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Abstract—High-density electromyography (HD EMG)-based
Pattern Recognition (PR) has attracted increasing interest in
real-time Neural-Machine Interface (NMI) applications because
HD EMG can capture neuromuscular information from one
temporal and two spatial dimensions, and it does not require
anatomically targeted electrode placements. In recent years,
deep learning methods such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and hybrid CNN-
RNN methods have shown great potential in HD EMG PR. Due to
the high-density and multi-channel characteristics of HD EMG,
the use of HD EMG-based NMIs in practice may be challenged
by the unreliability of HD EMG recordings over time. So far,
few studies have investigated the robustness of deep learning
methods on HD EMG PR when noises and disturbances such as
motion artifacts and bad contacts are present in the HD EMG
signals. In this paper, we have developed RoHDE – a Robust
deep learning-based HD EMG PR framework by introducing
a Generative Adversarial Network (GAN) that can generate
synthetic HD EMG signals to simulate recording conditions
affected by disturbances. The generated synthetic HD EMG
signals can be utilized to train robust deep learning models
against real HD EMG signal disturbances. Experimental results
have shown that our proposed RoHDE framework can improve
the classification accuracy against disturbances such as contact
artifacts and loose contacts from 64% to 99%. To the best of
our knowledge, this work is the first to address the intrinsic
robustness issue of deep learning-based HD EMG PR.

I. INTRODUCTION

Surface electromyography (EMG) is a non-invasive tech-
nique for assessing the muscle-amplified myoelectric output
of motor units. Surface EMG-based Pattern Recognition (PR)
has been widely used in Neural-Machine Interface (NMI)
designs for identifying human movement intentions to control
applications such as bionic prostheses, assistive devices, and
augmented reality/virtual reality systems [1]–[4]

High density (HD) EMG signals recorded with 2-
dimensional (2D) arrays of closely spaced electrodes over
a muscle area can capture neuromuscular information from
one temporal and two spatial dimensions. HD EMG-based
PR has attracted increasing interest in real-time NMI appli-
cations because, compared to traditional single channel-based
targeted muscle sensing method, HD EMG can capture richer
neuromuscular information and does not require anatomically
targeted electrode placement in practical use [5]–[8].
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Deep learning methods have been successful in tackling
2D data-based tasks such as image classification. An HD
EMG electrode pad also generates a 2D data frame at each
sampling time point. In recent years, deep learning methods
such as Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and hybrid CNN-RNN methods
have shown great potential in HD EMG PR [9]–[11].
Compared to traditional machine learning methods commonly
used in EMG PR such as linear discriminant analysis and
support vector machine, deep learning algorithms also have
the advantage of automatically extracting HD EMG features
without the cumbersome manual feature engineering step.

Due to the high-density and multi-channel characteristics of
HD EMG, the use of HD EMG-based NMIs in practice may
be challenged by the unreliability of signal recordings over
time. Conditions such as movement artifacts, environmental
noises, and loose electrode-skin contacts may cause variances
in the HD EMG characteristics and potential threaten the
reliability of EMG PR performance [12]. Our previous work
has developed a Sensor Faculty-Tolerant Module (SFTM),
which includes multiple sensor fault detectors that monitor the
time-domain features of each EMG signal to detect abnormal
sensor behaviors, and an LDA-based self-recovery algorithm
to quickly retrain the classifier without the faulty sensors’
data to recover the EMG PR performance in real time [13].
The SFTM model requires retraining when sensor faults are
detected which makes it difficult to expand to other more
complex machine learning methods.

Despite the promising results shown on normal HD EMG
data, few studies have investigated the robustness of deep
learning methods on HD EMG PR when noises and dis-
turbances are present in the HD EMG signals. While, this
issue could be relieved by methodically collecting augmented
training datasets with disturbances and fine-tuning the CNN
models, it is time-consuming and unrealistic to cover all
aspects of unreliable recording conditions.

In this paper, we have made the first attempt to develop
a Robust deep learning-based HD EMG PR (RoHDE) frame-
work by introducing a Generative Adversarial Network (GAN)
which generates synthetic HD EMG signals from a small
sample of disturbance data to simulate unreliable recording
conditions. The generated synthetic HD EMG signals can
augment the normal HD EMG dataset to train robust deep
learning models against real HD EMG signal disturbances.
Experimental results have shown that our robust HD EMG PR
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Fig. 1. Overall system architecture of RoHDE framework. (a) Synthetic HD EMG Signal Generation using GAN. (b) Normal and Generated Noisy HD EMG
Training Data. (c) HD EMG Pattern Recognition by CNN.

framework can improve the classification accuracy of a CNN-
based model affected by contact artifact and loose contact
disturbances by up to 35%. To the best of our knowledge,
this work is the first to address the robustness issue of deep
learning-based HD EMG PR and can be applied to any deep
learning models.

II. METHOD

A. Framework Overview

Fig. 1 shows the overall architecture of the RoHDE frame-
work and consists of three major parts: (a) synthesizing noisy
HD EMG data with the GAN, (b) augmenting normal HD
EMG data with generated noisy HD EMG data, and (c)
training a PR neural network with augmented HD EMG data.
The primary goal of the GAN is to create realistic “fake” noisy
HD EMG data to cover all aspects of unreliable recording con-
ditions, including but not limited to such as Contact Artifacts
(CA) and Loose Contacts (LC). By sampling only a small
amount of real noisy HD EMG data, the artificially created
noisy HD EMG data is fed into our Pattern Recognition (PR)
CNN along with the normal HD EMG data. Trained with this
augmented HD EMG dataset, the PR CNN can significantly
improve its robustness.

B. HD EMG Pattern Recognition by CNN

In this paper, we leverage the one of the state-of-the-art
CNN models, MobileNetV2 [14], for the HD EMG pattern
recognition, which utilizes both depth-wise and point-wise
convolution operations to reduce computational load for em-
bedded devices.

As shown in the Fig. 1 (a), 2D-arrays arrangements of
HD EMG electrodes grids are placed over a muscle area,
which enables tracking of both temporal and spatial changes
in the electrical potential. From Fig. 1 (c), the 2D HD EMG
data frame at each sampling time point allows us to analyze
HD EMG information in the spatial domain, which makes
it possible to analyze EMG signals using image processing
techniques. The number of pixels in an EMG images is defined
by the matrix of electrodes (e.g., an electrode grid with 8
columns and 24 rows forms an EMG image with 8×24 pixels).
An HD EMG image is defined as a single sample of a motor
unit action potential distribution under an electrode grid at
each sampling time (e.g., ta,tb,tc,td).

C. Synthetic HD EMG Signal Generation using GAN

As mentioned above, one of the main problems with training
robust CNN models is the unreliability of HD EMG record-
ings. This issue could be relieved by collecting large noisy
training datasets and fine-tuning the CNN models. However,
building such a large database of noise EMG recordings to
cover all types of possible disturbances is extremely time-
consuming and often impractical.

To address this issue, we utilize a Generative Adversarial
Network (GAN) to artificially generate the necessary data.
GAN was first proposed by Goodfellow [15] in 2017 where
he combined two Neural Networks, a Generator and a Dis-
criminator, in a feedback loop to continuously improve the
performance of each other. As shown in Fig. 1 (a), the primary
goal of the Generator is to synthesize realistic “fake” noisy HD
EMG data. This generated “fake” noisy data is fed into the
Discriminator where it is compared with real noisy HD EMG
data and outputs a loss function that indicates the differences
between the real data and the fake data. The loss function and
the updated weights are inputted back into the Generator in
a feedback loop to allow it to synthesize more realistic data.
This cycle is repeated until the Discriminator is no longer able
to distinguish between real and fake noisy data. When the
Generator and Discriminator reach this equilibrium point, the
Generator can be utilized individually to generate an unlimited
amount of “fake” noisy data for training our CNN model.

In order to preserve useful information in the generated HD
EMG data, the generated HD EMG image needs to mimic
both the spatial and temporal feature distributions of the real
noisy HD EMG image. However, the 2D HD EMG image
only contains spatial domain features because each image
only contains HD EMG signal in a single time frame. To
preserve both spatial and temporal in the generated “fake”
noisy data, one solutions is to feed multiple time frames into
the generator of the GAN, but the resulting training process
can be extremely time-consuming. In this paper, we generate
each noisy HD EMG channel (1D-vector) sequentially by
aligning their gesture labels and reconstructing the HD EMG
image (2D-matrix). Specifically, multiple GAN models for
each channel will be trained by referencing the noisy channel,
and each model will generate a single channel of the EMG
data. After the GAN model is well trained, we reconstruct
the generated EMG data of each channel into a 2-dimensional
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matrix in which each row represents a different channel and
each column represents a different time frame. Thus, both
spatial and temporal features can be captured and artificially
reproduced.

Regarding the GAN model, we proposed a hybrid GAN
based on the Wasserstein GAN [16] and DCGAN [17] which
utilizes the Lipschitz constraint, Wasserstein gradient penalty
and convolutional layers. First, the Lipschitz constraint is
used to avoid mode collapse (the generator can only produce
a single type of output or a small set of outputs), and
the Wasserstein Gradient Penalty loss function makes GAN
training more stable easier to train. Second, the convolutional
layers from DCGAN are used to extract the temporal features.
Finally, the HD EMG data with temporal features is reformed
into a 2-dimensional matrix to restore the spatial feature.

D. Robust CNN Training by using Synthetic HD EMG Data

As shown in the Fig. 1 (b), after the GAN model reaches
equilibrium, we can feed the synthesized noisy HD EMG
data and the normal HD EMG data into our CNN model for
training. The ratio of noisy to normal data is set as a hyper-
parameter while training our model to optimize the training
time and resulting recognition accuracy. The details and results
of fine-tuning this hyper-parameter is explained and recorded
in the following experiment section.

III. EXPERIMENTS AND RESULTS

A. Experiment Setup

This study was conducted with the Institutional Review
Board’s (IRB) approval at San Francisco State University and
the informed consent of the test subject. Data acquisition was
conducted on a male able-bodied subject’s dominant forearm
with the OT Bioelettronica’s Quattrocento amplifier at 2560
samples per second with three HD EMG electrode grids with
10mm spacing between electrodes in an 8 by 8 arrangement,
resulting in 192 channels.

HD EMG Dataset: The HD EMG data set consists of
the following seven hand and wrist gestures: no movement,
wrist supination, wrist pronation, hand close, hand open, wrist
flexion, and wrist extension. To evaluate its performance,
we experimented with two common disturbances of EMG
recordings in this study: Contact Artifacts (CA) and Loose
Contacts (LC) [18], [19]. Fig. 2 shows two representative
trials of HD EMG signals contaminated by LC (Left) and CA
(Right), respectively. The LC disturbances were simulated by
purposely peeling back the last two rows of an 8×8 HD EMG
electrode grid (e.g., channels 8, 16, 24, etc), and placing a
towel between those electrodes and the skin. In the CA trials,
noise was introduced by tapping a pen on approximately the
last 3 dozen electrodes (156-192) at a rate of 4-5 Hz. The
exact electrodes affected vary from strike to strike.

Deep Learning Model: We utilized the MobileNetV2 for
our PR CNN model, which was trained for 10 epochs with a
batch size of 1000 and a learning rate of 3e-4. In addition, we
applied the AdamW optimizer with a weight decay of 5e-4.
We used simple majority voting to evaluate the overall gesture

HD EMG Signals Contaminated by Loose Contacts (LC) and Contact Artifacts (CA)

Ch 8

Ch 16

Ch 24

Ch 32

Ch 40

Ch 48

Ch 56

Ch 64

Fig. 2. Representative trial showing HD EMG signal contaminated by Loose
Contacts (Left) and Contact Artifacts (Right)

recognition testing accuracy. For our hybrid GAN, we trained
it for 3 epochs with a batch size of 1000 and a learning rate
of 1e-4. To update the weights for comparisons between real
and fake HD EMG images for the Generator, we utilized the
Wasserstein Gradient Penalty Loss function.

Framework Implementation: RoHDE framework is based
on the Pytorch platform [20] due to its low developmental
complexity, and high performance. Key libraries including
scikit-learn were used in our implementation. The code and
pre-trained robust deep learning models can be found at:
https://github.com/MIC-Laboratory/RoHDE.

B. Experiment Results

1) Overall Performance: We first tested real noisy EMG
data on both our Robust PR CNN model and the regular PR
CNN model to complete their performances. The robust PR
CNN model was pretrained on synthetic noisy HD EMG data
while the regular PR CNN model was only pretrained on clean
HD EMG data. Fig. 3 (a) shows the testing accuracy results
of our CNN models for varying majority voting frames where
the x-axis represents the number of voting frames and the y-
axis represents the recognition accuracy. The red (Robust CA)
and orange (Robust LC) lines demonstrate the testing accuracy
of our Robust PR CNN on HD EMG data contaminated with
real CA and LC noise, respectively. The light blue (Regular
CA) and dark blue (Regular LC) dot lines are the regular PR
CNN models testing accuracies without robust training. The
experiment shows that the Robust PR CNN model achieves up
to 99.25% of accuracy. In comparison, the regular PR CNN
model only achieves 63.97% and 72.79%accuracies on the
CA/LC contaminated HD EMG data. From this simple com-
parison, the robust PR CNN model has over 35% improvement
over the regular PR CNN model on testing accuracy.
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Fig. 3. (a) Testing accuracy of CNN that trained on the clean EMG data
and tested on the noisy EMG data. (b) Testing accuracy of CNN trained with
different amounts of synthetic HD EMG data
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In addition, we also evaluated our robust model on clean
EMG data. The dark green (Robust CA Clean) and light green
(Robust LC Clean) dotted lines represent the testing accuracies
of our Robust PR CNN on real clean HD EMG data. From
Fig. 3 (b), we can see that the Robust PR CNN model retains
99% testing accuracy on real clean HD EMG data.

In conclusion, our RoHDE framework can significantly
improve the robustness of the PR CNN model on noisy data.

2) The Effect of Synthetic HD EMG Data Amount: The
improved robustness of the PR CNN model comes from
training on the generated noisy HD EMG data, which requires
additional computational resources to train the GAN model. In
this section, we quantitatively evaluate the effect of the amount
of synthetic HD EMG data on model performance.

As shown on the Fig. 3 (b), we tested the Robust PR CNN
model with different amounts of synthetic noisy HD EMG
data. The red and orange solid lines represent the testing
accuracies of the robust PR CNN model on real contaminated
LC and CA HD EMG data, respectively. The dark green
(Robust CA Clean) and light green (Robust LC Clean) dotted
lines represent the testing accuracies of the robust PR CNN
model on real normal data, respectively.

From our experimental results, we can see that only 15%
of synthetic noisy HD EMG data in the dataset is needed for
training a Robust PR CNN model that can achieve 94.49%
testing accuracy. Compared to the existing open-source HD
EMG datasets with more than 100k of training data, our
framework enhances the robustness of the PR CNN model and
while using a small amount of synthetic data. In conclusion,
the benefit of our framework is that exponentially increased
robustness far exceeds the drawbacks of the slight increase in
computational resources.

3) Synthetic HD EMG Data Quality: In this section, we
evaluate the quality of the synthetic noisy HD EMG. The
cross-correlation was adopted to quantitatively measure the
similarity between the synthetic noisy HD EMG data and
real noisy HD EMG data [21]. Larger cross-correlation value
indicates higher similarity between the generated and real
data. In addition, we plot the generated noise EMG data to
qualitatively measure the similarity with the real noisy data.

Fig. 4 (a) shows the visualization of the real and synthetic
CA-contaminated data where the x-axis represents the time in
seconds and the y-axis represents the standardized EMG value.
We observed that real CA-contaminated data and synthetic
CA-contaminated data are highly similar with little feature
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variations. It shows that the generated CA noise data contains
the real CA features.

Fig. 4 (b) shows the quantitative measurement between the
synthetic noisy HD EMG data and real noisy HD EMG data
where the x-axis represents the training epochs and the y-axis
represents the correlation value. We observe that over multiple
training epochs, the cross-correlation value becomes larger and
larger, indicating that the similarity between the synthetic and
real noisy data is increasing as the training continues.

Fig. 5 (a) and Fig. 5 (b) show the visualization and corre-
lation of the real and generated LC data. We observed similar
trends in Fig. 4 (a) in which the synthetic LC-contaminated
data contains real LC features with small variations. In
conclusion, the experiment shows that our hybrid GAN can
effectively mimic the original noisy HD EMG data’s features
for training a deep learning model.

IV. CONCLUSION

In this paper, we proposed RoHDE, a Robust HD EMG
PR framework to improve the robustness of deep learning-
based HD PR against EMG signal noises and disturbances.
We identified that the unreliability of HD EMG recordings can
significantly impact the overall gesture recognition accuracy of
a deep learning model. A hybrid GAN model was proposed
to generate realistic synthetic noisy data for training a deep
learning model. To verify the quality of our synthetic data,
we performed extensive experiments on the cross-correlation
between the synthetic noisy data and real noisy data. Our
Experimental results show that we were able to achieve up to
95% gesture recognition accuracy for HD EMG data contami-
nated with real LC and CA noise. In our future work, we will
continue to investigate the robustness issue of deep learning-
based gesture recognition by experimenting with other types
of common external disturbances to further verify our robust
framework. In addition, we plan to integrate our framework
with RNN-based HD EMG PR to investigate its effectiveness
on alternate deep learning models.
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