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Abstract—Radar-based recognition of human activities of daily
living has been a focus of research for over a decade. Current
techniques focus on generalized motion recognition of any person
and rely on massive amounts of data to characterize generic
human activity. However, human gait is actually a person-specific
biometric, correlated with health and agility, which depends on
a person’s mobility ethogram. This paper proposes a multi-
input multi-task deep learning framework for jointly learning a
person’s agility and activity. As a proof of concept, we consider
three categories of agility represented by slow, fast and nominal
motion articulations and show that joint consideration of agility
and activity can lead to improved activity classification accuracy
and estimation of agility. To the best of our knowledge, this
work represents the first work considering personalized motion
recognition and agility characterization using radar.

Index Terms—radar micro-doppler, human activity recogni-
tion, deep learning, deep neural networks, spectrograms

I. INTRODUCTION

Radar-based human activity recognition (HAR) [1], [2] has
been an important focus of research for applications relating
to defense, security, indoor monitoring [3], biomedical [4]-[6]
and human-computer interaction [7], [8]. Current approaches
for deep learning-based HAR [9] focus on training models
such that they achieve high generalization performance to
previously unseen users - in other words, a generic human
mobility profile. To achieve this, models are trained so as to
span all possible participant profiles: height, speed, and style.
The more data that embodies all possible variations in the
resulting radar micro-Doppler signature [10], the better the
generalization.

However, in fact, human gait is actually a person-specific,
biometric characteristic [11]. Every person walks differently.
Depending on age, health, and mobility, the way a person
kneels, lays down, or stands up is even unique. There may
be a significant difference between the pace and posture of a
healthy teenager versus an elderly person with fall risk. Thus,
remote health monitoring applications require characterization
and recognition of person-specific mobility profiles - not
generalization across a generic profile. Moreover, in health
applications the person being observed is generally known: we
do not seek to identify anyone, but to instead better understand
a particular person’s mobility.
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Beyond simply recognizing the activity, extracting charac-
teristics of the gait has health significance. For example, gait
abnormalities [12] and various gait parameters [13], [14] can
be indicative of fall risk or other disorders. Physicians often
use evaluations such as the Timed Up and Go (TUG) test [15]
to also measure agility and balance. This is significant because
it shows that not just persistent activities, but also transitions
between activities have implications for health monitoring.

In behavioral psychology, the term ethogram [16], [17]
refers to a quantitative description of normal behavior of an
animal or a person. Similarly, an ethogram of human mobility
[18], [19] is comprised of a state diagram that documents a
person’s daily mobility patterns: each state is reflective of a
posture, such as standing (in place), ambulatory, laying down,
or sitting, while activities themselves can be defined as being
persistent within a state, such as walking, or transitory in na-
ture. For example, falling is a transitory activity where a person
suddenly goes from a “walking” state to a ”laying down” state.
This view offers an enriched perspective with which to view
activities, as well as a scheme within which the likelihood of
certain transitions (based on health and mobility) and the rate
of transition (agility) can be logged. Combined, the states,
in-state and transitional activities, transition likelihoods and
agility comprise the ethogram - a more comprehensive, person-
specific description of a person’s mobility profile.

This work represents the first work, to the best of our knowl-
edge, to investigate the use of radar to jointly characterize
agility in addition to transitional activity. In particular, as a
proof of concept, we consider three categories of agility as
represented by slow, fast and nominal motion articulations. We
propose joint estimation of agility and activity using a multi-
task [20] deep neural network with a cumulative loss function
comprised of individual losses with adjustable importance fac-
tors. We show that the proposed approach improves the activity
recognition performance while maintaining the agility score
estimation accuracy with much fewer trainable parameters
and memory requirements than if two separate DNNs were
utilized. Additionally, we also assess the utilization of range
information along with the Doppler information in a multi-
input network. Towards this aim, this study proposes a multi-
input multi-task learning (MIMTL) method for simultaneous
recognition of human activity and agility. The proposed ap-
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Fig. 1: uD spectrograms of different activities.
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Fig. 2: uD spectrograms of activities for varying speeds.

proach improves the activity recognition performance around
6% (from 89.7% to 95.6) and 3% (from 95.2% to 98.2%) for
joint prediction and multi-task learning cases, respectively.

The remainder of the paper is organized as follows: Section
IT presents the experimental setup, data collection and pre-
processing stages, Section III describes and benchmarks differ-
ent approaches on human activity and agility score estimation,
Section IV presents the proposed MIMTL approach for joint
estimation of activities along with agility scores and compares
it with other methods, and finally, Section V concludes the
paper with principal findings.

II. DATA COLLECTION AND EXPERIMENTAL SETUP

A. Radar Sensor

In this work, Texas Instrument’s AWR2243BOOST
frequency-modulated continuous-wave (FMCW) multiple-
input-multiple-output (MIMO) radar is used for data acqui-
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Fig. 3: Extraction of upper, central and lower envelopes from
uD spectrograms.

sition. The device operates at 77 GHz with 4 GHz bandwidth
which yields <4 cm range resolution. The RF sensor is
attached to a DCA1000EVM data capture card to stream the
raw [&Q data. The RF antenna has 4+ 70° azimuth and + 15°
elevation beamwidths.

B. Experimental Setup and Data Acquisition

We consider ten human activities along with their three
different agility scores to assess the recognition performance
of the proposed approach. The defined activities and their
abbreviations throughout the paper are listed below.

o SITC: Sitting on a chair

o STDC: Standing up from a chair

o LAYB: Laying down on an elevated bed

o GETB: Getting up from an elevated bed

o« WLKT: Walking towards radar

o WLKA: Walking away from radar

« PICK: Picking up an object from the ground with a cane
support

« KNEE: Kneeling and getting up

o LAYF: Laying down on a floor bed

o GETF: Getting up from a floor bed
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Fig. 4: Maximum velocity distributions of different agility scores.

Each activity is performed with three different speeds (i.e.,
agility scores): slow, nominal and fast. Slow activities are
characteristic of the the elderly population or persons with
mobility restrictions, and performed by the participants con-
sistent with these manners. Slow motion activities can also
be a result of persons distracted by reading or carrying or
holding items. Nominal activities are articulated by a wide
age group and are performed with a normal speed. In this
case, each participant performs the motion using his/her own
personal pace. Fast activities, on the other hand, are typically
exhibited with people in a hurry and are generally affiliated
with the younger population. These activities are performed
by the participants in a quick manner. While these agility
scores are subject to the understanding of the participants
about relative speed of execution of each activity as well
as the interpretation of the radar operator who labels them,
the participants are instructed to perform the activities with
certain differences in pace. In Section II-D, distributions of
the activity speeds are discussed in detail. Different speeds
for each activity are denoted by preceding the activity name
with the speed category’s initial. For instance, slow, nominal
and fast performing of SITC are denoted as S_SITC, N_SITC
and F_SITC, respectively.

The radar was placed approximately 1 m above the ground
and in-place motions were performed in the direct line-of-sight
of the radar and at around 2 m distance while transient motions
such as walking have varying distances. Each recording lasted
for 10 seconds and 6 people with varying ages and genders
participated the study. In total, 900 samples are acquired which
later partitioned into 70% and 30% portions for training and
testing, respectively.

C. RF Data Pre-Processing

The signal received by the radar receiver, Sg(t), is a time-
shifted and frequency-modulated version of the transmitted
FMCW signal, St (t), which can be mathematically expressed
as:

Sr(t) = exp(j2m fot + jrat?) (1)

where, f. is the carrier frequency, « is the chirp rate defined
as the ratio of bandwidth, B, to the sweep duration, 7, as
a = %. Assuming the signal reflects back from a set of K
targets, the received signal, Si(t), in one channel of the radar
system can be expressed as:

K
Sr(t) = Aiexp(j2m fo(t — t:) + jmalt — t;)?)

=1

2

where, A; is a complex constant related to target’s radar cross
section, and ¢; is the round trip time delay for the i target.

The raw 1&Q data can be reshaped into a 3D-array named
radar data cube (RDC) for further processing. First, a Fast
Fourier Transform (FFT) is applied across analog-to-digital
converter (ADC) samples for each chirp (i.e., pulse), providing
the range information over time, also called range profile (RP).
The activity time-frequency profiles, known as micro-Doppler
signatures puD [10] are generated by performing windowed
Fourier transform over slow-time or a number of chirp radar
returns. This is known as spectrograms which are computed
as the square modulus of the Short-Time Fourier Transform
(STFT) of the continuous time input signal:

oo 2
S(t,w) = ‘/ h(t —u)z(u)e 7" du 3)
— 00
where h(-) is the windowing function, x(-) is the received
signal. Spectrograms are implemented by FFT. Figure 1 shows
a sample puD spectrogram for each activity.

D. Agility Profiles

Varying speeds of performing an activity can appear in
the uD spectrogram as compression or expansion behavior
in time and frequency. Whereas fast movements exhibit ex-
pansion in time and compression in frequency, slow motions
show the opposite. Figure 2 illustrates this phenomenon for



three activities: SITC, KNEE and WLKT. It can be observed
that as the activities are performed faster (top to bottom),
the frequency band enlarges while the overall activity time
shortens. Such changes in activity pace can be an indicator of
mobility restrictions, abnormalities or health measures. Hence,
it is important to accurately recognize the person’s agility score
in health applications.

Once uD signatures are generated, their upper, central and
lower envelopes can be extracted using the percentile method
[21] as shown in Figure 3. Upper and lower envelopes can then
be used to compute the peak velocity of each sample indicating
the maximum speed in an activity. Figure 4 presents the maxi-
mum velocity distribution of slow, nominal and fast samples. It
can be observed that although there are overlapping regions,
slow samples have much lower average maximum velocity
of 2.19 m/s when compared to the fast samples which have
average maximum velocity of 3.45 m/s. Nominal samples, on
the other hand, have the mean maximum between the two
with 2.84 m/s. It should also be noted that these distributions
include all the classes and some activities naturally have lower
radial motion than others which can potentially move the
distributions closer. For instance, F_LLAYB can have a similar
radial speed as S_WLKT. Considering such similarities, a
certain overlap between the distributions is expected.

III. ACTIVITY AND AGILITY SCORE ESTIMATION

Four different DL-based approaches for activity and agility
score recognition are evaluated. These are: activity recognition
only, agility recognition only, joint estimation of activity and
agility, and simultaneous estimation of activity and agility
in a multi-task manner. In order to have a fair comparison
across the different approaches, a common backbone network
is utilized for feature extraction. It was decided to use VGG-
16 network [22] for its effectiveness on various RF datasets
[25].

Activity-only and the agility-only networks are two separate
networks which have the identical architecture except the
number of neurons at the output classification layer. Joint
activity and agility prediction network combines activity and
agility recognition into the same task which estimates activity
along with its agility score, hence resulting in 30 (10x3)
neurons at the output layer. Finally, multi-task learning is
evaluated where the network has two separate output layers
with 10 and 3 neurons for activity and agility prediction,
respectively. The total loss, Liota1, Of the two tasks is:

»Ctotal = )\»Cact + ’Vﬁag 4

where L, and L., are the categorical cross-entropy losses
for activity and agility recognition, and A and +y are the weights
of two losses. In this work, both A and ~ are chosen to be 1
in order to not have any bias towards a certain task.

Table I presents the classification results for the four afore-
mentioned approaches. While activity-only and agility-only
networks yield a good classification accuracy of 95.9% and
89.7%, respectively, they are targeted towards individual tasks.

TABLE I: Performance comparison of different activity and
agility score recognition approaches.

Recognition Number of Acc. (%) Acc. (%)
Method Output Classes  Activity Agility
Activity Only 10 95.9 -
Agility Only 3 - 89.7
Joint Act. & Ag. 30 89.7 91.9
Multi-task Act. & Ag. 10 & 3 95.2 90.8

In addition, they require separate networks which doubles the
memory and the computational requirements. Joint estimation
network, on the other hand, combines the two tasks into one
network with a wider output layer with 30 neurons. It enables
simultaneous optimization of the two task. While the overall
testing accuracy for this network for 30 classes is 82.3%, when
activities and agility scores are combined, individual metrics
can be obtained as 89.7% and 91.9%. Figure 5a shows the
transition from 30-class to 10-class for activity recognition
evaluation. The blue squares indicate the predictions of the
agility score within the same activity category and they can
be merged to disregard the errors stemming from agility
prediction. Figure 5b, on the other hand, shows the transition
from 30-class to 3-class for agility recognition evaluation. The
blue squares indicate the predictions of the activity within the
same agility category and they can be merged to disregard
the errors stemming from activity prediction. The off-diagonal
red squares show the area where slow and fast activities are
confused with each other. It can be seen that there is no such
confusion as all of those cells are zero. Note that the numbers
in the confusion matrices represent the number of samples.

The accuracy for activities are significantly lower than the
activity-only case, while the accuracy of agility is higher than
the agility-only network. This indicates that the network is
biased towards agility differentiation more than the activity
differentiation. This is a consequence of the network having
a single output for estimating both activity and agility, as we
cannot put emphasis on a certain task. This calls for a less
restricted approach — multi-task learning. Having separate
outputs for different tasks allows putting arbitrary importance
coefficient for each task. The multi-task approach yields 95.2%
and 90.8% accuracy for the activity and agility recognition
tasks. While the activity performance is much better than the
joint case and almost as good as the activity-only case, the
agility performance is in-between the joint and agility-only
cases with subtle differences.

IV. MULTI-INPUT-MULTI-TASK LEARNING NETWORK

1D Spectrograms are very effective in representing the body
kinematics over time, but they do not provide any information
regarding positions of the body parts. In this section, we
evaluate the efficacy of introducing range information into the
network using RPs. In order to have one-to-one comparison,
the same VGG-16 backbone network is used. However, since
both uD spectrograms and RPs are simultaneously fed into the
network, two parallel VGG-16 branches are constructed for
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Fig. 5: Confusion matrices of joint activity and agility score estimation.

feature extraction, followed by task specific fully connected
layers. After the multi-layer perceptron (MLP) layers, latent
spaces of the two inputs are aggregated in a concatenation
layer. Finally, two output layers are appended for activity and
agility classification. The overall architecture of the MIMTL
network is depicted in Figure 6.

The MIMTL network’s performance is compared with a
multi-input joint activity and agility estimation network which
has the identical model architecture except having single
output layer with 30 neurons instead of two output layers with
10 and 3 neurons for classification.

Figure 7 presents the classification results for activity and
agility recognition for four different approaches: pD-only joint
estimation, pD-only multi-tasking, multi-input joint estimation
and MIMTL method. It can be observed that there is a
significant improvement in activity recognition accuracy when
the network is built as multi-task in lieu of joint estimation
of activity and agility score for single and multi-input cases

(i.e., 89.7% to 95.2% and 95.6% to 98.2%). Inclusion of
range information also improves the recognition capability
of activities for both joint (89.7% to 95.6%) and multi-task
(95.2% to 98.2%) approaches. For agility score recognition,
only slight performance drop (91.9% to 90.8%) and increase
(88.2% to 90%) are observed for single and multi-input cases,
respectively.

V. CONCLUSION

This paper presented the first work on joint estimation
of human activities of daily living and the activity agility
score. We evaluated different approaches for simultaneous
classification of both tasks. It was found that optimizing both
tasks in separate output layers with a joint total loss function
significantly improves the activity recognition performance
while maintaining the agility score estimation accuracy. Im-
portance of each task can be determined based on the end
application by adjusting the individual loss weight factors
accordingly.
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It was also shown that inclusion of range information along
with Doppler information in a multi-input fashion boosts the
activity recognition accuracy while having slight detrimental
effect on agility score recognition performance. This results
implies that the MIMTL approach can be effectively utilized
for recognition of human activities and the current state of
agility of a person. Sudden or over-time changes in agility
score can be indicators of certain gait abnormalities or healing
processes depending on the change direction of agility score.
While agility scores can be described by more than three
labels, as considered in our analysis, or even assume a contin-
uous scalar, our work paves the way for future generalization

and advanced joint activity and agility state recognition.
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