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Electrostatic force on a spherical particle confined
between two planar surfaces†

Zhanwen Wang, a Michael J. Miksisb and Petia M. Vlahovska *b

A charge-free particle in a uniform electric field experiences no net force in an unbounded domain. A

boundary, however, breaks the symmetry and the particle can be attracted or repelled to it, depending

on the applied field direction [Z. Wang et al., Phys. Rev. E, 2022, 106, 034607]. Here, we investigate the

effect of a second boundary because of its common occurrence in practical applications. We consider a

spherical particle suspended between two parallel walls and subjected to a uniform electric field, applied

in a direction either normal or tangential to the surfaces. All media are modeled as leaky dielectrics, thus

allowing for the accumulation of free charge at interfaces, while bulk media remain charge-free. The

Laplace equation for the electric potential is solved using a multipole expansion and the boundaries are

accounted for by a set of images. The results show that in the case of a normal electric field, which

corresponds to a particle between two electrodes, the force is always attractive to the nearer boundary

and, in general, weaker that the case of only one wall. Intriguingly, for a given particle–wall separation

we find that the force may vary nonmonotonically with confinement and its magnitude may exceed the

one-wall value. In the case of tangential electric field, which corresponds to a particle between

insulating boundaries, the force follows the same trends but it is always repulsive.

1 Introduction

Electric fields are commonly used to manipulate colloidal
particles1–6 and droplets.7,8 Electric fields drive electrohydro-
dynamic flows that assemble colloidal crystals on electrodes9

and have also become a popular means to energize and create
self-propelled particles10–14 due to field-induced charge
electrophoresis15–17 or torque due to the Quincke effect, which
drives colloids to roll on a surface.18–23 Electric fields enable
active control of droplets in microfluidics.24–26 In these appli-
cations particles are often confined by electrodes or channels,
and the electrostatic force (and torque) exerted on the particle
is significantly influenced by the bounding surfaces.

The force on an spherical colloid near a planar boundary has
been mostly analyzed in the two limiting cases of a conducting
or an insulating particle. The surface of a conducting particle is
equipotential, and consequently, the electric field inside
vanishes. The net charge and force on a spherical particle are
calculated using the method of images27,28 or the equivalent
problem of two spheres in a uniform electric field.29 If the

particle is a perfect insulator and charge-free, the boundary
condition on the particle-medium interface are continuity of
the electric potential and the displacement field. The electro-
static force has been obtained either in terms of series expan-
sion in eigenfunctions of the Laplace equation in bispherical
coordinate system,30–34 or from a multipole-moment theory for
the pair-wise dielectrophoretic interactions of dielectric
spheres.35,36 Real materials are, however, rarely perfectly insu-
lating. Even a weak conduction leads to the accumulation of
free charges at interfaces,37 which can profoundly affect the
particle electrostatics. In the case where particle and suspend-
ing media are leaky dielectrics, the appropriate boundary
conditions at interfaces are continuity the normal electric
current rather than the displacement field.38 The discontinuity
of the latter determines the induced free charge distributed
along the interface (with net charge being zero). The bulk
media remain charge-free and the electrostatic potential is a
solution of the Laplace equation.

Recently, this leaky dielectric model was used to analyze the
spherical particle–wall interactions for particle and suspending
media with arbitrary conductivities.39 Electric fields applied
both normal to an electrode or tangential to an insulating
boundary were considered and the force calculated for arbitrary
particle separations. Here, we consider the effect of a second,
parallel boundary on the electrostatic force on the particle. This
paper is organized as follows. The problem is formulated in
Section 2. In Section 3, the solution methodology using the
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method of images and the mulitpole expansion is presented,
which is a generalization of the approach developed by
Washizu and Jones35 for two identical particles in a uniform
electric field. First, the solution of the electric field is expressed
in terms of a series of Legendre polynomials, and an algorithm
to determine the expansion coefficients is developed. Then the
force on the particle is calculated. In Section 4, we explore the
force dependence on confinement and media electric
properties.

2 Problem formulation

Let us consider a spherical particle with radius a, conductivity
s1 and permittivity e1, suspended in a medium with conductiv-
ity s2 and permittivity e2 between two parallel planar walls. A
Cartesian coordinates system (x̃,ỹ,z̃) is centered along the lower
wall below the particle. The particle has zero net charge. The
distance between the walls is H. The particle center is located at
(x̃,ỹ,z̃) = (0,0,h). The applied electric field, with magnitude E0, is
either normal or tangential to the bounding walls (Fig. 1).
Hereafter, we rescale all variables by E0 and a. The dimension-
less Cartesian coordinates are (x,y,z) = (x̃/a,ỹ/a,z̃/a). The rescal-
ing introduces three dimensionless geometry parameters: the
dimensionless height of the particle center above the bottom
wall, dc = h/a, the dimensionless gap between the particle
surface and bottom wall, dp = dc � 1, and the dimensionless
distance between two walls, dw = H/a.

To solve for the electric field and find the electrostatic force
on the particle, we adopt the leaky dielectric model,37 which
assumes charge-free bulk media and attributes the space
charge in the diffuse layers near boundaries to the interface.
The model has been shown to be a good approximation of the
full electrokinetic equations in the case of thin Debye
layers.40–45 Accordingly, the dimensionless electric potential
inside the particle, F1, and in the medium, F2, satisfy the
Laplace’s equation

r2Fi = 0, i = 1, 2. (1)

The electric potential and normal electric current are contin-
uous. The boundary conditions on the at r = 1 read

F1 = F2, wn�E1 = n�E2, (2)

where n is the outward-pointing normal to the interface and w is
the conductivity ratio, w = s1/s2. The continuity of the normal

electric current implies discontinuous displacement electric
field; its jump defines the interfacial charge. Note that the
interfacial charge distribution is nonuniform (and in a uniform
applied electric field it has a dipolar character), and the net
charge is zero. The boundary condition on the confining walls
depends on the direction of applied electric field. In the case of
a normal electric field, the two plane walls are conducting and
equipotential:

F2 ¼
�dw at z ¼ dw;
0 at z ¼ 0:

�
(3)

In the case of a tangentially applied electric field, the walls are
insulating, and the normal electric current vanishes

@F2

@z
¼ 0 at z ¼ 0; dw: (4)

Let us introduce dimensionless disturbance field F̂1 and F̂2,

Fi = F̂i � xa, (5)

where xa is the direction of applied electric field, xa = z for the
normal electric field and xa = x for the tangential electric field.
The disturbance fields satisfy Laplace’s equation, with bound-
ary conditions at the particle-medium interface

F̂1 ¼ F̂2; w
@F̂1

@n
� @F̂2

@n
¼ w� 1ð Þ@xa

@n
: (6)

and homogenous boundary conditions on the two
bounding walls

F̂2 ¼ 0 Normal electric field;
@F̂2=@z ¼ 0 Tangential electric field:

�
(7)

3 Solution
3.1 Electric field

Following Washizu and Jones,35 the perturbation in the applied
electric field due to a particle confined between two planar
surfaces can be represented as a sum of multipoles of strength
Bn,m placed at the particle center and image multipoles Mn,m

that account for the boundary effects (see ESI,† for details)

F̂2 ¼
X1
n¼m

Bn;m

rnþ1
þMn;mr

n

� �
Pm
n ðcos yÞ cosðmfÞ; (8)

Here m = 0 corresponds to the case of a particle between two
electrodes (electric field applied normal to the surfaces), while
m = 1 is the case of a tangentially applied electric field. (r,y,f)
denote spherical coordinates centered at the particle.

The effect of the boundaries is accounted for by the method
of images. The two walls require two sets of images: a series of
successive images starting with a reflection with respect of the
bottom wall, b, and a series of images starting with a reflection
by the top wall, g. For group b, the first image b(1)n,m is the mirror
image of the original multipole Bn,m relative to the bottom wall.
The relation between multipole components b(i)n,m and b(i�1)

n,m is
given byFig. 1 Sketch of the problem. A cross-section in the y = 0 plane is shown.
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b(i)j,k = (�1) j+k+1b(i�1)
j,k , (9)

for the case of the normal electric field and equipotential
walls, and

b(i)j,k = (�1) j+kb(i�1)
j,k , (10)

for the case of tangentially applied electric field and insulating
boundaries. The positions of the images in group b is deter-
mined successively,

zi ¼
2dw � zi�1 i even

�zi�1 i odd

�

Image group g is constructed using the same procedure, start-
ing with g(1)n,m as the mirror image of Bn,m relative to the top wall.

For both cases of the applied electric fields, the location of
images are �dc, 2kdw � dc, and � 2kdw � dc, k = 1, 2, 3,. . .. Images
located at 2kdw + dc and �2kdw + dc have all components the same
as the original multipole while some of components of images
located at �dc, 2kdw � dc, and �2kdw � dc have opposite sign.

The images fields are re-expanded about the particle center,
r = 0, which yields Mn,m as the sum of all their contributions as

Mn;m ¼
X1
l¼m

N
ðmÞ
n;l Bl;m: (11)

The coefficients N(m)
n,l only depend on the geometry parameters

dc and dw (see ESI,† for details of the derivation). In the case of a
particle between two electrodes

N
ð0Þ
n;l ¼ ðnþ lÞ!

l!n!
Cn;l ; (12)

where

Cn;l ¼ 1

ð�2dcÞnþlþ1
þ
X1
k¼1

ð�1Þl þ ð�1Þn
ð2kdwÞnþlþ1

�

� 1

ð2kdw � 2dcÞnþlþ1
� ð�1Þnþl

ð2kdw þ 2dcÞnþlþ1

�
:

(13)

For a tangentially applied electric field

N
ð1Þ
n;l ¼ � ðnþ lÞ!

ðl � 1Þ!ðnþ 1Þ!Cn;l : (14)

Convergence of eqn (8) requires that r is limited by the two
walls and the particle, i.e., 1 r r r min[dc,dw � dc].

The disturbance field inside the particle is given by the
nonsingular (at r = 0) solutions of the Laplace equation

F̂1 ¼
X1
n¼m

An;mr
nPm

n ðcos yÞ cosðmfÞ: (15)

The next step is to match F̂1 and F̂2 using the boundary
conditions at particle-medium interface r = 1. Substituting
eqn (8) and (15) into the equation for the continuity of electric
potential eqn (2), we obtain

An,m = Mn,m + Bn,m. (16)

The continuity of the normal electric current, together with
eqn 11 and (16), leads to a set of algebraic equations to be

solved for the multipoles Bn,m, n = 1, 2. . .,

X1
l¼m

ðw� 1ÞnNðmÞ
n;l þ nwþ nþ 1ð Þdnl

h i
Bl;m ¼ w� 1ð ÞGn;m; (17)

where dnl denotes the Kronecker delta and Gn,m comes from the
eigenfunction expansion of qxa/qn,

@xa
@n

����
r¼1

¼
X1
n¼m

Gn;mP
m
n ðcos yÞ cosðmfÞ: (18)

In the case of a normal electric field, xa = z = dc + r cos y, qz/qr =
cos y = P1(cos y). From eqn (18), we obtain Gn,0 = dn1. In the case
of tangentially applied electric field, xa = x = r sin y cosf. Since
P1

1(cos y) = �sin y, the coefficients Gn,1 = �dn1.

3.2 Electrostatic force on the particle

The force is calculated using the approach developed by
Washizu and Jones.46 The particle disturbance to the applied
field is modeled as due to an effective charge distributed on the
particle surface

st ¼ �
X1
n¼m

KnM
0
n;mP

m
n ðcos yÞ cosðmfÞ; (19)

where

Kn ¼
nð2nþ 1Þ w� 1ð Þ

nwþ nþ 1
: (20)

M
0
n;m ¼ Mn;m �Hn;m with Hn,m is obtained from expanding xa,

xa ¼
X1
n¼m

Hn;mr
nPm

n ðcos yÞ cosðmfÞ: (21)

Accordingly, the dimensionless force, denoted as force coeffi-
cient Cf = Fz/(e2E0

2a2), on the particle is

Cf ¼
I
r¼1

st �@Fext

@z

� �
dS; (22)

where Fext is the electric potential due to the applied field and
all the images,

Fext ¼ �xa þ
X1
n¼m

Mn;mr
nPm

n ðcos yÞ cosðmfÞ:

Taking the derivative with respect to z yields

@Fext

@z
¼

X1
n¼m

M
0
n;mðnþmÞrn�1Pm

n�1ðcos yÞ cosðmfÞ:

Substituting into eqn (22) leads to

Cf ¼
X1
n¼m

X1
k¼m

ðkþmÞKnM
0
n;mM

0
k;m

�
I
r¼1

Pm
n ðcos yÞ cosðmfÞPm

k�1ðcos yÞ cosðmfÞdS

(23)

The integral is evaluated using the orthogonality of the
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associated Legendre polynomials,I
r¼1

Pm
n1
ðcos yÞ cosðmfÞPm

n2
ðcos yÞ cosðmfÞdS

¼

4p
2nþ 1

dn1n2 m ¼ 0;

2pðnþmÞ!
ð2nþ 1Þðn�mÞ!dn1n2 ma0:

8>>><
>>>:

(24)

3.2.1 Normal electric field. In the case of an electric field
applied perpendicularly to the walls, the problem is axisym-
metric, m = 0, and the force is

Cf ¼ 4p
X1
n¼1

Kn
nþ 1

2nþ 1
M

0
n;0M

0
nþ1;0: (25)

where coefficients M
0
n;0 are

M
0
n;0 ¼

M1;0 � 1 n ¼ 1
Mn;0 n ¼ 2; 3; � � �

�
: (26)

Note that if the particle is a perfect conductor, it charges when
in contact with the electrode. The calculation of the force in
this case is presented in the Appendix A.

3.2.2 Tangential electric field. In the case of a tangentially
applied electric field in the x direction. m = 1. Using eqn (22),
we find

Cf ¼ 2p
X1
n¼1

Kn
nðnþ 1Þðnþ 2Þ

2nþ 1
M

0
n;1M

0
nþ1;1; (27)

where coefficients M
0
n;1 are

M
0
n;1 ¼

M1;1 þ 1 n ¼ 1;
Mn;1 n ¼ 2; 3; � � �

�
: (28)

4 Results and discussion

In this section, we investigate the particle–wall interaction at
different confinement, and different material properties of the
particle and the suspending media. Specifically, we analyze the
dependence of the force on the

� Dimensionless distance between the two walls, dw = H/a,
dp + 2 o dw o N

� Dimensionless gap between the particle surface and the
bottom wall, dp = (h � a)/a, 0 o dp o dw � 2,

� Conductivity ratio, w = s1/s2.
All calculations are done with sums truncated at 50 terms

(eqn (25) and (27)), which is sufficient to achieve a converged
result (see ESI,† for details of the convergence tests).

4.1 Normal electric field

Fig. 2 shows the variation of the force with the particle-electrode gap
at a given separation between the electrodes. The force coefficient
Cf, defined as the interaction force normalized by e2E0

2a2, is
plotted as a function of the particle to bottom-electrode gap, dp

for different electrode distance, dw. Fig. 2(b) replots the data
as a function of (dp + 1)/dw � 1/2, which is zero when the
particle center is at the midplane between the electrodes. The
magnitude of force is symmetric about the midplane while the
direction changes sign since the particle is attracted to the nearer
electrode.

Fig. 3 illustrates the effect of the conductivity ratio w on
the force. Since w varies between 0, for an insulating particle,
to N for a perfectly conducting particle, we introduce the
conductivity mismatch b12 = (w � 1)/(w + 1) which has a finite
range from �1 to 1, which is more convenient for plotting. The
force behavior is similar to the one-electrode solution,39 which
means that introduction of the top electrode does not change
the problem qualitatively. The presence of the top electrode
only decreases the magnitude of the force, and weakens the
attraction by the nearer electrode.

Intriguingly, we find that the force may vary non-mono-
tonically with the confinement dw for a fixed particle-electrode
gap, see Fig. 4. At large distance between the electrodes, dw c 1,

Fig. 2 Particle between two electrodes: force coefficient Cf = Fz/(e2E0
2a2)

as a function of the gap between the particle and the bottom electrode, dp,
and different electrode separations, dw (a). Panel (b) replots the data as a
function of (dp + 1)/dw � 1/2, the deviation of the particle center from the
midplane. Conductivity ratio is w = 5.
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the two-electrode solution approaches the one-wall result.39 At
the minimum value of dw in the figure, 2(dp + 1), where the
particle center is at the mid-plane between the electrodes, the
force vanishes. As the confinement decreases, however, the
magnitude of the force coefficient Cf behaves differently
depending on the conductivity ratio w. When the particle is
more conducting than the suspending medium, w 4 1, see
Fig. 4(a), the force magnitude passes through a maximum value
(a ‘‘peak’’) that exceeds the one-wall solution. In the case
of wo 1, Fig. 4(b), the magnitude of Cf monotonically decreases
to zero as the electrode separation decreases. We also compare
the exact two-wall solution with the approximate superposition
solution, which is the sum of two one-wall solutions with
dimensionless particle surface to plane wall gaps dp and dw �
dp � 2, respectively. In general, the superposition solution is a
good approximation of the two-wall problem, especially in the
case wo 1. However, it can not predict the ‘‘peak’’ since two the
electrodes attract the particle in opposite directions.

A contour plot of the ‘‘peak’’’ magnitude, defined as the
maximum difference of the force magnitude between the two-
wall and one-wall solutions scaled by the one-wall solution, as a
function of particle–wall gap and conductivity ratio, is shown in
Fig. 5. The ‘‘peak’’ is most pronounced when the conductivity
mismatch is large, w c 1 (conducting particle) and the particle
is close to the bottom wall, dp { 1.

The non-monotonic behavior of the force arises from the
competing interactions of the images b(1)n,m and g(1)n,m and the
particle multipoles Bn,m. In the case of dw c dp c 1, the origin
of the peak can be illuminated by considering the interactions
between the leading order multipoles, the particle dipole B1,0
and its two closest image dipoles b(1)1,0 and g(1)1,0, which all have
the same magnitude B1,0 = b(1)1,0 = g(1)1,0. The force is then

Cf ¼
3p
2
B1;0

2 1

ðdp þ 1� dwÞ4
� 1

ðdp þ 1Þ4

� �
; (29)

Fig. 3 Particle between two electrodes: force coefficient Cf = Fz/(e2E0
2a2)

as a function of the conductivity mismatch b12 = (w� 1)/(w + 1) for fixed dp =
1 and various dw. b12 = 1 corresponds to a perfectly conducting particle,
while b12 = �1 corresponds to a perfectly insulating particle.

Fig. 4 Particle between two electrodes: force coefficient Cf as a function
of the dimensionless separation between two electrodes dw and fixed
particle-electrode gap. The superposition solution stands for the sum of
two opposite one-wall solutions. (a) dp = 0.1 and w = 5 (b) dp = 0.1 and w =
0.2.

Fig. 5 Particle between two electrodes: peak magnitude of the force
coefficient, scaled by the one wall solution, as a function of the con-
ductivity mismatch b12 = (w � 1)/(w + 1) and dp.
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When the electrode separation is large, dw c 1, the second
term on the right hand side of Eqn 29 dominates. In the case of
w 4 1, B1,0

2 increases as the gap between two walls decreases,
see Fig. 6, which increases the force magnitude (the force on
Fig. 4 a becomes more negative). When dw B O(1), the first term
becomes the dominant contribution thereby reversing the
trend. Eventually, the magnitude of force becomes zero when
dw = 2(dp + 1), when the particle center reaches the mid-plane
between the electrodes. However, if w o 1, the dipole magni-
tude decreases with decreasing dw. Thus, both terms on the
right hand side are monotonically decreasing, which leads to
the monotonic decreasing behavior in Fig. 4(b). A more precise
argument can be made based on the asymptotic behavior at
large dw, see eqn (35)–(39) below.

B1,0 B (B0)1,0 + dw
�3(B3)1,0, (30)

where (B0)1,0 and (B3)1,0 are

B0ð Þ1;0¼
w� 1

wþ 2
; B3ð Þ1;0¼ zð3Þ B0ð Þ1;0

h i2
: (31)

z is the Riemann zeta function.
The ‘‘peak’’ exist only if dCf/ddw = 0. Taking derivative of

eqn (29) with respect to dw, equating with 0, and rearranging
the terms yields the following relation

dB1;0
2

ddw

1

dp þ 1
� 	4 1

dw
dp þ 1

� 1

� �4
� 1

2
6664

3
7775 ¼ 4B1;0

2

ðdw � dp � 1Þ5: (32)

The right hand side of the above equation is positive. Since
dw 4 2(dp + 1) for a particle near the bottom electrode, this
implies that

dB1;0
2

ddw
¼ 2B1;0

dB1;0

ddw
o 0: (33)

The dipole B1,0 behaves asymptotically as eqn (30). Accordingly,

dB1;0
2

ddw
� � 3

dw4
B0ð Þ1;0 B3ð Þ1;0¼ � 3

dw4
zð3Þ w� 1

wþ 2

� �3

; (34)

which show that a ‘‘peak’’ arises only if w 4 1 in the case of a
normal electric field.

The precise asymptotic behavior of the force for large
electrode separations, dw c 1, is obtained by noting that

N(m)
n,l = X(m)

n,l + dw
�3Z(m)

n,l , (35)

where for a particle between two electrodes (m = 0)

X
ð0Þ
n;l ¼ ðnþ lÞ!

l!n!
ð�2dcÞ�ðnþlþ1Þ; Z

ð0Þ
n;l

¼ �zð3Þ ðn; lÞ ¼ ð1; 1Þ;
0 otherwise:

�
(36)

Consequently, the interaction force on the particle has the
following form,

Cf �Cf 0 þ dw�3Cf 3;

Cf 0 ¼ 4p
X1
n¼1

Kn
nþ 1

2nþ 1
M

0
0


 �
n;0

M
0
0


 �
nþ1;0

;

Cf 3 ¼ 4p
X1
n¼1

Kn
nþ 1

2nþ 1
M

0
0


 �
n;0

M3ð Þnþ1;0þ M3ð Þn;0 M
0
0


 �
nþ1;0

� �
;

(37)

The sign of Cf3 indicates if the force will behave non-
monotonically with dw. If negative, the attraction between the
particle and the nearer electrode is stronger at large electrode
separations. However, the force should vanish when the parti-
cle is maximally confined and its center is at the midpoint
between the electrodes. The increase in Cf at large dw should
reverse to decreasing at small dw, leading to non-monotonicity.
The M coefficients are expanded Mn,0 B (M0)n,0 + dw

�3(M3)n,0

M0ð Þn;0 ¼
X1
l¼1

X
ð0Þ
n;l B0ð Þl;0

M3ð Þn;0¼
X1
l¼1

X
ð0Þ
n;l B3ð Þl;0 þ

X1
l¼1

Z
ð0Þ
n;l B0ð Þl;0

(38)

(B0)l,m and (B3)l,m are found from the following equations

X1
l¼1

ðw� 1ÞnX ð0Þ
n;l þ ðnwþ nþ 1Þdnl

h i
B0ð Þl;0¼ ðw� 1ÞGn;0;

X1
l¼1

ðw� 1ÞnX ð0Þ
n;l þ ðnwþ nþ 1Þdnl

h i

B3ð Þl;0¼ �ðw� 1Þn
X1
l¼1

Z
ð0Þ
n;l B0ð Þl;0:

(39)

where n = 1, 2. . .. This asymptotic solution for the force for large
distance between two walls dw c 1 is detailed in the ESI.† Fig. 7
shows that the asymptotic solution provides a good approxi-
mation to the full solution down to dw B 5.

Fig. 6 Normal field: the square of dimensionless dipole, B1,0, as a function
of dimensionless confinement dw for w = 5 and dp = 0.1. Inset: w = 0.2,
dp = 0.1.
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4.2 Tangential electric field

Fig. 8–13 provide the plots for tangentially applied electric field
mirroring Fig. 2–7 for the normal electric field. The trends are
the same as the normal electric field, however the interaction is
with a reversed sign. The particle is repelled by the nearer wall
in the case of tangential electric field since the particle dipole
and its images are parallel.

The non-monotonic dependence on the confinement dw is
also found in the case of tangential electric field. The mecha-
nism is same as the normal electric field (discussed in the
previous section). The square of dipole B1,1

2 increases as the
gap between two walls decreases when w o 1 (see Fig. 11),
which contrasts the case of normal electric field. Consequently,
the non-monotonic behavior appears when w o 1 (see
Fig. 10(b)). The magnitude of the ‘‘peak’’, which is defined as
the maximum difference of the force magnitude between the
two-wall and one-wall solutions, is presented in Fig. 12. The
‘‘peak’’ magnitude is maximal when the conductivity mismatch
is large and the particle is close to the bottom wall. In Fig. 13,
we present the asymptotic solution for weak confinement,
dw c 1.

5 Conclusion

We calculate the electric force on a spherical colloid between
two planar surfaces in the presence of a uniform electric field.
We consider the general case of the colloid and the suspending
media that have arbitrary conductivities. We employ the leaky
dielectric model, which assumes bulk media to be charge
neutral (and thus electrostatic potential satisfying Laplace
equation) and continuous normal current across the particle-
medium interface. The charge carried by conduction accumu-
lates at the particle surface and gives rise to free-charge
polarization of the particle. We construct a general solution

for the electric potential is using the method of images. The
force on the particle is calculated using the effective multipole

Fig. 7 Normal field: force coefficient Cf as a function of dw, the dimen-
sionless gap between two electrodes, compared to the asymptotic
solution. dp = 0.1, w = 9.

Fig. 8 Tangential field: force coefficient Cf as a function of the dimen-
sionless particle to bottom wall gap sizes dp, or the normalized gap size,
(dp + 1)/dw � 1/2, for various dw. w = 0.2.

Fig. 9 Tangential field: force coefficient Cf as a function of the dimen-
sionless conductivity mismatch b12 for various dw. dp = 0.1.
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method. We find that the particle is attracted by the closer
boundary in the case of normal electric field, and repelled in
the case of tangential electric field. The calculation also shows
that while in general the top wall weakens the interaction, the
force on the particle could exceed the one-wall problem when
s1 4 s2 (particle more conducting than the suspending med-
ium) in the case of an electric field applied normal to the
boundaries, and s1 o s2 for a tangentially applied electric field.
Our findings will be useful for the design micro-electro-
mechanical systems to manipulate particles such as colloids,
droplets, and biological cells with electric fields.

Conflicts of interest

There are no conflicts to declare.

Fig. 11 Tangential field: the square of dimensionless dipole, B1,1, as a
function of dimensionless confinement dw for w = 0.2 and dp = 0.01. Inset:
w = 5, dp = 0.01.

Fig. 12 Tangential field: peak magnitude of the force coefficient, scaled
by the one wall solution, as a function of the conductivity mismatch b12
and dp.

Fig. 13 Tangential field: force coefficient Cf as a function of the distance
between the two planes, compared to the asymptotic solution. dp = 0.01,
w = 0.

Fig. 10 Tangential field: force coefficient Cf as a function of the Dimen-
sionless distance between the two walls dw. (a) dp = 0.01, and w = 5 (b) dp =
0.01, and w = 0.2.
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Appendices

Appendix A: A conducting sphere
between two electrodes

In this case, the particle surface is equipotential and the
boundary condition at r = 1 becomes F2 = Fp. The electric
potential outside the particle is

F2 ¼
X1
n¼0

Bn;0

rnþ1
þM

0
n;0r

n

� �
Pnðcos yÞ: (40)

where M
0
0;0 ¼ M0;0 � dc and the M

0
n;0 are given by eqn (26). The

multipoles Bl,0 are solutions of

X1
l¼0

N
ð0Þ
n;l þ dnl


 �
Bl;0 ¼ Gn;0;

with Gn,0 being

Gn;0 ¼
FP þ dc n ¼ 0;
1 n ¼ 1;
0 n � 2:

8<
: (41)

The dimensionless net charge on the particle, scaled by
e2E0a

2 is

Q ¼ �
I
r¼1

@F2

@r
dS ¼ 4pB0: (42)

The electric force on the particle is calculated by integrating the
Maxwell stress tensor on the particle surface,

Cf ¼
I
r¼1

ez � T2 � erdS; (43)

where

T2 ¼ E2E2 �
1

2
E2 � E2ð ÞI

� �
: (44)

The integral is evaluated analytically,

Cf ¼ 4p
X1
n¼0

nþ 1

ð2nþ 1Þð2nþ 3ÞLnLnþ1; (45)

where Ln is

Ln ¼ �ðnþ 1ÞBn;0 þ nM
0
n;0: (46)
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