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A charge-free particle in a uniform electric field experiences no net force in an unbounded domain. A
boundary, however, breaks the symmetry and the particle can be attracted or repelled to it, depending
on the applied field direction [Z. Wang et al., Phys. Rev. E, 2022, 106, 034607]. Here, we investigate the
effect of a second boundary because of its common occurrence in practical applications. We consider a
spherical particle suspended between two parallel walls and subjected to a uniform electric field, applied
in a direction either normal or tangential to the surfaces. All media are modeled as leaky dielectrics, thus
allowing for the accumulation of free charge at interfaces, while bulk media remain charge-free. The
Laplace equation for the electric potential is solved using a multipole expansion and the boundaries are
accounted for by a set of images. The results show that in the case of a normal electric field, which
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corresponds to a particle between two electrodes, the force is always attractive to the nearer boundary
and, in general, weaker that the case of only one wall. Intriguingly, for a given particle—wall separation
we find that the force may vary nonmonotonically with confinement and its magnitude may exceed the
one-wall value. In the case of tangential electric field, which corresponds to a particle between
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1 Introduction

Electric fields are commonly used to manipulate colloidal
particles’™® and droplets.””® Electric fields drive electrohydro-
dynamic flows that assemble colloidal crystals on electrodes’
and have also become a popular means to energize and create
self-propelled particles'®* due to field-induced charge
electrophoresis'>™"” or torque due to the Quincke effect, which
drives colloids to roll on a surface.'®>* Electric fields enable
active control of droplets in microfluidics.**™*® In these appli-
cations particles are often confined by electrodes or channels,
and the electrostatic force (and torque) exerted on the particle
is significantly influenced by the bounding surfaces.

The force on an spherical colloid near a planar boundary has
been mostly analyzed in the two limiting cases of a conducting
or an insulating particle. The surface of a conducting particle is
equipotential, and consequently, the electric field inside
vanishes. The net charge and force on a spherical particle are
calculated using the method of images®”"*® or the equivalent
problem of two spheres in a uniform electric field.>® If the
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insulating boundaries, the force follows the same trends but it is always repulsive.

particle is a perfect insulator and charge-free, the boundary
condition on the particle-medium interface are continuity of
the electric potential and the displacement field. The electro-
static force has been obtained either in terms of series expan-
sion in eigenfunctions of the Laplace equation in bispherical
coordinate system,’** or from a multipole-moment theory for
the pair-wise dielectrophoretic interactions of dielectric
spheres.*>>® Real materials are, however, rarely perfectly insu-
lating. Even a weak conduction leads to the accumulation of
free charges at interfaces,®” which can profoundly affect the
particle electrostatics. In the case where particle and suspend-
ing media are leaky dielectrics, the appropriate boundary
conditions at interfaces are continuity the normal electric
current rather than the displacement field.*® The discontinuity
of the latter determines the induced free charge distributed
along the interface (with net charge being zero). The bulk
media remain charge-free and the electrostatic potential is a
solution of the Laplace equation.

Recently, this leaky dielectric model was used to analyze the
spherical particle-wall interactions for particle and suspending
media with arbitrary conductivities.>® Electric fields applied
both normal to an electrode or tangential to an insulating
boundary were considered and the force calculated for arbitrary
particle separations. Here, we consider the effect of a second,
parallel boundary on the electrostatic force on the particle. This
paper is organized as follows. The problem is formulated in
Section 2. In Section 3, the solution methodology using the
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method of images and the mulitpole expansion is presented,
which is a generalization of the approach developed by
Washizu and Jones®® for two identical particles in a uniform
electric field. First, the solution of the electric field is expressed
in terms of a series of Legendre polynomials, and an algorithm
to determine the expansion coefficients is developed. Then the
force on the particle is calculated. In Section 4, we explore the
force dependence on confinement and media electric
properties.

2 Problem formulation

Let us consider a spherical particle with radius a, conductivity
o, and permittivity ¢;, suspended in a medium with conductiv-
ity o, and permittivity ¢, between two parallel planar walls. A
Cartesian coordinates system (x,),2) is centered along the lower
wall below the particle. The particle has zero net charge. The
distance between the walls is H. The particle center is located at
(#.5,2) = (0,0,h). The applied electric field, with magnitude E,, is
either normal or tangential to the bounding walls (Fig. 1).
Hereafter, we rescale all variables by E, and a. The dimension-
less Cartesian coordinates are (x,y,2) = (¥/a,j/a,/a). The rescal-
ing introduces three dimensionless geometry parameters: the
dimensionless height of the particle center above the bottom
wall, . = h/a, the dimensionless gap between the particle
surface and bottom wall, d, = 6. — 1, and the dimensionless
distance between two walls, o,, = H/a.

To solve for the electric field and find the electrostatic force
on the particle, we adopt the leaky dielectric model,®” which
assumes charge-free bulk media and attributes the space
charge in the diffuse layers near boundaries to the interface.
The model has been shown to be a good approximation of the
full electrokinetic equations in the case of thin Debye
layers."*™*> Accordingly, the dimensionless electric potential
inside the particle, @,, and in the medium, @,, satisfy the
Laplace’s equation

Vo, =0, i=1,2. (1)

The electric potential and normal electric current are contin-
uous. The boundary conditions on the at r = 1 read

@1 = @,, yn-E; = nE,, (2)

where n is the outward-pointing normal to the interface and y is
the conductivity ratio, y = ¢1/0,. The continuity of the normal

Z=H
E;
! L»
Y — E,
Particle Phase
(01,21) Medium Phase

h (02,€2)

zZ=0

Fig. 1 Sketch of the problem. A cross-section in the y = O plane is shown.
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electric current implies discontinuous displacement electric
field; its jump defines the interfacial charge. Note that the
interfacial charge distribution is nonuniform (and in a uniform
applied electric field it has a dipolar character), and the net
charge is zero. The boundary condition on the confining walls
depends on the direction of applied electric field. In the case of
a normal electric field, the two plane walls are conducting and
equipotential:

| —0w atz =iy,
4’2*{0 atz = 0. )

In the case of a tangentially applied electric field, the walls are
insulating, and the normal electric current vanishes

09 _

5 0atz=0,0y. (4)

Let us introduce dimensionless disturbance field &; and &,,
q)i = dA)i — Xy (5)

where x, is the direction of applied electric field, x, = z for the
normal electric field and x, = x for the tangential electric field.
The disturbance fields satisfy Laplace’s equation, with bound-
ary conditions at the particle-medium interface

Ox,y,

00 _ 902 _ (12 ©)

on  on

(Apl :@27 V4

and homogenous conditions on the two

bounding walls

boundary

. &, =0 Normal electric field, %
0®,/0z =0 Tangential electric field.

3 Solution
3.1 Electric field

Following Washizu and Jones,* the perturbation in the applied
electric field due to a particle confined between two planar
surfaces can be represented as a sum of multipoles of strength
B, placed at the particle center and image multipoles M, ,,
that account for the boundary effects (see ESI,} for details)

o0

by = Z (% + Mn,mr”) P (cos 0) cos(m¢), (8)
n=m

Here m = 0 corresponds to the case of a particle between two

electrodes (electric field applied normal to the surfaces), while

m =1 is the case of a tangentially applied electric field. (r,0,¢)

denote spherical coordinates centered at the particle.

The effect of the boundaries is accounted for by the method
of images. The two walls require two sets of images: a series of
successive images starting with a reflection with respect of the
bottom wall, f3, and a series of images starting with a reflection
by the top wall, y. For group f, the first image f), is the mirror
image of the original multipole B, ,, relative to the bottom wall.
The relation between multipole components 7, and Y is
given by

This journal is © The Royal Society of Chemistry 2023
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ﬂ(?( J+k+1ﬁ(l 1) (9)

for the case of the normal electric field and equipotential
walls, and

ﬁ(% j+kﬁ(l (10)
for the case of tangentially applied electric field and insulating
boundaries. The positions of the images in group f is deter-
mined successively,

L 20w — zi—1 leven
e —Zi1 i odd

Image group 7 is constructed using the same procedure, start-
ing with 1 ,%12,1 as the mirror image of B, ,, relative to the top wall.
For both cases of the applied electric fields, the location of
images are —d,, 2kdy, *+ ., and — 2kd,, £ J, k=1, 2, 3,.... Images
located at 2kd,, + d. and —2kd,, + J. have all components the same
as the original multipole while some of components of images
located at —d,, 2kdy, — J., and —2kd,, — . have opposite sign.
The images fields are re-expanded about the particle center,
r = 0, which yields M,, ,, as the sum of all their contributions as

nm = Z N () Bl,m~ (11)
I=m
The coefficients N only depend on the geometry parameters
0. and d,, (see ESI,T for details of the derivation). In the case of a
particle between two electrodes

0 (}’l + l)'
Nyl = G (12)
where
B 1 = [(=1D) 4+ (=1)"
Cop = (=28t + ; [ (20 )i
(13)
1 B (_1)r1+/
(2kdy — 200 )HHL (2kdy + 25, )]
For a tangentially applied electric field
!
N (D) (14)

nl mcn,l-

Convergence of eqn (8) requires that r is limited by the two
walls and the particle, i.e., 1 < 7 < min[d.,0, — Oc)-

The disturbance field inside the particle is given by the
nonsingular (at r = 0) solutions of the Laplace equation

by =Y Ayt Py (05 0) cos(md). (15)
n=m

The next step is to match ¢, and &, using the boundary
conditions at particle-medium interface r = 1. Substituting
eqn (8) and (15) into the equation for the continuity of electric
potential eqn (2), we obtain

An,m = Mn,m + Bn,m- (16)

The continuity of the normal electric current, together with
eqn 11 and (16), leads to a set of algebraic equations to be

This journal is © The Royal Society of Chemistry 2023
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solved for the multipoles B, ,,, n =1, 2...,
o0
Z[ xX— ] nl + (nlf +n+ 1)5711} B/JVI = (IC - I)Gn,rm (17)
I=m

where d,; denotes the Kronecker delta and G, ,, comes from the
eigenfunction expansion of 0x,/0n,

0x,
on

= i Gy Pl (cos 0) cos(me). (18)

r=1 n=m

In the case of a normal electric field, x, =z = . + rcos 6, 0z/0r =
cos 0 = P;(cos 0). From eqn (18), we obtain G, o = d,,;. In the case
of tangentially applied electric field, x, = x = rsin 0 cos ¢. Since
P,"(cos 0) = —sin 0, the coefficients G, ; = —d,;.

3.2 Electrostatic force on the particle

The force is calculated using the approach developed by
Washizu and Jones.*® The particle disturbance to the applied
field is modeled as due to an effective charge distributed on the
particle surface

— i K,,M,;mPZ’(cos 0) cos(me), (19)

n=m

where
n2n+1)(x —1
_n@nt Dz 20)
ny+n+1
M,;m =M,,, — H,, with H, ,, is obtained from expanding x,,
Z H, 1" P (cos 0) cos(me). (21)
n=m

Accordingly, the dimensionless force, denoted as force coeffi-
cient Cy = F,/(e;Ey’a®), on the particle is

Cr = % 0',< age“)ds (22)
r=1

where @, is the electric potential due to the applied field and
all the images,

00
Dext = =Xy + Z M, 1" P} (cos 0) cos(me).

n=m
Taking the derivative with respect to z yields

ad)ext

Z (1 1) P (cos 0) cos(mg).

n=m

Substituting into eqn (22) leads to

o0 o0
Cf = Z Z (k + m)KnMn,kam

n=m k=m

(23)
X 7{ Pl (cos 0) cos(me) Py, (cos 0) cos(m¢p)dS
r=1

The integral is evaluated using the orthogonality of the
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associated Legendre polynomials,

711

j{ Py (cos 0) cos(ma) Py (cos 0) cos(mep)dS

4n
ménlnz m = 07 (24)
] 2 !
n(n+m) Sumy A0,

2n+1)(n —m)!

3.2.1 Normal electric field. In the case of an electric field
applied perpendicularly to the walls, the problem is axisym-
metric, m = 0, and the force is

> n—+ 1 ’ ’
Cr=4n Z Kan&OMﬂ 1o (25)
n=1
where coefficients M, , are
r_ M]\() -1 n=1
Mﬂ)o_ {Mn,() f’l:2,3,"‘. (26)

Note that if the particle is a perfect conductor, it charges when
in contact with the electrode. The calculation of the force in
this case is presented in the Appendix A.

3.2.2 Tangential electric field. In the case of a tangentially
applied electric field in the x direction. m = 1. Using eqn (22),
we find

n—|—2) ’
G = 2“21(” 2n+1 My My (27)
where coefficients M, | are
/ Ml‘l + 1 n= 1,
V= T .

4 Results and discussion

In this section, we investigate the particle-wall interaction at
different confinement, and different material properties of the
particle and the suspending media. Specifically, we analyze the
dependence of the force on the

e Dimensionless distance between the two walls, d,, = Hl/a,
Opt2 <oy < ®

e Dimensionless gap between the particle surface and the
bottom wall, J, = (h — a)/a, 0 < 0, < Oy —

e Conductivity ratio, y = 04/0,.

All calculations are done with sums truncated at 50 terms
(eqn (25) and (27)), which is sufficient to achieve a converged
result (see ESLt for details of the convergence tests).

4.1 Normal electric field

Fig. 2 shows the variation of the force with the particle-electrode gap
at a given separation between the electrodes. The force coefficient
Cj, defined as the interaction force normalized by &E)2a%, is
plotted as a function of the particle to bottom-electrode gap, 6,
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(b)

L L

-0.4 -0.2 0 0.2 0.4

Fig. 2 Particle between two electrodes: force coefficient C; = F,/(e,Eq%a°)
as a function of the gap between the particle and the bottom electrode, dp,
and different electrode separations, d,, (a). Panel (b) replots the data as a
function of (3, + 1)/d,, — 1/2, the deviation of the particle center from the
midplane. Conductivity ratio is y = 5.

for different electrode distance, d. Fig. 2(b) replots the data
as a function of (0, + 1)/6, — 1/2, which is zero when the
particle center is at the midplane between the electrodes. The
magnitude of force is symmetric about the midplane while the
direction changes sign since the particle is attracted to the nearer
electrode.

Fig. 3 illustrates the effect of the conductivity ratio y on
the force. Since y varies between 0, for an insulating particle,
to oo for a perfectly conducting particle, we introduce the
conductivity mismatch f$;, = (y — 1)/(x + 1) which has a finite
range from —1 to 1, which is more convenient for plotting. The
force behavior is similar to the one-electrode solution,*® which
means that introduction of the top electrode does not change
the problem qualitatively. The presence of the top electrode
only decreases the magnitude of the force, and weakens the
attraction by the nearer electrode.

Intriguingly, we find that the force may vary non-mono-
tonically with the confinement d,, for a fixed particle-electrode
gap, see Fig. 4. At large distance between the electrodes, é,, > 1,

This journal is © The Royal Society of Chemistry 2023
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0 0.5 1
Conductivity mismatch, S;s

Fig. 3 Particle between two electrodes: force coefficient C; = F,/(e2E0%a2)
as a function of the conductivity mismatch f1> = (x — 1)/(y + 1) for fixed 6, =
1 and various d,,. 12 = 1 corresponds to a perfectly conducting particle,
while 81, = —1 corresponds to a perfectly insulating particle.

the two-electrode solution approaches the one-wall result.*® At
the minimum value of Jy, in the figure, 2(,, + 1), where the
particle center is at the mid-plane between the electrodes, the
force vanishes. As the confinement decreases, however, the
magnitude of the force coefficient Cr behaves differently
depending on the conductivity ratio y. When the particle is
more conducting than the suspending medium, y > 1, see
Fig. 4(a), the force magnitude passes through a maximum value
(a “peak’”) that exceeds the one-wall solution. In the case
of y < 1, Fig. 4(b), the magnitude of Cyrmonotonically decreases
to zero as the electrode separation decreases. We also compare
the exact two-wall solution with the approximate superposition
solution, which is the sum of two one-wall solutions with
dimensionless particle surface to plane wall gaps J, and d,, —
dp — 2, respectively. In general, the superposition solution is a
good approximation of the two-wall problem, especially in the
case y < 1. However, it can not predict the “peak” since two the
electrodes attract the particle in opposite directions.

A contour plot of the “peak’ magnitude, defined as the
maximum difference of the force magnitude between the two-
wall and one-wall solutions scaled by the one-wall solution, as a
function of particle-wall gap and conductivity ratio, is shown in
Fig. 5. The “peak” is most pronounced when the conductivity
mismatch is large, ¥ > 1 (conducting particle) and the particle
is close to the bottom wall, J, < 1.

The non-monotonic behavior of the force arises from the
competing interactions of the images ﬁg}ln and yﬁ,ll,, and the
particle multipoles By, .. In the case of d,, > J, » 1, the origin
of the peak can be illuminated by considering the interactions
between the leading order multipoles, the particle dipole B o
and its two closest image dipoles f{'} and 7{"), which all have
the same magnitude B, , = 1) = 7{"). The force is then

3n
Cr = 7191,02

1 1
Gpt1=0u) (o + D)

(29)
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(a ) | —— Two-wall solution
1 — = One-wall solution
Superposition solution
-0.5 .
1.7
- 1.75 -
o =l S 1
15} ]
_2 L I L L I I
4 6 8 10 12 14
O
(b) S
—— T'wo-wall solution
i —~ = One-wall solution
-0.05 | Superposition solution ||
-0.1 ]
-0.15 1
.
Q
-0.2 1
-0.25 8
-0.3 - ]
_0.35 L L L L L L

Fig. 4 Particle between two electrodes: force coefficient Cras a function
of the dimensionless separation between two electrodes d,, and fixed
particle-electrode gap. The superposition solution stands for the sum of
two opposite one-wall solutions. (a) 6, = 0.1and y = 5 (b) 6, = 0.1 and y =
0.2.

a)
8
g
I
S g
g
=3
g
o
(¢}
107!

0.5 0.6 0.7 0.8 0.9
Conductivity mismatch, 5o

Fig. 5 Particle between two electrodes: peak magnitude of the force
coefficient, scaled by the one wall solution, as a function of the con-
ductivity mismatch f1, = (x — 1)/(x + 1) and J,.
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0.12

0.6 0.115 1

0.55

2
1,0

05¢

0.457

0.4

Fig. 6 Normal field: the square of dimensionless dipole, By o, as a function
of dimensionless confinement 9,, for y = 5 and 6, = 0.1. Inset: y = 0.2,
op = 0.1

When the electrode separation is large, J,, > 1, the second
term on the right hand side of Eqn 29 dominates. In the case of
% > 1, By, increases as the gap between two walls decreases,
see Fig. 6, which increases the force magnitude (the force on
Fig. 4 a becomes more negative). When d,, ~ O(1), the first term
becomes the dominant contribution thereby reversing the
trend. Eventually, the magnitude of force becomes zero when
0w = 2(d,, + 1), when the particle center reaches the mid-plane
between the electrodes. However, if y < 1, the dipole magni-
tude decreases with decreasing J,,. Thus, both terms on the
right hand side are monotonically decreasing, which leads to
the monotonic decreasing behavior in Fig. 4(b). A more precise
argument can be made based on the asymptotic behavior at
large J, see eqn (35)—(39) below.
Bio ~ (Bo)io + 5w_3(B3)1,09 (30)

where (By)1,0 and (Bs),,o are
v —
Bo)y o=
(Bo)io=",

{ is the Riemann zeta function.

The “peak” exist only if dCy/dé,, = 0. Taking derivative of
eqn (29) with respect to J,, equating with 0, and rearranging
the terms yields the following relation

dB @ 1 1

1| =
dow (5, +1)° ( Oy 1)4 (Ow = 0p —1)°

Op + 1

The right hand side of the above equation is positive. Since
dw > 2(6, + 1) for a particle near the bottom electrode, this
implies that

dB ¢ dB

B 1,0
a0y =2By ., < 0. (33)
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The dipole B, o behaves asymptotically as eqn (30). Accordingly,

T 3 =1y
B~ BB = ) (L) 6)

which show that a “peak’ arises only if y > 1 in the case of a
normal electric field.

The precise asymptotic behavior of the force for large
electrode separations, J,, > 1, is obtained by noting that

N = x4 5,73 2m), (35)

where for a particle between two electrodes (m = 0)

0 (}’l + l)' (n 0
X)(”) _ i (—25.) ( +/+I)7 Z;(z,l)
_ 74’(3) (nvl):(lvl)a
o { 0 otherwise. (36)

Consequently, the interaction force on the particle has the
following form,

Cr ~Cro+ 64 Cp3,

}’l+1 ’ /
Cro =4S Kot ™ ( ) (M) 7
70 nz "n+ 1 n,0 0)ni10

> n+l ] '
= e 0, 00,

(37)

The sign of Cp indicates if the force will behave non-
monotonically with dy. If negative, the attraction between the
particle and the nearer electrode is stronger at large electrode
separations. However, the force should vanish when the parti-
cle is maximally confined and its center is at the midpoint
between the electrodes. The increase in Cy at large d,, should
reverse to decreasing at small d, leading to non-monotonicity.
The M coefficients are expanded M, o ~ (Mg)no + 0w > (M3)n0

(38)

(Bo)i,m and (Bs);,, are found from the following equations

S [0 DmXY + -4 1+ Do) (Bo)ya= (1~ DG,

NgE

[(X - 1)nX,(:),) + (ny+n+ 1)5;1/]

(B3)yo=—(x— Dny_ Z{) (Bo),
=1

(39)

where n =1, 2.... This asymptotic solution for the force for large
distance between two walls d,, > 1 is detailed in the ESI.} Fig. 7
shows that the asymptotic solution provides a good approxi-
mation to the full solution down to J,

This journal is © The Royal Society of Chemistry 2023
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e Two-weall solutlon
e Asvinptotic solution
One-wall solution
-1.6
-1.7
C—.
-1.8 S——
\//f N
-1.9
2t J
< 6 8 10 12 14
(5:1

Fig. 7 Normal field: force coefficient Cr as a function of d,,, the dimen-
sionless gap between two electrodes, compared to the asymptotic
solution. d, = 0.1, x = 9.

4.2 Tangential electric field

Fig. 8-13 provide the plots for tangentially applied electric field
mirroring Fig. 2-7 for the normal electric field. The trends are
the same as the normal electric field, however the interaction is
with a reversed sign. The particle is repelled by the nearer wall
in the case of tangential electric field since the particle dipole
and its images are parallel.

The non-monotonic dependence on the confinement J,, is
also found in the case of tangential electric field. The mecha-
nism is same as the normal electric field (discussed in the
previous section). The square of dipole B, ;> increases as the
gap between two walls decreases when y < 1 (see Fig. 11),
which contrasts the case of normal electric field. Consequently,
the non-monotonic behavior appears when y < 1 (see
Fig. 10(b)). The magnitude of the “peak’”, which is defined as
the maximum difference of the force magnitude between the
two-wall and one-wall solutions, is presented in Fig. 12. The
“peak” magnitude is maximal when the conductivity mismatch
is large and the particle is close to the bottom wall. In Fig. 13,
we present the asymptotic solution for weak confinement,
Ow > 1.

5 Conclusion

We calculate the electric force on a spherical colloid between
two planar surfaces in the presence of a uniform electric field.
We consider the general case of the colloid and the suspending
media that have arbitrary conductivities. We employ the leaky
dielectric model, which assumes bulk media to be charge
neutral (and thus electrostatic potential satisfying Laplace
equation) and continuous normal current across the particle-
medium interface. The charge carried by conduction accumu-
lates at the particle surface and gives rise to free-charge
polarization of the particle. We construct a general solution

This journal is © The Royal Society of Chemistry 2023
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0.4

0.2} 1

Sl N

(b)

-0.6 :
-0.4 -0.2 0 0.2 0.4
Bl _
O

D=

Fig. 8 Tangential field: force coefficient C; as a function of the dimen-
sionless particle to bottom wall gap sizes §,, or the normalized gap size,
(6p + 1)/, — 1/2, for various d,,. x = 0.2.

1.2 ; ; ‘
dw=5
—— 6y, =25
1+ 8w =23
087
006

-1 -0.5 0 0.5 1
Conductivity mismatch, (1o

Fig. 9 Tangential field: force coefficient Cr as a function of the dimen-
sionless conductivity mismatch B12 for various é,,. dp = 0.1.

for the electric potential is using the method of images. The
force on the particle is calculated using the effective multipole
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Fig. 10 Tangential field: force coefficient C¢ as a function of the Dimen-
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Fig. 12 Tangential field: peak magnitude of the force coefficient, scaled

by the one wall solution, as a function of the conductivity mismatch f1,

and 0p.
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Fig. 13 Tangential field: force coefficient Cr as a function of the distance

between the two planes, compared to the asymptotic solution. §, = 0.01,
7= 0.

method. We find that the particle is attracted by the closer
boundary in the case of normal electric field, and repelled in
the case of tangential electric field. The calculation also shows
that while in general the top wall weakens the interaction, the
force on the particle could exceed the one-wall problem when
a1 > o, (particle more conducting than the suspending med-
ium) in the case of an electric field applied normal to the
boundaries, and ¢, < o, for a tangentially applied electric field.
Our findings will be useful for the design micro-electro-
mechanical systems to manipulate particles such as colloids,
droplets, and biological cells with electric fields.
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Appendices

Appendix A: A conducting sphere
between two electrodes
In this case, the particle surface is equipotential and the

boundary condition at r = 1 becomes ®, = ®,. The electric
potential outside the particle is

S Bn.O /
2= (St a0 ) Putcoso). (a0

where M(/)‘o = My — . and the Mr/uO are given by eqn (26). The

multipoles B;, are solutions of

Z (Nfg(,)} + 5n1)31,0 = Gy,
=0

with G, o being

qu + 5c n= 0,
Gpo=141 n=1, (41)
0 n>2.

The dimensionless net charge on the particle, scaled by
2 -
& Eqa” 18

@dS = 4nBy. (42)

QZ? r=1 or

The electric force on the particle is calculated by integrating the
Maxwell stress tensor on the particle surface,

C/ = % e T, edS, (43)
r=1
where
1
T, = |:E2E2 — E(EQ . Ez)I:| . (44)

The integral is evaluated analytically,

> n+1
C/ = 4TE ;mlmlm+l, (45)
where L,, is
Ly = —(n+1)Byo +nM,,. (46)
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