real-time processing latency of 160 ms while
retaining optimal accuracy on the edge device.

II. METHOD

A. System Overview

Fig. 1 shows the proposed EffiE – an efficient CNN for
real-time EMG pattern recognition system, which contains of
three major parts: (a) Adapting pre-trained CNN model on
the user’s newly collected data by Deep Transfer Learning,
(b) Reducing the memory occupation and computation latency
for edge devices by CNN Quantization, and (c) Optimizing
system performance to achieve real-time DL-based myoelec-
tric control of a bionic arm using hand gestures by efficient
memory management and precise timing control schemes. In
the following sections, we will introduce the EffiE in three
parts: sEMG Data Pre-processing, sEMG Feature Extraction
with Transfer Learning, and System Optimization for Real-
time Performance.

B. sEMG Data Pre-processing

Fig. 2 shows an overview of the data processing program de-
ployed on the 6-core Sony Spresense edge devices [11], which
consists of two separate threads of data acquisition and pre-
processing. Such multi-threading implementation maximizes
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Fig. 2. sEMG Data Acquisition and Pre-processing with Sliding Window
Augmentation.

the utilization of the microcontroller’s computational resources
while minimizing processing latency.

As shown in the Fig. 2 (a), the data acquisition thread
continuously polls quantized sEMG signals from skin surfaces
by using a eight-channel Myo Armband [12] sampled at a
rate of 200Hz. These data streams are then simultaneously
transmitted to the Sony Spresense for the data pre-processing
thread. As shown in the Fig. 2 (b), the data pre-processing
thread rescales and aligns raw sEMG data into appropriate
sEMG images (2D-arrays) with an optimal window size. First,
the raw sEMG signals are subtracted by the data mean and
divided by the standard deviation to accelerate CNN model
convergence during offline training. Second, the standardized
sEMG signals are transformed into an sEMG 2D-array, with
each column representing a motor unit action potential at a
certain time frame under an eight-channel electrode grid. As a
result, the sEMG 2D-array contains both the spatial and tem-
poral features which can be utilized to represent human motor
intents. Third, overlapping sliding window augmentation with
an optimal step size is applied to the sEMG 2D-array, which
can divide the sEMG 2D-array into individual sEMG images.
Finally, the individual sEMG images can be processed by the
CNN model for offline training and real-time testing.

C. sEMG Feature Extraction with Transfer Learning

Convolutional Neural Network Architecture for sEMG
Feature Extraction: As mentioned above, the raw sEMG
signal is converted to sEMG image that can be directly
processed by CNN model. In our proposed system, a 2D-CNN
is adopted for sEMG image pattern recognition by extracting
spatial features from sEMG images.

As shown in the Fig. 1 (a), our 2D-CNN consists of
two feature extraction layers (convolutional layers) with 3x3
convolutional kernels. The first convolutional layer consists
of 48-filters, followed by a PReLU activation function, and
batch normalization to accelerate model convergence [13]. To
prevent overfitting, spatial 2-dimensional dropout (drop rate of
0.5) and max pooling (kernel of size 1x2) were adopted. The
second convolutional layer is the same as the first layer except
that it uses 96-filters. Lastly, the CNN architecture ends with
a fully connected layer for multi-gesture classification.

Transfer Learning for User-specific sEMG data Adap-
tation: Utilizing the above CNN architecture, the CNN model
can be trained for feature extraction from the sEMG image.
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However, collecting training data from a single user to train a
CNN model can be extremely time-consuming and impracti-
cal. In contrast, pre-training a classifier on the accumulated
data of preceding subjects could potentially reduce the re-
quired amount of data for new users, while enhancing the
system’s accuracy [4]. As shown in Fig. 1 (a), our CNN is
trained offline using a large quantity of labeled data across a
source domain to generate a Source Model. Then, the system
transfers the learned features from the convolutional layers of
Source Model to the Target Model by fine-tuning on the user’s
newly collected data on the edge device.

To apply transfer learning over the source model and align
with the user’s specific sEMG signal pattern, the source dataset
should have the same placement of EMG sensor as the target
dateset. In this paper, we adopt the NinaPro DB5 [14], which
also used the Myo Armband as the data acquisition sensor
for the source model. During transfer learning, the offline
trained model’s last fully connected layer will be replaced by
an N neuron fully-connected layer depending on N gestures
to classify during real-time. Therefore, we aim first to train a
CNN source model offline with the NinaPro DB5 by using its
prerecorded sEMG from seven gestures. Then, we generalize
the features learned from these seven gestures to a four user-
specific gestures by applying transfer learning over the CNN
Source Model with a small set of data collected in real-time.

D. System Optimization for Real-time Performance

By using transfer learning, we can significantly reduce
the CNN training time, but the CNN is also computation-
ally expensive regarding on-device inference, which poses
a challenge for embedded system implementation. In this
section, we will further improve the real-time performance by
quantizing the CNN model and jointly optimizing sEMG data
transmission and CNN processing.

CNN Quantization by TensorFlow Lite: CNN models are
often assocatied with heavy computations due to the convolu-
tional operations. Typically, the CNN model’s parameters (e.g.,
convolutional kernel) are often represented using floating point
values for higher accuracy at the expense of inference latency,
and memory occupation. One particular technique to accelerate
CNN computation is quantization, which replaces floating
point values with integers inside the neural network [10].

By converting the weights and inputs into integer types, the
memory occupation and computation load can be significantly
reduced and the calculations can be accelerated. Hence, affine
mapping can be employed during quantization to accelerate
on-device inference and achieve efficient precision for the real-
time CNN model by mapping float value parameters to 8-bit
integers [15]. For our proposed system, the CNN model was
quantized to 8-bit integers using TensorFlow Lite [16] before
deploying onto Sony Spresense, with the size of model weights
decreased almost tenfold from 772 kilobytes to 73 kilobytes.

System Optimization for Data Transmission and CNN
Processing: While quantization addresses on-device inference
latency and memory occupation, data acquisition, and pre-
processing latency can also be further optimized. To achieve

TABLE I
OFFLINE ANALYSIS ON NINAPRO DB5 WITH 7 GESTURES PERFORMANCE

Window Size

Acc. 24 28 32 36 40 44 48 52

St
ep

 S
iz
e

10 85.79% 88.5% 91.12% 92.14% 93.21% 94.3% 95.22% 96.12%

14 85.54% 87.5% 90.2% 91.69% 93.08% 93.61% 94.58% 95.44%

16 84.85% 87.46% 89.89% 91.16% 92.64% 93.69% 94.53% 95%

18 82.66% 86.97% 88.81% 91.11% 92.51% 93.46% 93.91% 95.25%

Comput. Load 
(MFlops) 1.59 1.93 2.28 2.63 2.98 3.33 3.68 4.03

parallelism of data transmission and on-device computation,
the data transmission time to retrieve and process one sEMG
image should ideally be equal to the latency for one CNN
model inference. In our proposed framework, data prepro-
cessing and model inference are carried out in parallel on
the Sony Spresense microcontroller. An integral part of such
optimization is finding an optimal window size and step size
for the sEMG images.

The length of the neural action potential distribution (row)
inside each sEMG image is determined by the window size,
while incorporating more temporal sEMG features per sEMG
image typically increases model accuracy. This introduces
higher transmission delay when collecting additional sEMG
samples, computation latency when processing these features,
and inference latency during the CNN model’s convolutional
operations due to the larger input shape during real-time.

Optimizing the step size for overlapping may address the
transmission delays from a larger window size. Overlapping
decreases the continual data transmission latency by reducing
the subsequent sEMG image retrieval delay to be much shorter
after an initially acquired sEMG image. Doing so requires an
optimal step size, because a step size that’s too small can
potentially impair the model’s responsiveness during real-time
(i.e., the number of predictions it takes for the CNN model
to transition to a newly performed gesture). Therefore, it’s
imperative to find an efficient combination of sEMG window
size and step size for the proposed bionic arm control system.

III. EXPERIMENT

A. Experiment Setup

System Implementation: EffiE is implemented with Ten-
sorflow [17] and the offline training is performed on a desktop
with an Intel i9 CPU and Nvidia RTX 3080 GPU. During
offline training, we used the Adam optimizer with a learning
rate of 0.2 and a step decay of drop factor 0.9 per 1.5 epochs.
Furthermore, to achieve the global optimum loss for the CNN
Source Model, the training iterations last 200 epochs with a
batch gradient descent of size 384. We used an early stopping
if the validation loss did not decrease after 60 epochs to avoid
over-fitting issues that may arise during the training process.

sEMG Dataset for Offline Training: The NinaPro DB5
dataset [14], which was used in this paper for offline training.
It contains sparse eight-channel sEMG recordings from ten hu-
man subjects. We obtained prerecorded sEMG signals of seven
gestures from exercise B of this dataset, which is primarily
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Fig. 3. On-device Performance with Transfer Learning. Each colored bar indicates the classification results for the three distinct gestures.

comprised of isometric, isotonic hand configurations, and fun-

damental wrist motions. Hence, the CNN Source Model first

learns from these accumulated sEMG characteristics before

adapting to a new subject’s sEMG activity in real time.

Training Data Collection: The user participates in four

distinct sessions each performing one of the four gestures:

Rest, Fist, Thumbs Up, or Ok Sign. Each session will last

approximately two seconds to evaluate the effects of varying

sample sizes during Transfer-Learning. As a result, the ac-

quired data consists of 15 windows of 8 sEMG channels, each

containing 32 unique sEMG samples from the Myo Armband.

After obtaining the real-time dataset, sliding window augmen-

tation and standardization are applied to integrate the temporal

features and accelerate model convergence.

B. Offline Classification Accuracy on NinaPro DB5

While CNN has shown promising results for extracting

sEMG spatial features via the convolutional layers, this

strength is highly associated with its input shape defined by

the window size of an sEMG image during feed-forward prop-

agation. However, an sEMG image with a larger window size

would also introduce higher data transmission and processing

latency. Therefore, this experiment aims to identify an optimal

window size and step size for the Target Model, which is

essential for efficient real-time gesture recognition. To achieve

this, several offline-trained Source Models are examined for

their validation accuracy and computational complexity across

varying parameters of window and step sizes.

Comparisons of the validation accuracy between various

Source Models before transfer learning is shown in the Ta-

ble. I. Each column indicates the offline validation accuracy

tested under different window sizes, while each row represents

a step size beneath a Source Model for a fixed window

size. In addition, the last row indicate the CNN computa-

tion load under a specific window size. As shown in the

Table. I, the model can achieve higher accuracy when the

input window size increase. However, the CNN computation

load also increased because each convolutional layer needs to

process more features from the sEMG input. Considering the

limited computational resources on the Spresense edge board,

a window size of 32 is an optimal trade-off between the CNN

accuracy and computational load.

C. On-Device Performance with Transfer Learning

This experiment aims to assess the performance of the real-

time target model on edge devices, which is critical for deter-

mining its usability for NMI applications such as a prosthesis

arm control. This entails evaluating a target model with a

fixed window size of 32 and step size of 10 (derived from

the previous experiment) for on-device inference accuracy,

latency, and memory occupation.

To achieve effective feature learning on user-specific sEMG

data, transfer learning was applied over the Source Model

using tsEMG data acquired in real-time to generate a Target

Model that adapts to the user’s specific sEMG signal patterns.

The process of fine-tuning the target model takes ten epochs,

with each feed-forward propagation accompanied by two

batches of sEMG data. Following the fine-tuning of a target

model from transfer learning, it is quantized and optimized to

a model size of 73 KB using Tensorflow Lite before running

inference entirely and efficiently on the edge device.

The comparisons of the on-device target model’s real-time

responsiveness and accuracy are shown in Fig. 3. The columns

indicate the classification results for the three distinct gestures

and are represented by different-colored bars. For example,

the blue bars beneath the Rest (x5) column indicates the target

model’s successfully classification of the Rest gesture. Each of

these bars takes 160 ms to compute, which includes the paral-

lel inference and data acquisition latency. Twenty of these bars

were generated during a single round where the participant

was asked to perform the Rest gestures over the five initial

predictions. When the participant visually perceives the 5th

prediction result on the monitor, the participant immediately

transitions to another particular gesture for the subsequent

fifteen predictions. Hence, three such rounds constitute one

cycle, which was performed to comprehensively evaluate the

Target Model’s responsiveness and accuracy across the fol-

lowing four gestures during real-time: Rest (blue), Fist (red),

Ok Sign (green), and Thumbs Up (orange). Furthermore, as

seen in the last column of Fig. 3, the real-time Target Model

achieved a classification accuracy of 85%. These experimental

results indicate that our proposed system can meet systematic

real-time constraints for NMI applications and is therefore

practical for prosthesis arm control systems.

IV. CONCLUSION

This paper investigates the feasibility of deploying deep

learning for neuroprosthetic applications using tiny-edge com-

puting devices. We proposed and implemented EffiE, an end-

to-end CNN based sEMG pattern precognition system for

prosthesis arm control on the microcontroller. Our system

achieved real-time performance by integrating several strate-

gies including transfer learning, quantization and systematic

optimization on the proposed CNN model parameters for on-

device deployment. Our experimental results show that our

proposed NMI system can meet real-time requirements while

identifying the user’s motor intents with high accuracy. In our

future work, we will investigate on-device Transfer-Learning

to improve user experience by enabling model adaptation to

user-specific sEMG signals. We see this effort as a stepping

stone to future artificial intelligence deployments for low-cost

portable biomedical equipment.
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